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FP(R) and V(R)

For a unital (associative) ring R, set

FP(R) := {X right R-module | X fin. gen. projective}
= {X | (∃n)(∃Y )(X ⊕ Y = Rn

R)} .

For X ∈ FP(R), set [X ] := isomorphism class of X .

Then define [X ] + [Y ] := [X ⊕ Y ].

V(R) := {[X ] | X ∈ FP(R)}, endowed with addition, is a
commutative monoid (encodes the nonstable K-theory
of R). It is conical: α + β = 0 ⇒ α = β = 0. The
element [R] is an order-unit: ∀α ∃β ∃n α + β = n[R].

The definition is left-right symmetric.

V(R) ∼= Z+ = {0, 1, 2, . . . } if R is a division ring.
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What can V(R) be?

On a commutative monoid M, x ≤ y :⇔ (∃z)(x + z = y);
algebraic preordering of M.

order-unit of M: any e ∈ M such that
(∀x ∈ M)(∃n ∈ N)(x ≤ ne).

Every conical commutative monoid with order-unit is
isomorphic to V(R), for some hereditary, unital ring R
(Bergman 1974 in the finitely generated case, Bergman
and Dicks 1978 in the general case).
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The realization problem in the regular case

Fundamental problem (Goodearl 1995)

Which monoids are representable, that is, appear as V(R) for a
(von Neumann) regular ring R?

A survey paper about this problem: P. Ara, The
realization problem for von Neumann regular rings. Ring
theory 2007, 21–37, World Sci. Publ., Hackensack, NJ,
2009 (also arXiv:0802.1872).

“Conicality” (∀x , y)(x + y = 0 ⇒ x = y = 0) and
“existence of an order-unit” (∀x)(∃n)(x ≤ ne) not
sufficient. Another condition, whose necessity was proved
by Goodearl and Handelman (1975), is

The refinement condition: a0 + a1 = b0 + b1 ⇒ there are
ci ,j (i , j ∈ {0, 1}) such that ai = ci ,0 + ci ,1 and
bi = c0,i + c1,i ∀i < 2.
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Variants of the problem

Unrestricted Realization Problem

Is every conical refinement monoid with order-unit
representable?

Definition

A dimension group is a partially ordered abelian group G which
is directed (∀x , y , ∃z such that x ≤ z and y ≤ z), unperforated
(∀m ∈ N, ∀x , mx ≥ 0 ⇒ x ≥ 0), and such that
G+ := {x ∈ G | x ≥ 0} is a refinement monoid.

Dimension groups are exactly the direct limits of
(componentwise ordered) Zn with positive
homomorphisms (Effros, Handelman, and Shen 1980;
equivalent semigroup statement due to Grillet in 1976).
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Unrestricted Realization Problem (cont’d)

By combining this with a 1976 result by Elliott, it follows
that G+ is representable, for any countable dimension
group G with order-unit.

Extended to dimension groups of cardinality ℵ1 by
Goodearl and Handelman (1986). In both cases, the
representing ring can be taken locally matricial (over any
given field).

Does not extend to dimension groups of cardinality ≥ ℵ2

(W. 1998). (Situation still mysterious, on that front, for
C*-algebras.)

Hence the answer to the Unrestricted Realization Problem
(for regular rings) is “no”.
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The realization problem

The Realization Problem

Is every (at most) countable conical refinement monoid
representable?

This is even open for monoids with ≤ ℵ1 elements.

If this could hold at ℵ1, then it would also hold at arrows
(or even sequences of arrows, or even more. . . ) of
countable refinement monoids with order-unit. (Due to
categorical work by Gillibert and W. 2010).

Special case: the Separativity Conjecture. For finitely
generated projective right modules A and B over a regular
ring R, does AR ⊕ BR

∼= A2
R
∼= B2

R ⇒ AR
∼= BR?

The Realization Problem and the Separativity Conjecture
contradict each other.
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∼= BR?

The Realization Problem and the Separativity Conjecture
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Exchange rings

A unital ring R is an exchange ring if
A = M ⊕ N =

⊕n
i=1 Ai , with M ∈ FP(R), implies that

A = M ⊕
⊕n

i=1 A′i for submodules A′i ⊆ Ai .

Equivalently (Goodearl + Warfield, Nicholson), ∀a ∈ R,
∃e ∈ R idempotent, e ∈ aR and 1− e ∈ (1− a)R.

Every regular ring is an exchange ring (converse false).

A C*-algebra is an exchange ring iff it has real rank zero.

Both Realization and Separativity are also unsettled for
exchange rings.
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Dimension groups

(Dimension group: directed, unperforated partially ordered
abelian group whose positive cone has refinement; equivalently,
direct limit of Zns.)

Recall the following (Effros, Elliott,
Goodearl, Grillet, Handelman, Shen, W.):

Theorem

The positive cone of any dimension group with order-unit with
≤ ℵ1 elements is representable. For cardinalities ≥ ℵ2, there
are counterexamples.

The representation problem is open even for general countable,
cancellative refinement monoids (= positive cones of
interpolation groups).
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Distributive semilattices

A semilattice is a monoid (M,+, 0) such that x + x = x
for each x ∈ M.

Algebraic preordering: x ≤ y ⇔ x + y = y .

A semilattice has refinement iff it is distributive, that is,

(∀a, b, c)(c ≤ a + b ⇒ (∃x ≤ a)(∃y ≤ b)(c = x + y)) .

Theorem (W. 2000)

Every distributive semilattice with ≤ ℵ1 elements is
representable. The bound ℵ1 is optimal.

Involves the natural extension of V(R) to the non-unital case.
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Graph monoids

A quiver is a quadruple E = (E 0,E 1, s, t), where both E 0

and E 1 are sets and s, t : E 1 → E 0. The set E 0 is the
vertex set, E 1 is the edge set, s is the source map, and t is
the target map.

We say that E is row-finite if s−1{v} is finite ∀v ∈ E 0.

The graph monoid of E , denoted by M(E ), is the
commutative monoid defined by generators v , for v ∈ E 0,
and relations

v =
∑

(t(e) | e ∈ s−1{v}) ,

for each v ∈ E 0 such that s−1{v} 6= ∅.

Theorem (Ara, Moreno, and Pardo 2007)

M(E ) is a conical refinement monoid, for every row-finite
quiver E .
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Realization of graph monoids

Theorem (Ara and Brustenga 2007)

The graph monoid M(E ) is representable, for every row-finite
quiver E .

Involves, again, the natural extension of V(R) to the
non-unital case.

Ara and Brustenga construct, for any field K , a regular
K -algebra QK (E ) such that M(E ) ∼= V(QK (E )).



Nonst. K-th.,
Banaschewski

The
realization
problem

Known cases

Banaschewski
functions

Vaught’s and
Dobbertin’s
results

Realization of graph monoids

Theorem (Ara and Brustenga 2007)

The graph monoid M(E ) is representable, for every row-finite
quiver E .

Involves, again, the natural extension of V(R) to the
non-unital case.

Ara and Brustenga construct, for any field K , a regular
K -algebra QK (E ) such that M(E ) ∼= V(QK (E )).



Nonst. K-th.,
Banaschewski

The
realization
problem

Known cases

Banaschewski
functions

Vaught’s and
Dobbertin’s
results

Realization of graph monoids

Theorem (Ara and Brustenga 2007)

The graph monoid M(E ) is representable, for every row-finite
quiver E .

Involves, again, the natural extension of V(R) to the
non-unital case.

Ara and Brustenga construct, for any field K , a regular
K -algebra QK (E ) such that M(E ) ∼= V(QK (E )).



Nonst. K-th.,
Banaschewski

The
realization
problem

Known cases

Banaschewski
functions

Vaught’s and
Dobbertin’s
results

Realization of graph monoids

Theorem (Ara and Brustenga 2007)

The graph monoid M(E ) is representable, for every row-finite
quiver E .

Involves, again, the natural extension of V(R) to the
non-unital case.

Ara and Brustenga construct, for any field K , a regular
K -algebra QK (E ) such that M(E ) ∼= V(QK (E )).



Nonst. K-th.,
Banaschewski

The
realization
problem

Known cases

Banaschewski
functions

Vaught’s and
Dobbertin’s
results

A strange quiver

The monoid Z∞ := {0, 1, 2, . . . } ∪ {∞} can be represented by
the following infinite, row-finite quiver (Ara, Perera, and W.
2008):

1 b0
oo

�� ��
//

??b1
oo

�� ��
// b2

oo
��

//
??b3

�� ��
//

__YY b4

��
//

__ ??b5

�� ��
//

^^ZZ b6

��
//

^^ · · ·

It is a retract of the graph monoid of the following quiver:

a
$$

��

boo zz��

1
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More graph monoids

Graph monoids are quite special refinement monoids. In
particular, M(E ) is always separative (2x = 2y = x + y ⇒
x = y). In fact, if E is finite, then M(E ) is primely
generated.

Not every primely generated refinement monoid is a graph
monoid. Easiest example (Ara, Perera, and W. 2008):
p = p + a = p + b.

This example is representable, due to the following result.

Theorem (Ara 2010)

Let P be a finite poset. Then the commutative monoid with
generators p, for p ∈ P, and relations q = p + q, for p < q
in P, is representable.

Again, the representing ring can be taken a regular K -algebra,
for any given field K .
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Continuous dimension scales

For any ordinal γ, endow

Zγ := Z+ ∪ {ℵα | α ≤ γ} ,
Rγ := R+ ∪ {ℵα | α ≤ γ} ,
2γ := {0} ∪ {ℵα | α ≤ γ} .

with their interval topology.
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Realizations of continuous dimension scales

Continuous dimension scales can also be characterized by a list
of axioms (including conditional completeness for the algebraic
ordering, general comparability, etc.).

Theorem (Goodearl and W. 2005)

The monoid V(R) is a continuous dimension scale, for
every right self-injective regular ring R. Every continuous
dimension scale can be realized in this way.

A similar result holds for AW*-algebras.

For W*-algebras, the spaces Ωi must be hyperstonian (and
then there is no further restriction).
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Dependence of the field

In all four classes of representable monoids above
(dimension groups; distributive semilattices; graph
monoids; continuous dimension scales), the representing
ring R can be taken an algebra over any given field.

Things are not always that nice.
Chuang and Lee published in 1990 an example of a non
unit-regular, residually Artinian regular algebra (over a
countable field). For any such ring R, there is no regular
algebra R over an uncountable field such that
V(R) ∼= V(R) (W. 2007). More generally,

Theorem (Goodearl 2008)

Let M be a conical refinement monoid with an order-unit e and
a monoid homomorphism s : M → R+ such that s(e) = 1 and
s−1{0} = {0}. If M is not cancellative, then there is no regular
algebra R over an uncountable field such that M ∼= V(R).



Nonst. K-th.,
Banaschewski

The
realization
problem

Known cases

Banaschewski
functions

Vaught’s and
Dobbertin’s
results

Dependence of the field

In all four classes of representable monoids above
(dimension groups; distributive semilattices; graph
monoids; continuous dimension scales), the representing
ring R can be taken an algebra over any given field.
Things are not always that nice.

Chuang and Lee published in 1990 an example of a non
unit-regular, residually Artinian regular algebra (over a
countable field). For any such ring R, there is no regular
algebra R over an uncountable field such that
V(R) ∼= V(R) (W. 2007). More generally,

Theorem (Goodearl 2008)

Let M be a conical refinement monoid with an order-unit e and
a monoid homomorphism s : M → R+ such that s(e) = 1 and
s−1{0} = {0}. If M is not cancellative, then there is no regular
algebra R over an uncountable field such that M ∼= V(R).



Nonst. K-th.,
Banaschewski

The
realization
problem

Known cases

Banaschewski
functions

Vaught’s and
Dobbertin’s
results

Dependence of the field

In all four classes of representable monoids above
(dimension groups; distributive semilattices; graph
monoids; continuous dimension scales), the representing
ring R can be taken an algebra over any given field.
Things are not always that nice.
Chuang and Lee published in 1990 an example of a non
unit-regular, residually Artinian regular algebra (over a
countable field). For any such ring R, there is no regular
algebra R over an uncountable field such that
V(R) ∼= V(R) (W. 2007). More generally,

Theorem (Goodearl 2008)

Let M be a conical refinement monoid with an order-unit e and
a monoid homomorphism s : M → R+ such that s(e) = 1 and
s−1{0} = {0}. If M is not cancellative, then there is no regular
algebra R over an uncountable field such that M ∼= V(R).



Nonst. K-th.,
Banaschewski

The
realization
problem

Known cases

Banaschewski
functions

Vaught’s and
Dobbertin’s
results

Dependence of the field

In all four classes of representable monoids above
(dimension groups; distributive semilattices; graph
monoids; continuous dimension scales), the representing
ring R can be taken an algebra over any given field.
Things are not always that nice.
Chuang and Lee published in 1990 an example of a non
unit-regular, residually Artinian regular algebra (over a
countable field). For any such ring R, there is no regular
algebra R over an uncountable field such that
V(R) ∼= V(R) (W. 2007). More generally,

Theorem (Goodearl 2008)

Let M be a conical refinement monoid with an order-unit e and
a monoid homomorphism s : M → R+ such that s(e) = 1 and
s−1{0} = {0}. If M is not cancellative, then there is no regular
algebra R over an uncountable field such that M ∼= V(R).



Nonst. K-th.,
Banaschewski

The
realization
problem

Known cases

Banaschewski
functions

Vaught’s and
Dobbertin’s
results

Dependence of the field

In all four classes of representable monoids above
(dimension groups; distributive semilattices; graph
monoids; continuous dimension scales), the representing
ring R can be taken an algebra over any given field.
Things are not always that nice.
Chuang and Lee published in 1990 an example of a non
unit-regular, residually Artinian regular algebra (over a
countable field). For any such ring R, there is no regular
algebra R over an uncountable field such that
V(R) ∼= V(R) (W. 2007). More generally,

Theorem (Goodearl 2008)

Let M be a conical refinement monoid with an order-unit e and
a monoid homomorphism s : M → R+ such that s(e) = 1 and
s−1{0} = {0}. If M is not cancellative, then there is no regular
algebra R over an uncountable field such that M ∼= V(R).



Nonst. K-th.,
Banaschewski

The
realization
problem

Known cases

Banaschewski
functions

Vaught’s and
Dobbertin’s
results

Banaschewski’s result

Denote by Sub V the set of all subspaces of a vector space V
(over any division ring), ordered by ⊆.

Theorem (Banaschewski 1957)

Let V be a vector space. Then there exists a Banaschewski
function on Sub V , that is, a map f : Sub V → Sub V such
that

V = X ⊕ f (X ) for each X ∈ Sub V .

f is antitone, that is, X ⊆ Y implies that f (Y ) ⊆ f (X ).
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Proof of Banaschewski’s Theorem

Denote by C a strict well-ordering of a basis B of V . We
set

〈X 〉 := subspace of V generated by X , ∀X ∈ Sub V ;

B � b := {x ∈ B | x C b} , ∀b ∈ B ;

F (X ) := {b ∈ B | b /∈ X + 〈B � b〉} , ∀X ∈ Sub V ;

f (X ) := 〈F (X )〉 , ∀X ∈ Sub V .

Then X ⊆ Y obviously implies that F (Y ) ⊆ F (X ), thus
f (Y ) ⊆ f (X ).

Verify that X ∩ f (X ) = {0} (uses C linear ordering).

Verify, by induction on b ∈ B, that b ∈ X + f (X ) (uses C
well-ordering). Thus V = X + f (X ).

Therefore, f is a Banaschewski function on Sub V .
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The ranges of those Banaschewski functions

In the previous proof, f (X ) = 〈F (X )〉, where F (X ) ⊆ B.

Hence the range of f is {〈X 〉 | X ⊆ B}.
It is a Boolean algebra.

There are many such Boolean subalgebras of Sub V , but
they are all isomorphic (to the powerset of dim V ).

How general is that phenomenon?
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A lattice-theoretical viewpoint

A lattice is a partially ordered set (L,≤) such that both
x ∨ y := sup{x , y} and x ∧ y := inf{x , y} exist for all
x , y ∈ L.

We denote by 0 (resp., 1) the smallest (resp., largest)
element if it exists. If both exist, we say that L is bounded.

A complement of an element a ∈ L is an element b ∈ L
such that a ∨ b = 1 and a ∧ b = 0.

Definition

A Banaschewski function on a bounded lattice L is an antitone
(=order-reversing) map f : L→ L such that f (x) is a
complement of x , ∀x ∈ L.

Hence Sub V has a Banaschewski function, for every vector
space V .
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A complemented lattice without a Banaschewski
function

In the following lattice, every element has a complement (we
say that L is complemented), but there is no Banaschewski
function.

a

ba′

b′
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Countable complemented modular lattices

A lattice L is modular if
x ∧ (y ∨ (x ∧ z)) = (x ∧ y) ∨ (x ∧ z), ∀x , y , z ∈ L.

For example, Sub V is modular, for any vector space V .

More generally, L(R) := {xR | x ∈ R} is a complemented
modular lattice, for every regular ring R.

Theorem (W. 2009)

Every countable complemented modular lattice has a
Banaschewski function with Boolean range. This Boolean
range is unique up to isomorphism.

Theorem (W. 2009)

There exists a unit-regular ring R, of index of nilpotence 3, of
cardinality ℵ1, such that L(R) has no Banaschewski function.
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Banaschewski functions and countable regular rings

The first result above is especially interesting when applied
to L(R), for a countable regular ring R.

It yields a Boolean sublattice B of L(R) and a
Banaschewski function f with range B.

For each a ∈ B, with complement a′ ∈ B, R = a⊕ a′ as
right R-modules.

Thus there exists a unique pair (a, a′) ∈ a× a′ such that
1 = a + a′. Note that a = aR and a′ = a′R.

Set B := {a | a ∈ B}. Then B = {aR | a ∈ B}.
Furthermore, B is a Boolean algebra of idempotents of R:
this means that B consists of pairwise commuting
idempotents, 0 ∈ B, and B is closed under a 7→ 1− a and
(a, b) 7→ ab.
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Banaschewski functions and countable regular rings
(cont’d)

Actually, B is a maximal commutative set of idempotents
(MCSI) in R.

This B (obtained via a Banaschewski function) is unique
up to isomorphism (more detail later).

Is there any associated maximal abelian regular subring
(MARS) of R?

A key property is that (for that particular B) ∀x ∈ R,
∃a ∈ B such that R = xR ⊕ aR.

Proposition (W. 2010)

Let B be a Boolean algebra of idempotents in a regular ring R,
such that ∀x ∈ R, ∃a ∈ B such that R = xR ⊕ aR. Then the
commutant of B is a MARS of R, with set of idempotents B.

Interesting for starting a Boolean-valued analysis of the ring R.



Nonst. K-th.,
Banaschewski

The
realization
problem

Known cases

Banaschewski
functions

Vaught’s and
Dobbertin’s
results

Banaschewski functions and countable regular rings
(cont’d)

Actually, B is a maximal commutative set of idempotents
(MCSI) in R.

This B (obtained via a Banaschewski function) is unique
up to isomorphism (more detail later).

Is there any associated maximal abelian regular subring
(MARS) of R?

A key property is that (for that particular B) ∀x ∈ R,
∃a ∈ B such that R = xR ⊕ aR.

Proposition (W. 2010)

Let B be a Boolean algebra of idempotents in a regular ring R,
such that ∀x ∈ R, ∃a ∈ B such that R = xR ⊕ aR. Then the
commutant of B is a MARS of R, with set of idempotents B.

Interesting for starting a Boolean-valued analysis of the ring R.



Nonst. K-th.,
Banaschewski

The
realization
problem

Known cases

Banaschewski
functions

Vaught’s and
Dobbertin’s
results

Banaschewski functions and countable regular rings
(cont’d)

Actually, B is a maximal commutative set of idempotents
(MCSI) in R.

This B (obtained via a Banaschewski function) is unique
up to isomorphism (more detail later).

Is there any associated maximal abelian regular subring
(MARS) of R?

A key property is that (for that particular B) ∀x ∈ R,
∃a ∈ B such that R = xR ⊕ aR.

Proposition (W. 2010)

Let B be a Boolean algebra of idempotents in a regular ring R,
such that ∀x ∈ R, ∃a ∈ B such that R = xR ⊕ aR. Then the
commutant of B is a MARS of R, with set of idempotents B.

Interesting for starting a Boolean-valued analysis of the ring R.



Nonst. K-th.,
Banaschewski

The
realization
problem

Known cases

Banaschewski
functions

Vaught’s and
Dobbertin’s
results

Banaschewski functions and countable regular rings
(cont’d)

Actually, B is a maximal commutative set of idempotents
(MCSI) in R.

This B (obtained via a Banaschewski function) is unique
up to isomorphism (more detail later).

Is there any associated maximal abelian regular subring
(MARS) of R?

A key property is that (for that particular B) ∀x ∈ R,
∃a ∈ B such that R = xR ⊕ aR.

Proposition (W. 2010)

Let B be a Boolean algebra of idempotents in a regular ring R,
such that ∀x ∈ R, ∃a ∈ B such that R = xR ⊕ aR. Then the
commutant of B is a MARS of R, with set of idempotents B.

Interesting for starting a Boolean-valued analysis of the ring R.



Nonst. K-th.,
Banaschewski

The
realization
problem

Known cases

Banaschewski
functions

Vaught’s and
Dobbertin’s
results

Banaschewski functions and countable regular rings
(cont’d)

Actually, B is a maximal commutative set of idempotents
(MCSI) in R.

This B (obtained via a Banaschewski function) is unique
up to isomorphism (more detail later).

Is there any associated maximal abelian regular subring
(MARS) of R?

A key property is that (for that particular B) ∀x ∈ R,
∃a ∈ B such that R = xR ⊕ aR.

Proposition (W. 2010)

Let B be a Boolean algebra of idempotents in a regular ring R,
such that ∀x ∈ R, ∃a ∈ B such that R = xR ⊕ aR. Then the
commutant of B is a MARS of R, with set of idempotents B.

Interesting for starting a Boolean-valued analysis of the ring R.



Nonst. K-th.,
Banaschewski

The
realization
problem

Known cases

Banaschewski
functions

Vaught’s and
Dobbertin’s
results

Banaschewski functions and countable regular rings
(cont’d)

Actually, B is a maximal commutative set of idempotents
(MCSI) in R.

This B (obtained via a Banaschewski function) is unique
up to isomorphism (more detail later).

Is there any associated maximal abelian regular subring
(MARS) of R?

A key property is that (for that particular B) ∀x ∈ R,
∃a ∈ B such that R = xR ⊕ aR.

Proposition (W. 2010)

Let B be a Boolean algebra of idempotents in a regular ring R,
such that ∀x ∈ R, ∃a ∈ B such that R = xR ⊕ aR.

Then the
commutant of B is a MARS of R, with set of idempotents B.

Interesting for starting a Boolean-valued analysis of the ring R.



Nonst. K-th.,
Banaschewski

The
realization
problem

Known cases

Banaschewski
functions

Vaught’s and
Dobbertin’s
results

Banaschewski functions and countable regular rings
(cont’d)

Actually, B is a maximal commutative set of idempotents
(MCSI) in R.

This B (obtained via a Banaschewski function) is unique
up to isomorphism (more detail later).

Is there any associated maximal abelian regular subring
(MARS) of R?

A key property is that (for that particular B) ∀x ∈ R,
∃a ∈ B such that R = xR ⊕ aR.

Proposition (W. 2010)

Let B be a Boolean algebra of idempotents in a regular ring R,
such that ∀x ∈ R, ∃a ∈ B such that R = xR ⊕ aR. Then the
commutant of B is a MARS of R, with set of idempotents B.

Interesting for starting a Boolean-valued analysis of the ring R.



Nonst. K-th.,
Banaschewski

The
realization
problem

Known cases

Banaschewski
functions

Vaught’s and
Dobbertin’s
results

Banaschewski functions and countable regular rings
(cont’d)

Actually, B is a maximal commutative set of idempotents
(MCSI) in R.

This B (obtained via a Banaschewski function) is unique
up to isomorphism (more detail later).

Is there any associated maximal abelian regular subring
(MARS) of R?

A key property is that (for that particular B) ∀x ∈ R,
∃a ∈ B such that R = xR ⊕ aR.

Proposition (W. 2010)

Let B be a Boolean algebra of idempotents in a regular ring R,
such that ∀x ∈ R, ∃a ∈ B such that R = xR ⊕ aR. Then the
commutant of B is a MARS of R, with set of idempotents B.

Interesting for starting a Boolean-valued analysis of the ring R.



Nonst. K-th.,
Banaschewski

The
realization
problem

Known cases

Banaschewski
functions

Vaught’s and
Dobbertin’s
results

The canonical V-measure on B

Let R be a countable regular ring, let B ⊆ L(R) be the
range of a Banaschewski function on L(R), and let B be
the associated MCSI (so B = {aR | a ∈ B}).

Consider µ : B → V(R), a 7→ [aR].

Then µ(x) = 0⇔ x = 0 and µ(a + b) = µ(a) + µ(b) for
any disjoint a, b ∈ B. Furthermore, µ(1) = [R].

So µ is a finitely additive probability measure on the
Boolean algebra B, with values in the monoid V(R).

Additional property of µ: it satisfies the V-condition, that
is,

µ(c) = α+β ⇒ (∃a, b)
(
c = a⊕b & µ(a) = α & µ(b) = β

)
.

We say that µ is a V-measure on B.
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range of a Banaschewski function on L(R), and let B be
the associated MCSI (so B = {aR | a ∈ B}).

Consider µ : B → V(R), a 7→ [aR].

Then µ(x) = 0⇔ x = 0 and µ(a + b) = µ(a) + µ(b) for
any disjoint a, b ∈ B. Furthermore, µ(1) = [R].

So µ is a finitely additive probability measure on the
Boolean algebra B, with values in the monoid V(R).

Additional property of µ: it satisfies the V-condition, that
is,

µ(c) = α+β ⇒ (∃a, b)
(
c = a⊕b & µ(a) = α & µ(b) = β

)
.

We say that µ is a V-measure on B.
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From the V-measure to the uniqueness of the
Boolean range

A V-relation between Boolean algebras A and B is a binary
relation ρ ⊆ A× B such that 1A ρ 1B , a ρ 0B ⇔ a = 0A,
a ρ b0 ⊕ b1 ⇒ ∃a0, a1 such that a = a0 ⊕ a1 and ai ρ bi ∀i < 2,
and similarly with A and B interchanged.

Theorem (Vaught 1954)

Every V-relation between countable Boolean algebras A and B
contains the graph of some isomorphism A→ B.

Now for Boolean algebras A and B, an element e in a conical
refinement monoid M, and V-measures µ : A→ M and
ν : B → M with µ(1) = ν(1) = e, the binary relation

{(a, b) ∈ A× B | µ(a) = ν(b)}

is a V-relation.
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Dobbertin’s Theorem

From this we obtain the uniqueness statement in the following
representation result for any conical refinement monoid with
order-unit.

Theorem (Dobbertin 1983)

For every element e in a countable conical refinement monoid
M, there are a countable Boolean algebra B and a V-measure
µ : B → M such that µ(1) = e. This measure is unique up to
isomorphism (but usually not up to unique isomorphism).
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µ ��;;;;;;; B
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M

Two V-measures. . .
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Banaschewski functions again

The uniqueness of the Boolean range of a Banaschewski
function on L(R), R countable regular, follows
immediately.

Extends to countable complemented modular lattices: the
analogue of V(R) is the dimension monoid Dim L (for a
lattice L). For a regular ring R ∼= M2(R ′),
V(R) ∼= Dim L(R).

For refinement monoids and Boolean algebras with ≤ ℵ1

elements, the existence part of Dobbertin’s Theorem
remains, but the uniqueness part is lost (Dobbertin 1983).

For refinement monoids with ≥ ℵ2 elements, both
existence and uniqueness in Dobbertin’s Theorem are lost
(W. 1998).
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A strategy of approach of the Realization
Problem. . .

Start with a countable conical refinement monoid M with
order-unit e.

Let µ : B → M be the unique V-measure, for a countable
Boolean algebra B, with µ(1) = e.

Develop a Boolean-valued analysis of a countable regular
ring R with a MCSI B ⊆ R associated with a
Banaschewski function with Boolean range on L(R).

Try to re-create the structure thus guessed, now starting
again from µ : B → M. . .
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. . . nobody knows. . .
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