Sublattices of associahedra and permutohedra

Luigi Santocanale and Friedrich Wehrung

LIF (Marseille) and LMNO (Caen)
E-mail (Santocanale): luigi.santocanale@lif.univ-mrs.fr URL (Santocanale): http://www.lif.univ-mrs.fr/~Isantoca

E-mail (Wehrung): wehrung@math.unicaen.fr URL (Wehrung): http://www.math.unicaen.fr/ ${ }^{\text {w }}$ whehrung

TACL 2011, Marseilles, July 292011

A(4): the associahedron on $4+1$ letters

Associahedra, permutohedra

Associahedra, permutohedra

Geyer's Conjecture

Non-
embeddable
bounded
lattices
Non-
embeddability into
permutohedra

$P(4)$: the permutohedron on 4 letters

Associahedra, permutohedra

Associahedra, permutohedra

Geyer's Conjecture

Associahedra and permutohedra

Associahedra, permutohedra
... appear in the worlds of
■ voting theory,

Associahedra,
permutohedra
Geyer's
Conjecture
Non-
embeddable
bounded
lattices
Non-
embeddability into
permutohedra

Associahedra and permutohedra

Associahedra, permutohedra

Associahedra,

permutohedra
Geyer's
Conjecture
Non-
embeddable
bounded
lattices
Non-
embeddability into
permutohedra
... appear in the worlds of

- voting theory,
- graphs, polyhedra,

Associahedra and permutohedra

Associahedra, permutohedra

Associahedra,
permutohedra
Geyer's
Conjecture
Non-
embeddable
bounded
lattices
Non-
embeddability into
permutohedra
... appear in the worlds of

- voting theory,
- graphs, polyhedra,
- groups,

Associahedra and permutohedra

Associahedra, permutohedra

Associahedra,
permutohedra
Geyer's
Conjecture
Non-
embeddable
bounded
lattices
Non-
embeddability into
permutohedra
... appear in the worlds of

- voting theory,
- graphs, polyhedra,
- groups,
- lattices.

Associahedra and permutohedra

Associahedra, permutohedra

Associahedra, permutohedra

Geyer's
Conjecture
Non-
embeddable
bounded
lattices
Non-
embeddability into
permutohedra
... appear in the worlds of
■ voting theory,

- graphs, polyhedra,
- groups,

■ lattices.

A logical issue:
to characterize the equational theory of these lattices.

Associahedra and permutohedra

Associahedra, permutohedra

Associahedra, permutohedra

Geyer's
Conjecture
Non-
embeddable
bounded
lattices
Non-
embeddability into
permutohedra
... appear in the worlds of
■ voting theory,
■ graphs, polyhedra,

- groups,

■ lattices.

A logical issue: to characterize the equational theory of these lattices.

Associahedra: no nontrivial lattice identity known to hold until recently [S\&W, November 2010].

Associahedra and permutohedra

Associahedra,
... appear in the worlds of
■ voting theory,
■ graphs, polyhedra,
■ groups,
■ lattices.

A logical issue: to characterize the equational theory of these lattices.

Associahedra: no nontrivial lattice identity known to hold until recently [S\&W, November 2010].

Permutohedra: no nontrivial lattice identity known to hold yet.

The permutohedron on n letters

```
Associahedra
permutohedra
Geyer's
Conjecture
Non-
embeddable
bounded
lattices
Non-
embeddability
into
permutohedra
```

These objects can be defined in many equivalent ways:

The permutohedron on n letters

Associahedra, permutohedra

These objects can be defined in many equivalent ways:
■ Set $[n]:=\{1,2, \ldots, n\}$ and

$$
\mathcal{J}_{n}:=\{(i, j) \in[n] \times[n] \mid i<j\} .
$$

Elements of \mathcal{J}_{n} are called inversions.

The permutohedron on n letters

Associahedra, permutohedra

These objects can be defined in many equivalent ways:
$■$ Set $[n]:=\{1,2, \ldots, n\}$ and

$$
\mathcal{J}_{n}:=\{(i, j) \in[n] \times[n] \mid i<j\} .
$$

Elements of \mathcal{J}_{n} are called inversions.

- A subset a of \mathcal{J}_{n} is closed if it is transitive. Say that \mathbf{a} is open if $\mathcal{J}_{n} \backslash \mathbf{a}$ is closed.

The permutohedron on n letters

Associahedra, permutohedra

These objects can be defined in many equivalent ways:
■ Set $[n]:=\{1,2, \ldots, n\}$ and

$$
\mathcal{J}_{n}:=\{(i, j) \in[n] \times[n] \mid i<j\} .
$$

Elements of \mathcal{J}_{n} are called inversions.

- A subset a of \mathcal{J}_{n} is closed if it is transitive.

Say that \mathbf{a} is open if $\mathcal{J}_{n} \backslash \mathbf{a}$ is closed.

- The permutohedron of n letters $-\mathrm{P}(n)$ - is defined as:

$$
\mathrm{P}(n)=\left\{\text { clopen (i.e., closed and open) subsets of } \mathcal{J}_{n}\right\}
$$

$\mathrm{P}(n)$ is ordered by containment.

The permutohedron on n letters

Associahedra, permutohedra

Associahedra, permutohedra

Geyer's
Conjecture
Non-
embeddable bounded lattices

Non-
embeddability into
permutohedra

These objects can be defined in many equivalent ways:
■ Set $[n]:=\{1,2, \ldots, n\}$ and

$$
\mathcal{J}_{n}:=\{(i, j) \in[n] \times[n] \mid i<j\} .
$$

Elements of \mathcal{J}_{n} are called inversions.

- A subset a of \mathcal{J}_{n} is closed if it is transitive.

Say that \mathbf{a} is open if $\mathcal{J}_{n} \backslash \mathbf{a}$ is closed.

- The permutohedron of n letters $-\mathrm{P}(n)$ - is defined as:
$\mathrm{P}(n)=\left\{\right.$ clopen (i.e., closed and open) subsets of $\left.\mathcal{J}_{n}\right\}$,
$\mathrm{P}(n)$ is ordered by containment.
Theorem (Guilbaud and Rosenstiehl 1963)
The poset $\mathrm{P}(n)$ is a lattice, for each positive integer n.

$\mathrm{P}(n)$ as the lattice of all permutations of $[n]$

Associahedra, permutohedra

Associahedra, permutohedra

Geyer's
Conjecture
Non-
embeddable
bounded
lattices
Non-
embeddability into
permutohedra

■ For $\sigma \in \mathfrak{S}_{n}$, the inversion set

$$
\operatorname{lnv}(\sigma):=\left\{(i, j) \in \mathcal{J}_{n} \mid \sigma^{-1}(i)>\sigma^{-1}(j)\right\}
$$

is clopen.
$\mathrm{P}(n)$ as the lattice of all permutations of $[n]$

Associahedra, permutohedra

Associahedra, permutohedra

Geyer's

Conjecture
Non-
embeddable
bounded
lattices
Non-
embeddability into
permutohedra

■ For $\sigma \in \mathfrak{S}_{n}$, the inversion set

$$
\operatorname{lnv}(\sigma):=\left\{(i, j) \in \mathcal{J}_{n} \mid \sigma^{-1}(i)>\sigma^{-1}(j)\right\}
$$

is clopen.

$\mathrm{P}(n)$ as the lattice of all permutations of $[n]$

Associahedra, permutohedra

Associahedra, permutohedra

Geyer's
Conjecture
Non-
embeddable
bounded
lattices
Non-
embeddability into
permutohedra

■ For $\sigma \in \mathfrak{S}_{n}$, the inversion set

$$
\operatorname{lnv}(\sigma):=\left\{(i, j) \in \mathcal{J}_{n} \mid \sigma^{-1}(i)>\sigma^{-1}(j)\right\}
$$

is clopen.

- Every clopen set has the form $\operatorname{Inv}(\sigma)$,

$$
\text { for a (unique) } \sigma \in \mathfrak{S}_{n} \text {. }
$$

Theorem

$\operatorname{lnv}(\sigma) \subseteq \operatorname{Inv}(\tau)$
if and only if
there is a length-increasing path from σ to τ in the Cayley graph of \mathfrak{S}_{n}.

Associahedra as retracts of permutohedra

Associahedra, permutohedra

Associahedra, permutohedra

Geyer's
Conjecture
Non-
embeddable
bounded
lattices
Non-
embeddability into
permutohedra

- A(n), the associahedron (Tamari 1962) of index n : all bracketings on $n+1$ letters ordered together with the reflexive and transitive closure of

$$
(x y) z<x(y z) .
$$

Associahedra as retracts of permutohedra

Associahedra, permutohedra

- A(n), the associahedron (Tamari 1962) of index n : all bracketings on $n+1$ letters ordered together with the reflexive and transitive closure of

$$
(x y) z<x(y z) .
$$

Proved to be a lattice by Friedman and Tamari (1967).

Associahedra as retracts of permutohedra

Associahedra, permutohedra

Associahedra, permutohedra

Geyer's Conjecture

Non-
embeddable
bounded lattices

Non-
embeddability into
permutohedra

- A(n), the associahedron (Tamari 1962) of index n : all bracketings on $n+1$ letters ordered together with the reflexive and transitive closure of

$$
(x y) z<x(y z) .
$$

Proved to be a lattice by Friedman and Tamari (1967).
■ Say that $\mathbf{a} \subseteq \mathcal{J}_{n}$ is a left subset if

$$
i<j<k \text { and }(i, k) \in \mathbf{a} \text { implies that }(i, j) \in \mathbf{a} .
$$

Then:
$\mathrm{A}(n): \simeq\left\{\right.$ closed left subsets of $\left.\mathcal{J}_{n}\right\}$.

Associahedra as retracts of permutohedra

- A(n), the associahedron (Tamari 1962) of index n : all bracketings on $n+1$ letters ordered together with the reflexive and transitive closure of

$$
(x y) z<x(y z)
$$

Proved to be a lattice by Friedman and Tamari (1967).
■ Say that $\mathbf{a} \subseteq \mathcal{J}_{n}$ is a left subset if

$$
i<j<k \text { and }(i, k) \in \mathbf{a} \text { implies that }(i, j) \in \mathbf{a} .
$$

Then:

$$
\mathrm{A}(n): \simeq\left\{\text { closed left subsets of } \mathcal{J}_{n}\right\}
$$

Every left subset is open, whence $\mathrm{A}(n) \subseteq \mathrm{P}(n)$.

Associahedra as retracts of permutohedra

- A(n), the associahedron (Tamari 1962) of index n : all bracketings on $n+1$ letters ordered
together with the reflexive and transitive closure of

$$
(x y) z<x(y z)
$$

Proved to be a lattice by Friedman and Tamari (1967).
■ Say that $\mathbf{a} \subseteq \mathcal{J}_{n}$ is a left subset if

$$
i<j<k \text { and }(i, k) \in \mathbf{a} \text { implies that }(i, j) \in \mathbf{a} .
$$

Then:

$$
\mathrm{A}(n): \simeq\left\{\text { closed left subsets of } \mathcal{J}_{n}\right\}
$$

Every left subset is open, whence $\mathrm{A}(n) \subseteq \mathrm{P}(n)$.
Theorem (mostly Björner and Wachs 1997)
$\mathrm{A}(n)$ is a lattice-theoretical retract of $\mathrm{P}(n)$.

$P(3)$ and $A(3)$

Associahedra, permutohedra

Associahedra,
permutohedra

Geyer's

Conjecture
Non-
embeddable
bounded
lattices
Non-
embeddability into
permutohedra

$P(4)$ and $A(4)$

Associahedra, permutohedra

Associahedra,

permutohedra

Geyer's

Conjecture
Non-
embeddable
bounded
lattices
Non-
embeddability into
permutohedra

Grätzer's problem for associahedra

Associahedra, permutohedra

Associahedra, permutohedra

Geyer's
Conjecture
Non-
embeddable
bounded
lattices
Non-
embeddability into
permutohedra

Problem (Grätzer 1971)
Characterize the (finite) lattices that can be embedded into some associahedron $\mathrm{A}(n)$.

Grätzer's problem for associahedra

Problem (Grätzer 1971)
Characterize the (finite) lattices that can be embedded into some associahedron $\mathrm{A}(n)$.

- At that time, no reasonable guess for a solution to Grätzer's problem.

Grätzer's problem for associahedra

Problem (Grätzer 1971)

Characterize the (finite) lattices that can be embedded into some associahedron $\mathrm{A}(n)$.

- At that time, no reasonable guess for a solution to Grätzer's problem.
- Still unknown whether

$$
\{L \mid \exists n \text { s.t. } L \hookrightarrow \mathrm{~A}(n)\}
$$

is decidable.

Bounded homomorphic images of free lattices

Associahedra, permutohedra

■ Attempt to coin the natural candidate for a solution to Grätzer's Problem.

Bounded homomorphic images of free lattices

Associahedra,

Associahedra, permutohedra

Geyer's Conjecture

Non-
embeddable
bounded
lattices
Non-
embeddability into
permutohedra

- Attempt to coin the natural candidate for a solution to Grätzer's Problem.

■ Concepts mostly due to McKenzie (1972).

Bounded homomorphic images of free lattices

Associahedra,

Associahedra, permutohedra

Geyer's Conjecture

Non-
embeddable
bounded
lattices
Non-
embeddability into
permutohedra

■ Attempt to coin the natural candidate for a solution to Grätzer's Problem.

■ Concepts mostly due to McKenzie (1972).
■ L (finite) is bounded if the projection map

$$
\mathcal{F}_{\top, \perp}(L) \longrightarrow \pi \longrightarrow L
$$

Bounded homomorphic images of free lattices

- Attempt to coin the natural candidate for a solution to Grätzer's Problem.

■ Concepts mostly due to McKenzie (1972).
■ L (finite) is bounded if the projection map

is upper and lower residuated.

Bounded homomorphic images of free lattices

- Attempt to coin the natural candidate for a solution to Grätzer's Problem.
- Concepts mostly due to McKenzie (1972).

■ L (finite) is bounded if the projection map

is upper and lower residuated.
■ Join-dependency relation $\mathbf{D}:$ for $p, q \in \operatorname{Ji}(L)$ and $p \neq q$,

$$
p \mathbf{D} q \text { if } \exists x \text { s.t. } p \leq q \vee x \text { and } p \not \leq q_{*} \vee x .
$$

L is lower bounded if \mathbf{D} has no cycle.
L is bounded if L and L^{op} are both lower bounded.

The easiest examples

Associahedra,
permutohedra

Associahedra, permutohedra

Geyer's
Conjecture
Non-
embeddable
bounded
lattices
Non-
embeddability into
permutohedra

The lattice N_{5} is bounded, while the lattice M_{3} is not.

The easiest examples

Associahedra,
permutohedra

Associahedra, permutohedra

Geyer's
Conjecture
Non
embeddable
bounded
lattices
Non-
embeddability into
permutohedra

The lattice N_{5} is bounded, while the lattice M_{3} is not.

Boundedness of permutohedra and associahedra

Theorem (Urquhart 1978)

Every associahedron $\mathrm{A}(n)$ is bounded.

Boundedness of permutohedra and associahedra

Associahedra, permutohedra

Associahedra, permutohedra

Geyer's
Conjecture
Non-
embeddable
bounded
lattices
Non-
embeddability into
permutohedra

Theorem (Urquhart 1978)

Every associahedron $\mathrm{A}(n)$ is bounded.

Theorem (Caspard 2000)

Every permutohedron $\mathrm{P}(n)$ is bounded.

Boundedness of permutohedra and associahedra

Associahedra, permutohedra

Associahedra, permutohedra

Geyer's
Conjecture
Non-
embeddable
bounded
lattices
Non-
embeddability into
permutohedra

Theorem (Urquhart 1978)

Every associahedron $\mathrm{A}(n)$ is bounded.

Theorem (Caspard 2000)

Every permutohedron $\mathrm{P}(n)$ is bounded.

■ As $\mathrm{A}(n)$ is a retract of $\mathrm{P}(n)$, Caspard's result supersedes Urquhart's result.

Boundedness of permutohedra and associahedra

Theorem (Urquhart 1978)

Every associahedron $\mathrm{A}(n)$ is bounded.

Theorem (Caspard 2000)

Every permutohedron $\mathrm{P}(n)$ is bounded.

- As $\mathrm{A}(n)$ is a retract of $\mathrm{P}(n)$, Caspard's result supersedes Urquhart's result.
■ Caspard's result was extended to all finite Coxeter lattices by Caspard, Le Conte de Poly-Barbut, and Morvan (2004).

Boundedness of permutohedra and associahedra

Theorem (Urquhart 1978)

Every associahedron $\mathrm{A}(n)$ is bounded.

Theorem (Caspard 2000)

Every permutohedron $\mathrm{P}(n)$ is bounded.

■ As $\mathrm{A}(n)$ is a retract of $\mathrm{P}(n)$, Caspard's result supersedes Urquhart's result.
■ Caspard's result was extended to all finite Coxeter lattices by Caspard, Le Conte de Poly-Barbut, and Morvan (2004).

- It follows that every quotient of a sublattice of a permutohedron (associahedron) is bounded.

Geyer's Conjecture

- The following conjecture is natural:

Geyer's Conjecture

Associahedra, permutohedra

Associahedra, permutohedra

Geyer's
Conjecture
Non-
embeddable
bounded
lattices
Non-
embeddability into
permutohedra

- The following conjecture is natural:

Conjecture (Geyer 1994)
Every finite bounded lattice can be embedded (as a sublattice) into some associahedron $A(n)$.

Geyer's Conjecture

Associahedra, permutohedra

- The following conjecture is natural:

Conjecture (Geyer 1994)
Every finite bounded lattice can be embedded (as a sublattice) into some associahedron $\mathrm{A}(n)$.

■ Conjecture easy to verify for finite distributive lattices.

Geyer's Conjecture

- The following conjecture is natural:

Conjecture (Geyer 1994)
Every finite bounded lattice can be embedded (as a sublattice) into some associahedron $A(n)$.

- Conjecture easy to verify for finite distributive lattices.

■ Strangely, a similar conjecture for permutohedra was not stated at that time.

The lattices $\mathrm{B}(m, n)$

$B(1,3)$ and $B(2,2)$, non-atom join-irreducible element is \mathbf{p}.

The lattices $\mathrm{B}(m, n)$

Associahedra,

Associahedra, permutohedra

Geyer's
Conjecture
Non-
embeddable bounded lattices

Non-
embeddability into
permutohedra

$B(1,3)$ and $B(2,2)$, non-atom join-irreducible element is \mathbf{p}.

- The lattice $B(m, n)$ is defined by doubling the join of m atoms in an $(m+n)$-atom Boolean lattice.

The lattices $\mathrm{B}(m, n)$

Associahedra,
permutohedra

Associahedra, permutohedra

Geyer's
Conjecture
Non-
embeddable bounded lattices

Non-
embeddability into
permutohedra

$B(1,3)$ and $B(2,2)$, non-atom join-irreducible element is \mathbf{p}.

- The lattice $B(m, n)$ is defined by doubling the join of m atoms in an $(m+n)$-atom Boolean lattice.
- All lattices $\mathrm{B}(m, n)$ are bounded.

The lattices $\mathrm{B}(m, n)$

Associahedra,
permutohedra

Associahedra, permutohedra

Geyer's
Conjecture
Non-
embeddable bounded lattices

Non-
embeddability into
permutohedra

$B(1,3)$ and $B(2,2)$, non-atom join-irreducible element is \mathbf{p}.

- The lattice $\mathrm{B}(m, n)$ is defined by doubling the join of m atoms in an $(m+n)$-atom Boolean lattice.
- All lattices $\mathrm{B}(m, n)$ are bounded.
- The lattices $\mathrm{B}(m, n)$ and $\mathrm{B}(n, m)$ are opposite ("dual").

$\mathrm{B}(m, n), \mathrm{A}(n)$ and $\mathrm{P}(n)$

Theorem (S+W 2010)

- $\mathrm{B}(m, n)$ can be embedded into an associahedron iff $\min \{m, n\} \leq 1$.

$\mathrm{B}(m, n), \mathrm{A}(n)$ and $\mathrm{P}(n)$

Theorem (S+W 2010)

- $\mathrm{B}(m, n)$ can be embedded into an associahedron iff $\min \{m, n\} \leq 1$.
■ $\mathrm{P}(n)$ can be embedded into an associahedron iff $n \leq 3$.

$\mathrm{B}(m, n), \mathrm{A}(n)$ and $\mathrm{P}(n)$

Theorem (S+W 2010)

- $\mathrm{B}(m, n)$ can be embedded into an associahedron iff $\min \{m, n\} \leq 1$.
■ $\mathrm{P}(n)$ can be embedded into an associahedron iff $n \leq 3$.

In particular: neither $\mathrm{B}(2,2)$ nor $\mathrm{P}(4)$ can be embedded into any $\mathrm{A}(n)$.

Polarized measures:

duality for finite lattices at work

Associahedra, permutohedra

Associahedra, permutohedra

Geyer's
Conjecture
Non-
embeddable bounded lattices

Non-
embeddability into
permutohedra

Polarized measures:

duality for finite lattices at work

Associahedra,
permutohedra

Associahedra, permutohedra

Geyer's
Conjecture
Non-
embeddable bounded lattices

Non-
embeddability into
permutohedra

Polarized measures:

duality for finite lattices at work

Associahedra,
permutohedra

Associahedra, permutohedra

Geyer's
Conjecture
Non-
embeddable bounded lattices

Non-
embeddability into
permutohedra

Polarized measure (satisfying the V-condition):

$$
\mu: \mathcal{J}_{n} \longrightarrow L,
$$

surjective on $\mathrm{Ji}(L)$, s.t., for $i<j<k$,
$1 \mu(i, j) \leq \mu(i, k)$,

Polarized measures:

duality for finite lattices at work

Associahedra, permutohedra

Geyer's
Conjecture
Non-
embeddable bounded lattices

Non-
embeddability into
permutohedra

Polarized measure (satisfying the V-condition):

$$
\mu: \mathcal{J}_{n} \longrightarrow L,
$$

surjective on $\mathrm{Ji}(L)$, s.t., for $i<j<k$,
$1 \mu(i, j) \leq \mu(i, k)$,
$2 \mu(i, k) \leq \mu(i, j) \vee \mu(j, k)$,

Polarized measures:

duality for finite lattices at work

Associahedra, permutohedra

Geyer's
Conjecture
Non-
embeddable bounded lattices

Non-
embeddability into
permutohedra

Polarized measure (satisfying the V-condition):

$$
\mu: \mathcal{J}_{n} \longrightarrow L,
$$

surjective on $\mathrm{Ji}(L)$, s.t., for $i<j<k$,
$1 \mu(i, j) \leq \mu(i, k)$,
$2 \mu(i, k) \leq \mu(i, j) \vee \mu(j, k)$,
$3 \mu(i, j) \leq \mathbf{a} \vee \mathbf{b}$ implies

$$
\begin{aligned}
i= & z_{0}<z_{1}<\cdots<z_{m}=j \text { and } \\
& \quad \text { either } \mu\left(z_{i}, z_{i+1}\right) \leq \mathbf{a} \text { or } \mu\left(z_{i}, z_{i+1}\right) \leq \mathbf{b},
\end{aligned}
$$

for each $i<m$.

Vegetables and Gazpachos

Associahedra, permutohedra

Associahedra, permutohedra

Geyer's
Conjecture
Non-
embeddable bounded lattices

Non-
embeddability into
permutohedra

- $\mathrm{B}(2,2) \nLeftarrow \mathrm{A}(n)$ gives rise to a separating Horn formula.

Vegetables and Gazpachos

Associahedra, permutohedra

Associahedra, permutohedra

Geyer's
Conjecture
Non-
embeddable bounded lattices

Non-
embeddability into
permutohedra

- $\mathrm{B}(2,2) \nrightarrow \mathrm{A}(n)$ gives rise to a separating Horn formula.
- The separating Horn-formula is equivalent to $\left(\mathrm{Veg}_{1}\right)$:

$$
\begin{aligned}
\left(a_{1} \vee a_{2} \vee b_{1}\right) \wedge\left(a_{1} \vee a_{2} \vee b_{2}\right) \leq & \bigvee_{i, j \in\{1,2\}} \\
& \left(\left(a_{i} \vee \tilde{b}_{j}\right) \wedge\left(a_{1} \vee a_{2} \vee b_{3-j}\right)\right), \\
& \text { with } \tilde{b}_{j}:=\left(b_{1} \vee b_{2}\right) \wedge\left(a_{1} \vee a_{2} \vee b_{j}\right),
\end{aligned}
$$

satisfied by all $\mathrm{A}(n)$ but not by $\mathrm{B}(2,2)$.

Vegetables and Gazpachos

Associahedra, permutohedra

Associahedra, permutohedra

Geyer's
Conjecture
Non-
embeddable bounded lattices

Non-
embeddability into
permutohedra

- $\mathrm{B}(2,2) \nrightarrow \mathrm{A}(n)$ gives rise to a separating Horn formula.
- The separating Horn-formula is equivalent to $\left(\mathrm{Veg}_{1}\right)$:

$$
\begin{aligned}
\left(a_{1} \vee a_{2} \vee b_{1}\right) \wedge\left(a_{1} \vee a_{2} \vee b_{2}\right) \leq & \bigvee_{i, j \in\{1,2\}} \\
& \left(\left(a_{i} \vee \tilde{b}_{j}\right) \wedge\left(a_{1} \vee a_{2} \vee b_{3-j}\right)\right), \\
& \text { with } \tilde{b}_{j}:=\left(b_{1} \vee b_{2}\right) \wedge\left(a_{1} \vee a_{2} \vee b_{j}\right),
\end{aligned}
$$

satisfied by all $\mathrm{A}(n)$ but not by $\mathrm{B}(2,2)$.

- An infinite collection of identities, the Gazpacho identities, were discovered to hold in $A(n)$.

Vegetables and Gazpachos

Associahedra, permutohedra

Associahedra, permutohedra

Geyer's
Conjecture
Non-
embeddable bounded lattices

Non-
embeddability into
permutohedra

- $\mathrm{B}(2,2) \nrightarrow \mathrm{A}(n)$ gives rise to a separating Horn formula.
- The separating Horn-formula is equivalent to $\left(\mathrm{Veg}_{1}\right)$:

$$
\begin{aligned}
\left(a_{1} \vee a_{2} \vee b_{1}\right) \wedge\left(a_{1} \vee a_{2} \vee b_{2}\right) \leq & \bigvee_{i, j \in\{1,2\}} \\
& \left(\left(a_{i} \vee \tilde{b}_{j}\right) \wedge\left(a_{1} \vee a_{2} \vee b_{3-j}\right)\right), \\
& \text { with } \tilde{b}_{j}:=\left(b_{1} \vee b_{2}\right) \wedge\left(a_{1} \vee a_{2} \vee b_{j}\right),
\end{aligned}
$$

satisfied by all $\mathrm{A}(n)$ but not by $\mathrm{B}(2,2)$.

- An infinite collection of identities, the Gazpacho identities, were discovered to hold in $\mathrm{A}(n)$.
- $\left(\mathrm{Veg}_{1}\right)$ is a (consequence of a) Gazpacho identity.

Vegetables and Gazpachos

- $\mathrm{B}(2,2) \nrightarrow \mathrm{A}(n)$ gives rise to a separating Horn formula.
- The separating Horn-formula is equivalent to $\left(\mathrm{Veg}_{1}\right)$:

$$
\begin{aligned}
\left(a_{1} \vee a_{2} \vee b_{1}\right) \wedge\left(a_{1} \vee a_{2} \vee b_{2}\right) \leq & \bigvee_{i, j \in\{1,2\}} \\
& \left(\left(a_{i} \vee \tilde{b}_{j}\right) \wedge\left(a_{1} \vee a_{2} \vee b_{3-j}\right)\right), \\
& \text { with } \tilde{b}_{j}:=\left(b_{1} \vee b_{2}\right) \wedge\left(a_{1} \vee a_{2} \vee b_{j}\right),
\end{aligned}
$$

satisfied by all $\mathrm{A}(n)$ but not by $\mathrm{B}(2,2)$.

- An infinite collection of identities, the Gazpacho identities, were discovered to hold in $\mathrm{A}(n)$.
- $\left(\mathrm{Veg}_{1}\right)$ is a (consequence of a) Gazpacho identity.
- The Gazpacho identity $\left(\mathrm{Veg}_{2}\right)$:

$$
\begin{aligned}
\left(a_{1} \vee b_{1}\right) \wedge\left(a_{2} \vee b_{2}\right) \leq & \bigvee_{i=1}^{2} \bigwedge_{j=1}^{2}\left(a_{i} \vee \tilde{b}_{j}\right), \\
& \text { with } \tilde{b}_{i}:=\left(b_{1} \vee b_{2}\right) \wedge\left(a_{i} \vee b_{i}\right),
\end{aligned}
$$

is satisfied by all $\mathrm{A}(n)$ but not by $\mathrm{P}(4)$.
... and permutohedra?

Associahedra,
permutohedra

Associahedra, permutohedra

Geyer's
Conjecture
Non-
embeddable
bounded
lattices
Non-
embeddability into
permutohedra

Theorem (S+W 2011)

$\mathrm{B}(m, n)$ embeds into some permutohedron iff $\min \{m, n\} \leq 2$.

... and permutohedra?

Associahedra, permutohedra

Theorem (S+W 2011)

$\mathrm{B}(m, n)$ embeds into some permutohedron iff $\min \{m, n\} \leq 2$.

- In particular, $\mathrm{B}(3,3)$ cannot be embedded into any permutohedron.

... and permutohedra?

Associahedra, permutohedra

Theorem (S+W 2011)

$\mathrm{B}(m, n)$ embeds into some permutohedron iff $\min \{m, n\} \leq 2$.

■ In particular, $\mathrm{B}(3,3)$ cannot be embedded into any permutohedron.

- A most useful tool for proving this is the notion of U-polarized measure.

... and permutohedra?

Theorem (S+W 2011)

$\mathrm{B}(m, n)$ embeds into some permutohedron iff $\min \{m, n\} \leq 2$.

- In particular, $\mathrm{B}(3,3)$ cannot be embedded into any permutohedron.
- A most useful tool for proving this is the notion of U-polarized measure.

■ For a finite lattice L, certain U-polarized measures with values in L correspond to lattice embeddings of L into certain subdirectly irreducible quotients $\mathrm{P}_{U}(n)$ of $\mathrm{P}(n)$ (see next page).

Cambrian lattices of type A

Associahedra,
permutohedra

Associahedra, permutohedra

Geyer's
Conjecture
Non-
embeddable
bounded
lattices
Non-
embeddability into
permutohedra

- For $U \subseteq[n]$, say that $\mathbf{a} \subseteq \mathcal{J}_{n}$ is a U-subset if

$$
i<j<k \text { and }(i, k) \in \mathbf{a} \text { implies } \begin{cases}(i, j) \in \mathbf{a}, & j \in U \\ (j, k) \in \mathbf{a}, & j \notin U\end{cases}
$$

Cambrian lattices of type A

Associahedra,

Geyer's
Conjecture
Non-
embeddable
bounded
lattices
Non-
embeddability into
permutohedra

- For $U \subseteq[n]$, say that $\mathbf{a} \subseteq \mathcal{J}_{n}$ is a U-subset if

$$
i<j<k \text { and }(i, k) \in \mathbf{a} \text { implies } \begin{cases}(i, j) \in \mathbf{a}, & j \in U, \\ (j, k) \in \mathbf{a}, & j \notin U .\end{cases}
$$

Let:

$$
\mathrm{P}_{U}(n): \simeq\left\{\text { closed } U \text {-subsets of } \mathcal{J}_{n}\right\} .
$$

Cambrian lattices of type A

Associahedra, permutohedra

Associahedra, permutohedra

Geyer's
Conjecture
Non-
embeddable
bounded
lattices
Non-
embeddability into
permutohedra

- For $U \subseteq[n]$, say that $\mathbf{a} \subseteq \mathcal{J}_{n}$ is a U-subset if

$$
i<j<k \text { and }(i, k) \in \mathbf{a} \text { implies } \begin{cases}(i, j) \in \mathbf{a}, & j \in U \\ (j, k) \in \mathbf{a}, & j \notin U\end{cases}
$$

Let:

$$
\mathrm{P}_{U}(n): \simeq\left\{\text { closed } U \text {-subsets of } \mathcal{J}_{n}\right\} .
$$

- In particular, $\mathrm{A}(n)=\mathrm{P}_{[n]}(n)$.

Cambrian lattices of type A

Associahedra, permutohedra

Associahedra, permutohedra

Geyer's
Conjecture
Non-
embeddable
bounded
lattices
Non-
embeddability into
permutohedra

- For $U \subseteq[n]$, say that $\mathbf{a} \subseteq \mathcal{J}_{n}$ is a U-subset if

$$
i<j<k \text { and }(i, k) \in \mathbf{a} \text { implies } \begin{cases}(i, j) \in \mathbf{a}, & j \in U, \\ (j, k) \in \mathbf{a}, & j \notin U\end{cases}
$$

Let:

$$
\mathrm{P}_{U}(n): \simeq\left\{\text { closed } U \text {-subsets of } \mathcal{J}_{n}\right\} .
$$

- In particular, $\mathrm{A}(n)=\mathrm{P}_{[n]}(n)$. Also, $\mathrm{P}_{U}(n)$ and $\mathrm{P}_{[n] \backslash U}(n)$ are dual.

Cambrian lattices of type A

Associahedra, permutohedra

Associahedra, permutohedra

Geyer's
Conjecture
Non-
embeddable
bounded
lattices
Non-
embeddability into
permutohedra

- For $U \subseteq[n]$, say that $\mathbf{a} \subseteq \mathcal{J}_{n}$ is a U-subset if

$$
i<j<k \text { and }(i, k) \in \mathbf{a} \text { implies } \begin{cases}(i, j) \in \mathbf{a}, & j \in U \\ (j, k) \in \mathbf{a}, & j \notin U\end{cases}
$$

Let:

$$
P_{U}(n): \simeq\left\{\text { closed } U \text {-subsets of } \mathcal{J}_{n}\right\}
$$

- In particular, $\mathrm{A}(n)=\mathrm{P}_{[n]}(n)$. Also, $\mathrm{P}_{U}(n)$ and $\mathrm{P}_{[n] \backslash U}(n)$ are dual.
- The lattices $\mathrm{P}_{U}(n)$ turn out to be the same as the Cambrian lattices of type A defined by Reading in 2006.

Cambrian lattices of type A

Associahedra,

Associahedra, permutohedra

Geyer's
Conjecture
Non-
embeddable
bounded
lattices
Non-
embeddability into
permutohedra

- For $U \subseteq[n]$, say that $\mathbf{a} \subseteq \mathcal{J}_{n}$ is a U-subset if

$$
i<j<k \text { and }(i, k) \in \mathbf{a} \text { implies } \begin{cases}(i, j) \in \mathbf{a}, & j \in U \\ (j, k) \in \mathbf{a}, & j \notin U\end{cases}
$$

Let:

$$
P_{U}(n): \simeq\left\{\text { closed } U \text {-subsets of } \mathcal{J}_{n}\right\}
$$

- In particular, $\mathrm{A}(n)=\mathrm{P}_{[n]}(n)$. Also, $\mathrm{P}_{U}(n)$ and $\mathrm{P}_{[n] \backslash U}(n)$ are dual.
- The lattices $\mathrm{P}_{U}(n)$ turn out to be the same as the Cambrian lattices of type A defined by Reading in 2006.
- The $\mathrm{P}_{U}(n)$ are exactly the quotient lattices $\mathrm{P}(n) / \theta$, where θ is a minimal meet-irreducible congruence of $\mathrm{P}(n)$.

Cambrian lattices of type A

Associahedra,

Associahedra, permutohedra

Geyer's
Conjecture
Non-
embeddable
bounded
lattices
Non-
embeddability into
permutohedra

- For $U \subseteq[n]$, say that $\mathbf{a} \subseteq \mathcal{J}_{n}$ is a U-subset if

$$
i<j<k \text { and }(i, k) \in \mathbf{a} \text { implies } \begin{cases}(i, j) \in \mathbf{a}, & j \in U \\ (j, k) \in \mathbf{a}, & j \notin U\end{cases}
$$

Let:

$$
P_{U}(n): \simeq\left\{\text { closed } U \text {-subsets of } \mathcal{J}_{n}\right\}
$$

- In particular, $\mathrm{A}(n)=\mathrm{P}_{[n]}(n)$. Also, $\mathrm{P}_{U}(n)$ and $\mathrm{P}_{[n] \backslash U}(n)$ are dual.
- The lattices $\mathrm{P}_{U}(n)$ turn out to be the same as the Cambrian lattices of type A defined by Reading in 2006.
- The $\mathrm{P}_{U}(n)$ are exactly the quotient lattices $\mathrm{P}(n) / \theta$, where θ is a minimal meet-irreducible congruence of $\mathrm{P}(n)$. They are retracts of $\mathrm{P}(n)$.

Cambrian lattices of type A

Associahedra,

Associahedra, permutohedra

Geyer's
Conjecture
Non-
embeddable
bounded
lattices
Non-
embeddability into
permutohedra

- For $U \subseteq[n]$, say that $\mathbf{a} \subseteq \mathcal{J}_{n}$ is a U-subset if

$$
i<j<k \text { and }(i, k) \in \mathbf{a} \text { implies } \begin{cases}(i, j) \in \mathbf{a}, & j \in U \\ (j, k) \in \mathbf{a}, & j \notin U\end{cases}
$$

Let:

$$
P_{U}(n): \simeq\left\{\text { closed } U \text {-subsets of } \mathcal{J}_{n}\right\}
$$

- In particular, $\mathrm{A}(n)=\mathrm{P}_{[n]}(n)$. Also, $\mathrm{P}_{U}(n)$ and $\mathrm{P}_{[n] \backslash U}(n)$ are dual.
- The lattices $\mathrm{P}_{U}(n)$ turn out to be the same as the Cambrian lattices of type A defined by Reading in 2006.
- The $\mathrm{P}_{U}(n)$ are exactly the quotient lattices $\mathrm{P}(n) / \theta$, where θ is a minimal meet-irreducible congruence of $\mathrm{P}(n)$. They are retracts of $\mathrm{P}(n)$.
- $\mathrm{P}(n)$ is a subdirect product of all $\mathrm{P}_{U}(n)$ for $U \subseteq[n]$.

$A(4)$ and $P_{\{3\}}(4)$

Associahedra, permutohedra

None of the Cambrian lattices $\mathrm{P}_{\{3\}}(4)$ and its dual, $\mathrm{P}_{\{2\}}(4)$, can be embedded into any $\mathrm{A}(n)$.

Associahedra, permutohedra

Geyer's
Conjecture
Non-
embeddable
bounded
lattices
Non-
embeddability into
permutohedra

$A(4)$ and $P_{\{3\}}(4)$

Associahedra, permutohedra

Associahedra, permutohedra

Geyer's
Conjecture
Non-
embeddable
bounded
lattices
Non-
embeddability into
permutohedra

None of the Cambrian lattices $\mathrm{P}_{\{3\}}(4)$ and its dual, $\mathrm{P}_{\{2\}}(4)$, can be embedded into any $\mathrm{A}(n)$.
$A(4)$ is on the left hand side of the following picture, while $\mathrm{P}_{\{3\}}(4)$ is on the right hand side.

$A(4)$ and $P_{\{3\}}(4)$

Associahedra, permutohedra

Associahedra, permutohedra

Geyer's Conjecture

Non-
embeddable bounded lattices

Non-
embeddability into permutohedra

None of the Cambrian lattices $\mathrm{P}_{\{3\}}(4)$ and its dual, $\mathrm{P}_{\{2\}}(4)$, can be embedded into any $\mathrm{A}(n)$.
$A(4)$ is on the left hand side of the following picture, while $\mathrm{P}_{\{3\}}(4)$ is on the right hand side.

Can $\mathrm{B}(3,3) \nleftarrow \mathrm{P}(n)$ be done via an identity?

Associahedra, permutohedra

- Negative embeddability results for the $\mathrm{A}(n)$ lead to discover separating identities.

Geyer's

Conjecture
Non-
embeddable
bounded
lattices
Non-
embeddability into
permutohedra

Can $\mathrm{B}(3,3) \nleftarrow \mathrm{P}(n)$ be done via an identity?

Associahedra,

 permutohedraAssociahedra, permutohedra

Geyer's Conjecture

Non-
embeddable
bounded
lattices
Non-
embeddability into
permutohedra

■ Negative embeddability results for the $\mathrm{A}(n)$ lead to discover separating identities.

- Attempts to get an identity that
holds in all the $\mathrm{P}(n)$ but not in $\mathrm{B}(3,3)$: failed.

Can $\mathrm{B}(3,3) \nleftarrow \mathrm{P}(n)$ be done via an identity?

■ Negative embeddability results for the $\mathrm{A}(n)$ lead to discover separating identities.

- Attempts to get an identity that
holds in all the $\mathrm{P}(n)$ but not in $\mathrm{B}(3,3)$: failed.
■ In fact, there is no such identity!

Can $\mathrm{B}(3,3) \nleftarrow \mathrm{P}(n)$ be done via an identity?

Associahedra, permutohedra

Associahedra, permutohedra

Geyer's

- Negative embeddability results for the $\mathrm{A}(n)$ lead to discover separating identities.
- Attempts to get an identity that
holds in all the $\mathrm{P}(n)$ but not in $\mathrm{B}(3,3)$: failed.
- In fact, there is no such identity!

Theorem (S+W 2011)
$B(3,3)$ is a homomorphic image of a sublattice of $P(12)$.

Can $\mathrm{B}(3,3) \nleftarrow \mathrm{P}(n)$ be done via an identity?

- In fact, there is no such identity!
- Negative embeddability results for the $\mathrm{A}(n)$
- Attempts to get an identity that

Theorem (S+W 2011)

$B(3,3)$ is a homomorphic image of a sublattice of $P(12)$.

- We prove that a certain $\mathrm{P}_{U}(12)$ does not satisfy the lead to discover separating identities.
holds in all the $\mathrm{P}(n)$ but not in $\mathrm{B}(3,3)$: failed. splitting identity of $\mathrm{B}(3,3)$:

$$
\bigwedge_{1 \leq j \leq 3}\left(x_{1} \vee x_{2} \vee x_{3} \vee y_{j}\right) \leq \bigvee_{1 \leq i \leq 3}\left(\hat{x}_{i} \wedge \hat{y}_{1} \wedge \hat{y}_{2} \wedge \hat{y}_{3}\right)
$$

$$
\text { where } x:=x_{1} \vee x_{2} \vee x_{3}, y:=y_{1} \vee y_{2} \vee y_{3},
$$

$$
\hat{x}_{1}:=\mathrm{x}_{2} \vee \mathrm{x}_{3} \vee \mathrm{y}, \hat{\mathrm{y}}_{1}:=\mathrm{y}_{2} \vee \mathrm{y}_{3} \vee \mathrm{x}_{\text {, etc }} .
$$

No separating identity for $\mathrm{B}(3,3)$ (cont'd)

Associahedra, permutohedra

- Relevant values of the x_{i}, y_{i} obtained with help of the Prover9 -Mace4 program (yields $U=\{5,6,9,10,11\}$).

Geyer's

Conjecture
Non-
embeddable
bounded
lattices
Non-
embeddability into
permutohedra

No separating identity for $\mathrm{B}(3,3)$ (cont'd)

Associahedra, permutohedra

Associahedra, permutohedra

Geyer's
Conjecture
Non-
embeddable
bounded
lattices
Non-
embeddability into
permutohedra

- Relevant values of the x_{i}, y_{i} obtained with help of the Prover9 -Mace4 program (yields $U=\{5,6,9,10,11\}$).
- Suggests the following question.

No separating identity for $\mathrm{B}(3,3)$ (cont'd)

■ Relevant values of the x_{i}, y_{i} obtained with help of the Prover9 -Mace4 program (yields $U=\{5,6,9,10,11\}$).

- Suggests the following question.

Question (S+W 2011)

Is there a nontrivial lattice-theoretical identity satisfied by all permutohedra $\mathrm{P}(n)$?

No separating identity for $B(3,3)$ (cont'd)

- Relevant values of the x_{i}, y_{i} obtained with help of the Prover9 -Mace4 program (yields $U=\{5,6,9,10,11\}$).
- Suggests the following question.

Question (S+W 2011)

Is there a nontrivial lattice-theoretical identity satisfied by all permutohedra $\mathrm{P}(n)$?

- It is well-known (Day 1977) that every identity satisfied by all finite bounded lattices is trivial.

No separating identity for $B(3,3)$ (cont'd)

- Relevant values of the x_{i}, y_{i} obtained with help of the Prover9 -Mace4 program (yields $U=\{5,6,9,10,11\}$).
- Suggests the following question.

Question (S+W 2011)

Is there a nontrivial lattice-theoretical identity satisfied by all permutohedra $\mathrm{P}(n)$?

■ It is well-known (Day 1977) that every identity satisfied by all finite bounded lattices is trivial.

- Due to the splitting identities, the question above is equivalent to: "Is every finite bounded lattice a homomorphic image of a sublattice of some $\mathrm{P}(n)$?"

No separating identity for $\mathrm{B}(3,3)$ (cont'd)

- Relevant values of the x_{i}, y_{i} obtained with help of the Prover9 -Mace4 program (yields $U=\{5,6,9,10,11\}$).
- Suggests the following question.

Question (S+W 2011)

Is there a nontrivial lattice-theoretical identity satisfied by all permutohedra $\mathrm{P}(n)$?

- It is well-known (Day 1977) that every identity satisfied by all finite bounded lattices is trivial.
- Due to the splitting identities, the question above is equivalent to: "Is every finite bounded lattice a homomorphic image of a sublattice of some $\mathrm{P}(n)$?"
- Verified above in the case of $\mathrm{B}(3,3)$ (with $\mathrm{P}(12)$).

