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General framework

We are given categories A, B, S together with functors
Φ: A→ S and Ψ: B→ S.

We are trying to find a functor Γ: A→ B such that
Φ(A) ∼= ΨΓ(A), naturally in A, for “many” (ideally, all)
A ∈ A.

Hence we need an assumption of the form “for many
A ∈ A, there exists B ∈ B such that Φ(A) ∼= Ψ(B)”.

Ask for Γ: A 7→ B to be a functor (at least on a large
enough subcategory of A).
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The spectrum of a commutative, unital ring

A proper ideal P in a commutative, unital ring A is prime
if A/P is a domain. Equivalently, xy ∈ P ⇒ (x ∈ P or
y ∈ P), for all x , y ∈ A.

Endow the set SpecA =
def
{P | P is a prime ideal of A}

with the topology whose closed sets are those of the form

Spec(A,X ) =
def
{P ∈ SpecA | X ⊆ P} ,

for X ⊆ A.

This is the so-called hull-kernel topology on SpecA. The
topological space thus obtained is the (Zariski) spectrum
of A.

Is there an intrinsic characterization of the topological
spaces of the form SpecA?
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Spectral spaces

A nonempty closed set F in a topological space X is
irreducible if F = A ∪ B implies that either F = A or
F = B, for all closed sets A and B.

We say that X is sober if every irreducible closed set
is {x} (the closure of {x}) for a unique x ∈ X .

Set
◦
K(X ) =

def
{U ⊆ X | U is open and compact}.

In general, U,V ∈
◦
K(X ) ⇒ U ∪ V ∈

◦
K(X ).

However, usually U,V ∈
◦
K(X ) 6⇒ U ∩ V ∈

◦
K(X ).

We say that X is spectral if it is sober and
◦
K(X ) is a basis

of the topology of X , closed under finite intersection.
Taking the empty intersection then yields that X is
compact (usually not Hausdorff).
SpecA is a spectral space, for every commutative unital
ring A (well known and easy).
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Hochster’s Theorem

The converse of the above observation holds:

Theorem (Hochster 1969)

Every spectral space X is homeomorphic to SpecA for some
commutative unital ring A.

Moreover, Hochster proves that the assignment X 7→ A
can be made functorial.

In order for that observation to make sense, the
morphisms need to be specified.

On the ring side, just consider unital ring homomorphisms.

On the spectral space side, consider surjective spectral
maps. For spectral spaces X and Y , a map f : X → Y is

spectral if f −1[V ] ∈
◦
K(X ) whenever V ∈

◦
K(Y ).
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Bounded distributive lattices

A lattice is a structure (L,∨,∧), where ∨ and ∧ are both
binary operations on a set L such that there is a partial
ordering ≤ for which x ∨ y = sup(x , y) (the join of {x , y})
and x ∧ y = inf(x , y) (the meet of {x , y}) ∀x , y ∈ L.

Necessarily, x ≤ y ⇔ x ∨ y = y ⇔ x ∧ y = x .
We say that L is

distributive if x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) ∀x , y , z ∈ L;
bounded if ≤ has a smallest element (then denoted by 0)
and a largest element (then denoted by 1).

A 0, 1-lattice homomorphism is a lattice homomorphism
f : K → L , between bounded lattices, such that
f (0K ) = 0L and f (1K ) = 1L .

Ideals (resp., prime ideals) of a bounded distributive lattice
can be defined just as in rings (∨� + and ∧� ·).

For a bounded distributive lattice D, SpecD is defined as
for rings, on the prime ideals of D. It is a spectral space.
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Bounded distributive lattices

A lattice is a structure (L,∨,∧), where ∨ and ∧ are both
binary operations on a set L such that there is a partial
ordering ≤ for which x ∨ y = sup(x , y) (the join of {x , y})
and x ∧ y = inf(x , y) (the meet of {x , y}) ∀x , y ∈ L.

Necessarily, x ≤ y ⇔ x ∨ y = y ⇔ x ∧ y = x .
We say that L is

distributive if x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) ∀x , y , z ∈ L;
bounded if ≤ has a smallest element (then denoted by 0)
and a largest element (then denoted by 1).

A 0, 1-lattice homomorphism is a lattice homomorphism
f : K → L , between bounded lattices, such that
f (0K ) = 0L and f (1K ) = 1L .

Ideals (resp., prime ideals) of a bounded distributive lattice
can be defined just as in rings (∨� + and ∧� ·).

For a bounded distributive lattice D, SpecD is defined as
for rings, on the prime ideals of D. It is a spectral space.
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The functors underlying Stone duality

For bounded distributive lattices D and E and a
0, 1-lattice homomorphism f : D → E , the map
Spec f : SpecE → SpecD, Q 7→ f −1[Q] is spectral.

For spectral spaces X and Y and a spectral map

ϕ : X → Y , the map
◦
K(ϕ) :

◦
K(Y )→

◦
K(X ), V 7→ ϕ−1[V ]

is a 0, 1-lattice homomorphism.

Theorem (Stone 1938)

The pair (Spec,
◦
K) induces a (categorical) duality, between

bounded distributive lattices with 0, 1-lattice homomorphisms
and spectral spaces with spectral maps.

Note that in Hochster’s Theorem’s case, we do not obtain
a duality (a ring is not determined by its spectrum).
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Congruences of a lattice

A congruence of a lattice (L,∨,∧) is an equivalence
relation θ on L such that x1 ≡θ y1 and x2 ≡θ y2 implies
both x1 ∨ x2 ≡θ y1 ∨ y2 and x1 ∧ x2 ≡θ y1 ∧ y2 (we say
that θ is compatible with both operations ∨ and ∧).

Here,
x ≡θ y is short for (x , y) ∈ θ.

The concept of congruence can be extended to any
“universal algebra” (i.e., nonempty set A with a collection
of operations An → A for various n).

For example, the congruences of a group G are in
one-to-one correspondence with the normal subgroups
of G .

However, the congruences of a lattice L are, usually, not in
any natural one-to-one correspondence with subsets of L.
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The congruence lattice of a lattice

The set Con L of all congruences of a lattice L, partially
ordered under ⊆, is a complete lattice, in which∧

i∈I
θi =

⋂
i∈I
θi ,∨

i∈I
θi = congruence generated by

⋃
i∈I
θi .

A congruence θ is finitely generated if it is the least one
such that x1 ≡θ y1 and · · · and xn ≡θ yn, for some
xi , yi ∈ L.

A congruence θ is finitely generated iff it is a compact
element of Con L, that is, whenever θ ⊆

∨
i∈I θi , there

exists a finite subset J of I such that θ ⊆
∨

i∈J θi .

The lattice Con L is algebraic, that is, it is complete and
every congruence is

∨
i∈I θi with compact θi .
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The congruence lattice of a lattice (cont’d)

The algebraicity of the lattices Con L is not lattice-specific: it
holds for any universal algebra (e.g., group, module, ring. . . ).

Theorem (Funayama and Nakayama 1942)

The lattice Con L is distributive, for any lattice L.

Funayama and Nakayama’s Theorem is a very important
property of lattices. It does not extend to groups, modules,
rings. . . For example, A∩ (B + C ) 6= (A∩B) + (A∩C ) for
submodules A, B, C of a given module.

In the 1940’s, R. P. Dilworth proved that conversely, every
finite distributive lattice is the congruence lattice of a
(finite) lattice.

Then he asked whether this could be extended to the
infinite case:
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CLP

The Congruence Lattice Problem (CLP); Dilworth, 1940’s

Is every algebraic distributive lattice the congruence lattice of a
lattice?

CLP initiated a considerable amount of work, leading to a
host of positive results.

All those results are more conveniently stated in terms of
the structure Conc L =

def
{compact congruences of L}

(partially ordered under ⊆).

It has to be noted that Conc L is not a lattice as a rule: for
compact congruences α and β, the join α ∨ β is compact,
but the meet α ∩ β may not be compact.

Hence, Conc L is a (∨, 0)-semilattice. It is distributive,
that is, whenever α ⊆ β1 ∨ β2 in Conc L, there are αi ⊆ βi
in Conc L such that α = α1 ∨ α2.
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Known positive instances of CLP

Semilattice formulation of CLP

Is every distributive (∨, 0)-semilattice representable, that is,
isomorphic to Conc L for some lattice L?

Some positive instances of CLP are the following:

Theorem

Let S be a distributive (∨, 0)-semilattice. In each of the
following cases, S is representable:

1 S is countable (Bauer ∼ 1980);

2 card S ≤ ℵ1 (Huhn 1989);

3 S is a lattice (Schmidt 1981);

4 S = lim−→n<ω
Sn, with all transition maps Sn → Sn+1

(∨, 0)-homomorphisms and all Sn lattices (W. 2003).
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Negative solution of CLP

In any of those cases, a representing lattice L (such that
Conc L ∼= S) can be taken sectionally complemented

(a
lattice L with zero is sectionally complemented if whenever
a ≤ b in L, there exists x such that a ∨ x = b and a ∧ x = 0).

Theorem (W. 1999)

For every cardinal number κ ≥ ℵ2, there exists a distributive
(∨, 0)-semilattice Sκ , of cardinality κ, not isomorphic to Conc L
for any sectionally complemented lattice L.

Theorem (W. 2007; solves CLP)

The distributive (∨, 0)-semilattice Sℵω+1 is not representable.

Theorem (Růžička 2008; yields the optimal cardinality bound)

The distributive (∨, 0)-semilattice Sℵ2 is not representable.
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A heavy cube

“Heavy” means here “hard to lift”.

We consider the following commutative diagram Dc of
(∨, 0)-semilattices and (∨, 0)-homomorphisms,

{0, 1}

{0, 1}2

p
::

{0, 1}2

p
OO

{0, 1}2

p
dd

{0, 1}2 {0, 1}2

sdd

{0, 1}2

{0, 1}
e

dd

e

OO

e

::

where e(x) = (x , x), p(x , y) = x ∨ y , and s(x , y) = (y , x).
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A heavy cube (cont’d)

Theorem (Tůma and W. 2001)

The cube Dc is not representable (with respect to the
functor Conc), by any cube of sectionally complemented
lattices and lattice homomorphisms.

In fact, it turns out that the result above can be extended to a
much broader algebraic context; in particular, it is not
lattice-specific:
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A heavy cube (cont’d)

Theorem (Růžička, Tůma, and W. 2007)

The cube Dc is not representable (with respect to the
functor Conc), by any cube of congruence-permutable
(universal) algebras.

For binary relations α and β on a set A, we set
α◦β =

def
{(x , y) ∈ A×A | (∃z ∈ A)((x , z) ∈ α and (z , y) ∈ β)}.

We say that an algebra A is congruence-permutable if
α ◦ β = β ◦ α for all congruences α and β of A.
For example, groups, modules, rings are all
congruence-permutable (e.g., HK = KH for normal subgroups
in a group). However, not all lattices are
congruence-permutable (e.g., consider the three-element
chain).
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From heavy cubes to heavy semilattices

The proof of non-representability of Dc , by
congruence-permutable algebras, can be “converted” to the
construction of a non-representable distributive
(∨, 0)-semilattice.

Theorem (Růžička, Tůma, and W. 2007)

For every cardinal number κ ≥ ℵ2 , the distributive
(∨, 0)-semilattice Sκ is not isomorphic to Conc A for any
congruence-permutable algebra A.

In particular, Sℵ2 is not
isomorphic to Conc A whenever A is a sectionally
complemented lattice, a group, a module, or a ring.

In the case of sectionally complemented lattices, groups,
modules, rings, the cardinality bound ℵ2 is optimal.
However, not every lattice is sectionally complemented. Hence,
the negative solution to CLP was much trickier.
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(∨, 0)-semilattice Sκ is not isomorphic to Conc A for any
congruence-permutable algebra A. In particular, Sℵ2 is not
isomorphic to Conc A whenever A is a sectionally
complemented lattice, a group, a module, or a ring.

In the case of sectionally complemented lattices, groups,
modules, rings, the cardinality bound ℵ2 is optimal.
However, not every lattice is sectionally complemented. Hence,
the negative solution to CLP was much trickier.
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Nonstable K0-theory

Two idempotent matrices a and b over a (not necessarily
commutative or unital) ring R are Murray - von Neumann
equivalent, in symbol a ∼ b, if there are matrices x and y
such that a = xy and b = yx .

For square matrices x and y over R, we set

x ⊕ y =
def

(
x 0
0 y

)
.

If x1 ∼ y1 and x2 ∼ y2, then x1 ⊕ x2 ∼ y1 ⊕ y2.

Hence, Murray - von Neumann equivalence classes
[a] =

def
{x | a ∼ x}, for idempotent matrices a over R, can

be added, via [a] + [b] =
def

[a⊕ b].

The monoid V(R) =
def
{[a] | a idempotent matrix on R} is

commutative (x + y = y + x) and conical (x + y = 0 ⇒
x = y = 0). It encodes the nonstable K0-theory of R.
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Representability with respect to nonstable
K0-theory

Theorem (Bergman 1974, Bergman and Dicks 1978)

Every commutative conical monoid is V(R) for some ring R.

More structure arises when restrictions are put on R.

Definition (Warfield 1972, Ara 1997)

A ring R is an exchange ring if for all x ∈ R, there are an
idempotent e ∈ R and r , s ∈ R such that e = rx = x + s − sx .

This condition is left-right symmetric.

Every von Neumann regular ring (i.e., satisfying
(∀x)(∃y)(xyx = x)) is an exchange ring, and a C*-algebra
is an exchange ring iff it has real rank zero (Ara, Goodearl,
O’Meara, and Pardo 1998, Ara 1997).
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Representability with respect to nonstable
K0-theory (cont’d)

Theorem (Ara 1997)

Let R be an exchange ring. Then V(R) is a refinement monoid,
that is, for all a0, a1, b0, b1 ∈ V(R) such that
a0 + a1 = b0 + b1, there are ci ,j ∈ V(R), for i , j ∈ {0, 1}, such
that each ai = ci ,0 + ci ,1 and bi = c0,i + c1,i .

The converse is unknown:

Problem

Does every conical refinement monoid appear as V(R), for
some exchange ring R?
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A non-representable diagram in nonstable
K0-theory

A monoid is simplicial if it is Nn for some nonnegative integer n.

Theorem (W. 2013)

There is a commutative cube of simplicial monoids that can be
lifted, with respect to the functor V, by exchange rings and by
C*-algebras of real rank 1, but not by semiprimitive exchange
rings, thus neither by von Neumann regular rings nor by
C*-algebras of real rank 0.

CLL (Gillibert and Wehrung 2011)

Under fairly general categorical conditions, non-representable
diagrams can be turned (via the so-called condensate
construction) to non-representable objects.

The (quite complex) condensate construction turns a diagram
to an object, but it may increase the cardinality.
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A non-representable object in nonstable K0-theory

An application of CLL to the cube above yields the following:

Theorem (W. 2013)

There exists a unital exchange ring of cardinality ℵ3 (resp., an
ℵ3-separable unital C*-algebra of real rank 1) R, such
that V(R) is not isomorphic to V(B) for any ring B which is
either a C*-algebra of real rank 0 or a von Neumann regular
ring.

To paraphrase this, the nonstable K0-theory of exchange rings
properly contains those of von Neumann regular rings and of
C*-algebras of real rank zero.
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Back to spectral spaces

The Zariski spectrum construction can be extended to
various contexts, such as Abelian `-groups (yielding the
`-spectrum) and partially ordered, commutative unital
rings (yielding the real spectrum).

Tailoring the methods above (in particular, CLL) to that
new context, further results can be obtained on `-spectra
and real spectra.
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Theorem (W. 2017)

Let CN =
def
{completely normal spectral spaces},

` =
def
{`-spectra of Abelian `-groups with unit},

R =
def
{real spectra of commutative unital rings},

SX =
def
{spectral subspaces of members of X}. Then

CN = SCN

S`

SR

` R
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Thanks for your attention!
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