Generalities
The ℓ-spectrum
ℓ-representable
lattices
Additional
properties of
$\operatorname{Spec}_{l} G / \operatorname{ld}_{C}$
Negative results
Known positive results

The lattices Op(\mathcal{H})
Basic properties Join-irreducibles and ∇

Consonance and difference operations
Basic properties
The Extension Lemma

Back to Op(TG)
Extending
homomorphisms from $O p(\mathcal{H})$
Concluding the proof

Spectral spaces of countable Abelian ℓ-groups

Friedrich Wehrung

LMNO, CNRS UMR 6139 (Caen)
E-mail: friedrich.wehrung01@unicaen.fr URL: http://www.math.unicaen.fr/~wehrung

September 2017

The ℓ-spectrum of an Abelian ℓ-group

- An ℓ-group is a group endowed with a translation-invariant lattice ordering.

Generalities
The ℓ-spectrum ℓ-representable lattices
Additional properties of $\operatorname{Spec}_{\ell} G / \operatorname{Id}_{C} C$ Negative results Known positive results

The ℓ-spectrum of an Abelian ℓ-group

Generalities
The ℓ-spectrum ℓ-representable lattices
Additional properties of $\operatorname{Spec}_{\ell} G / \operatorname{ld}_{C} C$ Negative results Known positive results

- An ℓ-group is a group endowed with a translation-invariant lattice ordering.
- An ℓ-subgroup I, in an Abelian ℓ-group G, is an ℓ-ideal if it is order-convex.

The ℓ-spectrum of an Abelian ℓ-group

Generalities
The ℓ-spectrum ℓ-representable lattices
Additional properties of $\operatorname{Spec}_{\ell} G / \operatorname{ld}_{C} C$ Negative results
Known positive results

The lattices

 Op(\mathcal{H})Basic properties Join-irreducibles and ∇

■ An ℓ-group is a group endowed with a translation-invariant lattice ordering.
■ An ℓ-subgroup I, in an Abelian ℓ-group G, is an ℓ-ideal if it is order-convex.

■ An ℓ-ideal I is prime if $I \neq G$ and $x \wedge y \in I$ implies that either $x \in I$ or $y \in I(\forall x, y \in G)$.

The ℓ-spectrum of an Abelian ℓ-group

Generalities
The ℓ-spectrum ℓ-representable lattices
Additional
properties of
$\mathrm{Spec}_{\ell} G / \mathrm{Id}_{C} C$
Negative results
Known positive results

The lattices Op(\mathcal{H})
Basic properties Join-irreducibles and ∇

Consonance and difference operations Lemma

■ An ℓ-group is a group endowed with a translation-invariant lattice ordering.
■ An ℓ-subgroup I, in an Abelian ℓ-group G, is an ℓ-ideal if it is order-convex.

■ An ℓ-ideal I is prime if $I \neq G$ and $x \wedge y \in I$ implies that either $x \in I$ or $y \in I(\forall x, y \in G)$.
■ We endow the set $\operatorname{Spec}_{\ell} G$, of all prime ℓ-ideals of G, with the topology whose closed sets are exactly the

$$
V_{G}(X) \underset{\text { def }}{=}\left\{P \in \operatorname{Spec}_{\ell} G \mid X \subseteq P\right\}, \text { for } X \subseteq G
$$

The ℓ-spectrum of an Abelian ℓ-group

Generalities
The ℓ-spectrum ℓ-representable lattices
Additional
properties of
$\mathrm{Spec}_{\ell} G / \mathrm{Id}_{C} C$
Negative results
Known positive results

The lattices Op(\mathcal{H})
Basic properties Join-irreducibles and ∇

Consonance and difference operations Lemma

■ An ℓ-group is a group endowed with a translation-invariant lattice ordering.
■ An ℓ-subgroup I, in an Abelian ℓ-group G, is an ℓ-ideal if it is order-convex.

■ An ℓ-ideal I is prime if $I \neq G$ and $x \wedge y \in I$ implies that either $x \in I$ or $y \in I(\forall x, y \in G)$.
■ We endow the set $\operatorname{Spec}_{\ell} G$, of all prime ℓ-ideals of G, with the topology whose closed sets are exactly the

$$
V_{G}(X) \underset{\text { def }}{=}\left\{P \in \operatorname{Spec}_{\ell} G \mid X \subseteq P\right\}, \text { for } X \subseteq G
$$

■ The topological space $\operatorname{Spec}_{\ell} G$ is called the ℓ-spectrum of G.

The ℓ-spectrum of an Abelian ℓ-group

Generalities
The ℓ-spectrum ℓ-representable lattices
Additional
properties of
$\mathrm{Spec}_{l} \mathrm{G} / \mathrm{ld}_{\mathrm{C}}$
Negative results Known positive results

The lattices Op(\mathcal{H})
Basic properties Join-irreducibles and ∇

Consonance and difference operations

■ An ℓ-group is a group endowed with a translation-invariant lattice ordering.
■ An ℓ-subgroup I, in an Abelian ℓ-group G, is an ℓ-ideal if it is order-convex.

■ An ℓ-ideal I is prime if $I \neq G$ and $x \wedge y \in I$ implies that either $x \in I$ or $y \in I(\forall x, y \in G)$.

- We endow the set $\operatorname{Spec}_{\ell} G$, of all prime ℓ-ideals of G, with the topology whose closed sets are exactly the

$$
V_{G}(X) \underset{\text { def }}{=}\left\{P \in \operatorname{Spec}_{\ell} G \mid X \subseteq P\right\}, \text { for } X \subseteq G
$$

- The topological space $\operatorname{Spec}_{\ell} G$ is called the ℓ-spectrum of G.

Problem ('90s, or even '60s)

Characterize the topological spaces of the form $\operatorname{Spec}_{\ell} G$, for Abelian ℓ-groups G.

The ℓ-spectrum of an Abelian ℓ-group

Generalities
The ℓ-spectrum ℓ-representable lattices
Additional
properties of
Spec $_{f} G / \mathrm{Id}_{\mathrm{C}}$
Negative results Known positive results

The lattices Op(\mathcal{H})
Basic properties Join-irreducibles and ∇

Consonance and difference operations

■ An ℓ-group is a group endowed with a translation-invariant lattice ordering.
■ An ℓ-subgroup I, in an Abelian ℓ-group G, is an ℓ-ideal if it is order-convex.
■ An ℓ-ideal I is prime if $I \neq G$ and $x \wedge y \in I$ implies that either $x \in I$ or $y \in I(\forall x, y \in G)$.

- We endow the set $\operatorname{Spec}_{\ell} G$, of all prime ℓ-ideals of G, with the topology whose closed sets are exactly the

$$
V_{G}(X) \underset{\text { def }}{=}\left\{P \in \operatorname{Spec}_{\ell} G \mid X \subseteq P\right\}, \text { for } X \subseteq G
$$

■ The topological space $\operatorname{Spec}_{\ell} G$ is called the ℓ-spectrum of G.

Problem ('90s, or even '60s)

Characterize the topological spaces of the form $\operatorname{Spec}_{\ell} G$, for Abelian ℓ-groups G.

Equivalent formulation: describe the spectra of MV-algebras.

Spectrum of a distributive lattice with zero

Generalities
The ℓ-spectrum ℓ-representable lattices
Additional properties of $\mathrm{Spec}_{\ell} G / \mathrm{Id}_{C}$ Negative results Known positive results

The lattices

Op(\mathcal{H})
Basic properties Join-irreducibles and ∇

Consonance and difference operations Basic properties The Extension Lemma

Back to Op($\mathscr{O})$ Extending homomorphisms from $\operatorname{Op}(\mathscr{H})$ Concluding the proof

- An ideal, in a distributive lattice D with zero, is a nonempty lower subset closed under $(x, y) \mapsto x \vee y$.

Spectrum of a distributive lattice with zero

Generalities
The ℓ-spectrum ℓ-representable lattices
Additional
properties of
$\mathrm{Spec}_{\ell} G / \mathrm{Id}_{\mathrm{C}} G$
Negative results
Known positive results
The lattices Op(\mathcal{H})
Basic properties Join-irreducibles and ∇

Consonance and difference operations Basic properties The Extension Lemma

- An ideal, in a distributive lattice D with zero, is a nonempty lower subset closed under $(x, y) \mapsto x \vee y$.
- An ideal I is prime if $I \neq D$ and $x \wedge y \in I$ implies that either $x \in I$ or $y \in I(\forall x, y \in D)$.

Spectrum of a distributive lattice with zero

- An ideal, in a distributive lattice D with zero, is a nonempty lower subset closed under $(x, y) \mapsto x \vee y$.
- An ideal I is prime if $I \neq D$ and $x \wedge y \in I$ implies that either $x \in I$ or $y \in I(\forall x, y \in D)$.
- We endow the set $\operatorname{Spec} D$, of all prime ideals of D, with the topology whose closed sets are exactly the $V_{D}(X) \underset{\text { def }}{=}\{P \in \operatorname{Spec} D \mid X \subseteq P\}$, for $X \subseteq D$.

Spectrum of a distributive lattice with zero

- An ideal, in a distributive lattice D with zero, is a nonempty lower subset closed under $(x, y) \mapsto x \vee y$.
- An ideal I is prime if $I \neq D$ and $x \wedge y \in I$ implies that either $x \in I$ or $y \in I(\forall x, y \in D)$.
- We endow the set $\operatorname{Spec} D$, of all prime ideals of D, with the topology whose closed sets are exactly the $V_{D}(X) \underset{\text { def }}{=}\{P \in \operatorname{Spec} D \mid X \subseteq P\}$, for $X \subseteq D$.
- The topological space $\operatorname{Spec} D$ is called the spectrum of D.

Spectrum of a distributive lattice with zero

- An ideal, in a distributive lattice D with zero, is a nonempty lower subset closed under $(x, y) \mapsto x \vee y$.
- An ideal I is prime if $I \neq D$ and $x \wedge y \in I$ implies that either $x \in I$ or $y \in I(\forall x, y \in D)$.
- We endow the set $\operatorname{Spec} D$, of all prime ideals of D, with the topology whose closed sets are exactly the $V_{D}(X) \underset{\text { def }}{=}\{P \in \operatorname{Spec} D \mid X \subseteq P\}$, for $X \subseteq D$.
- The topological space $\operatorname{Spec} D$ is called the spectrum of D.
- A topological space X is generalized spectral if it is sober (i.e., every join-irreducible closed set is the closure of a unique singleton) and the set $\mathscr{K}(X)$ of all compact open subsets of X is a basis of the topology of X, closed under $(U, V) \mapsto U \cap V$.

Spectrum of a distributive lattice with zero

- An ideal, in a distributive lattice D with zero, is a nonempty lower subset closed under $(x, y) \mapsto x \vee y$.
- An ideal I is prime if $I \neq D$ and $x \wedge y \in I$ implies that either $x \in I$ or $y \in I(\forall x, y \in D)$.
- We endow the set $\operatorname{Spec} D$, of all prime ideals of D, with the topology whose closed sets are exactly the $V_{D}(X) \underset{\text { def }}{=}\{P \in \operatorname{Spec} D \mid X \subseteq P\}$, for $X \subseteq D$.
- The topological space $\operatorname{Spec} D$ is called the spectrum of D.
- A topological space X is generalized spectral if it is sober (i.e., every join-irreducible closed set is the closure of a unique singleton) and the set $\mathscr{K}(X)$ of all compact open subsets of X is a basis of the topology of X, closed under $(U, V) \mapsto U \cap V$.
- If, in addition, X is compact, then we say that X is spectral.

Generalities
The ℓ-spectrum ℓ-representable lattices
Additional properties of $\mathrm{Spec}_{\ell} G / \mathrm{Id}_{C}$ Negative results Known positive results
The lattices Op (\mathscr{H})
Basic properties Join-irreducibles and ∇

Consonance and difference operations Basic properties The Extension Lemma
Back to Op($\mathcal{O})$ Extending homomorphisms from Op (\mathcal{H}) Concluding the proof

Stone duality

Spectral spaces

Generalities
The ℓ-spectrum ℓ-representable lattices
Additional properties of $\operatorname{Spec}_{\ell} G / \mathrm{Id}_{C} G$
Negative results Known positive results

The lattices

Op((\mathcal{H})
Basic properties Join-irreducibles and ∇

Consonance and difference operations
Basic properties The Extension Lemma

Back to Op(56) Extending homomorphisms from $O p(\mathscr{H})$

Theorem (Stone, '30s)

Stone duality

Generalities
The ℓ-spectrum ℓ-representable lattices
Additional properties of $\operatorname{Spec}_{\ell} G / \mathrm{Id}_{C}$
Negative results
Known positive results

The lattices Op($\mathcal{H})$
Basic properties Join-irreducibles and ∇

Consonance and difference operations
Basic properties The Extension Lemma

Back to Op($\mathscr{H})$ Extending homomorphisms from Op (\mathcal{P}) Concluding the proof

Theorem (Stone, '30s)

- The assignments $D \mapsto \operatorname{Spec} D$ and $X \mapsto \mathcal{K}(X)$ define (categorically) mutually inverse transformations between distributive lattices with zero and generalized spectral spaces.

Stone duality

Generalities
The ℓ-spectrum ℓ-representable lattices
Additional
properties of $\operatorname{Spec}_{\ell} G / \operatorname{Id}_{C} G$
Negative results
Known positive results

The lattices Op(\mathcal{H})
Basic properties Join-irreducibles and ∇

Consonance and difference operations Lemma

Theorem (Stone, '30s)

- The assignments $D \mapsto \operatorname{Spec} D$ and $X \mapsto \mathscr{\mathcal { K }}(X)$ define (categorically) mutually inverse transformations between distributive lattices with zero and generalized spectral spaces.
- This can be extended to a duality between bounded distributive lattices (with bounded lattice homomorphisms) and spectral spaces (with spectral maps).

Stone duality

Generalities
The ℓ-spectrum ℓ-representable lattices
Additional
properties of $\operatorname{Spec}_{l} G / \mathrm{Id}_{C}$ Negative results Known positive results

The lattices Op(\mathcal{H})
Basic properties Join-irreducibles and ∇

Consonance and difference
operations
Basic properties
The Extension Lemma

Back to Op(TG)
Extending homomorphisms from $\operatorname{Op}(\mathscr{H})$ Concluding the proof

Theorem (Stone, '30s)

- The assignments $D \mapsto \operatorname{Spec} D$ and $X \mapsto{ }^{\mathcal{K}}(X)$ define (categorically) mutually inverse transformations between distributive lattices with zero and generalized spectral spaces.
- This can be extended to a duality between bounded distributive lattices (with bounded lattice homomorphisms) and spectral spaces (with spectral maps).

> By definition, a map $\varphi: X \rightarrow Y$ is spectral if $\forall V \in \stackrel{\circ}{\mathcal{K}}(Y)$, $\varphi^{-1}[V] \in \stackrel{\circ}{\mathcal{K}}(X)$.

The lattice $\mathrm{Id}_{\mathrm{c}} G$

- Every finitely generated ℓ-ideal, in an Abelian ℓ-group G, is generated by a single element of G^{+}(for $\left.\left\langle a_{1}, \ldots, a_{n}\right\rangle=\langle | a_{1}|\vee \cdots \vee| a_{n}| \rangle \forall a_{1}, \ldots, a_{n} \in G\right)$.

The lattice $\mathrm{Id}_{\mathrm{c}} G$

- Every finitely generated ℓ-ideal, in an Abelian ℓ-group G, is generated by a single element of G^{+}(for $\left.\left\langle a_{1}, \ldots, a_{n}\right\rangle=\langle | a_{1}|\vee \cdots \vee| a_{n}| \rangle \forall a_{1}, \ldots, a_{n} \in G\right)$.
- $\langle a\rangle \vee\langle b\rangle=\langle a \vee b\rangle=\langle a+b\rangle$ and $\langle a\rangle \cap\langle b\rangle=\langle a \wedge b\rangle$, for all $a, b \in G^{+}$.

The lattice $\mathrm{Id}_{\mathrm{c}} G$

- Every finitely generated ℓ-ideal, in an Abelian ℓ-group G, is generated by a single element of G^{+}(for $\left.\left\langle a_{1}, \ldots, a_{n}\right\rangle=\langle | a_{1}|\vee \cdots \vee| a_{n}| \rangle \forall a_{1}, \ldots, a_{n} \in G\right)$.
■ $\langle a\rangle \vee\langle b\rangle=\langle a \vee b\rangle=\langle a+b\rangle$ and $\langle a\rangle \cap\langle b\rangle=\langle a \wedge b\rangle$, for all $a, b \in G^{+}$.
- Hence, $\operatorname{ld}_{c} G \underset{\text { def }}{=}\left\{\langle a\rangle \mid a \in G^{+}\right\}$is a distributive lattice with zero. Call such lattices ℓ-representable.

The lattice $\mathrm{Id}_{\mathrm{c}} G$

- Every finitely generated ℓ-ideal, in an Abelian ℓ-group G, is generated by a single element of G^{+}(for $\left.\left\langle a_{1}, \ldots, a_{n}\right\rangle=\langle | a_{1}|\vee \cdots \vee| a_{n}| \rangle \forall a_{1}, \ldots, a_{n} \in G\right)$.
■ $\langle a\rangle \vee\langle b\rangle=\langle a \vee b\rangle=\langle a+b\rangle$ and $\langle a\rangle \cap\langle b\rangle=\langle a \wedge b\rangle$, for all $a, b \in G^{+}$.
- Hence, $\operatorname{ld}_{c} G \underset{\text { def }}{=}\left\{\langle a\rangle \mid a \in G^{+}\right\}$is a distributive lattice with zero. Call such lattices ℓ-representable.
- For every ℓ-ideal I of the ℓ-group $G, \varphi(I) \underset{\text { def }}{=}\{\langle x\rangle \mid x \in I\}$ is an ideal of the lattice $\mathrm{Id}_{\mathrm{c}} G$.

The lattice $\mathrm{Id}_{\mathrm{c}} G$

- Every finitely generated ℓ-ideal, in an Abelian ℓ-group G, is generated by a single element of G^{+}(for $\left.\left\langle a_{1}, \ldots, a_{n}\right\rangle=\langle | a_{1}|\vee \cdots \vee| a_{n}| \rangle \forall a_{1}, \ldots, a_{n} \in G\right)$.
■ $\langle a\rangle \vee\langle b\rangle=\langle a \vee b\rangle=\langle a+b\rangle$ and $\langle a\rangle \cap\langle b\rangle=\langle a \wedge b\rangle$, for all $a, b \in G^{+}$.
- Hence, $\operatorname{ld}_{c} G \underset{\text { def }}{=}\left\{\langle a\rangle \mid a \in G^{+}\right\}$is a distributive lattice with zero. Call such lattices ℓ-representable.
- For every ℓ-ideal I of the ℓ-group $G, \varphi(I) \underset{\text { def }}{=}\{\langle x\rangle \mid x \in I\}$ is an ideal of the lattice $\mathrm{Id}_{\mathrm{c}} G$.
- For every ideal I of the lattice $\operatorname{Id}_{c} G, \psi(\boldsymbol{I}) \underset{\text { def }}{=}\{x \in G \mid\langle x\rangle \in \boldsymbol{I}\}$ is an ℓ-ideal of the ℓ-group G.

The lattice $\mathrm{Id}_{\mathrm{c}} G$

- Every finitely generated ℓ-ideal, in an Abelian ℓ-group G, is generated by a single element of G^{+}(for $\left.\left\langle a_{1}, \ldots, a_{n}\right\rangle=\langle | a_{1}|\vee \cdots \vee| a_{n}| \rangle \forall a_{1}, \ldots, a_{n} \in G\right)$.
■ $\langle a\rangle \vee\langle b\rangle=\langle a \vee b\rangle=\langle a+b\rangle$ and $\langle a\rangle \cap\langle b\rangle=\langle a \wedge b\rangle$, for all $a, b \in G^{+}$.
- Hence, $\operatorname{Id}_{c} G \underset{\text { def }}{=}\left\{\langle a\rangle \mid a \in G^{+}\right\}$is a distributive lattice with zero. Call such lattices ℓ-representable.
- For every ℓ-ideal I of the ℓ-group $G, \varphi(I) \underset{\text { def }}{=}\{\langle x\rangle \mid x \in I\}$ is an ideal of the lattice $\mathrm{Id}_{\mathrm{c}} G$.
■ For every ideal I of the lattice $\operatorname{Id}_{c} G, \psi(\boldsymbol{I}) \underset{\text { def }}{=}\{x \in G \mid\langle x\rangle \in \boldsymbol{I}\}$ is an ℓ-ideal of the ℓ-group G.
- φ and ψ are mutually inverse, and they both preserve primeness.

The lattice $\mathrm{Id}_{\mathrm{c}} G$

- Every finitely generated ℓ-ideal, in an Abelian ℓ-group G, is generated by a single element of G^{+}(for $\left.\left\langle a_{1}, \ldots, a_{n}\right\rangle=\langle | a_{1}|\vee \cdots \vee| a_{n}| \rangle \forall a_{1}, \ldots, a_{n} \in G\right)$.
■ $\langle a\rangle \vee\langle b\rangle=\langle a \vee b\rangle=\langle a+b\rangle$ and $\langle a\rangle \cap\langle b\rangle=\langle a \wedge b\rangle$, for all $a, b \in G^{+}$.
- Hence, $\operatorname{Id}_{c} G \underset{\text { def }}{=}\left\{\langle a\rangle \mid a \in G^{+}\right\}$is a distributive lattice with zero. Call such lattices ℓ-representable.
- For every ℓ-ideal I of the ℓ-group $G, \varphi(I) \underset{\text { def }}{=}\{\langle x\rangle \mid x \in I\}$ is an ideal of the lattice $\mathrm{Id}_{\mathrm{c}} G$.
- For every ideal I of the lattice $\operatorname{Id}_{\boldsymbol{c}} \boldsymbol{G}, \psi(\boldsymbol{I}) \underset{\text { def }}{=}\{x \in G \mid\langle x\rangle \in \boldsymbol{I}\}$ is an ℓ-ideal of the ℓ-group G.
- φ and ψ are mutually inverse, and they both preserve primeness.
- Hence, $\operatorname{Spec}_{\ell} G \cong \operatorname{Spec} \mathrm{Id}_{\mathrm{c}} G$, so it is also a generalized spectral space.

The lattice $\mathrm{Id}_{\mathrm{c}} G$

- Every finitely generated ℓ-ideal, in an Abelian ℓ-group G, is generated by a single element of G^{+}(for $\left.\left\langle a_{1}, \ldots, a_{n}\right\rangle=\langle | a_{1}|\vee \cdots \vee| a_{n}| \rangle \forall a_{1}, \ldots, a_{n} \in G\right)$.
$\square\langle a\rangle \vee\langle b\rangle=\langle a \vee b\rangle=\langle a+b\rangle$ and $\langle a\rangle \cap\langle b\rangle=\langle a \wedge b\rangle$, for all $a, b \in G^{+}$.
- Hence, $\operatorname{Id}_{c} G \underset{\text { def }}{=}\left\{\langle a\rangle \mid a \in G^{+}\right\}$is a distributive lattice with zero. Call such lattices ℓ-representable.
- For every ℓ-ideal I of the ℓ-group $G, \varphi(I) \underset{\text { def }}{=}\{\langle x\rangle \mid x \in I\}$ is an ideal of the lattice $\mathrm{Id}_{\mathrm{c}} G$.
- For every ideal I of the lattice $\operatorname{Id}_{c} G, \psi(\boldsymbol{I}) \underset{\text { def }}{=}\{x \in G \mid\langle x\rangle \in \boldsymbol{I}\}$ is an ℓ-ideal of the ℓ-group G.
- φ and ψ are mutually inverse, and they both preserve primeness.
- Hence, $\operatorname{Spec}_{\ell} G \cong{\operatorname{Spec} I d_{c}} G$, so it is also a generalized spectral space.
- Hence, $\mathrm{Spec}_{\ell} G$ and $\mathrm{Id}_{\mathrm{c}} G$ determine each other (via Stone's Theorem).

The lattice $\mathrm{Id}_{\mathrm{c}} G$

- Every finitely generated ℓ-ideal, in an Abelian ℓ-group G, is generated by a single element of G^{+}(for $\left.\left\langle a_{1}, \ldots, a_{n}\right\rangle=\langle | a_{1}|\vee \cdots \vee| a_{n}| \rangle \forall a_{1}, \ldots, a_{n} \in G\right)$.
$\square\langle a\rangle \vee\langle b\rangle=\langle a \vee b\rangle=\langle a+b\rangle$ and $\langle a\rangle \cap\langle b\rangle=\langle a \wedge b\rangle$, for all $a, b \in G^{+}$.
- Hence, $\operatorname{ld}_{c} G \underset{\text { def }}{=}\left\{\langle a\rangle \mid a \in G^{+}\right\}$is a distributive lattice with zero. Call such lattices ℓ-representable.
- For every ℓ-ideal I of the ℓ-group $G, \varphi(I) \underset{\text { def }}{=}\{\langle x\rangle \mid x \in I\}$ is an ideal of the lattice $\mathrm{Id}_{\mathrm{c}} G$.
- For every ideal I of the lattice $\operatorname{Id}_{\boldsymbol{c}} \boldsymbol{G}, \psi(\boldsymbol{I}) \underset{\text { def }}{=}\{x \in G \mid\langle x\rangle \in \boldsymbol{I}\}$ is an ℓ-ideal of the ℓ-group G.
- φ and ψ are mutually inverse, and they both preserve primeness.
- Hence, $\operatorname{Spec}_{\ell} G \cong{\operatorname{Spec} I d_{c}} G$, so it is also a generalized spectral space.
- Hence, $\operatorname{Spec}_{\ell} G$ and $\mathrm{Id}_{\mathrm{c}} G$ determine each other (via Stone's Theorem).
- Recasts the above problem as: Describe ℓ-representable lattices, ac

Complete normality

■ Specialization order on a T_{0} space: $x \leqslant y$ if $y \in \mathrm{cl}\{x\}$.

Complete normality

Generalities
The ℓ-spectrum
ℓ-representable lattices
Additional properties of $\mathrm{Spec}_{\ell} G / \mathrm{Id}_{\mathrm{C}} G$ Negative results
Known positive resuits

The lattices Op(\mathcal{H})
Basic properties Join-irreducibles and ∇

Consonance and difference operations Basic properties The Extension Lemma

■ Specialization order on a T_{0} space: $x \leqslant y$ if $y \in \mathrm{cl}\{x\}$.

- A generalized spectral space X is completely normal if its specialization order is a root system, that is, $\forall x, y, z \in X$, if $\{x, y\} \subseteq \mathrm{cl}\{z\}$, then $x \in \mathrm{cl}\{y\}$ or $y \in \mathrm{cl}\{x\}$. This holds if (not iff) every subspace of X is normal in the usual sense.

Complete normality

Generalities
The ℓ-spectrum
ℓ-representable lattices
Additional properties of $\operatorname{Spec}_{\ell} G / \operatorname{Id}_{C} G$ Negative results
Known positive resuits

The lattices Op(\mathcal{H})
Basic properties Join-irreducibles and ∇

Consonance and difference operations Basic properties The Extension Lemma

■ Specialization order on a T_{0} space: $x \leqslant y$ if $y \in \mathrm{cl}\{x\}$.

- A generalized spectral space X is completely normal if its specialization order is a root system, that is, $\forall x, y, z \in X$, if $\{x, y\} \subseteq \mathrm{cl}\{z\}$, then $x \in \mathrm{cl}\{y\}$ or $y \in \mathrm{cl}\{x\}$. This holds if (not iff) every subspace of X is normal in the usual sense.
- A distributive lattice D with zero is completely normal if $\forall a, b \in D, \exists x, y \in D$ such that $a \leq b \vee x, b \leq a \vee y$, and $x \wedge y=0$

Complete normality

Generalities
The ℓ-spectrum
ℓ-representable lattices
Additional properties of $\mathrm{Spec}_{\ell} G / \mathrm{Id}_{C} G$ Negative results
Known positive resuits

The lattices Op(\mathcal{H})
Basic properties Join-irreducibles and ∇

Consonance and difference operations Lemma

■ Specialization order on a T_{0} space: $x \leqslant y$ if $y \in \mathrm{cl}\{x\}$.
■ A generalized spectral space X is completely normal if its specialization order is a root system, that is, $\forall x, y, z \in X$, if $\{x, y\} \subseteq \mathrm{cl}\{z\}$, then $x \in \mathrm{cl}\{y\}$ or $y \in \mathrm{cl}\{x\}$. This holds if (not iff) every subspace of X is normal in the usual sense.
■ A distributive lattice D with zero is completely normal if $\forall a, b \in D, \exists x, y \in D$ such that $a \leq b \vee x, b \leq a \vee y$, and $x \wedge y=0$ (we say that (x, y) is a splitting of $(a, b))$.

Complete normality

Generalities
The ℓ-spectrum ℓ-representable lattices
Additional properties of $\mathrm{Spec}_{\ell} G / \mathrm{Id}_{C} G$ Negative results Known positive results

The lattices Op($\mathcal{H})$
Basic properties Join-irreducibles and ∇

- Specialization order on a T_{0} space: $x \leqslant y$ if $y \in \mathrm{cl}\{x\}$.
- A generalized spectral space X is completely normal if its specialization order is a root system, that is, $\forall x, y, z \in X$, if $\{x, y\} \subseteq \mathrm{cl}\{z\}$, then $x \in \mathrm{cl}\{y\}$ or $y \in \mathrm{cl}\{x\}$. This holds if (not iff) every subspace of X is normal in the usual sense.
- A distributive lattice D with zero is completely normal if $\forall a, b \in D, \exists x, y \in D$ such that $a \leq b \vee x, b \leq a \vee y$, and $x \wedge y=0$ (we say that (x, y) is a splitting of (a, b)).

Theorem (Monteiro 1956)

A generalized spectral space X is completely normal iff the distributive lattice $\mathscr{K}(X)$ is completely normal.

Complete normality of $\operatorname{Id}_{c} G$

Proposition (folklore)
For every Abelian ℓ-group $G, \mathrm{Id}_{c} G$ is a completely normal distributive lattice (equivalently, $\operatorname{Spec}_{\ell} G$ is a completely normal generalized spectral space).

Complete normality of $\operatorname{Id}_{\mathrm{c}} G$

Proposition (folklore)

For every Abelian ℓ-group $G, \operatorname{Id}_{c} G$ is a completely normal distributive lattice (equivalently, $\mathrm{Spec}_{\ell} G$ is a completely normal generalized spectral space).

Proof.

Let $\boldsymbol{a}, \boldsymbol{b} \in \operatorname{Id}_{c} G$. There are $a, b \in G^{+}$such that $\boldsymbol{a}=\langle a\rangle$ and $\boldsymbol{b}=\langle b\rangle$. Set $\boldsymbol{x} \underset{\text { def }}{=}\langle a-a \wedge b\rangle$ and $\boldsymbol{y} \underset{\text { def }}{=}\langle b-a \wedge b\rangle$. Then $(\boldsymbol{x}, \boldsymbol{y})$ is a splitting of $(\boldsymbol{a}, \boldsymbol{b})$.

Countably based differences

Definition

A distributive lattice D has countably based differences if $\forall a, b \in D$, the set $a \ominus b \underset{\text { def }}{=}\{x \in D \mid a \leq x \vee b\}$ has a countable coinitial subset.

Countably based differences

Definition

A distributive lattice D has countably based differences if $\forall a, b \in D$, the set $a \ominus b \underset{\text { def }}{=}\{x \in D \mid a \leq x \vee b\}$ has a countable coinitial subset.
(i.e., $\left\{c_{n} \mid n<\omega\right\} \subseteq a \ominus b$ such that $\forall x \in a \ominus b \exists n<\omega c_{n} \leq x$)

Countably based differences

Definition

A distributive lattice D has countably based differences if $\forall a, b \in D$, the set $a \ominus b \underset{\text { def }}{=}\{x \in D \mid a \leq x \vee b\}$ has a countable coinitial subset.
(i.e., $\left\{c_{n} \mid n<\omega\right\} \subseteq a \ominus b$ such that $\forall x \in a \ominus b \exists n<\omega c_{n} \leq x$)

Generalities
The ℓ-spectrum ℓ-representable

Proposition (Cignoli, Gluschankof, and Lucas 1999)

Let G be an Abelian ℓ-group. Then $\mathrm{Id}_{c} G$ has countably based differences.

Countably based differences

Definition

A distributive lattice D has countably based differences if $\forall a, b \in D$, the set $a \ominus b \underset{\text { def }}{=}\{x \in D \mid a \leq x \vee b\}$ has a countable coinitial subset.
(i.e., $\left\{c_{n} \mid n<\omega\right\} \subseteq a \ominus b$ such that $\forall x \in a \ominus b \exists n<\omega c_{n} \leq x$)

Generalities The ℓ-spectrum ℓ-representable Additional properties of $\operatorname{Spec}_{\ell} \ell / \operatorname{Id}_{C} G$
Negative results
Known positive results

The lattices
Op($\mathcal{H})$
Basic properties Join-irreducibles and ∇

Proposition (Cignoli, Gluschankof, and Lucas 1999)

Let G be an Abelian ℓ-group. Then $\mathrm{Id}_{\mathrm{c}} G$ has countably based differences.

Proof.

If $\boldsymbol{a}=\langle a\rangle$ and $\boldsymbol{b}=\langle b\rangle\left(\right.$ where $a, b \in G^{+}$), set $\boldsymbol{c}_{n} \underset{\text { def }}{=}\langle a-a \wedge n b\rangle$.
Then $\left\{\boldsymbol{c}_{n} \mid n<\omega\right\}$ is coinitial in $\boldsymbol{a} \ominus \boldsymbol{b}$.

Non- ℓ-representable lattices

Generalities
The ℓ-spectrum
ℓ-representable
lattices
Additional
properties of
$\mathrm{Spec}_{p} 6 / \mathrm{Hd}_{\mathrm{C}}$
Negative results
Known positive
results
The lattices
Op(\mathcal{H})
Basic properties Join-irreducibles and ∇

Consonance and difference
operations
Basic properties
The Extension Lemma

Back to Op($\mathcal{H})$
Extending
homomorphisms from $O p(\mu)$
Concluding the proof

Theorem (Delzell and Madden, 1994)
There exists a non- ℓ-representable bounded distributive lattice of cardinality \aleph_{1}.

Non- ℓ-representable lattices

Theorem (Delzell and Madden, 1994)
There exists a non- ℓ-representable bounded distributive lattice of cardinality \aleph_{1}.

- Delzell and Madden also have a much more complicated example of a completely normal spectral space which is not the real spectrum of any commutative, unital ring.

Non- ℓ-representable lattices

Theorem (Delzell and Madden, 1994)

There exists a non- ℓ-representable bounded distributive lattice of cardinality \aleph_{1}.

- Delzell and Madden also have a much more complicated example of a completely normal spectral space which is not the real spectrum of any commutative, unital ring.
- The latter example is not second countable either.

Non- ℓ-representable lattices

Theorem (Delzell and Madden, 1994)

There exists a non- ℓ-representable bounded distributive lattice of cardinality \aleph_{1}.

- Delzell and Madden also have a much more complicated example of a completely normal spectral space which is not the real spectrum of any commutative, unital ring.
- The latter example is not second countable either. It has cardinality $2^{\aleph_{1}}$ a priori.

Non- ℓ-representable lattices

Theorem (Delzell and Madden, 1994)

There exists a non- ℓ-representable bounded distributive lattice of cardinality \aleph_{1}.

- Delzell and Madden also have a much more complicated example of a completely normal spectral space which is not the real spectrum of any commutative, unital ring.
- The latter example is not second countable either. It has cardinality $2^{\aleph_{1}}$ a priori.
- By using a different construction, $2^{\aleph_{1}}$ can be improved to \aleph_{1} (W 2017).

No $\mathscr{L}_{\infty, \omega}$ characterization of ℓ-representability

- Set $B_{I} \underset{\text { def }}{=}\{X \subseteq I \mid X$ or $I \backslash X$ is finite $\}$ and

$$
\begin{aligned}
& \boldsymbol{D}_{I}=\left\{(X, k) \in \boldsymbol{B}_{I} \times\{0,1,2\} \mid\right. \\
& \quad(k=0 \Rightarrow X \text { finite }) \text { and }(k \neq 0 \Rightarrow I \backslash X \text { finite })\},
\end{aligned}
$$

for any set I.

No $\mathscr{L}_{\infty, \omega}$ characterization of ℓ-representability

- Set $B_{I} \underset{\text { def }}{=}\{X \subseteq I \mid X$ or $I \backslash X$ is finite $\}$ and

$$
\begin{aligned}
& \boldsymbol{D}_{I} \underset{\text { def }}{=}\left\{(X, k) \in \boldsymbol{B}_{I} \times\{0,1,2\} \mid\right. \\
& \quad(k=0 \Rightarrow X \text { finite }) \text { and }(k \neq 0 \Rightarrow \boldsymbol{I} \backslash X \text { finite })\},
\end{aligned}
$$

for any set I.
■ $D_{\omega} \hookrightarrow D_{\omega_{1}}$, via

$$
(X, k) \mapsto \begin{cases}(X, k), & \text { if } k=0, \\ \left(X \cup\left(\omega_{1} \backslash \omega\right), k\right), & \text { if } k \neq 0 .\end{cases}
$$

No $\mathscr{L}_{\infty, \omega}$ characterization of ℓ-representability

- Set $B_{I} \underset{\text { def }}{=}\{X \subseteq I \mid X$ or $I \backslash X$ is finite $\}$ and

$$
\begin{aligned}
& \boldsymbol{D}_{I} \underset{\text { def }}{=}\left\{(X, k) \in \boldsymbol{B}_{I} \times\{0,1,2\} \mid\right. \\
& \quad(k=0 \Rightarrow X \text { finite }) \text { and }(k \neq 0 \Rightarrow I \backslash X \text { finite })\},
\end{aligned}
$$

for any set I.
■ $\boldsymbol{D}_{\omega} \hookrightarrow \boldsymbol{D}_{\omega_{1}}$, via

$$
(X, k) \mapsto \begin{cases}(X, k), & \text { if } k=0, \\ \left(X \cup\left(\omega_{1} \backslash \omega\right), k\right), & \text { if } k \neq 0 .\end{cases}
$$

Proposition (W 2017)
\boldsymbol{D}_{ω} is an $\mathscr{L}_{\infty, \omega}$-elementary sublattice of $\boldsymbol{D}_{\omega_{1}}$ (use back-and-forth), with \boldsymbol{D}_{ω} countable (and ℓ-representable) and $\boldsymbol{D}_{\omega_{1}}$ non- ℓ-representable (no countably based differences).

No $\mathscr{L}_{\infty, \omega}$ characterization of ℓ-representability

- Set $B_{I} \underset{\text { def }}{=}\{X \subseteq I \mid X$ or $I \backslash X$ is finite $\}$ and

$$
\begin{aligned}
& \boldsymbol{D}_{I} \underset{\text { def }}{=}\left\{(X, k) \in \boldsymbol{B}_{I} \times\{0,1,2\} \mid\right. \\
& \quad(k=0 \Rightarrow X \text { finite }) \text { and }(k \neq 0 \Rightarrow I \backslash X \text { finite })\},
\end{aligned}
$$

for any set I.
■ $\boldsymbol{D}_{\omega} \hookrightarrow \boldsymbol{D}_{\omega_{1}}$, via

$$
(X, k) \mapsto \begin{cases}(X, k), & \text { if } k=0, \\ \left(X \cup\left(\omega_{1} \backslash \omega\right), k\right), & \text { if } k \neq 0 .\end{cases}
$$

Proposition (W 2017)
\boldsymbol{D}_{ω} is an $\mathscr{L}_{\infty, \omega}$-elementary sublattice of $\boldsymbol{D}_{\omega_{1}}$ (use back-and-forth), with \boldsymbol{D}_{ω} countable (and ℓ-representable) and $\boldsymbol{D}_{\omega_{1}}$ non- ℓ-representable (no countably based differences). Consequently, ℓ-representability is not $\mathscr{L}_{\infty, \omega}$-definable.

Generalized dual Heyting algebras

Generalities
The ℓ-spectrum
ℓ-representable
lattices
Additional
properties of
$\operatorname{Spec}_{\ell} 6 / \mathrm{Hd}_{C} C$
Negative results
Known positive results

Definition

A distributive lattice D with zero is a generalized dual Heyting algebra if $\forall a, b \in D, \exists$ smallest $x \in D$ such that $a \leq b \vee x$;

Generalized dual Heyting algebras

Generalities
The ℓ-spectrum
ℓ-representable
lattices
Additional properties of $\operatorname{Spec}_{\ell} 6 / \mathrm{Hd}_{C} \rho$
Negative results
Known positive results

Definition

A distributive lattice D with zero is a generalized dual Heyting algebra if $\forall a, b \in D, \exists$ smallest $x \in D$ such that $a \leq b \vee x$; then denoted by $a \backslash_{D} b$ and called the pseudo-difference of a and b.

Generalized dual Heyting algebras

Generalities
The ℓ-spectrum
ℓ-representable
lattices
Additional
properties of
Spec $_{R} 6 / \mathrm{Hd}_{\mathrm{C}} 9$
Negative results
Known positive results

Definition

A distributive lattice D with zero is a generalized dual Heyting algebra if $\forall a, b \in D, \exists$ smallest $x \in D$ such that $a \leq b \vee x$; then denoted by $a \backslash_{D} b$ and called the pseudo-difference of a and b.

Theorem (Cignoli, Gluschankof, and Lucas 1999)

Every dual generalized Heyting algebra is ℓ-representable.

Generalized dual Heyting algebras

Generalities
The ℓ-spectrum ℓ-representable lattices
Additional properties of Spec $_{R} 6 / \mathrm{Hd}_{\mathrm{C}} 9$
Negative results
Known positive results

Definition

A distributive lattice D with zero is a generalized dual Heyting algebra if $\forall a, b \in D, \exists$ smallest $x \in D$ such that $a \leq b \vee x$; then denoted by $a \backslash_{D} b$ and called the pseudo-difference of a and b.

Theorem (Cignoli, Gluschankof, and Lucas 1999)

Every dual generalized Heyting algebra is ℓ-representable.
The proof extends (non-trivially) the finite case.

Generalized dual Heyting algebras

Definition

A distributive lattice D with zero is a generalized dual Heyting algebra if $\forall a, b \in D, \exists$ smallest $x \in D$ such that $a \leq b \vee x$; then denoted by $a \backslash_{D} b$ and called the pseudo-difference of a and b.

Theorem (Cignoli, Gluschankof, and Lucas 1999)

Every dual generalized Heyting algebra is ℓ-representable.
The proof extends (non-trivially) the finite case. In that case, D is the lattice of all lower subsets of a finite root system P.

Generalized dual Heyting algebras

Back to Op($\mathscr{C})$ Extending homomorphisms from Op($\because)$ Concluding the proof

Definition

A distributive lattice D with zero is a generalized dual Heyting algebra if $\forall a, b \in D, \exists$ smallest $x \in D$ such that $a \leq b \vee x$; then denoted by $a \backslash_{D} b$ and called the pseudo-difference of a and b.

Theorem (Cignoli, Gluschankof, and Lucas 1999)

Every dual generalized Heyting algebra is ℓ-representable.
The proof extends (non-trivially) the finite case. In that case, D is the lattice of all lower subsets of a finite root system P. So $D \cong \operatorname{Id}_{c} \mathbb{Q}\langle P\rangle$, where $\mathbb{Q}\langle P\rangle$ is the lexicographical power (Hahn power) of \mathbb{Q} by P.

Closed lattice homomorphisms

Definition

For distributive lattices D and E with zero, a 0 -lattice homomorphism $f: D \rightarrow E$ is closed if for all $a, b \in D$ and all $c \in E$, $f(a) \leq f(b) \vee c \Rightarrow \exists x \in D, a \leq b \vee x$ and $f(x) \leq c$.

Closed lattice homomorphisms

Generalities
The ℓ-spectrum
ℓ-representable lattices
Additional
properties of
$\operatorname{Spec}_{\ell} G / \operatorname{ld}_{C} C$
Negative results
Known positive results

The lattices

Op($\mathcal{H})$
Basic properties Join-irreducibles and ∇ Lemma

Definition

For distributive lattices D and E with zero, a 0 -lattice homomorphism $f: D \rightarrow E$ is closed if for all $a, b \in D$ and all $c \in E$, $f(a) \leq f(b) \vee c \Rightarrow \exists x \in D, a \leq b \vee x$ and $f(x) \leq c$.

Equivalently, the dual map $\operatorname{Spec} f: \operatorname{Spec} E \rightarrow \operatorname{Spec} D$ sends closed subsets to closed subsets (resp., sends upper subsets to upper subsets).

Closed lattice homomorphisms

Definition

For distributive lattices D and E with zero, a 0-lattice homomorphism $f: D \rightarrow E$ is closed if for all $a, b \in D$ and all $c \in E$, $f(a) \leq f(b) \vee c \Rightarrow \exists x \in D, a \leq b \vee x$ and $f(x) \leq c$.

Equivalently, the dual map $\operatorname{Spec} f: \operatorname{Spec} E \rightarrow \operatorname{Spec} D$ sends closed subsets to closed subsets (resp., sends upper subsets to upper subsets).

Proposition

Let $f: G \rightarrow H$ be a ℓ-homomorphism between Abelian ℓ-groups. Then $\operatorname{ld}_{\mathrm{c}} f: \operatorname{ld}_{\mathrm{c}} G \rightarrow \mathrm{Id}_{\mathrm{c}} H$ is a closed lattice homomorphism.

Closed lattice homomorphisms

Definition

For distributive lattices D and E with zero, a 0-lattice homomorphism $f: D \rightarrow E$ is closed if for all $a, b \in D$ and all $c \in E$, $f(a) \leq f(b) \vee c \Rightarrow \exists x \in D, a \leq b \vee x$ and $f(x) \leq c$.

Equivalently, the dual map $\operatorname{Spec} f: \operatorname{Spec} E \rightarrow \operatorname{Spec} D$ sends closed subsets to closed subsets (resp., sends upper subsets to upper subsets).

Proposition

Let $f: G \rightarrow H$ be a ℓ-homomorphism between Abelian ℓ-groups. Then $\mathrm{Id}_{\mathrm{c}} f: \mathrm{Id}_{\mathrm{c}} G \rightarrow \mathrm{Id}_{\mathrm{c}} H$ is a closed lattice homomorphism.

$$
\begin{aligned}
& \text { Proof. } \\
& \text { Let }\left(\operatorname{Id}_{\mathrm{c}} f\right)(\langle a\rangle) \subseteq\left(\operatorname{ld}_{c} f\right)(\langle b\rangle) \vee\langle c\rangle \text {, where } a, b \in G^{+} \text {and } c \in H^{+} \text {. }
\end{aligned}
$$

Closed lattice homomorphisms

Definition

For distributive lattices D and E with zero, a 0 -lattice homomorphism $f: D \rightarrow E$ is closed if for all $a, b \in D$ and all $c \in E$, $f(a) \leq f(b) \vee c \Rightarrow \exists x \in D, a \leq b \vee x$ and $f(x) \leq c$.

Equivalently, the dual map $\operatorname{Spec} f: \operatorname{Spec} E \rightarrow \operatorname{Spec} D$ sends closed subsets to closed subsets (resp., sends upper subsets to upper subsets).

Proposition

Let $f: G \rightarrow H$ be a ℓ-homomorphism between Abelian ℓ-groups. Then $\mathrm{Id}_{\mathrm{c}} f: \mathrm{Id}_{\mathrm{c}} G \rightarrow \mathrm{Id}_{\mathrm{c}} H$ is a closed lattice homomorphism.

Proof.

Let $\left(\mathrm{Id}_{\mathrm{c}} f\right)(\langle a\rangle) \subseteq\left(\mathrm{Id}_{\mathrm{c}} f\right)(\langle b\rangle) \vee\langle c\rangle$, where $a, b \in G^{+}$and $c \in H^{+}$. This means that $f(a) \leq n f(b)+n c$, for some $n<\omega$.

Closed lattice homomorphisms

Definition

For distributive lattices D and E with zero, a 0-lattice homomorphism $f: D \rightarrow E$ is closed if for all $a, b \in D$ and all $c \in E$, $f(a) \leq f(b) \vee c \Rightarrow \exists x \in D, a \leq b \vee x$ and $f(x) \leq c$.

Equivalently, the dual map $\operatorname{Spec} f: \operatorname{Spec} E \rightarrow \operatorname{Spec} D$ sends closed subsets to closed subsets (resp., sends upper subsets to upper subsets).

Proposition

Let $f: G \rightarrow H$ be a ℓ-homomorphism between Abelian ℓ-groups. Then $\mathrm{Id}_{\mathrm{c}} f: \mathrm{Id}_{\mathrm{c}} G \rightarrow \mathrm{Id}_{\mathrm{c}} H$ is a closed lattice homomorphism.

Proof.

Let $\left(\mathrm{Id}_{\mathrm{c}} f\right)(\langle a\rangle) \subseteq\left(\mathrm{Id}_{\mathrm{c}} f\right)(\langle b\rangle) \vee\langle c\rangle$, where $a, b \in G^{+}$and $c \in H^{+}$. This means that $f(a) \leq n f(b)+n c$, for some $n<\omega$. Hence $f(x) \leq n c$, where $x \underset{\text { def }}{=} a-(a \wedge n b)$.

Closed lattice homomorphisms

Definition

For distributive lattices D and E with zero, a 0-lattice homomorphism $f: D \rightarrow E$ is closed if for all $a, b \in D$ and all $c \in E$, $f(a) \leq f(b) \vee c \Rightarrow \exists x \in D, a \leq b \vee x$ and $f(x) \leq c$.

Equivalently, the dual map $\operatorname{Spec} f: \operatorname{Spec} E \rightarrow \operatorname{Spec} D$ sends closed subsets to closed subsets (resp., sends upper subsets to upper subsets).

Proposition

Let $f: G \rightarrow H$ be a ℓ-homomorphism between Abelian ℓ-groups. Then $\mathrm{Id}_{\mathrm{c}} f: \mathrm{Id}_{\mathrm{c}} G \rightarrow \mathrm{Id}_{\mathrm{c}} H$ is a closed lattice homomorphism.

Proof.

Let $\left(\mathrm{Id}_{\mathrm{c}} f\right)(\langle a\rangle) \subseteq\left(\mathrm{Id}_{\mathrm{c}} f\right)(\langle b\rangle) \vee\langle c\rangle$, where $a, b \in G^{+}$and $c \in H^{+}$.
This means that $f(a) \leq n f(b)+n c$, for some $n<\omega$.
Hence $f(x) \leq n c$, where $x_{\text {def }}^{=} a-(a \wedge n b)$.
Therefore, $\langle a\rangle \subseteq\langle b\rangle \vee\langle x\rangle$, with $\left(\mathrm{Id}_{c} f\right)(\langle x\rangle) \subseteq\langle c\rangle$.

Closed lattice homomorphisms (cont'd)

Proposition

Let G be an Abelian ℓ-group, let \boldsymbol{D} be a distributive lattice with zero. Then every surjective closed lattice homomorphism $\boldsymbol{f}: \mathrm{Id}_{\mathrm{c}} G \rightarrow \boldsymbol{D}$ induces an isomorphism $\mathrm{Id}_{\mathrm{c}}(G / I) \rightarrow \boldsymbol{D}$, for the ℓ-ideal $I \underset{\text { def }}{=}\{x \in G \mid \boldsymbol{f}(\langle x\rangle)=0\}$.

A positive result

The aim of what follows is to sketch a proof of the following result:

Generalities

The ℓ-spectrum
ℓ-representable lattices
Additional properties of $\mathrm{Spec}_{\ell} G / \mathrm{ld}_{c}$ Negative results Known positive results

The lattices

Op(\mathcal{H})
Basic properties
Join-irreducibles and ∇

Consonance and

A positive result

Spectral spaces

Generalities
The ℓ-spectrum
ℓ-representable lattices
Additional
properties of
$\mathrm{Spec}_{\ell} G / \mathrm{ld}_{C}$
Negative results
Known positive results

The lattices
Op(\mathcal{F})
Basic properties Join-irreducibles and ∇

The aim of what follows is to sketch a proof of the following result:
Theorem (W 2017)
Every countable, completely normal distributive lattice with zero is ℓ-representable.

A positive result

The aim of what follows is to sketch a proof of the following result:

Theorem (W 2017)

Every countable, completely normal distributive lattice with zero is ℓ-representable.

Equivalently (using Stone's Theorem and Monteiro's result),

A positive result

The aim of what follows is to sketch a proof of the following result:

Theorem (W 2017)

Every countable, completely normal distributive lattice with zero is ℓ-representable.

Equivalently (using Stone's Theorem and Monteiro's result),

Every second countable, completely normal generalized spectral space is the ℓ-spectrum of some Abelian ℓ-group

A positive result

The aim of what follows is to sketch a proof of the following result:

Theorem (W 2017)

Every countable, completely normal distributive lattice with zero is ℓ-representable.

Equivalently (using Stone's Theorem and Monteiro's result),

Every second countable, completely normal generalized spectral space is the ℓ-spectrum of some Abelian ℓ-group

Strategy: starting with a countable, completely normal distributive lattice D with zero, we construct an ascending tower of lattice homomorphisms $f_{n}: E_{n} \rightarrow D$, where $\bigcup_{n<\omega} E_{n}=\operatorname{ld}_{c} \mathrm{~F}_{\ell}(\omega)$, with suitably chosen finite E_{n} and failures of closedness / surjectivity / being defined everywhere corrected at each stage.

A positive result

The aim of what follows is to sketch a proof of the following result:

Theorem (W 2017)

Every countable, completely normal distributive lattice with zero is ℓ-representable.

Equivalently (using Stone's Theorem and Monteiro's result),

Every second countable, completely normal generalized spectral space is the ℓ-spectrum of some Abelian ℓ-group

Strategy: starting with a countable, completely normal distributive lattice D with zero, we construct an ascending tower of lattice homomorphisms $f_{n}: E_{n} \rightarrow D$, where $\bigcup_{n<\omega} E_{n}=\operatorname{ld}_{c} \mathrm{~F}_{\ell}(\omega)$, with suitably chosen finite E_{n} and failures of closedness / surjectivity / being defined everywhere corrected at each stage.
A 2004 example by Di Nola and Grigolia shows that the E_{n} cannot always be taken completely normal.

Defining $\operatorname{Op}(\mathcal{H})$

Definition

Let \mathcal{H} be a set of closed hyperplanes in a topological vector space \mathbb{E} over \mathbb{R}.

Defining $\operatorname{Op}(\mathcal{H})$

Definition

Let \mathcal{H} be a set of closed hyperplanes in a topological vector space \mathbb{E} over \mathbb{R}. We set
$\operatorname{Bool}(\mathcal{H}) \underset{\text { def }}{=}$ Boolean subalgebra of the powerset of \mathbb{E}
\quad generated by all H^{+}and H^{-}, where $H \in \mathcal{H} ;$
$\mathrm{Op}(\mathcal{H}) \underset{\text { def }}{=}$ \{open members of $\operatorname{Bool}(\mathcal{H})\}$.
$\left(\right.$ The E_{n} will have the form $\left.\mathrm{Op}^{-}(\mathcal{H}) \underset{\text { def }}{=} \operatorname{Op}(\mathcal{H}) \backslash\{\mathbb{E}\}.\right)$

Generalities
The ℓ-spectrum
ℓ-representable lattices
Additional properties of $\operatorname{Spec}_{\ell} G / \operatorname{ld}_{C} C$ Negative results Known positive resuits

The lattices Op($\mathcal{H})$
Basic properties Join-irreducibles and ∇ Lemma

Defining $\operatorname{Op}(\mathcal{H})$

Definition

Let \mathcal{H} be a set of closed hyperplanes in a topological vector space \mathbb{E} over \mathbb{R}. We set
$\operatorname{Bool}(\mathcal{H}) \underset{\text { def }}{=}$ Boolean subalgebra of the powerset of \mathbb{E}
\quad generated by all H^{+}and H^{-}, where $H \in \mathcal{H} ;$
$\operatorname{Op}(\mathcal{H}) \underset{\text { def }}{=}\{$ open members of $\operatorname{Bool}(\mathcal{H})\}$.
$\left(\right.$ The E_{n} will have the form $\left.\mathrm{Op}^{-}(\mathcal{H}) \underset{\text { def }}{=} \operatorname{Op}(\mathcal{H}) \backslash\{\mathbb{E}\}.\right)$

Generalities
The ℓ-spectrum ℓ-representable lattices
Additional properties of $\left.\operatorname{Spec}_{C} 6 / \operatorname{ld}_{C}\right\}$ Negative results Known positive resuilts

The lattices Op(\mathcal{H})
Basic properties Join-irreducibles and ∇

Consonance and difference.
operations
Basic properties
The Extension Lemma

Back to Op($\mathscr{H})$
Extending
homomorphisms from $O p(9 C)$
Concluding the proof

Lemma

For every $X \in \operatorname{Bool}(\mathcal{H})$, $\operatorname{int}(X)$ belongs to $\operatorname{Op}(\mathcal{H})$, and it is a finite union of sets of the form $\bigcap_{i=1}^{n} H_{i}^{ \pm}$, where all $H_{i} \in \mathcal{H}$ (basic open sets).

Defining $\operatorname{Op}(\mathcal{H})$

Definition

Let \mathcal{H} be a set of closed hyperplanes in a topological vector space \mathbb{E} over \mathbb{R}. We set

> Bool $(\mathcal{H}) \underset{\text { def }}{=}$ Boolean subalgebra of the powerset of \mathbb{E} \quad generated by all H^{+}and H^{-}, where $H \in \mathcal{H} ;$ $\mathrm{Op}(\mathcal{H}) \underset{\text { def }}{=}\{$ open members of $\operatorname{Bool}(\mathcal{H})\}$. $\left(\right.$ The E_{n} will have the form $\left.\mathrm{Op}^{-}(\mathcal{H}) \underset{\text { def }}{=} \operatorname{Op}(\mathcal{H}) \backslash\{\mathbb{E}\}.\right)$

Generalities
The ℓ-spectrum ℓ-representable lattices
Additional properties of Spec $_{l} 6 / \mathrm{Hd}_{C}$ Negative results Known positive resuits

The lattices Op(\mathcal{H})
Basic properties Join-irreducibles and ∇

Lemma

For every $X \in \operatorname{Bool}(\mathcal{H}), \operatorname{int}(X)$ belongs to $\operatorname{Op}(\mathcal{H})$, and it is a finite union of sets of the form $\bigcap_{i=1}^{n} H_{i}^{ \pm}$, where all $H_{i} \in \mathcal{H}$ (basic open sets). Moreover, $\operatorname{Op}(\mathcal{H})$ is a Heyting subalgebra of the algebra of all open subsets of \mathbb{E}.

The operator $\nabla_{\mathcal{H}}$

Generalities
The ℓ-spectrum
ℓ-representable lattices
Additional properties of $\operatorname{Spec}_{\ell} 6 / \operatorname{ld}_{C} C$ Negative results Known positive resuits

The lattices
Op(\mathcal{H})
Basic properties Join-irreducibles and ∇

Consonance and difference operations
Basic properties The Extension Lemma

Back to Op($\mathscr{H})$ Extending homomorphisms from $\mathrm{Op}(\mathcal{M})$ Concluding the proof

Let \mathcal{H} be a nonempty finite set of closed hyperplanes in a topological vector space \mathbb{E}.

The operator $\nabla_{\mathcal{H}}$

Generalities
The ℓ-spectrum
ℓ-representable lattices
Additional properties of
$\mathrm{Spec}_{\ell} 6 / \mathrm{Id}_{C}$
Negative results
Known positive resuilts

The lattices

Let \mathcal{H} be a nonempty finite set of closed hyperplanes in a topological vector space \mathbb{E}.

Notation

For $U \in \operatorname{Op}(\mathcal{H})$, we set

$$
\begin{gathered}
\mathcal{H}_{U} \underset{\text { def }}{=}\{H \in \mathcal{H} \mid H \cap U \neq \varnothing\}, \\
\nabla_{\mathcal{H}} U=\nabla U \underset{\text { def }}{=} \text { intersection of all members of } \mathcal{H}_{U} .
\end{gathered}
$$

The operator $\nabla_{\mathcal{H}}$

Generalities
The ℓ-spectrum

Let \mathcal{H} be a nonempty finite set of closed hyperplanes in a topological vector space \mathbb{E}.

Notation

For $U \in \operatorname{Op}(\mathcal{H})$, we set

$$
\begin{gathered}
\mathcal{H}_{U} \underset{\text { def }}{=}\{H \in \mathcal{H} \mid H \cap U \neq \varnothing\}, \\
\nabla_{\mathcal{H}} U=\nabla U \underset{\text { def }}{=} \text { intersection of all members of } \mathcal{H}_{U} .
\end{gathered}
$$

Thus, ∇U is a closed subspace of \mathbb{E}, with finite codimension.

Characterizing the join-irreducibles of $\operatorname{Op}(\mathcal{H})$

By the above, every join-irreducible member of $\operatorname{Op}(\mathcal{H})$ is convex.

Characterizing the join-irreducibles of $\operatorname{Op}(\mathcal{H})$

Generalities
The ℓ-spectrum
ℓ-representable lattices
Additional properties of Spec $_{\ell} 6 / \mathrm{Hd}_{C}$ Negative results
Known positive results
The lattices Op($\mathcal{H})$

Basic properties

Join-irreducibles and ∇

Consonance and difference operations Lemma

By the above, every join-irreducible member of $\operatorname{Op}(\mathcal{H})$ is convex.

Lemma

A convex member P of $\operatorname{Op}(\mathcal{H})$ is join-irreducible iff $P \cap \nabla P \neq \varnothing$, in which case $P_{*}=P \backslash \nabla P$ and $P^{\dagger}=\complement(\mathrm{cl}(P) \cap \nabla P)=\complement \mathrm{cl}(P \cap \nabla P)$ (the largest $X \in \mathrm{Op}(\mathcal{H})$ such that $P \nsubseteq X$).

Characterizing the join-irreducibles of $\operatorname{Op}(\mathcal{H})$

Generalities
The ℓ-spectrum
ℓ-representable lattices
Additional properties of $\mathrm{Spec}_{\ell} 6 / \mathrm{Id}_{C}$ Negative results Known positive resuits

The lattices Op($\mathcal{H})$
Basic properties
Join-irreducibles and ∇

Consonance and difference operations Lemma

By the above, every join-irreducible member of $\operatorname{Op}(\mathcal{H})$ is convex.

Lemma

A convex member P of $\operatorname{Op}(\mathcal{H})$ is join-irreducible iff $P \cap \nabla P \neq \varnothing$, in which case $P_{*}=P \backslash \nabla P$ and $P^{\dagger}=\complement(\mathrm{cl}(P) \cap \nabla P)=\complement \mathrm{cl}(P \cap \nabla P)$ (the largest $X \in \operatorname{Op}(\mathcal{H})$ such that $P \nsubseteq X$).

- Recall that in any finite distributive lattice $D, p \mapsto p^{\dagger}$ is an order-isomorphism between Ji $D \underset{\text { def }}{=}\{$ join-irreducibles of $D\}$ and $\mathrm{Mi} D \underset{\text { def }}{=}\{$ meet-irreducibles of $D\}$ (with induced \leq from D).

Characterizing the join-irreducibles of $\operatorname{Op}(\mathcal{H})$

Generalities
The ℓ-spectrum ℓ-representable lattices
Additional properties of Spec $_{6} 6 /$ /dd
Negative results
Known positive resuits

The lattices Op(\mathcal{H})
Basic properties
Join-irreducibles and ∇

Consonance and difference operations

By the above, every join-irreducible member of $\operatorname{Op}(\mathcal{H})$ is convex.

Lemma

A convex member P of $\operatorname{Op}(\mathcal{H})$ is join-irreducible iff $P \cap \nabla P \neq \varnothing$, in which case $P_{*}=P \backslash \nabla P$ and $P^{\dagger}=\complement(\mathrm{cl}(P) \cap \nabla P)=\complement \mathrm{cl}(P \cap \nabla P)$ (the largest $X \in \operatorname{Op}(\mathcal{H})$ such that $P \nsubseteq X$).

- Recall that in any finite distributive lattice $D, p \mapsto p^{\dagger}$ is an order-isomorphism between Ji $D \underset{\text { def }}{=}\{j$ join-irreducibles of $D\}$ and $\mathrm{Mi} D \underset{\text { def }}{=}\{$ meet-irreducibles of $D\}$ (with induced \leq from D).
■ Important observation about $\operatorname{Op}(\mathcal{H}): ~ P \backslash P_{*}=P \cap \nabla P$ is convex $\forall P \in \mathrm{Ji} \mathrm{Op}(\mathcal{H})$.

Characterizing the join-irreducibles (cont'd)

Generalities
The ℓ-spectrum
ℓ-representable lattices
Additional
properties of
$\mathrm{Spec}_{R} 6 / \mathrm{ld} \mathrm{c}_{\mathrm{C}}$
Negative results
Known positive results

Sketch of proof.
Let P be join-irreducible and suppose, by way of contradiction, that $P \cap \nabla P=\varnothing$.

Characterizing the join-irreducibles (cont'd)

Sketch of proof.
Let P be join-irreducible and suppose, by way of contradiction, that $P \cap \nabla P=\varnothing$. Hence $P \subseteq \bigcup\left(\mathbb{E} \backslash H \mid H \in \mathcal{H}_{P}\right)$.

Characterizing the join-irreducibles (cont'd)

Sketch of proof.
Let P be join-irreducible and suppose, by way of contradiction, that $P \cap \nabla P=\varnothing$.
Hence $P \subseteq \bigcup\left(\mathbb{E} \backslash H \mid H \in \mathcal{H}_{P}\right)$.
Since P is join-prime, $P \subseteq \mathbb{E} \backslash H$ (i.e., $P \cap H=\varnothing$) for some $H \in \mathscr{H}_{P}$; a contradiction.

Characterizing the join-irreducibles (cont'd)

Sketch of proof.

Let P be join-irreducible and suppose, by way of contradiction, that $P \cap \nabla P=\varnothing$.
Hence $P \subseteq \bigcup\left(\mathbb{E} \backslash H \mid H \in \mathcal{H}_{P}\right)$.
Since P is join-prime, $P \subseteq \mathbb{E} \backslash H$ (i.e., $P \cap H=\varnothing$) for some $H \in \mathscr{H}_{P}$; a contradiction.
For the converse, if $P \cap \nabla P \neq \varnothing$, then one proves directly that every proper subset X of P, with $X \in \operatorname{Op}(\mathcal{H})$, is contained in $P \backslash \nabla P$.

Characterizing the join-irreducibles (cont'd)

Generalities
The ℓ-spectrum
ℓ-representable lattices
Additional

Sketch of proof.
Let P be join-irreducible and suppose, by way of contradiction, that $P \cap \nabla P=\varnothing$.
Hence $P \subseteq \bigcup\left(\mathbb{E} \backslash H \mid H \in \mathcal{H}_{P}\right)$.
Since P is join-prime, $P \subseteq \mathbb{E} \backslash H$ (i.e., $P \cap H=\varnothing$) for some $H \in \mathcal{H}_{P}$; a contradiction.
For the converse, if $P \cap \nabla P \neq \varnothing$, then one proves directly that every proper subset X of P, with $X \in \operatorname{Op}(\mathcal{H})$, is contained in $P \backslash \nabla P$.
(For that part of the proof, we may assume that X is join-irreducible.)

More on ∇

Corollary

Additional properties of

Let P and Q be join-irreducibles in $\operatorname{Op}(\mathcal{H})$. Then $P \varsubsetneqq Q$ implies $\nabla Q \varsubsetneqq \nabla P$.

More on ∇

Corollary

Let P and Q be join-irreducibles in $\operatorname{Op}(\mathcal{H})$. Then $P \varsubsetneqq Q$ implies $\nabla Q \varsubsetneqq \nabla P$.

Proof.

By definition, $\mathcal{H}_{P} \subseteq \mathcal{H}_{Q}$, thus $\nabla Q=\bigcap \mathcal{H}_{Q} \subseteq \mathcal{H}_{P}$.

More on ∇

Corollary

Let P and Q be join-irreducibles in $\operatorname{Op}(\mathcal{H})$. Then $P \varsubsetneqq Q$ implies $\nabla Q \varsubsetneqq \nabla P$.

Proof.

By definition, $\mathcal{H}_{P} \subseteq \mathcal{H}_{Q}$, thus $\nabla Q=\bigcap \mathcal{H}_{Q} \subseteq \mathcal{H}_{P}$. From $P \varsubsetneqq Q$ it follows that $P \subseteq Q_{*}=Q \backslash \nabla Q$, thus $P \cap \nabla Q=\varnothing$.

More on ∇

Corollary

Let P and Q be join-irreducibles in $\operatorname{Op}(\mathcal{H})$. Then $P \varsubsetneqq Q$ implies $\nabla Q \varsubsetneqq \nabla P$.

Proof.

By definition, $\mathcal{H}_{P} \subseteq \mathcal{H}_{Q}$, thus $\nabla Q=\bigcap \mathcal{H}_{Q} \subseteq \mathcal{H}_{P}$. From $P \varsubsetneqq Q$ it follows that $P \subseteq Q_{*}=Q \backslash \nabla Q$, thus $P \cap \nabla Q=\varnothing$. Since $P \cap \nabla P \neq \varnothing$, we get $\nabla P \neq \nabla Q$.

Consonance

Definition

Let D be a distributive lattice with zero. Elements $a, b \in D$ are consonant, in notation $a \sim b$, if $\exists x, y \in D$ such that $a \leq b \vee x$, $b \leq a \vee y$, and $x \wedge y=0$ (again: we say that (x, y) is a splitting of $(a, b))$.

Consonance

Definition

Let D be a distributive lattice with zero. Elements $a, b \in D$ are consonant, in notation $a \sim b$, if $\exists x, y \in D$ such that $a \leq b \vee x$, $b \leq a \vee y$, and $x \wedge y=0$ (again: we say that (x, y) is a splitting of $(a, b))$.

In particular, D is completely normal iff any two elements of D are consonant (i.e., D is a consonant subset of itself).

Lemma

Generalities
The ℓ-spectrum
ℓ-representable lattices
Additional properties of Spec $_{\ell} G / \mathrm{Ic}_{\mathrm{C}}$
Negative results
Known positive resuits

The lattices Op(\mathcal{H})
Basic properties Join-irreducibles and ∇

Consonance and difference operations
Basic properties
The Extension Lemma

Back to Op($\mathcal{H})$
Extending
homomorphisms from $\operatorname{Op}(\mathcal{H})$ Concluding the proof
$1 a \leq b \Rightarrow a \sim b$;
$\mathbf{2} a \sim b \Rightarrow b \sim a ;$
$3(a \sim c$ and $b \sim c) \Rightarrow(a \vee b \sim c$ and $a \wedge b \sim c)$.

Lemma

Generalities
The ℓ-spectrum
ℓ-representable lattices
Additional
properties of
$\mathrm{Spec}_{R} G / \mathrm{Ic}_{C}$
Negative results
Known positive resuits

The lattices
$1 a \leq b \Rightarrow a \sim b$;
2 $a \sim b \Rightarrow b \sim a$;
$3(a \sim c$ and $b \sim c) \Rightarrow(a \vee b \sim c$ and $a \wedge b \sim c)$.

Proof.

(1) and (2) are both trivial.

Lemma

Generalities
The ℓ-spectrum
ℓ-representable lattices
Additional properties of $\mathrm{Spec}_{\ell} \mathrm{G} / \mathrm{Id}_{\mathrm{C}}$
Negative results
Known positive results

The lattices

Basic properties
Join-irreducibles and ∇

Consonance and difference
$1 a \leq b \Rightarrow a \sim b$;
2 $a \sim b \Rightarrow b \sim a$;
$3(a \sim c$ and $b \sim c) \Rightarrow(a \vee b \sim c$ and $a \wedge b \sim c)$.

Proof.

(1) and (2) are both trivial.

Let $a \leq c \vee x, c \leq a \vee x^{\prime}, x \wedge x^{\prime}=0, b \leq c \vee y, c \leq b \vee y^{\prime}$, $y \wedge y^{\prime}=0$.

Lemma

Generalities
The ℓ-spectrum ℓ-representable lattices
Additional properties of $\operatorname{Spec}_{l} 6 / \mathrm{Id}_{C}$ Negative results Known positive results

The lattices Op(\mathcal{H})
Basic properties Join-irreducibles and ∇

Consonance and difference operations
Basic properties The Extension Lemma

Back to Op($\mathcal{O})$ Extending homomorphisms from $O p(\mu)$ Concluding the proof
$1 a \leq b \Rightarrow a \sim b$;
2 $a \sim b \Rightarrow b \sim a$;
$3(a \sim c$ and $b \sim c) \Rightarrow(a \vee b \sim c$ and $a \wedge b \sim c)$.

Proof.

(1) and (2) are both trivial.

Let $a \leq c \vee x, c \leq a \vee x^{\prime}, x \wedge x^{\prime}=0, b \leq c \vee y, c \leq b \vee y^{\prime}$, $y \wedge y^{\prime}=0$.
Then $a \vee b \leq c \vee(x \vee y), c \leq(a \vee b) \vee\left(x^{\prime} \wedge y^{\prime}\right)$, and $(x \vee y) \wedge\left(x^{\prime} \wedge y^{\prime}\right)=0$.

Lemma

Generalities
The ℓ-spectrum ℓ-representable lattices
Additional properties of $\mathrm{Spec}_{l} 6 / \mathrm{Hd}_{\mathrm{C}}$ Negative results Known positive resuits

The lattices Op(\mathcal{H})
Basic properties Join-irreducibles and ∇

Consonance and
$1 a \leq b \Rightarrow a \sim b$;
2 $a \sim b \Rightarrow b \sim a$;
$3(a \sim c$ and $b \sim c) \Rightarrow(a \vee b \sim c$ and $a \wedge b \sim c)$.

Proof.

(1) and (2) are both trivial.

Let $a \leq c \vee x, c \leq a \vee x^{\prime}, x \wedge x^{\prime}=0, b \leq c \vee y, c \leq b \vee y^{\prime}$, $y \wedge y^{\prime}=0$.
Then $a \vee b \leq c \vee(x \vee y), c \leq(a \vee b) \vee\left(x^{\prime} \wedge y^{\prime}\right)$, and $(x \vee y) \wedge\left(x^{\prime} \wedge y^{\prime}\right)=0$.
Hence, $a \vee b \sim c$.

Lemma

Generalities
The ℓ-spectrum ℓ-representable lattices
Additional properties of $\operatorname{Spec}_{l} 6 / \mathrm{Id}_{\mathrm{C}}$ Negative results Known positive resuits
The lattices Op(\mathcal{H})
Basic properties Join-irreducibles and ∇

Consonance and difference operations
Basic properties The Extension Lemma

Back to Op(H)
Extending
homomorphisms from Op(\because) Concluding the proof
$1 a \leq b \Rightarrow a \sim b$;
$2 a \sim b \Rightarrow b \sim a$;
$3(a \sim c$ and $b \sim c) \Rightarrow(a \vee b \sim c$ and $a \wedge b \sim c)$.

Proof.

(1) and (2) are both trivial.

Let $a \leq c \vee x, c \leq a \vee x^{\prime}, x \wedge x^{\prime}=0, b \leq c \vee y, c \leq b \vee y^{\prime}$, $y \wedge y^{\prime}=0$.
Then $a \vee b \leq c \vee(x \vee y), c \leq(a \vee b) \vee\left(x^{\prime} \wedge y^{\prime}\right)$, and $(x \vee y) \wedge\left(x^{\prime} \wedge y^{\prime}\right)=0$.
Hence, $a \vee b \sim c$.
The proof that $a \wedge b \sim c$ is similar.

Difference operations

```
Definition
```

Let L be a lattice and let S be a lattice with zero. A map $L \times L \rightarrow S$, $(x, y) \mapsto x \backslash y$ is a difference operation if

Difference operations

Definition

Let L be a lattice and let S be a lattice with zero. A map $L \times L \rightarrow S$, $(x, y) \mapsto x \backslash y$ is a difference operation if
$1 x \backslash x=0, \forall x \in L$;
$2 x \backslash z=(x \backslash y) \vee(y \backslash z)$, whenever $x \geq y \geq z$ in L;
$3 x \backslash y=(x \vee y) \backslash y=x \backslash(x \wedge y), \forall x, y \in L$.

The lattices Op((\mathscr{H})
Basic properties Join-irreducibles and ∇
Consonance and difference

Difference operations

$$
2 x \backslash z=(x \backslash y) \vee(y \backslash z) \text {, whenever } x \geq y \geq z \text { in } L \text {; }
$$

$$
3 x \backslash y=(x \vee y) \backslash y=x \backslash(x \wedge y), \forall x, y \in L .
$$

Definition

Let L be a lattice and let S be a lattice with zero. A map $L \times L \rightarrow S$, $(x, y) \mapsto x \backslash y$ is a difference operation if

$$
1 x \backslash x=0, \forall x \in L ;
$$

It is a normal difference operation if $(x \backslash y) \wedge(y \backslash x)=0 \forall x, y \in L$.

Difference operations

Definition

Let L be a lattice and let S be a lattice with zero. A map $L \times L \rightarrow S$, $(x, y) \mapsto x \backslash y$ is a difference operation if

$$
1 x \backslash x=0, \forall x \in L ;
$$

$$
2 x \backslash z=(x \backslash y) \vee(y \backslash z) \text {, whenever } x \geq y \geq z \text { in } L \text {; }
$$

$$
3 x \backslash y=(x \vee y) \backslash y=x \backslash(x \wedge y), \forall x, y \in L
$$

It is a normal difference operation if $(x \backslash y) \wedge(y \backslash x)=0 \forall x, y \in L$.

Lemma (Triangle Inequality)

$$
x \backslash z \leq(x \backslash y) \vee(y \backslash z), \forall x, y, z \in L .
$$

Difference operations

Definition

Let L be a lattice and let S be a lattice with zero. A map $L \times L \rightarrow S$, $(x, y) \mapsto x \backslash y$ is a difference operation if

$$
\boldsymbol{1} x \backslash x=0, \forall x \in L \text {; }
$$

$$
\text { 2 } x \backslash z=(x \backslash y) \vee(y \backslash z) \text {, whenever } x \geq y \geq z \text { in } L ;
$$

$$
3 x \backslash y=(x \vee y) \backslash y=x \backslash(x \wedge y), \forall x, y \in L .
$$

It is a normal difference operation if $(x \backslash y) \wedge(y \backslash x)=0 \forall x, y \in L$.

Lemma (Triangle Inequality)

$$
x \backslash z \leq(x \backslash y) \vee(y \backslash z), \forall x, y, z \in L .
$$

Lemma

Let L be finite. Then $a \backslash b=\bigvee\left(p \backslash p_{*} \mid p \in J i L, p \leq a, p \not \leq b\right)$, $\forall a, b \in L$.

Pseudo-differences again

Lemma

Let D be a finite distributive lattice. Then the pseudo-difference, $(x, y) \mapsto x \backslash_{D} y \underset{\text { def }}{=}$ least $z \in D$ such that $x \leq y \vee z$, is a D-valued difference operation on D, normal on every consonant sublattice of D.

Basic properties Join-irreducibles and ∇

Pseudo-differences again

Lemma

Let D be a finite distributive lattice. Then the pseudo-difference, $(x, y) \mapsto x \backslash_{D} y \underset{\text { def }}{=}$ least $z \in D$ such that $x \leq y \vee z$, is a D-valued difference operation on D, normal on every consonant sublattice of D.

Now we state two lemmas that will be crucial for further computations.

First crucial lemma

Lemma

Let D be a finite distributive lattice and let $a_{1}, a_{2}, b \in D$. Then

Generalities
The ℓ-spectrum
ℓ-representable lattices
Additional
properties of
$\operatorname{Spec}_{\ell} G / \mathrm{Id}_{C}$
Negative results
Known positive
results
The lattices
Op(\mathcal{F})
Basic properties Join-irreducibles and ∇

Consonance and difference
operations
Basic properties
The Extension Lemma

First crucial lemma

Lemma

Let D be a finite distributive lattice and let $a_{1}, a_{2}, b \in D$. Then
$1\left(a_{1} \vee a_{2}\right) \backslash_{D} b=\left(a_{1} \backslash_{D} b\right) \vee\left(a_{2} \backslash_{D} b\right)$;
2 if $a_{1} \sim a_{2}$, then $\left(a_{1} \wedge a_{2}\right) \backslash_{D} b=\left(a_{1} \backslash_{D} b\right) \wedge\left(a_{2} \backslash_{D} b\right)$;
3 the dual statements $(\leq \leftrightharpoons \geq)$ hold.

Generalities
The ℓ-spectrum
ℓ-representable
lattices
Additional
properties of
$\operatorname{Spec}_{l} G / / \mathrm{Id}_{C}$
Negative results
Known positive resuilts

The lattices
Op(\mathcal{H})
Basic properties Join-irreducibles and ∇

Consonance and difference operations

First crucial lemma

Lemma

Let D be a finite distributive lattice and let $a_{1}, a_{2}, b \in D$. Then
$1\left(a_{1} \vee a_{2}\right) \backslash_{D} b=\left(a_{1} \backslash_{D} b\right) \vee\left(a_{2} \backslash_{D} b\right)$;
2 if $a_{1} \sim a_{2}$, then $\left(a_{1} \wedge a_{2}\right) \backslash_{D} b=\left(a_{1} \backslash_{D} b\right) \wedge\left(a_{2} \backslash_{D} b\right)$;
3 the dual statements $(\leq \leftrightharpoons \geq)$ hold.

Proof.

(1) is straightforward. Let us see (2).

First crucial lemma

Lemma

Let D be a finite distributive lattice and let $a_{1}, a_{2}, b \in D$. Then
$1\left(a_{1} \vee a_{2}\right) \backslash_{D} b=\left(a_{1} \backslash_{D} b\right) \vee\left(a_{2} \backslash_{D} b\right)$;
2 if $a_{1} \sim a_{2}$, then $\left(a_{1} \wedge a_{2}\right) \backslash_{D} b=\left(a_{1} \backslash_{D} b\right) \wedge\left(a_{2} \backslash_{D} b\right)$;
3 the dual statements $(\leq \leftrightharpoons \geq)$ hold.

Proof.

(1) is straightforward. Let us see (2).

$$
\begin{aligned}
a_{1} \backslash_{D} b & \leq\left(a_{1} \backslash D\left(a_{1} \wedge a_{2}\right)\right) \vee\left(\left(a_{1} \wedge a_{2}\right) \backslash_{D} b\right) \\
& =\left(a_{1} \backslash D a_{2}\right) \vee\left(\left(a_{1} \wedge a_{2}\right) \backslash_{D} b\right) .
\end{aligned}
$$

First crucial lemma

Lemma

Let D be a finite distributive lattice and let $a_{1}, a_{2}, b \in D$. Then
$11\left(a_{1} \vee a_{2}\right) \backslash_{D} b=\left(a_{1} \backslash_{D} b\right) \vee\left(a_{2} \backslash_{D} b\right)$;
2 if $a_{1} \sim a_{2}$, then $\left(a_{1} \wedge a_{2}\right) \backslash_{D} b=\left(a_{1} \backslash_{D} b\right) \wedge\left(a_{2} \backslash_{D} b\right)$;
3 the dual statements $(\leq \leftrightharpoons \geq)$ hold.

Proof.

(1) is straightforward. Let us see (2).

$$
\begin{aligned}
a_{1} \backslash_{D} b & \leq\left(a_{1} \backslash_{D}\left(a_{1} \wedge a_{2}\right)\right) \vee\left(\left(a_{1} \wedge a_{2}\right) \backslash_{D} b\right) \\
& =\left(a_{1} \backslash_{D} a_{2}\right) \vee\left(\left(a_{1} \wedge a_{2}\right) \backslash_{D} b\right) .
\end{aligned}
$$

Likewise, $a_{2} \backslash_{D} b \leq\left(a_{2} \backslash_{D} a_{1}\right) \vee\left(\left(a_{1} \wedge a_{2}\right) \backslash_{D} b\right)$.

First crucial lemma

Lemma

Let D be a finite distributive lattice and let $a_{1}, a_{2}, b \in D$. Then
$1\left(a_{1} \vee a_{2}\right) \backslash_{D} b=\left(a_{1} \backslash_{D} b\right) \vee\left(a_{2} \backslash_{D} b\right)$;
2 if $a_{1} \sim a_{2}$, then $\left(a_{1} \wedge a_{2}\right) \backslash_{D} b=\left(a_{1} \backslash_{D} b\right) \wedge\left(a_{2} \backslash_{D} b\right)$;
3 the dual statements $(\leq \leftrightharpoons \geq)$ hold.

Proof.

(1) is straightforward. Let us see (2).

$$
\begin{aligned}
a_{1} \backslash_{D} b & \leq\left(a_{1} \backslash_{D}\left(a_{1} \wedge a_{2}\right)\right) \vee\left(\left(a_{1} \wedge a_{2}\right) \backslash_{D} b\right) \\
& =\left(a_{1} \backslash_{D} a_{2}\right) \vee\left(\left(a_{1} \wedge a_{2}\right) \backslash_{D} b\right) .
\end{aligned}
$$

Likewise, $a_{2} \backslash_{D} b \leq\left(a_{2} \backslash_{D} a_{1}\right) \vee\left(\left(a_{1} \wedge a_{2}\right) \backslash_{D} b\right)$.
The relation $a_{1} \sim a_{2}$ can be rewritten $\left(a_{1} \backslash D a_{2}\right) \wedge\left(a_{2} \backslash D a_{1}\right)=0$.

First crucial lemma

Lemma

Let D be a finite distributive lattice and let $a_{1}, a_{2}, b \in D$. Then
$1\left(a_{1} \vee a_{2}\right) \backslash_{D} b=\left(a_{1} \backslash_{D} b\right) \vee\left(a_{2} \backslash_{D} b\right)$;
2 if $a_{1} \sim a_{2}$, then $\left(a_{1} \wedge a_{2}\right) \backslash_{D} b=\left(a_{1} \backslash_{D} b\right) \wedge\left(a_{2} \backslash_{D} b\right)$;
3 the dual statements $(\leq \leftrightharpoons \geq)$ hold.

Proof.

(1) is straightforward. Let us see (2).

$$
\begin{aligned}
a_{1} \backslash_{D} b & \leq\left(a_{1} \backslash_{D}\left(a_{1} \wedge a_{2}\right)\right) \vee\left(\left(a_{1} \wedge a_{2}\right) \backslash_{D} b\right) \\
& =\left(a_{1} \backslash_{D} a_{2}\right) \vee\left(\left(a_{1} \wedge a_{2}\right) \backslash_{D} b\right) .
\end{aligned}
$$

Likewise, $a_{2} \backslash_{D} b \leq\left(a_{2} \backslash_{D} a_{1}\right) \vee\left(\left(a_{1} \wedge a_{2}\right) \backslash_{D} b\right)$.
The relation $a_{1} \sim a_{2}$ can be rewritten $\left(a_{1} \backslash D a_{2}\right) \wedge\left(a_{2} \backslash D a_{1}\right)=0$.
Thus (distributivity) $\left(a_{1} \backslash_{D} b\right) \wedge\left(a_{2} \backslash_{D} b\right) \leq\left(a_{1} \wedge a_{2}\right) \backslash_{D} b$.

Second crucial lemma

Lemma
If $a_{1} \sim a_{2}$ and $a_{1} \wedge a_{2} \leq b_{1} \wedge b_{2}$, then $\left(a_{1} \backslash_{D} b_{1}\right) \wedge\left(a_{2} \backslash_{D} b_{2}\right)=0$.

Second crucial lemma

Generalities
The ℓ-spectrum
ℓ-representable
lattices
Additional
properties of
$\mathrm{Spec}_{l} G / \mathrm{Id} \mathrm{C}_{\mathrm{C}}$
Negative results
Known positive resuilts

The lattices
Op(\mathcal{H})
Basic properties
Join-irreducibles and ∇

Consonance and difference operations

> Lemma
> If $a_{1} \sim a_{2}$ and $a_{1} \wedge a_{2} \leq b_{1} \wedge b_{2}$, then $\left(a_{1} \backslash D b_{1}\right) \wedge\left(a_{2} \backslash D b_{2}\right)=0$.
Proof.
Set $b \underset{\text { def }}{=} b_{1} \wedge b_{2}$. We compute

Second crucial lemma

Lemma

If $a_{1} \sim a_{2}$ and $a_{1} \wedge a_{2} \leq b_{1} \wedge b_{2}$, then $\left(a_{1} \backslash_{D} b_{1}\right) \wedge\left(a_{2} \backslash_{D} b_{2}\right)=0$.

Proof.

Set $b \underset{\text { def }}{=} b_{1} \wedge b_{2}$. We compute

$$
\begin{aligned}
\left(a_{1} \backslash_{D} b_{1}\right) \wedge\left(a_{2} \backslash_{D} b_{2}\right) & \leq\left(a_{1} \backslash_{D} b\right) \wedge\left(a_{2} \backslash_{D} b\right) \\
& =\left(a_{1} \wedge a_{2}\right) \backslash_{D} b \quad\left(\text { because } a_{1} \sim a_{2}\right) \\
& =0 \quad\left(\text { because } a_{1} \wedge a_{2} \leq b\right)
\end{aligned}
$$

The Extension Lemma

Problem: we are given finite distributive lattices E and L, a 0 , 1-sublattice D of E, and a 0-lattice homomorphism $f: D \rightarrow L$.

Generalities
The ℓ-spectrum
ℓ-representable lattices
Additional properties of $\mathrm{Spec}_{\ell} G / \mathrm{ld}_{C}$ Negative results Known positive results

The lattices
Op(\mathcal{F})
Basic properties Join-irreducibles and ∇

The Extension Lemma

Problem: we are given finite distributive lattices E and L, a 0 , 1 -sublattice D of E, and a 0-lattice homomorphism $f: D \rightarrow L$. Find a sufficient condition for f to have an extension to a lattice homomorphism $g: E \rightarrow L$.

The Extension Lemma

Problem: we are given finite distributive lattices E and L, a 0 , 1-sublattice D of E, and a 0-lattice homomorphism $f: D \rightarrow L$. Find a sufficient condition for f to have an extension to a lattice homomorphism $g: E \rightarrow L$.

Extension Lemma for lattices

Suppose that there are $a, b \in E$ such that the following statements hold:

The Extension Lemma

Problem: we are given finite distributive lattices E and L, a 0 , 1-sublattice D of E, and a 0-lattice homomorphism $f: D \rightarrow L$. Find a sufficient condition for f to have an extension to a lattice homomorphism $g: E \rightarrow L$.

Extension Lemma for lattices

Suppose that there are $a, b \in E$ such that the following statements hold:

1 (The range of) f is consonant in L;
2 $E=D[a, b]$;
3 D is a Heyting subalgebra of E;
$4 a \wedge b=0$;
$5 \forall p \in \mathrm{Ji} D, p \leq p_{*} \vee a \vee b \Rightarrow\left(p \leq p_{*} \vee a\right.$ or $\left.p \leq p_{*} \vee b\right)$;
б $\forall p, q \in \mathrm{Ji} D,\left(p \leq p_{*} \vee a\right.$ and $\left.q \leq q_{*} \vee b\right) \Rightarrow(p$ and q are incomparable).

The Extension Lemma

Problem: we are given finite distributive lattices E and L, a 0 , 1-sublattice D of E, and a 0-lattice homomorphism $f: D \rightarrow L$. Find a sufficient condition for f to have an extension to a lattice homomorphism $\mathrm{g}: E \rightarrow L$.

Extension Lemma for lattices

Suppose that there are $a, b \in E$ such that the following statements hold:

1 (The range of) f is consonant in L;
$2 E=D[a, b]$;
$3 D$ is a Heyting subalgebra of E;
$4 a \wedge b=0$;
$5 \forall p \in \mathrm{Ji} D, p \leq p_{*} \vee a \vee b \Rightarrow\left(p \leq p_{*} \vee a\right.$ or $\left.p \leq p_{*} \vee b\right)$;
$6 \forall p, q \in \mathrm{Ji} D,\left(p \leq p_{*} \vee a\right.$ and $\left.q \leq q_{*} \vee b\right) \Rightarrow(p$ and q are incomparable).
Then such an extension g exists, with $g(a)=f_{*}(a)$ and $g(b)=f_{*}(b)$, where $f_{*}(t)=\bigvee\left(f(p) \backslash_{L} f\left(p_{*}\right) \mid p \in \mathrm{Ji} D, p \leq p_{*} \vee t\right), \forall t \in E$.

Outline of proof (Extension Lemma)

- We want to define $g((x \wedge a) \vee(y \wedge b) \vee z) \underset{\text { def }}{=}\left(f(x) \wedge f_{*}(a)\right) \vee\left(f(y) \wedge f_{*}(b)\right) \vee f(z)$ $\forall x, y, z \in D$. We must verify certain compatibility relations.

Outline of proof (Extension Lemma)

- We want to define $g((x \wedge a) \vee(y \wedge b) \vee z) \underset{\text { def }}{=}\left(f(x) \wedge f_{*}(a)\right) \vee\left(f(y) \wedge f_{*}(b)\right) \vee f(z)$ $\forall x, y, z \in D$. We must verify certain compatibility relations.
- $(x, y) \mapsto f(x) \backslash L f(y)$ defines a normal difference operation $D \times D \rightarrow L$.

Outline of proof (Extension Lemma)

- We want to define

$$
g((x \wedge a) \vee(y \wedge b) \vee z) \underset{\text { def }}{\overline{=}}\left(f(x) \wedge f_{*}(a)\right) \vee\left(f(y) \wedge f_{*}(b)\right) \vee f(z)
$$ $\forall x, y, z \in D$. We must verify certain compatibility relations.

$■(x, y) \mapsto f(x) \backslash_{L} f(y)$ defines a normal difference operation $D \times D \rightarrow L$.

■ We must prove, for example, that $\forall x, y \in D, x \leq y \vee a \vee b$ implies $f(x) \leq f(y) \vee f_{*}(a) \vee f_{*}(b)$. That is, $f(x) \backslash_{L} f(y) \leq f_{*}(a) \vee f_{*}(b)$.

Outline of proof (Extension Lemma)

- We want to define

$$
g((x \wedge a) \vee(y \wedge b) \vee z) \underset{\operatorname{def}}{\overline{=}}\left(f(x) \wedge f_{*}(a)\right) \vee\left(f(y) \wedge f_{*}(b)\right) \vee f(z)
$$ $\forall x, y, z \in D$. We must verify certain compatibility relations.

$\square(x, y) \mapsto f(x) \backslash_{L} f(y)$ defines a normal difference operation $D \times D \rightarrow L$.

■ We must prove, for example, that $\forall x, y \in D, x \leq y \vee a \vee b$ implies $f(x) \leq f(y) \vee f_{*}(a) \vee f_{*}(b)$. That is, $f(x) \backslash_{L} f(y) \leq f_{*}(a) \vee f_{*}(b)$.

- We may assume that $x=p \in \mathrm{Ji} D$ and $y=p_{*}$.

Outline of proof (Extension Lemma)

- We want to define

$$
g((x \wedge a) \vee(y \wedge b) \vee z) \underset{\operatorname{def}}{\overline{=}}\left(f(x) \wedge f_{*}(a)\right) \vee\left(f(y) \wedge f_{*}(b)\right) \vee f(z)
$$ $\forall x, y, z \in D$. We must verify certain compatibility relations.

■ $(x, y) \mapsto f(x) \backslash_{L} f(y)$ defines a normal difference operation $D \times D \rightarrow L$.

■ We must prove, for example, that $\forall x, y \in D, x \leq y \vee a \vee b$ implies $f(x) \leq f(y) \vee f_{*}(a) \vee f_{*}(b)$. That is, $f(x) \backslash_{L} f(y) \leq f_{*}(a) \vee f_{*}(b)$.
■ We may assume that $x=p \in \mathrm{Ji} D$ and $y=p_{*}$.
■ By Assumption (5), either $p \leq p_{*} \vee a$ or $p \leq p_{*} \vee b$.

Outline of proof (Extension Lemma)

- We want to define

$$
g((x \wedge a) \vee(y \wedge b) \vee z) \underset{\operatorname{def}}{\overline{=}}\left(f(x) \wedge f_{*}(a)\right) \vee\left(f(y) \wedge f_{*}(b)\right) \vee f(z)
$$ $\forall x, y, z \in D$. We must verify certain compatibility relations.

■ $(x, y) \mapsto f(x) \backslash_{L} f(y)$ defines a normal difference operation $D \times D \rightarrow L$.

■ We must prove, for example, that $\forall x, y \in D, x \leq y \vee a \vee b$ implies $f(x) \leq f(y) \vee f_{*}(a) \vee f_{*}(b)$. That is, $f(x) \backslash_{L} f(y) \leq f_{*}(a) \vee f_{*}(b)$.
■ We may assume that $x=p \in \mathrm{Ji} D$ and $y=p_{*}$.
■ By Assumption (5), either $p \leq p_{*} \vee a$ or $p \leq p_{*} \vee b$.

- By the definitions of $f_{*}(a)$ and $f_{*}(b)$, either $f(p) \leq f\left(p_{*}\right) \vee f_{*}(a)$ or $f(p) \leq f(p) \vee f_{*}(b)$, so we are done here.

Outline of proof (Extension Lemma)

- We want to define

$$
g((x \wedge a) \vee(y \wedge b) \vee z) \underset{\operatorname{def}}{\overline{=}}\left(f(x) \wedge f_{*}(a)\right) \vee\left(f(y) \wedge f_{*}(b)\right) \vee f(z)
$$ $\forall x, y, z \in D$. We must verify certain compatibility relations.

■ $(x, y) \mapsto f(x) \backslash_{L} f(y)$ defines a normal difference operation $D \times D \rightarrow L$.

■ We must prove, for example, that $\forall x, y \in D, x \leq y \vee a \vee b$ implies $f(x) \leq f(y) \vee f_{*}(a) \vee f_{*}(b)$. That is, $f(x) \backslash_{L} f(y) \leq f_{*}(a) \vee f_{*}(b)$.
■ We may assume that $x=p \in \mathrm{Ji} D$ and $y=p_{*}$.
■ By Assumption (5), either $p \leq p_{*} \vee a$ or $p \leq p_{*} \vee b$.
■ By the definitions of $f_{*}(a)$ and $f_{*}(b)$, either $f(p) \leq f\left(p_{*}\right) \vee f_{*}(a)$ or $f(p) \leq f(p) \vee f_{*}(b)$, so we are done here.
\square Assumption (3) used for $x \wedge a \leq y \Rightarrow f(x) \wedge f_{*}(a) \leq f(y)$.

Outline of proof (Extension Lemma)

- We want to define

$$
g((x \wedge a) \vee(y \wedge b) \vee z) \underset{\operatorname{def}}{\overline{=}}\left(f(x) \wedge f_{*}(a)\right) \vee\left(f(y) \wedge f_{*}(b)\right) \vee f(z)
$$ $\forall x, y, z \in D$. We must verify certain compatibility relations.

$\square(x, y) \mapsto f(x) \backslash_{L} f(y)$ defines a normal difference operation $D \times D \rightarrow L$.

■ We must prove, for example, that $\forall x, y \in D, x \leq y \vee a \vee b$ implies $f(x) \leq f(y) \vee f_{*}(a) \vee f_{*}(b)$. That is, $f(x) \backslash_{L} f(y) \leq f_{*}(a) \vee f_{*}(b)$.
■ We may assume that $x=p \in \mathrm{Ji} D$ and $y=p_{*}$.
■ By Assumption (5), either $p \leq p_{*} \vee a$ or $p \leq p_{*} \vee b$.
■ By the definitions of $f_{*}(a)$ and $f_{*}(b)$, either $f(p) \leq f\left(p_{*}\right) \vee f_{*}(a)$ or $f(p) \leq f(p) \vee f_{*}(b)$, so we are done here.
■ Assumption (3) used for $x \wedge a \leq y \Rightarrow f(x) \wedge f_{*}(a) \leq f(y)$.
■ Assumption (6) used for $f_{*}(a) \wedge f_{*}(b)=0$.

The Extension Lemma for $\operatorname{Op}(\mathcal{H})$

Extension Lemma for $\operatorname{Op}(\mathcal{H})$

Generalities
The ℓ-spectrum
ℓ-representable lattices
Additional properties of $\operatorname{Spec}_{\ell} G / \mathrm{Id}_{C} G$ Negative results
Known positive results

The lattices
Op($\mathcal{H})$
Basic properties Join-irreducibles and ∇

Consonance and difference operations
Basic properties The Extension Lemma

Let \mathcal{H} be a finite set of closed hyperplanes in a topological vector space \mathbb{E}, let H be a closed hyperplane of \mathbb{E}, and let L be a finite distributive lattice.

The Extension Lemma for $\operatorname{Op}(\mathcal{H})$

Extension Lemma for $\operatorname{Op}(\mathcal{H})$

Generalities
The ℓ-spectrum
ℓ-representable lattices
Additional
properties of
$\mathrm{Spec}_{l} 6 / \mathrm{Id}_{C}$
Negative results
Known positive resuits

The lattices
Op($\mathcal{H})$
Basic properties Join-irreducibles and ∇

Consonance and difference
operations
Basic properties
The Extension Lemma

Let \mathcal{H} be a finite set of closed hyperplanes in a topological vector space \mathbb{E}, let H be a closed hyperplane of \mathbb{E}, and let L be a finite distributive lattice. Then every consonant 0 -lattice homomorphism $f: \operatorname{Op}(\mathcal{H}) \rightarrow L$ can be extended to a unique lattice homomorphism $g: \operatorname{Op}(\mathcal{H} \cup\{H\}) \rightarrow L$ such that $g\left(H^{ \pm}\right)=f_{*}\left(H^{ \pm}\right)$, where

The Extension Lemma for $\operatorname{Op}(\mathcal{H})$

Extension Lemma for $\operatorname{Op}(\mathcal{H})$

Let \mathcal{H} be a finite set of closed hyperplanes in a topological vector space \mathbb{E}, let H be a closed hyperplane of \mathbb{E}, and let L be a finite distributive lattice. Then every consonant 0 -lattice homomorphism $f: \operatorname{Op}(\mathcal{H}) \rightarrow L$ can be extended to a unique lattice homomorphism $g: \operatorname{Op}(\mathcal{H} \cup\{H\}) \rightarrow L$ such that $g\left(H^{ \pm}\right)=f_{*}\left(H^{ \pm}\right)$, where

$$
f_{*}(U) \underset{\text { def }}{=} \bigvee\left(f(P) \backslash L f\left(P_{*}\right) \mid P \in J i D, P \cap \nabla P \subseteq U\right), \forall U .
$$

Generalities
The ℓ-spectrum
ℓ-representable lattices
Additional properties of $\operatorname{Spec}_{C} \sigma / \mathrm{Hd}_{C} C$
Negative results
Known positive results

The lattices Op(\mathcal{H})
Basic properties Join-irreducibles and ∇

Consonance and difference operations
Basic properties
The Extension Lemma

Back to Op(TH)

Extending
homomorphisms from $\operatorname{Op}(\mathscr{H})$
Concluding the proof

The Extension Lemma for $\operatorname{Op}(\mathcal{H})$

Extension Lemma for $\operatorname{Op}(\mathcal{H})$

Generalities
The ℓ-spectrum
Let \mathcal{H} be a finite set of closed hyperplanes in a topological vector space \mathbb{E}, let H be a closed hyperplane of \mathbb{E}, and let L be a finite distributive lattice. Then every consonant 0 -lattice homomorphism $f: \operatorname{Op}(\mathcal{H}) \rightarrow L$ can be extended to a unique lattice homomorphism $g: \operatorname{Op}(\mathcal{H} \cup\{H\}) \rightarrow L$ such that $g\left(H^{ \pm}\right)=f_{*}\left(H^{ \pm}\right)$, where

$$
f_{*}(U) \underset{\text { def }}{=} \bigvee\left(f(P) \backslash_{L} f\left(P_{*}\right) \mid P \in \mathrm{Ji} D, P \cap \nabla P \subseteq U\right), \forall U
$$

Outline of proof. Verify one by one the conditions of the Extension Lemma for lattices, with $D:=\operatorname{Op}(\mathcal{H}), E:=\operatorname{Op}(\mathcal{H} \cup\{H\}), a:=H^{+}$, and $b:=H^{-}$.

The Extension Lemma for $\operatorname{Op}(\mathcal{H})$

Extension Lemma for $\operatorname{Op}(\mathcal{H})$

Let \mathcal{H} be a finite set of closed hyperplanes in a topological vector space \mathbb{E}, let H be a closed hyperplane of \mathbb{E}, and let L be a finite distributive lattice. Then every consonant 0-lattice homomorphism $f: \operatorname{Op}(\mathcal{H}) \rightarrow L$ can be extended to a unique lattice homomorphism $g: \operatorname{Op}(\mathcal{H} \cup\{H\}) \rightarrow L$ such that $g\left(H^{ \pm}\right)=f_{*}\left(H^{ \pm}\right)$, where

$$
f_{*}(U) \underset{\text { def }}{=} \bigvee\left(f(P) \backslash_{L} f\left(P_{*}\right) \mid P \in \mathrm{Ji} D, P \cap \nabla P \subseteq U\right), \forall U
$$

Generalities
The ℓ-spectrum ℓ-representable lattices
Additional

Outline of proof. Verify one by one the conditions of the Extension Lemma for lattices, with $D:=\operatorname{Op}(\mathcal{H}), E:=\operatorname{Op}(\mathcal{H} \cup\{H\}), a:=H^{+}$, and $b:=H^{-}$.

- Every basic open set in $\operatorname{Op}(\mathcal{H} \cup\{H\})$ has the form U or $U \cap H^{ \pm}$, where U is basic open in $\operatorname{Op}(\mathcal{H})$; whence $E=D[a, b]$.

Extension Lemma for $\operatorname{Op}(\mathcal{H})$ (cont'd)

- Both $D=\operatorname{Op}(\mathcal{H})$ and $E=\operatorname{Op}(\mathcal{H} \cup\{H\})$ are Heyting subalgebras of the lattice of all open subsets of \mathbb{E}; whence D is a Heyting subalgebra of E.

Extension Lemma for $\operatorname{Op}(\mathcal{H})$ (cont'd)

- Both $D=\operatorname{Op}(\mathcal{H})$ and $E=\operatorname{Op}(\mathcal{H} \cup\{H\})$ are Heyting subalgebras of the lattice of all open subsets of \mathbb{E}; whence D is a Heyting subalgebra of E.
- Condition (4) now. Let $P \subseteq P_{*} \cup H^{+} \cup H^{-}$, that is, $P \cap \nabla P \subseteq H^{+} \cup H^{-}$.

Extension Lemma for $\operatorname{Op}(\mathcal{H})$ (cont'd)

Generalities
The ℓ-spectrum
ℓ-representable lattices
Additional
properties of
Spec $_{\ell} G / \mathrm{ld}_{C} C$
Negative results
Known positive results

The lattices
Op(\mathcal{F})
Basic properties
Join-irreducibles and ∇

- Both $D=\operatorname{Op}(\mathcal{H})$ and $E=\operatorname{Op}(\mathcal{H} \cup\{H\})$ are Heyting subalgebras of the lattice of all open subsets of \mathbb{E}; whence D is a Heyting subalgebra of E.
- Condition (4) now. Let $P \subseteq P_{*} \cup H^{+} \cup H^{-}$, that is, $P \cap \nabla P \subseteq H^{+} \cup H^{-}$.
■ Since $P \cap \nabla P$ is convex, either $P \cap \nabla P \subseteq H^{+}$or $P \cap \nabla P \subseteq H^{-}$, that is, either $P \subseteq P_{*} \cup H^{+}$or $P \subseteq P_{*} \cup H^{-}$.

Extension Lemma for $\operatorname{Op}(\mathcal{H})$ (cont'd)

Generalities
The ℓ-spectrum
ℓ-representable lattices
Additional

- Both $D=\operatorname{Op}(\mathcal{H})$ and $E=\operatorname{Op}(\mathcal{H} \cup\{H\})$ are Heyting subalgebras of the lattice of all open subsets of \mathbb{E}; whence D is a Heyting subalgebra of E.
- Condition (4) now. Let $P \subseteq P_{*} \cup H^{+} \cup H^{-}$, that is, $P \cap \nabla P \subseteq H^{+} \cup H^{-}$.
■ Since $P \cap \nabla P$ is convex, either $P \cap \nabla P \subseteq H^{+}$or $P \cap \nabla P \subseteq H^{-}$, that is, either $P \subseteq P_{*} \cup H^{+}$or $P \subseteq P_{*} \cup H^{-}$.
- Condition (5) now. Let $P \cap \nabla P \subseteq H^{+}$and $Q \cap \nabla Q \subseteq H^{-}$. Suppose, by way of contradiction, that $P \subseteq Q$.

Extension Lemma for $\operatorname{Op}(\mathcal{H})$ (cont'd)

Generalities
The ℓ-spectrum
ℓ-representable lattices
Additional

- Both $D=\operatorname{Op}(\mathcal{H})$ and $E=\operatorname{Op}(\mathcal{H} \cup\{H\})$ are Heyting subalgebras of the lattice of all open subsets of \mathbb{E}; whence D is a Heyting subalgebra of E.
- Condition (4) now. Let $P \subseteq P_{*} \cup H^{+} \cup H^{-}$, that is, $P \cap \nabla P \subseteq H^{+} \cup H^{-}$.
■ Since $P \cap \nabla P$ is convex, either $P \cap \nabla P \subseteq H^{+}$or $P \cap \nabla P \subseteq H^{-}$, that is, either $P \subseteq P_{*} \cup H^{+}$or $P \subseteq P_{*} \cup H^{-}$.
- Condition (5) now. Let $P \cap \nabla P \subseteq H^{+}$and $Q \cap \nabla Q \subseteq H^{-}$. Suppose, by way of contradiction, that $P \subseteq Q$.
- Then $P^{\dagger} \subseteq Q^{\dagger}$, so $\mathrm{cl}(Q \cap \nabla Q) \subseteq \operatorname{cl}(P \cap \nabla P) \subseteq \bar{H}^{+}$.

Extension Lemma for $\operatorname{Op}(\mathcal{H})$ (cont'd)

Generalities
The ℓ-spectrum ℓ-representable lattices
Additional

- Both $D=\operatorname{Op}(\mathcal{H})$ and $E=\operatorname{Op}(\mathcal{H} \cup\{H\})$ are Heyting subalgebras of the lattice of all open subsets of \mathbb{E}; whence D is a Heyting subalgebra of E.
- Condition (4) now. Let $P \subseteq P_{*} \cup H^{+} \cup H^{-}$, that is, $P \cap \nabla P \subseteq H^{+} \cup H^{-}$.
■ Since $P \cap \nabla P$ is convex, either $P \cap \nabla P \subseteq H^{+}$or $P \cap \nabla P \subseteq H^{-}$, that is, either $P \subseteq P_{*} \cup H^{+}$or $P \subseteq P_{*} \cup H^{-}$.
- Condition (5) now. Let $P \cap \nabla P \subseteq H^{+}$and $Q \cap \nabla Q \subseteq H^{-}$. Suppose, by way of contradiction, that $P \subseteq Q$.
- Then $P^{\dagger} \subseteq Q^{\dagger}$, so $\mathrm{cl}(Q \cap \nabla Q) \subseteq \operatorname{cl}(P \cap \nabla P) \subseteq \bar{H}^{+}$.

■ Hence $Q \cap \nabla Q \subseteq H^{-} \cap \bar{H}^{+}=\varnothing$, a contradiction.

Where we are in the plan. . .

- Given a countable, completely normal distributive lattice D with zero, construct inductively a closed, surjective lattice homomorphism $f=\bigcup_{n<\omega} f_{n}: \operatorname{Id}_{c} \mathrm{~F}_{\ell}(\omega) \rightarrow D$, where (using Baker-Beynon duality) all $E_{n}=\mathrm{Op}^{-}\left(\mathcal{H}_{n}\right) \underset{\text { def }}{=} \operatorname{Op}\left(\mathcal{H}_{n}\right) \backslash\left\{\mathbb{R}^{(\omega)}\right\}$ and $f_{n}: E_{n} \rightarrow D$.

Where we are in the plan. . .

- Given a countable, completely normal distributive lattice D with zero, construct inductively a closed, surjective lattice
- The Extension Lemma for $\operatorname{Op}(\mathcal{H})$ makes it possible to ensure $\operatorname{ld}_{c} \mathrm{~F}_{\ell}(\omega)=\bigcup_{n<\omega} E_{n}$ (i.e., f defined everywhere).

Where we are in the plan. . .

- Given a countable, completely normal distributive lattice D with zero, construct inductively a closed, surjective lattice homomorphism $f=\bigcup_{n<\omega} f_{n}: \operatorname{Id}_{c} \mathrm{~F}_{\ell}(\omega) \rightarrow D$, where (using Baker-Beynon duality) all $E_{n}=\operatorname{Op}^{-}\left(\mathcal{H}_{n}\right) \underset{\text { def }}{=} \operatorname{Op}\left(\mathcal{H}_{n}\right) \backslash\left\{\mathbb{R}^{(\omega)}\right\}$ and $f_{n}: E_{n} \rightarrow D$.
- The Extension Lemma for $\operatorname{Op}(\mathcal{H})$ makes it possible to ensure $\operatorname{ld}_{c} \mathrm{~F}_{\ell}(\omega)=\bigcup_{n<\omega} E_{n}$ (i.e., f defined everywhere).
- (Ensuring f surjective) If H is "independent" from \mathcal{H}, then $\mathrm{Op}(\mathcal{H} \cup\{H\}) \cong \mathrm{Op}(\mathscr{H}) * \mathrm{~J}_{2}$ (free distributive product), where J_{2} is

■ We want to ensure f be closed!

... and what remains to be done

- We want to ensure f be closed! (i.e., $f(a) \leq f(b) \vee c \Rightarrow(\exists x)$ $a \leq b \vee x$ and $f(x) \leq c$)

... and what remains to be done

- We want to ensure f be closed! (i.e., $f(a) \leq f(b) \vee c \Rightarrow(\exists x)$ $a \leq b \vee x$ and $f(x) \leq c$)
- Given $f_{n}: \mathrm{Op}^{-}\left(\mathcal{H}_{n}\right) \rightarrow D, U, V \in \operatorname{Op}^{-}\left(\mathcal{H}_{n}\right)$, and $\gamma \in L$ such that $f_{n}(U) \leq f_{n}(V) \vee \gamma$, we want to find $\mathcal{H}_{n+1}, X \in \operatorname{Op}^{-}\left(\mathcal{H}_{n+1}\right)$, and f_{n+1} such that $U \subseteq V \cup X$ and $f_{n+1}(X) \leq \gamma$.

... and what remains to be done

- We want to ensure f be closed! (i.e., $f(a) \leq f(b) \vee c \Rightarrow(\exists x)$ $a \leq b \vee x$ and $f(x) \leq c$)
■ Given $f_{n}: \mathrm{Op}^{-}\left(\mathcal{H}_{n}\right) \rightarrow D, U, V \in \mathrm{Op}^{-}\left(\mathcal{H}_{n}\right)$, and $\gamma \in L$ such that $f_{n}(U) \leq f_{n}(V) \vee \gamma$, we want to find $\mathcal{H}_{n+1}, X \in \mathrm{Op}^{-}\left(\mathcal{H}_{n+1}\right)$, and f_{n+1} such that $U \subseteq V \cup X$ and $f_{n+1}(X) \leq \gamma$.
- By the earlier lemmas about consonance (and some amount of work), it is sufficient to do this in case $U=A^{+}$and $V=B^{+}$, where $A, B \in \mathcal{H}_{n}$.

... and what remains to be done

- We want to ensure f be closed! (i.e., $f(a) \leq f(b) \vee c \Rightarrow(\exists x)$ $a \leq b \vee x$ and $f(x) \leq c)$
- Given $f_{n}: \mathrm{Op}^{-}\left(\mathcal{H}_{n}\right) \rightarrow D, U, V \in \operatorname{Op}^{-}\left(\mathcal{H}_{n}\right)$, and $\gamma \in L$ such that $f_{n}(U) \leq f_{n}(V) \vee \gamma$, we want to find $\mathcal{H}_{n+1}, X \in \mathrm{Op}^{-}\left(\mathcal{H}_{n+1}\right)$, and f_{n+1} such that $U \subseteq V \cup X$ and $f_{n+1}(X) \leq \gamma$.
- By the earlier lemmas about consonance (and some amount of work), it is sufficient to do this in case $U=A^{+}$and $V=B^{+}$, where $A, B \in \mathcal{H}_{n}$.
- "Correct any instance of $f\left(A^{+}\right) \leq f\left(B^{+}\right) \vee \gamma$ ".

Forcing closedness of a consonant homomorphism

Spectral spaces
Let $\mathbb{E}:=\mathbb{R}^{(\omega)}$, with canonical inner product $(x \mid y) \underset{\text { def }}{=} \sum_{n<\omega} x_{n} y_{n}$ and weak topology (making all ($\left.x\right|_{-}$) continuous).

Generalities
The ℓ-spectrum
ℓ-representable lattices
Additional properties of $\mathrm{Spec}_{\ell} G / \mathrm{ld}_{C}$ Negative results Known positive results

The lattices

 $O p(\mathcal{F})$Basic properties Join-irreducibles and ∇

Forcing closedness of a consonant homomorphism

Spectral spaces

Generalities
The ℓ-spectrum
ℓ-representable
lattices
Additional
properties of
$\operatorname{Spec}_{\ell} 6 / \operatorname{ld}_{C} C$
Negative results
Known positive results
The lattices Op($\mathcal{H})$
Basic properties Join-irreducibles and ∇

Let $\mathbb{E}:=\mathbb{R}^{(\omega)}$, with canonical inner product $(x \mid y) \underset{\text { def }}{=} \sum_{n<\omega} x_{n} y_{n}$ and weak topology (making all ($\left.x\right|_{-}$) continuous).

Lemma

Let \mathscr{H} be a finite set of closed hyperplanes, let $A=\operatorname{ker}(a)$ and $B=\operatorname{ker}(b)$ in \mathcal{H}. Set $C_{m} \underset{\text { def }}{=} \operatorname{ker}(a-m b)$ and $\mathcal{H}_{m} \underset{\text { def }}{=} \mathcal{H} \cup\left\{C_{m}\right\}$, $\forall m<\omega$.

Forcing closedness of a consonant homomorphism

Spectral spaces
Let $\mathbb{E}:=\mathbb{R}^{(\omega)}$, with canonical inner product $(x \mid y) \underset{\text { def }}{=} \sum_{n<\omega} x_{n} y_{n}$ and weak topology (making all ($\left.x\right|_{-}$) continuous).

Generalities
The ℓ-spectrum
ℓ-representable lattices
Additional properties of $\mathrm{Spec}_{l} G / \mid \mathrm{d}_{\mathrm{C}}$
Negative results
Known positive resuits

The lattices Op($\mathcal{H})$
Basic properties Join-irreducibles and ∇

Consonance and difference operations Lemma

Lemma

Let \mathcal{H} be a finite set of closed hyperplanes, let $A=\operatorname{ker}(a)$ and $B=\operatorname{ker}(b)$ in \mathcal{H}. Set $C_{m} \underset{\text { def }}{=} \operatorname{ker}(a-m b)$ and $\mathcal{H}_{m} \underset{\text { def }}{=} \mathcal{H} \cup\left\{C_{m}\right\}$, $\forall m<\omega$. Let L be a finite distributive lattice and let $f: \operatorname{Op}(\mathcal{H}) \rightarrow L$ be a consonant homomorphism.

Forcing closedness of a consonant homomorphism

Let $\mathbb{E}:=\mathbb{R}^{(\omega)}$, with canonical inner product $(x \mid y) \underset{\text { def }}{=} \sum_{n<\omega} x_{n} y_{n}$ and weak topology (making all ($\left.x\right|_{-}$) continuous).

Generalities
The ℓ-spectrum
ℓ-representable lattices
Additional properties of $\mathrm{Spec}_{\ell} 6 / \mathrm{Id}_{C}$ Negative results Known positive results

The lattices Op($\mathcal{H})$
Basic properties Join-irreducibles and ∇ Lemma

Lemma

Let \mathcal{H} be a finite set of closed hyperplanes, let $A=\operatorname{ker}(a)$ and $B=\operatorname{ker}(b)$ in \mathcal{H}. Set $C_{m} \underset{\text { def }}{=} \operatorname{ker}(a-m b)$ and $\mathcal{H}_{m} \underset{\text { def }}{=} \mathcal{H} \cup\left\{C_{m}\right\}$, $\forall m<\omega$. Let L be a finite distributive lattice and let $f: \operatorname{Op}(\mathcal{H}) \rightarrow L$ be a consonant homomorphism. Then for all large enough m (independent of L), f extends to a homomorphism $g: \operatorname{Op}\left(\mathcal{H}_{m}\right) \rightarrow L$ such that $g\left(A^{+} \backslash_{\mathrm{Op}\left(\mathcal{H}_{m}\right)} B^{+}\right)=f\left(A^{+}\right) \backslash_{L} f\left(B^{+}\right)$.

Forcing closedness of a consonant homomorphism

Let $\mathbb{E}:=\mathbb{R}^{(\omega)}$, with canonical inner product $(x \mid y) \underset{\text { def }}{=} \sum_{n<\omega} x_{n} y_{n}$ and weak topology (making all $\left(\left.x\right|_{-}\right)$continuous).

Generalities
The ℓ-spectrum ℓ-representable lattices
Additional properties of $\mathrm{Spec}_{R} \mathrm{G} / \mathrm{ld}_{\mathrm{C}}$ Negative results Known positive results
The lattices Op($\mathcal{H})$
Basic properties Join-irreducibles and ∇

Consonance and difference operations
Basic properties The Extension Lemma

Back to Op($\mathscr{H})$
Extending
homomorphisms from $\operatorname{Op}(\mathscr{H})$
Concluding the proof

Lemma

Let \mathcal{H} be a finite set of closed hyperplanes, let $A=\operatorname{ker}(a)$ and $B=\operatorname{ker}(b)$ in \mathcal{H}. Set $C_{m} \underset{\text { def }}{=} \operatorname{ker}(a-m b)$ and $\mathcal{H}_{m} \underset{\text { def }}{=} \mathcal{H} \cup\left\{C_{m}\right\}$, $\forall m<\omega$. Let L be a finite distributive lattice and let $f: \operatorname{Op}(\mathcal{H}) \rightarrow L$ be a consonant homomorphism. Then for all large enough m (independent of L), f extends to a homomorphism $g: \operatorname{Op}\left(\mathcal{H}_{m}\right) \rightarrow L$ such that $g\left(A^{+} \backslash_{\mathrm{Op}\left(\mathcal{H}_{m}\right)} B^{+}\right)=f\left(A^{+}\right) \backslash_{L} f\left(B^{+}\right)$.

■ "Large enough": setting $C_{m}^{-} \underset{\text { def }}{=}\{x \mid a(x)<m b(x)\}$ and

$$
\begin{aligned}
& B^{+} \underset{\text { def }}{=}\{x \mid b(x)>0\}, \text { we need } \forall X \in \operatorname{Op}(\mathcal{H}), C_{m}^{-} \subseteq X \Rightarrow \\
& B^{+} \subseteq X
\end{aligned}
$$

Forcing closedness of a consonant homomorphism

Let $\mathbb{E}:=\mathbb{R}^{(\omega)}$, with canonical inner product $(x \mid y) \underset{\text { def }}{=} \sum_{n<\omega} x_{n} y_{n}$ and weak topology (making all $\left(\left.x\right|_{-}\right)$continuous).

Generalities
The ℓ-spectrum ℓ-representable lattices
Additional properties of $\operatorname{Spec}_{\ell} G / \mathrm{Id}_{C}$ Negative results Known positive results
The lattices Op(\mathcal{F})
Basic properties Join-irreducibles and ∇

Lemma

Let \mathcal{H} be a finite set of closed hyperplanes, let $A=\operatorname{ker}(a)$ and $B=\operatorname{ker}(b)$ in \mathcal{H}. Set $C_{m} \underset{\text { def }}{=} \operatorname{ker}(a-m b)$ and $\mathcal{H}_{m} \underset{\text { def }}{=} \mathcal{H} \cup\left\{C_{m}\right\}$, $\forall m<\omega$. Let L be a finite distributive lattice and let $f: \operatorname{Op}(\mathcal{H}) \rightarrow L$ be a consonant homomorphism. Then for all large enough m (independent of L), f extends to a homomorphism $g: \operatorname{Op}\left(\mathcal{H}_{m}\right) \rightarrow L$ such that $g\left(A^{+} \backslash_{\mathrm{Op}\left(\mathcal{H}_{m}\right)} B^{+}\right)=f\left(A^{+}\right) \backslash_{L} f\left(B^{+}\right)$.

■ "Large enough": setting $C_{m}^{-} \underset{\text { def }}{=}\{x \mid a(x)<m b(x)\}$ and

$$
\begin{aligned}
& B^{+} \underset{\text { def }}{=}\{x \mid b(x)>0\}, \text { we need } \forall X \in \operatorname{Op}(\mathcal{H}), C_{m}^{-} \subseteq X \Rightarrow \\
& B^{+} \subseteq X
\end{aligned}
$$

- Existence of m ensured by Farkas' Lemma (Hahn-Banach Theorem).

Convex ℓ-subgroups of ℓ-groups

Generalities
The ℓ-spectrum
ℓ-representable lattices
Additional
properties of
$\operatorname{Spec}_{C} G / / \mathrm{Id}_{C} C$
Negative results
Known positive resuits

The lattices
Op(\mathcal{H})
Basic properties Join-irreducibles and ∇

Consonance and difference operations
Basic properties The Extension Lemma

Back to Op($\mathscr{H})$ Extending homomorphisms from $\operatorname{Op}(\mathscr{H})$ Concluding the proof

Putting all this together (with some work), the proof can be concluded.

Convex ℓ-subgroups of ℓ-groups

Putting all this together (with some work), the proof can be concluded.

Corollary

For any countable ℓ-group G, there exists a countable Abelian ℓ-group A such that the lattices of all convex ℓ-subgroups of G and A are isomorphic.

Convex ℓ-subgroups of ℓ-groups

Putting all this together (with some work), the proof can be concluded.

Corollary

For any countable ℓ-group G, there exists a countable Abelian ℓ-group A such that the lattices of all convex ℓ-subgroups of G and A are isomorphic.

Uncountable analogue of corollary above: fails (Kenoyer 1984, McCleary 1986).

A few words on the real spectrum

Spectral spaces

- About real spectra now.

Generalities
The ℓ-spectrum
ℓ-representable lattices
Additional properties of $\operatorname{Spec}_{\ell} G / / \mathrm{ld}_{C} G$ Negative results Known positive results

The lattices

Op(\mathcal{F})
Basic properties Join-irreducibles and ∇

Consonance and difference
operations
Basic properties
The Extension Lemma

Back to Op (JC) Extending homomorphisms from $O p(\mathscr{P})$ Concluding the proof

A few words on the real spectrum

- About real spectra now.

Generalities
The ℓ-spectrum
ℓ-representable lattices
Additional properties of $\mathrm{Spec}_{\ell} G / / \mathrm{ld}_{C} C$ Negative results Known positive results

The lattices $O p(\mathscr{F})$ Basic properties Join-irreducibles and ∇

Consonance and difference operations
Basic properties The Extension Lemma

- The real spectrum of any commutative, unital ring is known to be a completely normal spectral space.

A few words on the real spectrum

■ About real spectra now.

Generalities
The ℓ-spectrum
ℓ-representable lattices
Additional properties of
$\mathrm{Spec}_{\ell} G / \mathrm{ld}_{C} G$
Negative results
Known positive results
The lattices Op(\mathcal{F})
Basic properties Join-irreducibles and ∇

Consonance and difference. operations Lemma

- The real spectrum of any commutative, unital ring is known to be a completely normal spectral space.

Corollary (W 2017)

For every countable commutative unital ring R, there exists a countable Abelian ℓ-group G with unit such that $\operatorname{Spec}_{\ell} G$ is homeomorphic to the real spectrum of R.

A few words on the real spectrum

■ About real spectra now.

Generalities
The ℓ-spectrum
ℓ-representable lattices
Additional properties of
Spec $_{\ell} G / \mathrm{Id}_{C}$
Negative results
Known positive resuits

The lattices
Op(\mathcal{H})
Basic properties and ∇

Consonance and difference operations Lemma

- The real spectrum of any commutative, unital ring is known to be a completely normal spectral space.

Corollary (W 2017)

For every countable commutative unital ring R, there exists a countable Abelian ℓ-group G with unit such that $\operatorname{Spec}_{\ell} G$ is homeomorphic to the real spectrum of R.

- Fails in the uncountable case: neither class (real spectra, ℓ-spectra) is contained in the other, with separating counterexamples having bases of cardinality \aleph_{1} (W 2017).

A few words on the real spectrum

- About real spectra now.

Generalities

- The real spectrum of any commutative, unital ring is known to be a completely normal spectral space.

Corollary (W 2017)
For every countable commutative unital ring R, there exists a countable Abelian ℓ-group G with unit such that $\operatorname{Spec}_{\ell} G$ is homeomorphic to the real spectrum of R.

■ Fails in the uncountable case: neither class (real spectra, ℓ-spectra) is contained in the other, with separating counterexamples having bases of cardinality \aleph_{1} (W 2017).
■ It is not known whether every second countable, completely normal spectral space is homeomorphic to the real spectrum of some commutative unital ring.

