Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ *G* / ldc ℓ Negative results Known positive results

The lattices Op(允)

Basic properties Join-irreducibles and ∇

Consonance an difference operations

Basic properties The Extension Lemma

Back to $Op(\mathcal{H})$

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Spectral spaces of countable Abelian *l*-groups

Friedrich Wehrung

LMNO, CNRS UMR 6139 (Caen) E-mail: friedrich.wehrung01@unicaen.fr URL: http://www.math.unicaen.fr/~wehrung

September 2017

3

・ロト ・四ト ・ヨト ・ヨト

Spectral spaces

Generalities

The ℓ -spectrum

 ℓ -representable lattices Additional properties of Spec $_{\ell}$ *G* / Id_C *G* Negative results Known positive results

The lattices Op(チ)

Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to Op(H)

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof ■ An *l*-group is a group endowed with a translation-invariant lattice ordering.

▲ロト ▲御 ▶ ▲臣 ▶ ▲臣 ▶ ― 臣 … のへで

Spectral spaces

Generalities

The *l*-spectrum *l*-representable lattices Additional

- Spec $_{\ell}$ G / Id_c G Negative results Known positive results
- The lattices Op(ℋ)
- Basic properties Join-irreducibles and ∇
- Consonance and difference operations
- Basic properties The Extension Lemma

Back to $Op(\mathcal{H})$

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

- An *l*-group is a group endowed with a translation-invariant lattice ordering.
- An *l*-subgroup *I*, in an Abelian *l*-group *G*, is an *l*-ideal if it is order-convex.

Spectral spaces

- The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ *G* / Id_C *G* Negative results Known positive results
- The lattices Op(チ)
- Basic properties Join-irreducibles and ∇
- Consonance and difference operations
- Basic properties The Extension Lemma
- Back to $Op(\mathcal{H})$
- Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

- An *l*-group is a group endowed with a translation-invariant lattice ordering.
- An *l*-subgroup *I*, in an Abelian *l*-group *G*, is an *l*-ideal if it is order-convex.
- An ℓ -ideal I is prime if $I \neq G$ and $x \land y \in I$ implies that either $x \in I$ or $y \in I$ ($\forall x, y \in G$).

Spectral spaces

- The ℓ -spectrum ℓ -representable lattices
- Additional properties of $Spec_{\ell} G / Id_{c} G$ Negative results Known positive results
- The lattice Op(ℋ)
- Basic properties Join-irreducibles and ∇
- Consonance and difference operations
- Basic properties The Extension Lemma
- Back to Op(H)
- Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

- An *l*-group is a group endowed with a translation-invariant lattice ordering.
- An *l*-subgroup *I*, in an Abelian *l*-group *G*, is an *l*-ideal if it is order-convex.
- An ℓ -ideal I is prime if $I \neq G$ and $x \land y \in I$ implies that either $x \in I$ or $y \in I$ ($\forall x, y \in G$).
- We endow the set $\operatorname{Spec}_{\ell} G$, of all prime ℓ -ideals of G, with the topology whose closed sets are exactly the $V_G(X) = \{P \in \operatorname{Spec}_{\ell} G \mid X \subseteq P\}$, for $X \subseteq G$.

Spectral spaces

- The ℓ -spectrum
- ℓ-representable lattices Additional properties of Spec_ℓ G / Id_C G Negative results Known positive results
- Basic properties Join-irreducibles and ∇
- Consonance and difference operations
- Basic properties The Extension Lemma
- Back to Op(H)
- Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

- An *l*-group is a group endowed with a translation-invariant lattice ordering.
- An *l*-subgroup *I*, in an Abelian *l*-group *G*, is an *l*-ideal if it is order-convex.
- An ℓ -ideal I is prime if $I \neq G$ and $x \land y \in I$ implies that either $x \in I$ or $y \in I$ ($\forall x, y \in G$).
- We endow the set $\operatorname{Spec}_{\ell} G$, of all prime ℓ -ideals of G, with the topology whose closed sets are exactly the $V_G(X) \stackrel{=}{=} \{P \in \operatorname{Spec}_{\ell} G \mid X \subseteq P\}$, for $X \subseteq G$.
- The topological space $\text{Spec}_{\ell} G$ is called the ℓ -spectrum of G.

Spectral spaces

Generalities

- The ℓ-spectrum
- ℓ-representable lattices Additional properties of Spec_ℓ G / Id_C G Negative results Known positive results
- The lattices Op(升)
- Basic properties Join-irreducibles and ∇
- Consonance and difference operations
- Basic properties The Extension Lemma
- Back to $Op(\mathcal{H})$
- Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

- An *l*-group is a group endowed with a translation-invariant lattice ordering.
- An *l*-subgroup *I*, in an Abelian *l*-group *G*, is an *l*-ideal if it is order-convex.
- An ℓ -ideal I is prime if $I \neq G$ and $x \land y \in I$ implies that either $x \in I$ or $y \in I$ ($\forall x, y \in G$).
- We endow the set $\operatorname{Spec}_{\ell} G$, of all prime ℓ -ideals of G, with the topology whose closed sets are exactly the $V_G(X) = \{P \in \operatorname{Spec}_{\ell} G \mid X \subseteq P\}$, for $X \subseteq G$.
- The topological space $\operatorname{Spec}_{\ell} G$ is called the ℓ -spectrum of G.

Problem ('90s, or even '60s)

Characterize the topological spaces of the form $\text{Spec}_{\ell} G$, for Abelian ℓ -groups G.

イロト 不得下 イヨト イヨト 二日

Spectral spaces

Generalities

- The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ *G* / Id_C *G* Negative results
- The lattices Op(チ)
- Basic properties Join-irreducibles and ∇
- Consonance and difference operations
- Basic properties The Extension Lemma
- Back to $Op(\mathcal{H})$ Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

- An *l*-group is a group endowed with a translation-invariant lattice ordering.
- An *l*-subgroup *I*, in an Abelian *l*-group *G*, is an *l*-ideal if it is order-convex.
- An ℓ -ideal I is prime if $I \neq G$ and $x \land y \in I$ implies that either $x \in I$ or $y \in I$ ($\forall x, y \in G$).
- We endow the set $\operatorname{Spec}_{\ell} G$, of all prime ℓ -ideals of G, with the topology whose closed sets are exactly the $V_G(X) = \{P \in \operatorname{Spec}_{\ell} G \mid X \subseteq P\}$, for $X \subseteq G$.
- The topological space $\operatorname{Spec}_{\ell} G$ is called the ℓ -spectrum of G.

Problem ('90s, or even '60s)

Characterize the topological spaces of the form $\text{Spec}_{\ell} G$, for Abelian ℓ -groups G.

Equivalent formulation: describe the spectra of MV-algebras.

Spectral spaces

Generalities

The ℓ -spectrum

ℓ-representable lattices Additional properties of Spec_ℓ *G* / ld_C *G* Negative results Known positive results

The lattices Op(チ)

Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to Op(H)

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof An ideal, in a distributive lattice D with zero, is a nonempty lower subset closed under (x, y) → x ∨ y.

Spectral spaces

- The *l*-spectrum
- lattices Additional properties of Spec $\ell G / Id_C G$ Negative results Known positive
- The lattices Op(チ)
- Basic properties Join-irreducibles and ∇
- Consonance and difference operations
- Basic properties The Extension Lemma
- Back to $Op(\mathcal{H})$
- Extending homomorphisms from Op(\mathcal{H}) Concluding the proof

- An ideal, in a distributive lattice D with zero, is a nonempty lower subset closed under (x, y) → x ∨ y.
- An ideal *I* is prime if $I \neq D$ and $x \wedge y \in I$ implies that either $x \in I$ or $y \in I$ ($\forall x, y \in D$).

Spectral spaces

Generalities

- The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ *G* / Id_C *G* Negative results Known positive
- The lattices Op(*升*)
- $\begin{array}{l} \text{Basic properties} \\ \text{Join-irreducibles} \\ \text{and } \nabla \end{array}$
- Consonance and difference operations
- Basic properties The Extension Lemma
- Back to $Op(\mathcal{H})$
- Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

- An ideal, in a distributive lattice D with zero, is a nonempty lower subset closed under (x, y) → x ∨ y.
- An ideal *I* is prime if $I \neq D$ and $x \land y \in I$ implies that either $x \in I$ or $y \in I$ ($\forall x, y \in D$).
- We endow the set Spec *D*, of all prime ideals of *D*, with the topology whose closed sets are exactly the $V_D(X) = \{P \in \text{Spec } D \mid X \subseteq P\}$, for $X \subseteq D$.

イロト 不得下 イヨト イヨト 二日

Spectral spaces

Generalities

- The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ G / Idc G Negative results Known positive results
- The lattices Op(H)
- Basic properties Join-irreducibles and ∇
- Consonance and difference operations
- Basic properties The Extension Lemma
- Back to Op(H)
- Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

- An ideal, in a distributive lattice D with zero, is a nonempty lower subset closed under (x, y) → x ∨ y.
- An ideal *I* is prime if $I \neq D$ and $x \land y \in I$ implies that either $x \in I$ or $y \in I$ ($\forall x, y \in D$).
- We endow the set Spec *D*, of all prime ideals of *D*, with the topology whose closed sets are exactly the $V_D(X) = \{P \in \text{Spec } D \mid X \subseteq P\}$, for $X \subseteq D$.
- The topological space Spec *D* is called the spectrum of *D*.

イロト 不得下 イヨト イヨト 二日

Spectral spaces

- The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ *G* / Id_c *G* Negative results Known positive results
- The lattices Op(H)
- Basic properties Join-irreducibles and ∇
- Consonance an difference operations
- Basic properties The Extension Lemma
- Back to Op(H)
- Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

- An ideal, in a distributive lattice D with zero, is a nonempty lower subset closed under (x, y) → x ∨ y.
- An ideal *I* is prime if $I \neq D$ and $x \land y \in I$ implies that either $x \in I$ or $y \in I$ ($\forall x, y \in D$).
- We endow the set Spec *D*, of all prime ideals of *D*, with the topology whose closed sets are exactly the $V_D(X) = \{P \in \text{Spec } D \mid X \subseteq P\}$, for $X \subseteq D$.
- The topological space Spec *D* is called the spectrum of *D*.
- A topological space X is generalized spectral if it is sober (i.e., every join-irreducible closed set is the closure of a unique singleton) and the set [°]/_𝔅(X) of all compact open subsets of X is a basis of the topology of X, closed under (U, V) → U ∩ V.

Spectral spaces

- The ℓ-spectrum ℓ-representable lattices Additional properties of Specℓ G / Id_C G Negative results Known positive results
- The lattices Op(ℋ)
- Basic properties Join-irreducibles and ∇
- Consonance an difference operations
- Basic properties The Extension Lemma
- Back to Op(H)
- Extending homomorphisms from Op(H) Concluding the proof

- An ideal, in a distributive lattice D with zero, is a nonempty lower subset closed under (x, y) → x ∨ y.
- An ideal *I* is prime if $I \neq D$ and $x \wedge y \in I$ implies that either $x \in I$ or $y \in I$ ($\forall x, y \in D$).
- We endow the set Spec *D*, of all prime ideals of *D*, with the topology whose closed sets are exactly the $V_D(X) = \{P \in \text{Spec } D \mid X \subseteq P\}$, for $X \subseteq D$.
- The topological space Spec *D* is called the spectrum of *D*.
- A topological space X is generalized spectral if it is sober (i.e., every join-irreducible closed set is the closure of a unique singleton) and the set $\overset{\circ}{\mathcal{K}}(X)$ of all compact open subsets of X is a basis of the topology of X, closed under $(U, V) \mapsto U \cap V$.
- If, in addition, X is compact, then we say that X is spectral.

Spectral spaces

Generalities

The $\ell\text{-spectrum}$

 ℓ -representable lattices Additional properties of Spec ℓ *G* / Id_C *G* Negative results Known positive results

The lattices Op(チ)

Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to Op(H)

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Theorem (Stone, '30s)

◆□ > ◆□ > ◆ 三 > ◆ 三 > ○ 2 ○ ○ 2 ○

Spectral spaces

Generalities

The ℓ -spectrum

- ℓ-representable lattices Additional properties of Specℓ G / Idc G Negative results Known positive results
- The lattices Op(H)
- Basic properties Join-irreducibles and ∇
- Consonance and difference operations
- Basic properties The Extension Lemma
- Back to Op(H)
- Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Theorem (Stone, '30s)

■ The assignments D → Spec D and X → K(X) define (categorically) mutually inverse transformations between distributive lattices with zero and generalized spectral spaces.

Spectral spaces

Generalities

The *l*-spectrum

- Additional properties of $Spec_{\ell} G / Id_{C} G$ Negative results Known positive results
- Basic properties Join-irreducibles and ∇
- Consonance and difference operations
- Basic properties The Extension Lemma
- Back to Op(H)
- Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Theorem (Stone, '30s)

- The assignments D → Spec D and X → 𝔅(X) define (categorically) mutually inverse transformations between distributive lattices with zero and generalized spectral spaces.
- This can be extended to a duality between bounded distributive lattices (with bounded lattice homomorphisms) and spectral spaces (with spectral maps).

Spectral spaces

Generalities

The *l*-spectrum *l*-representable

- Additional properties of Spec_{ℓ} *G* / Id_{*C*} *G* Negative results Known positive results
- Basic properties Join-irreducibles and ∇
- Consonance and difference operations
- Basic properties The Extension Lemma
- Back to Op(H)
- Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Theorem (Stone, '30s)

- The assignments D → Spec D and X → 𝔅(X) define (categorically) mutually inverse transformations between distributive lattices with zero and generalized spectral spaces.
- This can be extended to a duality between bounded distributive lattices (with bounded lattice homomorphisms) and spectral spaces (with spectral maps).

0

By definition, a map
$$\varphi \colon X \to Y$$
 is spectral if $\forall V \in \check{\mathcal{K}}(Y)$,
 $\varphi^{-1}[V] \in \overset{\circ}{\mathcal{K}}(X)$.

3

Spectral spaces

Generalities The *l*-spectrum *l*-representable lattices

Additional properties of Spec $_{\ell}$ G / Id_C G Negative results Known positive results

The lattices Op(H)

Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to Op(H)

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof Every finitely generated ℓ-ideal, in an Abelian ℓ-group G, is generated by a single element of G⁺ (for ⟨a₁,..., a_n⟩ = ⟨|a₁| ∨···∨ |a_n|⟩ ∀a₁,..., a_n ∈ G).

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・ うくぐ

Spectral spaces

Generalities The ℓ-spectri

ℓ-representable lattices

Additional properties of Spec $_{\ell}$ *G* / Id_c *G* Negative results Known positive results

The lattices Op(升)

Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to Op(H)

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

- Every finitely generated *l*-ideal, in an Abelian *l*-group *G*, is generated by a single element of *G*⁺ (for (a₁,..., a_n) = ⟨|a₁| ∨ ··· ∨ |a_n|⟩ ∀a₁,..., a_n ∈ *G*).
 (a) ∨ (b) = ⟨a ∨ b⟩ = ⟨a + b⟩ and ⟨a⟩ ∩ ⟨b⟩ = ⟨a ∧ b⟩, for all
 - $a,b\in G^+.$

Spectral spaces

Generalities The *l*-spectri

ℓ-representable lattices

Additional properties of Spec $_{\ell}$ *G* / Id_C *G* Negative results Known positive results

The lattice Op(旡)

Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to Op(H)

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

- Every finitely generated ℓ -ideal, in an Abelian ℓ -group G, is generated by a single element of G^+ (for
 - $\langle a_1,\ldots,a_n\rangle = \langle |a_1|\vee\cdots\vee|a_n|\rangle \ \forall a_1,\ldots,a_n\in G$.
- $\langle a \rangle \lor \langle b \rangle = \langle a \lor b \rangle = \langle a + b \rangle$ and $\langle a \rangle \cap \langle b \rangle = \langle a \land b \rangle$, for all $a, b \in G^+$.
- Hence, Id_c G = {⟨a⟩ | a ∈ G⁺} is a distributive lattice with zero. Call such lattices ℓ-representable.

Spectral spaces

Generalities The ℓ-spectru

ℓ-representable lattices

- Additional properties of Spec $_{\ell}$ G / Id_C G Negative results Known positive results
- Basic properties Join-irreducibles and ∇
- Consonance and difference operations
- Basic properties The Extension Lemma
- Back to Op(H)
- Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

- Every finitely generated *l*-ideal, in an Abelian *l*-group G, is generated by a single element of G⁺ (for
 - $\langle a_1,\ldots,a_n\rangle = \langle |a_1|\vee\cdots\vee|a_n|\rangle \ \forall a_1,\ldots,a_n\in G \rangle.$
- $\langle a \rangle \lor \langle b \rangle = \langle a \lor b \rangle = \langle a + b \rangle$ and $\langle a \rangle \cap \langle b \rangle = \langle a \land b \rangle$, for all $a, b \in G^+$.
- Hence, Id_c G = {⟨a⟩ | a ∈ G⁺} is a distributive lattice with zero. Call such lattices ℓ-representable.
- For every l-ideal l of the l-group G, \u03c6(I) = {\u03c6 x \u03c6 I \u03c6 x \u03c6 I \u03c6 is an ideal of the lattice Id_c G.

Spectral spaces

Generalities The *l*-spectri

- Additional properties of Spec $_{\ell}$ *G* / Id_C *G* Negative results Known positive results
- The lattice Op(チ)
- Basic properties Join-irreducibles and ∇
- Consonance and difference operations
- Basic properties The Extension Lemma
- Back to Op(ℋ)
- Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

- Every finitely generated *l*-ideal, in an Abelian *l*-group G, is generated by a single element of G⁺ (for
 - $\langle a_1,\ldots,a_n\rangle = \langle |a_1| \vee \cdots \vee |a_n|\rangle \ \forall a_1,\ldots,a_n \in G \rangle.$
- $\langle a \rangle \lor \langle b \rangle = \langle a \lor b \rangle = \langle a + b \rangle$ and $\langle a \rangle \cap \langle b \rangle = \langle a \land b \rangle$, for all $a, b \in G^+$.
- Hence, $Id_c G = \{\langle a \rangle \mid a \in G^+\}$ is a distributive lattice with zero. Call such lattices ℓ -representable.
- For every *l*-ideal *I* of the *l*-group *G*, *φ*(*I*) = {⟨*x*⟩ | *x* ∈ *I*} is an ideal of the lattice Id_c *G*.
- For every ideal *I* of the lattice Id_c *G*, ψ(*I*) = {x ∈ *G* | ⟨x⟩ ∈ *I*} is an ℓ-ideal of the ℓ-group *G*.

Spectral spaces

Generalities The *l*-spectri

- Additional properties of Spec $_{\ell}$ *G* / Id_c *G* Negative results Known positive results
- Basic properties Join-irreducibles and ∇
- Consonance and difference operations
- Basic properties The Extension Lemma
- Back to Op(ℋ)
- Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

- Every finitely generated ℓ -ideal, in an Abelian ℓ -group G, is generated by a single element of G^+ (for
 - $\langle a_1,\ldots,a_n\rangle = \langle |a_1| \vee \cdots \vee |a_n|\rangle \ \forall a_1,\ldots,a_n \in G \rangle.$
- $\langle a \rangle \lor \langle b \rangle = \langle a \lor b \rangle = \langle a + b \rangle$ and $\langle a \rangle \cap \langle b \rangle = \langle a \land b \rangle$, for all $a, b \in G^+$.
- Hence, $Id_c G = \{\langle a \rangle \mid a \in G^+\}$ is a distributive lattice with zero. Call such lattices ℓ -representable.
- For every *l*-ideal *I* of the *l*-group *G*, *φ*(*I*) = {⟨*x*⟩ | *x* ∈ *I*} is an ideal of the lattice Id_c *G*.
- For every ideal *I* of the lattice Id_c *G*, $\psi(I) = \{x \in G \mid \langle x \rangle \in I\}$ is an ℓ -ideal of the ℓ -group *G*.
- $\bullet \ \varphi$ and ψ are mutually inverse, and they both preserve primeness.

Spectral spaces

Generalities The *l*-spectri

- Additional properties of Spec $_{\ell}$ *G* / Id_c *G* Negative results Known positive results
- The lattices Op(ℋ)
- Basic properties Join-irreducibles and ∇
- Consonance an difference operations
- Basic properties The Extension Lemma
- Back to Op(H)
- Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

- Every finitely generated ℓ -ideal, in an Abelian ℓ -group G, is generated by a single element of G^+ (for
 - $\langle a_1, \ldots, a_n \rangle = \langle |a_1| \vee \cdots \vee |a_n| \rangle \ \forall a_1, \ldots, a_n \in G \rangle.$
- $\langle a \rangle \lor \langle b \rangle = \langle a \lor b \rangle = \langle a + b \rangle$ and $\langle a \rangle \cap \langle b \rangle = \langle a \land b \rangle$, for all $a, b \in G^+$.
- Hence, $Id_c G = \{\langle a \rangle \mid a \in G^+\}$ is a distributive lattice with zero. Call such lattices ℓ -representable.
- For every *l*-ideal *I* of the *l*-group *G*, *φ*(*I*) = {⟨*x*⟩ | *x* ∈ *I*} is an ideal of the lattice Id_c *G*.
- For every ideal *I* of the lattice Id_c *G*, $\psi(I) = \{x \in G \mid \langle x \rangle \in I\}$ is an ℓ -ideal of the ℓ -group *G*.
- φ and ψ are mutually inverse, and they both preserve primeness.
- Hence, $\text{Spec}_{\ell} G \cong \text{Spec} \operatorname{Id}_{c} G$, so it is also a generalized spectral space.

Spectral spaces

Generalities The ℓ-spectri

ℓ-representable lattices

- Additional properties of Spec $_{\ell}$ *G* / Id_c *G* Negative results Known positive results
- The lattices Op(ℋ)
- Basic properties Join-irreducibles and ∇
- Consonance and difference operations
- Basic properties The Extension Lemma

Back to $\mathsf{Op}(\mathcal{H})$

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

- Every finitely generated ℓ -ideal, in an Abelian ℓ -group G, is generated by a single element of G^+ (for
 - $\langle a_1,\ldots,a_n\rangle = \langle |a_1| \vee \cdots \vee |a_n|\rangle \ \forall a_1,\ldots,a_n \in G \rangle.$
- $\langle a \rangle \lor \langle b \rangle = \langle a \lor b \rangle = \langle a + b \rangle$ and $\langle a \rangle \cap \langle b \rangle = \langle a \land b \rangle$, for all $a, b \in G^+$.
- Hence, $Id_c G = \{\langle a \rangle \mid a \in G^+\}$ is a distributive lattice with zero. Call such lattices ℓ -representable.
- For every *l*-ideal *I* of the *l*-group *G*, *φ*(*I*) = {⟨*x*⟩ | *x* ∈ *I*} is an ideal of the lattice Id_c *G*.
- For every ideal *I* of the lattice Id_c *G*, $\psi(I) = \{x \in G \mid \langle x \rangle \in I\}$ is an ℓ -ideal of the ℓ -group *G*.
- $\blacksquare \ \varphi$ and ψ are mutually inverse, and they both preserve primeness.
- Hence, $\text{Spec}_{\ell} G \cong \text{Spec} \operatorname{Id}_{c} G$, so it is also a generalized spectral space.
- Hence, Spec_ℓ G and Id_c G determine each other (via Stone's Theorem).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Spectral spaces

Generalities The ℓ-spectru

- Additional properties of Spec $_{\ell}$ *G* / Id_c *G* Negative results Known positive results
- Basic properties Join-irreducibles and ∇
- Consonance and difference operations
- Basic properties The Extension Lemma
- Back to Op(H)
- Extending homomorphisms from Op(9c) Concluding the proof

- Every finitely generated *l*-ideal, in an Abelian *l*-group G, is generated by a single element of G⁺ (for
 - $\langle a_1, \ldots, a_n \rangle = \langle |a_1| \vee \cdots \vee |a_n| \rangle \ \forall a_1, \ldots, a_n \in G \rangle.$
- $\langle a \rangle \lor \langle b \rangle = \langle a \lor b \rangle = \langle a + b \rangle$ and $\langle a \rangle \cap \langle b \rangle = \langle a \land b \rangle$, for all $a, b \in G^+$.
- Hence, $Id_c G = \{\langle a \rangle \mid a \in G^+\}$ is a distributive lattice with zero. Call such lattices ℓ -representable.
- For every *l*-ideal *I* of the *l*-group *G*, *φ*(*I*) = {⟨*x*⟩ | *x* ∈ *I*} is an ideal of the lattice Id_c *G*.
- For every ideal *I* of the lattice Id_c *G*, $\psi(I) = \{x \in G \mid \langle x \rangle \in I\}$ is an ℓ -ideal of the ℓ -group *G*.
- $\blacksquare \ \varphi$ and ψ are mutually inverse, and they both preserve primeness.
- Hence, $\text{Spec}_{\ell} G \cong \text{Spec} \operatorname{Id}_{c} G$, so it is also a generalized spectral space.
- Hence, Spec_ℓ G and Id_c G determine each other (*via* Stone's Theorem).

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ *G* / Id_C *G* Negative results Known positive results

The lattices Op(チ)

Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to Op(H)

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

• Specialization order on a T_0 space: $x \leq y$ if $y \in cl \{x\}$.

Spectral spaces

- Generalities The ℓ-spectrum ℓ-representable lattices Additional properties of Specℓ G / Idc G Negative results Known positive results
- The lattices Op(H)
- Basic properties Join-irreducibles and ∇
- Consonance and difference operations
- Basic properties The Extension Lemma
- Back to Op(H)
- Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

- Specialization order on a T_0 space: $x \leq y$ if $y \in cl \{x\}$.
- A generalized spectral space X is completely normal if its specialization order is a root system, that is, ∀x, y, z ∈ X, if {x, y} ⊆ cl {z}, then x ∈ cl {y} or y ∈ cl {x}. This holds if (not iff) every subspace of X is normal in the usual sense.

Spectral spaces

- Generalities The ℓ-spectrum ℓ-representable lattices Additional properties of Specℓ G / Idc G Negative results Known positive results
- Basic properties Join-irreducibles and ∇
- Consonance and difference operations
- Basic properties The Extension Lemma
- Back to Op(H)
- Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

- Specialization order on a T_0 space: $x \leq y$ if $y \in cl \{x\}$.
- A generalized spectral space X is completely normal if its specialization order is a root system, that is, ∀x, y, z ∈ X, if {x, y} ⊆ cl {z}, then x ∈ cl {y} or y ∈ cl {x}. This holds if (not iff) every subspace of X is normal in the usual sense.
- A distributive lattice *D* with zero is completely normal if $\forall a, b \in D, \exists x, y \in D$ such that $a \leq b \lor x, b \leq a \lor y$, and $x \land y = 0$

イロト 不得 とくほと くほとう ほ

Spectral spaces

- Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ G / Idc G Negative results Known positive results
- The lattices Op(升)
- Basic properties Join-irreducibles and ∇
- Consonance and difference operations
- Basic properties The Extension Lemma
- Back to $Op(\mathcal{H})$
- Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

- Specialization order on a T_0 space: $x \leq y$ if $y \in cl \{x\}$.
- A generalized spectral space X is completely normal if its specialization order is a root system, that is, ∀x, y, z ∈ X, if {x, y} ⊆ cl {z}, then x ∈ cl {y} or y ∈ cl {x}. This holds if (not iff) every subspace of X is normal in the usual sense.
- A distributive lattice *D* with zero is completely normal if $\forall a, b \in D, \exists x, y \in D$ such that $a \leq b \lor x, b \leq a \lor y$, and $x \land y = 0$ (we say that (x, y) is a splitting of (a, b)).

Spectral spaces

Generalities The ℓ-spectrum ℓ-representable lattices Additional properties of Specℓ G / Idc G Negative results Known positive results

The lattices Op(H)

Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to Op(H)

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

- Specialization order on a T_0 space: $x \leq y$ if $y \in cl \{x\}$.
- A generalized spectral space X is completely normal if its specialization order is a root system, that is, ∀x, y, z ∈ X, if {x, y} ⊆ cl {z}, then x ∈ cl {y} or y ∈ cl {x}. This holds if (not iff) every subspace of X is normal in the usual sense.
- A distributive lattice *D* with zero is completely normal if $\forall a, b \in D, \exists x, y \in D$ such that $a \leq b \lor x, b \leq a \lor y$, and $x \land y = 0$ (we say that (x, y) is a splitting of (a, b)).

Theorem (Monteiro 1956)

A generalized spectral space X is completely normal iff the distributive lattice $\overset{\circ}{\mathcal{K}}(X)$ is completely normal.

Complete normality of $Id_c G$

Spectral spaces

Generalities The *l*-spectrum *l*-representable lattices Additional properties of Spec_{*l*} *c* / ld_c *G* Negative results Known positive results

The lattices Op(ℋ)

Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to Op(H)

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Proposition (folklore)

For every Abelian ℓ -group G, $Id_c G$ is a completely normal distributive lattice (equivalently, $Spec_{\ell} G$ is a completely normal generalized spectral space).

Complete normality of $Id_c G$

Spectral spaces

Generalities The *l*-spectrum *l*-representable lattices Additional properties of Spe*l G* / Id_C *G* Negative results Known positive results

The lattices Op(H)

Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic propertie The Extension Lemma

Back to Op(H)

homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Proposition (folklore)

For every Abelian ℓ -group G, $Id_c G$ is a completely normal distributive lattice (equivalently, $Spec_{\ell} G$ is a completely normal generalized spectral space).

Proof.

Let $\boldsymbol{a}, \boldsymbol{b} \in \operatorname{Id}_{c} \boldsymbol{G}$. There are $\boldsymbol{a}, \boldsymbol{b} \in \boldsymbol{G}^{+}$ such that $\boldsymbol{a} = \langle \boldsymbol{a} \rangle$ and $\boldsymbol{b} = \langle \boldsymbol{b} \rangle$. Set $\boldsymbol{x} = \langle \boldsymbol{a} - \boldsymbol{a} \wedge \boldsymbol{b} \rangle$ and $\boldsymbol{y} = \langle \boldsymbol{b} - \boldsymbol{a} \wedge \boldsymbol{b} \rangle$. Then $(\boldsymbol{x}, \boldsymbol{y})$ is a splitting of $(\boldsymbol{a}, \boldsymbol{b})$.

Countably based differences

Spectral spaces

Generalities The *l*-spectrum *l*-representable lattices Additional properties of Spec*l G* / ldc *G* Negative results Known positive

The lattices Op(ℋ)

Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to Op(H)

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Definition

A distributive lattice *D* has countably based differences if $\forall a, b \in D$, the set $a \ominus b = \{x \in D \mid a \le x \lor b\}$ has a countable coinitial subset.

Countably based differences

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec_\ell G / Id_c G Negative results Known positive results

The lattices Op(H)

Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to Op(H)

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Definition

A distributive lattice *D* has countably based differences if $\forall a, b \in D$, the set $a \ominus b = \{x \in D \mid a \le x \lor b\}$ has a countable coinitial subset.

(i.e., $\{c_n \mid n < \omega\} \subseteq a \ominus b$ such that $\forall x \in a \ominus b \exists n < \omega \ c_n \leq x$)

Countably based differences

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ *G* / Id_C *G* Negative results Known positive results

The lattices $Op(\mathcal{H})$

Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to Op(H)

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Definition

A distributive lattice *D* has countably based differences if $\forall a, b \in D$, the set $a \ominus b = \{x \in D \mid a \le x \lor b\}$ has a countable coinitial subset.

(i.e., $\{c_n \mid n < \omega\} \subseteq a \ominus b$ such that $\forall x \in a \ominus b \ \exists n < \omega \ c_n \leq x$)

Proposition (Cignoli, Gluschankof, and Lucas 1999)

Let G be an Abelian ℓ -group. Then Id_c G has countably based differences.

Countably based differences

Spectral spaces

Generalities The ℓ-spectrum ℓ-representable lattices Additional properties of Specℓ G / ldc G Negative results Known positive results

The lattices Op(*H*)

Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to Op(H)

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Definition

A distributive lattice *D* has countably based differences if $\forall a, b \in D$, the set $a \ominus b = \{x \in D \mid a \le x \lor b\}$ has a countable coinitial subset.

(i.e., $\{c_n \mid n < \omega\} \subseteq a \ominus b$ such that $\forall x \in a \ominus b \exists n < \omega \ c_n \leq x$)

Proposition (Cignoli, Gluschankof, and Lucas 1999)

Let G be an Abelian ℓ -group. Then Id_c G has countably based differences.

Proof.

If $\boldsymbol{a} = \langle \boldsymbol{a} \rangle$ and $\boldsymbol{b} = \langle \boldsymbol{b} \rangle$ (where $\boldsymbol{a}, \boldsymbol{b} \in G^+$), set $\boldsymbol{c}_n \stackrel{=}{=} \langle \boldsymbol{a} - \boldsymbol{a} \wedge \boldsymbol{n} \boldsymbol{b} \rangle$. Then $\{\boldsymbol{c}_n \mid n < \omega\}$ is coinitial in $\boldsymbol{a} \ominus \boldsymbol{b}$.

Spectral spaces

Generalities The *l*-spectrum *l*-representable lattices Additional properties of Spec_{*l*} *G* / Id_{*c*} *G* Negative results Known positive

results

I he lattices Op(旡)

Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to Op(H)

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Theorem (Delzell and Madden, 1994)

Spectral spaces

Generalities The *l*-spectrum *l*-representable lattices Additional properties of Spec_{*l*} *G* / Id_{*c*} *G* Negative results Known positive

- The lattices Op(チ)
- Basic properties Join-irreducibles and ∇
- Consonance and difference operations
- Basic properties The Extension Lemma
- Back to $Op(\mathcal{H})$
- Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Theorem (Delzell and Madden, 1994)

There exists a non- $\ell\text{-representable}$ bounded distributive lattice of cardinality $\aleph_1.$

 Delzell and Madden also have a much more complicated example of a completely normal spectral space which is not the real spectrum of any commutative, unital ring.

Spectral spaces

- Generalities The *l*-spectrum *l*-representable lattices Additional properties of Spec_{*l*} *G* / Id_{*c*} *G* Negative results Known positive
- The lattices Op(ℋ)
- Basic properties Join-irreducibles and ∇
- Consonance and difference operations
- Basic properties The Extension Lemma
- Back to $Op(\mathcal{H})$ Extending homomorphisms from $Op(\mathcal{H})$ Concluding the

Theorem (Delzell and Madden, 1994)

- Delzell and Madden also have a much more complicated example of a completely normal spectral space which is not the real spectrum of any commutative, unital ring.
- The latter example is not second countable either.

Spectral spaces

- Generalities The *l*-spectrum *l*-representable lattices Additional properties of Spec_{*l*} *G* / Id_{*c*} *G* Negative results Known positive
- Basic properties Join-irreducibles and ∇
- Consonance and difference operations
- Basic properties The Extension Lemma
- Back to Op(H)
- homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Theorem (Delzell and Madden, 1994)

- Delzell and Madden also have a much more complicated example of a completely normal spectral space which is not the real spectrum of any commutative, unital ring.
- The latter example is not second countable either. It has cardinality 2^{ℵ1} a priori.

Spectral spaces

- Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec $_{\ell}$ G / Id_C G Negative results Known positive
- The lattices Op(チ)
- Basic properties Join-irreducibles and ∇
- Consonance an difference operations
- Basic properties The Extension Lemma
- Back to Op(H)
- Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Theorem (Delzell and Madden, 1994)

- Delzell and Madden also have a much more complicated example of a completely normal spectral space which is not the real spectrum of any commutative, unital ring.
- The latter example is not second countable either. It has cardinality 2^{\aleph_1} a priori.
- By using a different construction, 2^{ℵ1} can be improved to ℵ1 (W 2017).

Spectral spaces

Generalities The *l*-spectrum *l*-representable lattices Additional properties of Spec_{*l*} *G* / ld_{*c*} *G* Negative results Known positive

The lattices Op(H)

Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to Op(H)

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

• Set
$$\boldsymbol{B}_{I} = \{X \subseteq I \mid X \text{ or } I \setminus X \text{ is finite}\}$$
 and
 $\boldsymbol{D}_{I} = \{(X, k) \in \boldsymbol{B}_{I} \times \{0, 1, 2\} \mid (k = 0 \Rightarrow X \text{ finite}) \text{ and } (k \neq 0 \Rightarrow I \setminus X \text{ finite})\},$

・ロト ・同ト ・ヨト ・ヨト

3

10/34

for any set *I*.

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec $_{\ell}$ *G* / Id_C *G* **Negative results** Known positive results

The lattices Op(チ) Basic properti

and ∇

difference operations

Basic properties The Extension Lemma

Back to Op(H)

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Set
$$B_I \stackrel{=}{=} \{X \subseteq I \mid X \text{ or } I \setminus X \text{ is finite}\}$$
 and
 $D_I \stackrel{=}{=} \{(X, k) \in B_I \times \{0, 1, 2\} \mid (k = 0 \Rightarrow X \text{ finite}) \text{ and } (k \neq 0 \Rightarrow I \setminus X \text{ finite})\},$
for any set *I*.
 $D_{\omega} \hookrightarrow D_{\omega_1}, \text{ via}$
 $((X, k)) = (X \setminus K) = (X \setminus K)$

$$(X,k)\mapsto egin{cases} (X,k)\,, & ext{if } k=0\,,\ (X\cup(\omega_1\setminus\omega),k)\,, & ext{if } k
eq 0\,. \end{cases}$$

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec $_{\ell}$ *G* / ld_C *G* **Negative results** Known positive results

The lattices Op(H) Basic proper

Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to Op(H)

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

$$\begin{array}{l} \text{Set } \boldsymbol{B}_{I} \ensuremath{=}= \{X \subseteq I \mid X \text{ or } I \setminus X \text{ is finite}\} \text{ and} \\ \boldsymbol{D}_{I} \ensuremath{=}= \{(X,k) \in \boldsymbol{B}_{I} \times \{0,1,2\} \mid \\ (k=0 \Rightarrow X \text{ finite}) \text{ and } (k \neq 0 \Rightarrow I \setminus X \text{ finite})\}, \\ \text{for any set } I. \\ \boldsymbol{D}_{\omega} \hookrightarrow \boldsymbol{D}_{\omega_{1}}, \text{ via} \\ (X,k) \mapsto \begin{cases} (X,k), & \text{if } k=0, \\ (X \cup (\omega_{1} \setminus \omega), k), & \text{if } k \neq 0. \end{cases} \end{aligned}$$

Proposition (W 2017)

 D_{ω} is an $\mathscr{L}_{\infty,\omega}$ -elementary sublattice of D_{ω_1} (use back-and-forth), with D_{ω} countable (and ℓ -representable) and D_{ω_1} non- ℓ -representable (no countably based differences).

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec $_{\ell}$ *G* / Id_C *G* **Negative results** Known positive results

The lattices Op(H) Basic propert

Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to $Op(\mathcal{H})$

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Set
$$B_I = \{X \subseteq I \mid X \text{ or } I \setminus X \text{ is finite}\}$$
 and
 $D_I = \{(X, k) \in B_I \times \{0, 1, 2\} \mid (k = 0 \Rightarrow X \text{ finite}) \text{ and } (k \neq 0 \Rightarrow I \setminus X \text{ finite})\},$
for any set *I*.
 $D_{\omega} \hookrightarrow D_{\omega_1}, \text{ via}$
 $(X, k) \mapsto \begin{cases} (X, k), & \text{if } k = 0, \\ (X \cup (\omega_1 \setminus \omega), k), & \text{if } k \neq 0. \end{cases}$

Proposition (W 2017)

 D_{ω} is an $\mathscr{L}_{\infty,\omega}$ -elementary sublattice of D_{ω_1} (use back-and-forth), with D_{ω} countable (and ℓ -representable) and D_{ω_1} non- ℓ -representable (no countably based differences). Consequently, ℓ -representability is not $\mathscr{L}_{\infty,\omega}$ -definable.

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ *G* / ldc *G* Negative results Known positive results

The lattices Op(チ)

Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to Op(H)

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Definition

A distributive lattice D with zero is a generalized dual Heyting algebra if $\forall a, b \in D$, \exists smallest $x \in D$ such that $a \leq b \lor x$;

Spectral spaces

Generalities The *l*-spectrum *l*-representable lattices Additional properties of Spec*l G* / ld_C *G* Negative results Known positive results

The lattices Op(チ)

Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to Op(H)

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Definition

A distributive lattice D with zero is a generalized dual Heyting algebra if $\forall a, b \in D$, \exists smallest $x \in D$ such that $a \leq b \lor x$; then denoted by $a \searrow_D b$ and called the pseudo-difference of a and b.

Spectral spaces

Generalities The ℓ-spectrum ℓ-representable lattices Additional properties of Specℓ G / Id_C G Negative results Known positive results

The lattices $Op(\mathcal{H})$ Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to $\mathsf{Op}(\mathcal{H})$

Extending homomorphisms from Op(H) Concluding the proof

Definition

A distributive lattice D with zero is a generalized dual Heyting algebra if $\forall a, b \in D$, \exists smallest $x \in D$ such that $a \leq b \lor x$; then denoted by $a \searrow_D b$ and called the pseudo-difference of a and b.

Theorem (Cignoli, Gluschankof, and Lucas 1999)

Every dual generalized Heyting algebra is ℓ -representable.

Spectral spaces

Generalities The ℓ-spectrum ℓ-representable lattices Additional properties of Specℓ G / Id_C G Negative results Known positive results

The lattices $Op(\mathcal{H})$ Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Definition

A distributive lattice D with zero is a generalized dual Heyting algebra if $\forall a, b \in D$, \exists smallest $x \in D$ such that $a \leq b \lor x$; then denoted by $a \searrow_D b$ and called the pseudo-difference of a and b.

Theorem (Cignoli, Gluschankof, and Lucas 1999)

Every dual generalized Heyting algebra is ℓ -representable.

The proof extends (non-trivially) the finite case.

Spectral spaces

Generalities The ℓ-spectrum ℓ-representable lattices Additional properties of Specℓ G / Id_C G Negative results Known positive results

The lattices Op(\mathcal{H}) Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Extending homomorphisms from Op(9t) Concluding the proof

Definition

A distributive lattice D with zero is a generalized dual Heyting algebra if $\forall a, b \in D$, \exists smallest $x \in D$ such that $a \leq b \lor x$; then denoted by $a \searrow_D b$ and called the pseudo-difference of a and b.

Theorem (Cignoli, Gluschankof, and Lucas 1999)

Every dual generalized Heyting algebra is ℓ -representable.

The proof extends (non-trivially) the finite case. In that case, D is the lattice of all lower subsets of a finite root system P.

Spectral spaces

Generalities The ℓ-spectrum ℓ-representable lattices Additional properties of Specℓ G / Id_C G Negative results Known positive results

The lattices Op(\mathcal{H}) Basic properties Join-irreducibles and ∇

Consonance and difference operations

The Extension Lemma

Back to $Op(\mathcal{H})$ Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Definition

A distributive lattice D with zero is a generalized dual Heyting algebra if $\forall a, b \in D$, \exists smallest $x \in D$ such that $a \leq b \lor x$; then denoted by $a \searrow_D b$ and called the pseudo-difference of a and b.

Theorem (Cignoli, Gluschankof, and Lucas 1999)

Every dual generalized Heyting algebra is ℓ -representable.

The proof extends (non-trivially) the finite case. In that case, D is the lattice of all lower subsets of a finite root system P. So $D \cong Id_c \mathbb{Q}\langle P \rangle$, where $\mathbb{Q}\langle P \rangle$ is the lexicographical power (Hahn power) of \mathbb{Q} by P.

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec $_{\ell}$ *G* / Id_C *G* Negative results Known positive results

The lattices Op(チ)

Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to Op(H)

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Definition

For distributive lattices D and E with zero, a 0-lattice homomorphism $f: D \to E$ is closed if for all $a, b \in D$ and all $c \in E$, $f(a) \le f(b) \lor c \Rightarrow \exists x \in D, a \le b \lor x$ and $f(x) \le c$.

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec $_{\ell}$ *G* / Id_C *G* Negative results Known positive results

The lattices Op(チ)

Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to Op(H)

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Definition

For distributive lattices D and E with zero, a 0-lattice homomorphism $f: D \to E$ is closed if for all $a, b \in D$ and all $c \in E$, $f(a) \leq f(b) \lor c \Rightarrow \exists x \in D, a \leq b \lor x$ and $f(x) \leq c$.

Equivalently, the dual map Spec f: Spec $E \rightarrow$ Spec D sends closed subsets to closed subsets (resp., sends upper subsets to upper subsets).

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec $_{\ell}$ G / Id_C GNegative results Known positive results

The lattices Op(升)

Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to Op(ℋ)

Extending homomorphisms from Op(9c) Concluding the proof

Definition

For distributive lattices D and E with zero, a 0-lattice homomorphism $f: D \to E$ is closed if for all $a, b \in D$ and all $c \in E$, $f(a) \leq f(b) \lor c \Rightarrow \exists x \in D, a \leq b \lor x$ and $f(x) \leq c$.

Equivalently, the dual map Spec f: Spec $E \rightarrow$ Spec D sends closed subsets to closed subsets (resp., sends upper subsets to upper subsets).

Proposition

Let $f: G \to H$ be a ℓ -homomorphism between Abelian ℓ -groups. Then $\operatorname{Id}_{c} f: \operatorname{Id}_{c} G \to \operatorname{Id}_{c} H$ is a closed lattice homomorphism.

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ *G* / Id_C *G* Negative results Known positive results

The lattices $\mathsf{Op}(\mathcal{H})$

Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to Op(H)

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Definition

For distributive lattices D and E with zero, a 0-lattice homomorphism $f: D \to E$ is closed if for all $a, b \in D$ and all $c \in E$, $f(a) \leq f(b) \lor c \Rightarrow \exists x \in D, a \leq b \lor x$ and $f(x) \leq c$.

Equivalently, the dual map Spec f: Spec $E \rightarrow$ Spec D sends closed subsets to closed subsets (resp., sends upper subsets to upper subsets).

Proposition

Let $f: G \to H$ be a ℓ -homomorphism between Abelian ℓ -groups. Then $\operatorname{Id}_{c} f: \operatorname{Id}_{c} G \to \operatorname{Id}_{c} H$ is a closed lattice homomorphism.

Proof.

Let $(\mathsf{Id}_{\mathsf{c}} f)(\langle a \rangle) \subseteq (\mathsf{Id}_{\mathsf{c}} f)(\langle b \rangle) \lor \langle c \rangle$, where $a, b \in G^+$ and $c \in H^+$.

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec $_{\ell}$ G / Id_C GNegative results Known positive results

The lattices $\mathsf{Op}(\mathcal{H})$

Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to Op(H)

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Definition

For distributive lattices D and E with zero, a 0-lattice homomorphism $f: D \to E$ is closed if for all $a, b \in D$ and all $c \in E$, $f(a) \leq f(b) \lor c \Rightarrow \exists x \in D, a \leq b \lor x$ and $f(x) \leq c$.

Equivalently, the dual map Spec f: Spec $E \rightarrow$ Spec D sends closed subsets to closed subsets (resp., sends upper subsets to upper subsets).

Proposition

Let $f: G \to H$ be a ℓ -homomorphism between Abelian ℓ -groups. Then $\operatorname{Id}_{c} f: \operatorname{Id}_{c} G \to \operatorname{Id}_{c} H$ is a closed lattice homomorphism.

Proof.

Let $(\operatorname{Id}_{c} f)(\langle a \rangle) \subseteq (\operatorname{Id}_{c} f)(\langle b \rangle) \lor \langle c \rangle$, where $a, b \in G^{+}$ and $c \in H^{+}$. This means that $f(a) \leq nf(b) + nc$, for some $n < \omega$.

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ *G* / Id_C *G* Negative results Known positive results

The lattices Op(ℋ)

Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to Op(H)

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Definition

For distributive lattices D and E with zero, a 0-lattice homomorphism $f: D \to E$ is closed if for all $a, b \in D$ and all $c \in E$, $f(a) \leq f(b) \lor c \Rightarrow \exists x \in D, a \leq b \lor x$ and $f(x) \leq c$.

Equivalently, the dual map Spec f: Spec $E \rightarrow$ Spec D sends closed subsets to closed subsets (resp., sends upper subsets to upper subsets).

Proposition

Let $f: G \to H$ be a ℓ -homomorphism between Abelian ℓ -groups. Then $\operatorname{Id}_{c} f: \operatorname{Id}_{c} G \to \operatorname{Id}_{c} H$ is a closed lattice homomorphism.

Proof.

Let $(\operatorname{Id}_{c} f)(\langle a \rangle) \subseteq (\operatorname{Id}_{c} f)(\langle b \rangle) \vee \langle c \rangle$, where $a, b \in G^{+}$ and $c \in H^{+}$. This means that $f(a) \leq nf(b) + nc$, for some $n < \omega$. Hence $f(x) \leq nc$, where $x = a - (a \wedge nb)$.

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec $_{\ell}$ G / Id_C GNegative results Known positive results

The lattices $\mathsf{Op}(\mathcal{H})$

Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to $Op(\mathcal{H})$ Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Definition

For distributive lattices D and E with zero, a 0-lattice homomorphism $f: D \to E$ is closed if for all $a, b \in D$ and all $c \in E$, $f(a) \leq f(b) \lor c \Rightarrow \exists x \in D, a \leq b \lor x$ and $f(x) \leq c$.

Equivalently, the dual map Spec f: Spec $E \rightarrow$ Spec D sends closed subsets to closed subsets (resp., sends upper subsets to upper subsets).

Proposition

Let $f: G \to H$ be a ℓ -homomorphism between Abelian ℓ -groups. Then $\operatorname{Id}_{c} f: \operatorname{Id}_{c} G \to \operatorname{Id}_{c} H$ is a closed lattice homomorphism.

Proof.

Let $(\operatorname{Id}_{c} f)(\langle a \rangle) \subseteq (\operatorname{Id}_{c} f)(\langle b \rangle) \lor \langle c \rangle$, where $a, b \in G^{+}$ and $c \in H^{+}$. This means that $f(a) \leq nf(b) + nc$, for some $n < \omega$. Hence $f(x) \leq nc$, where $x = a - (a \land nb)$. Therefore, $\langle a \rangle \subseteq \langle b \rangle \lor \langle x \rangle$, with $(\operatorname{Id}_{c} f)(\langle x \rangle) \subseteq \langle c \rangle$.

Closed lattice homomorphisms (cont'd)

Spectral spaces

Generalities The ℓ-spectrum ℓ-representable lattices Additional properties of Specℓ G / Id_C G Negative results Known positive results

The lattices Op(H) Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to Op(H)

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Proposition

Let *G* be an Abelian ℓ -group, let *D* be a distributive lattice with zero. Then every surjective closed lattice homomorphism $f: \operatorname{Id}_{c} G \twoheadrightarrow D$ induces an isomorphism $\operatorname{Id}_{c} (G/I) \to D$, for the ℓ -ideal $I = \{x \in G \mid f(\langle x \rangle) = 0\}$.

Spectral spaces	The aim of what follows is to sketch a proof of the following result:
Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec $_\ell$ G / Idc G Negative results Known positive results	
The lattices Op(H) Basic properties Join-irreducibles and ∇	
Consonance and difference operations Basic properties The Extension Lemma	
Back to $Op(\mathcal{H})$ Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof	
	< ロ > < 団 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > の < つ < つ > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 回 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec $_{\ell}$ *G* / Id_C *G* Negative results Known positive results

Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to Op(H)

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof The aim of what follows is to sketch a proof of the following result:

Theorem (W 2017)

Every countable, completely normal distributive lattice with zero is ℓ -representable.

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec $_{\ell}$ *G* / ld_C *G* Negative results Known positive results

The lattices Op(チ)

Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to Op(H)

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof The aim of what follows is to sketch a proof of the following result:

Theorem (W 2017)

Every countable, completely normal distributive lattice with zero is ℓ -representable.

Equivalently (using Stone's Theorem and Monteiro's result),

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec $_{\ell}$ *G* / Id_C *G* Negative results Known positive results

The lattices Op(H) Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to Op(H)

Extending homomorphisms from Op(90) Concluding the proof The aim of what follows is to sketch a proof of the following result:

Theorem (W 2017)

Every countable, completely normal distributive lattice with zero is $\ell\text{-representable}.$

Equivalently (using Stone's Theorem and Monteiro's result),

Every second countable, completely normal generalized spectral space is the ℓ -spectrum of some Abelian ℓ -group

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec $_{\ell}$ *G* / Id_C *G* Negative results Known positive results

The lattices Op(H) Basic properties Join-irreducibles and ∇

Consonance and difference operations Basic properties The Extension Lemma

Back to $Op(\mathcal{H})$ Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof The aim of what follows is to sketch a proof of the following result:

Theorem (W 2017)

Every countable, completely normal distributive lattice with zero is $\ell\text{-representable}.$

Equivalently (using Stone's Theorem and Monteiro's result),

Every second countable, completely normal generalized spectral space is the ℓ -spectrum of some Abelian ℓ -group

Strategy: starting with a countable, completely normal distributive lattice D with zero, we construct an ascending tower of lattice homomorphisms $f_n: E_n \to D$, where $\bigcup_{n < \omega} E_n = \operatorname{Id}_c F_\ell(\omega)$, with suitably chosen finite E_n and failures of closedness / surjectivity / being defined everywhere corrected at each stage.

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec $_{\ell}$ *G* / ld_c *G* Negative results Known positive results

The lattices Op(H) Basic properties Join-irreducibles and ▽

Consonance and difference operations Basic properties The Extension Lemma

Back to $Op(\mathcal{H})$ Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof The aim of what follows is to sketch a proof of the following result:

Theorem (W 2017)

always be taken completely normal.

Every countable, completely normal distributive lattice with zero is $\ell\text{-representable}.$

Equivalently (using Stone's Theorem and Monteiro's result),

Every second countable, completely normal generalized spectral space is the ℓ -spectrum of some Abelian ℓ -group

Strategy: starting with a countable, completely normal distributive lattice *D* with zero, we construct an ascending tower of lattice homomorphisms $f_n: E_n \to D$, where $\bigcup_{n < \omega} E_n = \operatorname{Id}_c F_\ell(\omega)$, with suitably chosen finite E_n and failures of closedness / surjectivity / being defined everywhere corrected at each stage. A 2004 example by Di Nola and Grigolia shows that the E_n cannot

14/34

イロト イポト イヨト イヨト

Defining $\mathsf{Op}(\mathcal{H})$

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ *G* / Id_C *G* Negative results Known positive results

The lattices Op(ℋ)

Basic properties

and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to Op(H)

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Definition

Let ${\mathcal H}$ be a set of closed hyperplanes in a topological vector space ${\mathbb E}$ over ${\mathbb R}.$

Defining $Op(\mathcal{H})$

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ *G* / Idc *G* Negative results Known positive results

The lattices Op(ℋ)

Basic properties Join-irreducibles

Consonance and difference operations

Basic properties The Extension Lemma

Back to Op(H)

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Definition

Let ${\mathcal H}$ be a set of closed hyperplanes in a topological vector space ${\mathbb E}$ over ${\mathbb R}.$ We set

$$\begin{split} \mathsf{Bool}(\mathcal{H}) &= \text{Boolean subalgebra of the powerset of } \mathbb{E} \\ & \text{generated by all } H^+ \text{ and } H^- \text{ , where } H \in \mathcal{H} \text{ ;} \\ \mathsf{Op}(\mathcal{H}) &= \{\text{open members of } \mathsf{Bool}(\mathcal{H})\} \text{ .} \\ & (\mathsf{The } E_n \text{ will have the form } \mathsf{Op}^-(\mathcal{H}) &= \mathsf{Op}(\mathcal{H}) \setminus \{\mathbb{E}\} \text{ .}) \end{split}$$

Defining $Op(\mathcal{H})$

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec $_{\ell}$ *G* / ldc *G* Negative results Known positive results

The lattices Op(ℋ)

Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to Op(ℋ)

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Definition

Let ${\mathcal H}$ be a set of closed hyperplanes in a topological vector space ${\mathbb E}$ over ${\mathbb R}.$ We set

$$\begin{split} \mathsf{Bool}(\mathcal{H}) &= \mathsf{Boolean} \text{ subalgebra of the powerset of } \mathbb{E} \\ & \mathsf{generated by all } H^+ \text{ and } H^- \text{ , where } H \in \mathcal{H} \text{ ;} \\ \mathsf{Op}(\mathcal{H}) &= \{\mathsf{open members of } \mathsf{Bool}(\mathcal{H})\} \text{ .} \\ & (\mathsf{The } E_n \text{ will have the form } \mathsf{Op}^-(\mathcal{H}) &= \mathsf{Op}(\mathcal{H}) \setminus \{\mathbb{E}\} \text{ .}) \end{split}$$

Lemma

For every $X \in \text{Bool}(\mathcal{H})$, int(X) belongs to $\text{Op}(\mathcal{H})$, and it is a finite union of sets of the form $\bigcap_{i=1}^{n} H_{i}^{\pm}$, where all $H_{i} \in \mathcal{H}$ (basic open sets).

Defining $Op(\mathcal{H})$

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ *G* / Id_C *G* Negative results Known positive results

The lattices Op(H)

Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to Op(ℋ)

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Definition

Let ${\mathcal H}$ be a set of closed hyperplanes in a topological vector space ${\mathbb E}$ over ${\mathbb R}.$ We set

$$\begin{split} \mathsf{Bool}(\mathcal{H}) &= \mathsf{Boolean} \text{ subalgebra of the powerset of } \mathbb{E} \\ & \mathsf{generated by all } H^+ \text{ and } H^- \text{ , where } H \in \mathcal{H} \text{ ;} \\ \mathsf{Op}(\mathcal{H}) &= \{\mathsf{open members of } \mathsf{Bool}(\mathcal{H})\} \text{ .} \\ & (\mathsf{The } E_n \text{ will have the form } \mathsf{Op}^-(\mathcal{H}) &= \mathsf{Op}(\mathcal{H}) \setminus \{\mathbb{E}\} \text{ .}) \end{split}$$

Lemma

For every $X \in \text{Bool}(\mathcal{H})$, int(X) belongs to $Op(\mathcal{H})$, and it is a finite union of sets of the form $\bigcap_{i=1}^{n} H_{i}^{\pm}$, where all $H_{i} \in \mathcal{H}$ (basic open sets). Moreover, $Op(\mathcal{H})$ is a Heyting subalgebra of the algebra of all open subsets of \mathbb{E} .

The operator $\nabla_{\mathcal{H}}$

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ *G* / ld_C *G* Negative results Known positive results

The lattices $Op(\mathcal{H})$ Basic properties Join-irreducibles and ∇

Consonance and difference operations

The Extension Lemma

Back to Op(H)

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof Let ${\mathcal H}$ be a nonempty finite set of closed hyperplanes in a topological vector space ${\mathbb E}.$

The operator $\nabla_{\mathcal{H}}$

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec $\ell \in G / \text{Idc } G$ Negative results Known positive results

The lattices $Op(\mathcal{H})$ Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic propertie The Extension Lemma

Back to Op(H)

homomorphisms from $Op(\mathcal{H})$ Concluding the proof Let \mathcal{H} be a nonempty finite set of closed hyperplanes in a topological vector space \mathbb{E} .

Notation

For $U \in Op(\mathcal{H})$, we set

$$\mathfrak{H}_U \stackrel{}{=} \{ H \in \mathfrak{H} \mid H \cap U \neq \varnothing \} ,$$

 $abla_{\mathcal{H}} U =
abla U \mathop{=}\limits_{\mathrm{def}} \text{intersection of all members of } \mathcal{H}_U$.

The operator $\nabla_{\mathcal{H}}$

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec $_{\ell}$ c / Idc GNegative results Known positive results

The lattices $Op(\mathcal{H})$ Basic properties Join-irreducibles and ∇

Consonance and difference

Basic propertie The Extension Lemma

Back to $Op(\mathcal{H})$ Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof Let \mathcal{H} be a nonempty finite set of closed hyperplanes in a topological vector space \mathbb{E} .

Notation

For $U \in Op(\mathcal{H})$, we set

 ∇

$$\begin{aligned} \mathcal{H}_{\mathcal{U}} &= \{ H \in \mathcal{H} \mid H \cap U \neq \varnothing \} \ , \\ \mathcal{I}_{\mathcal{H}} U &= \nabla U = \text{intersection of all members of } \mathcal{H}_{\mathcal{U}} \end{aligned}$$

Thus, ∇U is a closed subspace of \mathbb{E} , with finite codimension.

•

イロト 不得下 イヨト イヨト 二日

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec $_{\ell}$ *G* / Id_C *G* Negative results Known positive results

The lattices Op(\mathcal{H}) Basic properties Join-irreducibles and ∇

Consonance and difference operations

The Extension Lemma

Back to Op(H)

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

By the above, every join-irreducible member of $Op(\mathcal{H})$ is convex.

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ G / Id_C C Negative results Known positive results

The lattices Op(\mathcal{H}) Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to Op(H)

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof By the above, every join-irreducible member of $Op(\mathcal{H})$ is convex.

Lemma

A convex member P of $Op(\mathcal{H})$ is join-irreducible iff $P \cap \nabla P \neq \emptyset$, in which case $P_* = P \setminus \nabla P$ and $P^{\dagger} = C(cl(P) \cap \nabla P) = Ccl(P \cap \nabla P)$ (the largest $X \in Op(\mathcal{H})$ such that $P \not\subseteq X$).

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ G / ld_c O Negative results Known positive results

The lattices Op(\mathcal{H}) Basic properties Join-irreducibles and ∇

Consonance and difference operations

The Extension Lemma

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof By the above, every join-irreducible member of $Op(\mathcal{H})$ is convex.

Lemma

A convex member P of $Op(\mathcal{H})$ is join-irreducible iff $P \cap \nabla P \neq \emptyset$, in which case $P_* = P \setminus \nabla P$ and $P^{\dagger} = C(cl(P) \cap \nabla P) = Ccl(P \cap \nabla P)$ (the largest $X \in Op(\mathcal{H})$ such that $P \not\subseteq X$).

Recall that in any finite distributive lattice D, p → p[†] is an order-isomorphism between Ji D = {join-irreducibles of D} and Mi D = {meet-irreducibles of D} (with induced ≤ from D).

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ G / ld_c O Negative results Known positive results

The lattices Op(\mathcal{H}) Basic properties Join-irreducibles and ∇

Consonance an difference operations

Basic properties The Extension Lemma

Back to $Op(\mathcal{H})$ Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof By the above, every join-irreducible member of $Op(\mathcal{H})$ is convex.

Lemma

A convex member P of $Op(\mathcal{H})$ is join-irreducible iff $P \cap \nabla P \neq \emptyset$, in which case $P_* = P \setminus \nabla P$ and $P^{\dagger} = C(cl(P) \cap \nabla P) = Ccl(P \cap \nabla P)$ (the largest $X \in Op(\mathcal{H})$ such that $P \not\subseteq X$).

- Recall that in any finite distributive lattice D, p → p[†] is an order-isomorphism between Ji D = {join-irreducibles of D} and Mi D = {meet-irreducibles of D} (with induced ≤ from D).
- Important observation about Op(ℋ): P \ P_{*} = P ∩ ∇P is convex ∀P ∈ Ji Op(ℋ).

Spectral spaces

Generalities

The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ *G* / Id_C *G* Negative results Known positive results

The lattices Op(ℋ) Basic propert

Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to Op(H)

Extending homomorphisms from Op(90) Concluding the proof

Sketch of proof.

Let P be join-irreducible and suppose, by way of contradiction, that $P \cap \nabla P = \varnothing$.

Spectral spaces

Generalities The *l*-specta *l*-representa lattices Additional

properties of Spec $_{\ell}$ G / Id_C O Negative results Known positive results

The lattices Op(H) Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to Op(H)

homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Sketch of proof.

Let P be join-irreducible and suppose, by way of contradiction, that $P \cap \nabla P = \emptyset$. Hence $P \subseteq \bigcup (\mathbb{E} \setminus H \mid H \in \mathcal{H}_P)$.

Spectral spaces

Generalities The *l*-spectrun *l*-representable lattices Additional properties of Spec*l G* / Id_C . Negative result: Known positive

The lattices Op(\mathcal{H}) Basic properties Join-irreducibles and ∇

Consonance and difference

Basic properties The Extension Lemma

Back to Op(34) Extending homomorphisms from Op(34) Concluding the proof

Sketch of proof.

Let P be join-irreducible and suppose, by way of contradiction, that $P \cap \nabla P = \emptyset$. Hence $P \subseteq \bigcup (\mathbb{E} \setminus H \mid H \in \mathcal{H}_P)$. Since P is join-prime, $P \subseteq \mathbb{E} \setminus H$ (i.e., $P \cap H = \emptyset$) for some $H \in \mathcal{H}_P$; a contradiction.

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ G / Idc Negative result

Known positive results The lattices

Op(H) Basic properties Join-irreducibles and ∇

Consonance and difference operations

The Extension Lemma

Back to $Op(\mathcal{H})$ Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Sketch of proof.

Let *P* be join-irreducible and suppose, by way of contradiction, that $P \cap \nabla P = \emptyset$. Hence $P \subseteq |I|(\mathbb{F}) \mid H \in \mathcal{H}_{2}$

Hence $P \subseteq \bigcup (\mathbb{E} \setminus H \mid H \in \mathcal{H}_P)$.

Since *P* is join-prime, $P \subseteq \mathbb{E} \setminus H$ (i.e., $P \cap H = \emptyset$) for some

 $H \in \mathcal{H}_P$; a contradiction.

For the converse, if $P \cap \nabla P \neq \emptyset$, then one proves directly that every proper subset X of P, with $X \in Op(\mathcal{H})$, is contained in $P \setminus \nabla P$.

Spectral spaces

Generalities The *l*-spectru *l*-representab lattices Additional properties of Spece *c* / *l* d

Negative results Known positive results

The lattices Op(H) Basic properties Join-irreducibles and ∇

Consonance and difference operations

The Extension Lemma

Back to $Op(\mathcal{H})$ Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Sketch of proof.

Let P be join-irreducible and suppose, by way of contradiction, that $P \cap \nabla P = \emptyset$. Hence $P \subseteq \bigcup (\mathbb{E} \setminus H \mid H \in \mathcal{H}_P)$. Since P is join-prime, $P \subseteq \mathbb{E} \setminus H$ (i.e., $P \cap H = \emptyset$) for some $H \in \mathcal{H}_P$; a contradiction. For the converse, if $P \cap \nabla P \neq \emptyset$, then one proves directly that every proper subset X of P, with $X \in Op(\mathcal{H})$, is contained in $P \setminus \nabla P$. (For that part of the proof, we may assume that X is join-irreducible.)

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ *G* / Id_C *G* Negative results Known positive results

The lattices Op(\mathcal{H}) Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to Op(H)

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Corollary

Let P and Q be join-irreducibles in Op(\mathcal{H}). Then $P \subsetneq Q$ implies $\nabla Q \subsetneq \nabla P$.

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec $_{\ell}$ *G* / ld_C *G* Negative results Known positive results

The lattices Op(\mathcal{H}) Basic properties Join-irreducibles and ∇

Consonance and difference operations

The Extension Lemma

Back to Op(H)

homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Corollary

Let P and Q be join-irreducibles in Op(\mathcal{H}). Then $P \subsetneq Q$ implies $\nabla Q \subsetneq \nabla P$.

Proof.

By definition, $\mathcal{H}_P \subseteq \mathcal{H}_Q$, thus $\nabla Q = \bigcap \mathcal{H}_Q \subseteq \mathcal{H}_P$.

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec $_{\ell}$ *G* / ld_C *G* Negative results Known positive results

The lattices Op(\mathcal{H}) Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to Op(H) Extending homomorphisms

from Op(H) Concluding the proof

Corollary

Let P and Q be join-irreducibles in Op(\mathcal{H}). Then $P \subsetneq Q$ implies $\nabla Q \subsetneq \nabla P$.

Proof.

By definition, $\mathcal{H}_P \subseteq \mathcal{H}_Q$, thus $\nabla Q = \bigcap \mathcal{H}_Q \subseteq \mathcal{H}_P$. From $P \subsetneq Q$ it follows that $P \subseteq Q_* = Q \setminus \nabla Q$, thus $P \cap \nabla Q = \emptyset$.

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec $_{\ell}$ *G* / ld_C *G* Negative results Known positive results

The lattices Op(\mathcal{H}) Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to Op(H) Extending

homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Corollary

Let P and Q be join-irreducibles in Op(\mathcal{H}). Then $P \subsetneq Q$ implies $\nabla Q \subsetneq \nabla P$.

Proof.

By definition, $\mathcal{H}_P \subseteq \mathcal{H}_Q$, thus $\nabla Q = \bigcap \mathcal{H}_Q \subseteq \mathcal{H}_P$. From $P \subsetneq Q$ it follows that $P \subseteq Q_* = Q \setminus \nabla Q$, thus $P \cap \nabla Q = \emptyset$. Since $P \cap \nabla P \neq \emptyset$, we get $\nabla P \neq \nabla Q$.

Consonance

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ *G* / Id_C *G* Negative results Known positive results

The lattices Op(チ) Basic properti

Join-irreducibles and ∇

Consonance an difference operations

Basic properties The Extension Lemma

Back to Op(94) Extending homomorphisms from Op(96) Concluding the proof

Definition

Let *D* be a distributive lattice with zero. Elements $a, b \in D$ are consonant, in notation $a \sim b$, if $\exists x, y \in D$ such that $a \leq b \lor x$, $b \leq a \lor y$, and $x \land y = 0$ (again: we say that (x, y) is a splitting of (a, b)).

Consonance

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ *G* / Id_C *G* Negative results Known positive results

The lattices Op(チ) Basic properti

Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to Op(94) Extending homomorphisms from Op(96) Concluding the proof

Definition

Let *D* be a distributive lattice with zero. Elements $a, b \in D$ are consonant, in notation $a \sim b$, if $\exists x, y \in D$ such that $a \leq b \lor x$, $b \leq a \lor y$, and $x \land y = 0$ (again: we say that (x, y) is a splitting of (a, b)).

In particular, D is completely normal iff any two elements of D are consonant (i.e., D is a consonant subset of itself).

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ *G* / Id_C *C* Negative results Known positive results

Op(H) Basic proper

Join-irreducibles and ∇

Consonance an difference operations

Basic properties The Extension Lemma

Back to Op(94) Extending homomorphisms from Op(96)

proof

Lemma

1 $a \le b \Rightarrow a \sim b;$ 2 $a \sim b \Rightarrow b \sim a;$ 3 $(a \sim c \text{ and } b \sim c) \Rightarrow (a \lor b \sim c \text{ and } a \land b \sim c).$

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ *G* / Id_C *G* Negative results Known positive results

The lattices Op(H)

Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Extending homomorphisms from Op(90) Concluding the proof

Lemma

1
$$a \le b \Rightarrow a \sim b;$$

2 $a \sim b \Rightarrow b \sim a;$
3 $(a \sim c \text{ and } b \sim c) \Rightarrow (a \lor b \sim c \text{ and } a \land b \sim c).$

Proof.

(1) and (2) are both trivial.

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ *G* / Id_C *G* Negative results Known positive results

The lattices Op(H)

Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to $Op(\mathcal{H})$ Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Lemma

1
$$a \le b \Rightarrow a \sim b;$$

2 $a \sim b \Rightarrow b \sim a;$
3 $(a \sim c \text{ and } b \sim c) \Rightarrow (a \lor b \sim c \text{ and } a \land b \sim c).$

Proof.

(1) and (2) are both trivial. Let $a \leq c \lor x$, $c \leq a \lor x'$, $x \land x' = 0$, $b \leq c \lor y$, $c \leq b \lor y'$, $y \land y' = 0$.

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ *G* / Id_C *G* Negative results Known positive results

The lattices Op(升)

Basic properties Join-irreducibles and ∇

Consonance an difference operations

Basic properties The Extension Lemma

Back to $Op(\mathcal{H})$ Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Lemma

1
$$a \le b \Rightarrow a \sim b;$$

2 $a \sim b \Rightarrow b \sim a;$
3 $(a \sim c \text{ and } b \sim c) \Rightarrow (a \lor b \sim c \text{ and } a \land b \sim c).$

Proof.

(1) and (2) are both trivial. Let $a \le c \lor x$, $c \le a \lor x'$, $x \land x' = 0$, $b \le c \lor y$, $c \le b \lor y'$, $y \land y' = 0$. Then $a \lor b \le c \lor (x \lor y)$, $c \le (a \lor b) \lor (x' \land y')$, and $(x \lor y) \land (x' \land y') = 0$.

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ *G* / Id_C *G* Negative results Known positive results

The lattices Op(升)

Basic properties Join-irreducibles and ∇

Consonance an difference operations

Basic properties The Extension Lemma

Back to $Op(\mathcal{H})$ Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Lemma

1
$$a \le b \Rightarrow a \sim b;$$

2 $a \sim b \Rightarrow b \sim a;$
3 $(a \sim c \text{ and } b \sim c) \Rightarrow (a \lor b \sim c \text{ and } a \land b \sim c).$

Proof.

(1) and (2) are both trivial. Let $a \le c \lor x$, $c \le a \lor x'$, $x \land x' = 0$, $b \le c \lor y$, $c \le b \lor y'$, $y \land y' = 0$. Then $a \lor b \le c \lor (x \lor y)$, $c \le (a \lor b) \lor (x' \land y')$, and $(x \lor y) \land (x' \land y') = 0$. Hence, $a \lor b \sim c$.

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ *G* / Id_C *G* Negative results Known positive results

The lattices Op(升)

Basic properties Join-irreducibles and ∇

Consonance an difference operations

Basic properties The Extension Lemma

Back to $Op(\mathcal{H})$ Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Lemma

1
$$a \le b \Rightarrow a \sim b;$$

2 $a \sim b \Rightarrow b \sim a;$
3 $(a \sim c \text{ and } b \sim c) \Rightarrow (a \lor b \sim c \text{ and } a \land b \sim c)$

Proof.

(1) and (2) are both trivial. Let $a \le c \lor x$, $c \le a \lor x'$, $x \land x' = 0$, $b \le c \lor y$, $c \le b \lor y'$, $y \land y' = 0$. Then $a \lor b \le c \lor (x \lor y)$, $c \le (a \lor b) \lor (x' \land y')$, and $(x \lor y) \land (x' \land y') = 0$. Hence, $a \lor b \sim c$. The proof that $a \land b \sim c$ is similar.

Definition

Spectral spaces

Generalities

The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ *G* / Id_C *G* Negative results Known positive results

The lattices Op(H)

Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to Op(H) Extending homomorphisms

Concluding th proof

Let L be a lattice and let S be a lattice with zero. A map $L \times L \rightarrow S$, $(x, y) \mapsto x \smallsetminus y$ is a difference operation if

Spectral spaces

Generalities The *l*-spec

Additional properties of Specℓ G / Idc • Negative result: Known positive results

The lattices Op(H)

Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to $Op(\mathcal{H})$ Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Definition

Let *L* be a lattice and let *S* be a lattice with zero. A map $L \times L \rightarrow S$, $(x, y) \mapsto x \setminus y$ is a difference operation if $x \setminus x = 0, \forall x \in L;$

2
$$x \setminus z = (x \setminus y) \lor (y \setminus z)$$
, whenever $x \ge y \ge z$ in L;

$$x \setminus y = (x \lor y) \setminus y = x \setminus (x \land y), \forall x, y \in L.$$

Spectral spaces

Generalities

l-representable lattices Additional properties of Spec ℓ *G* / Idc *G* Negative results Known positive results

The lattices Op(チ)

Basic properties Join-irreducibles and ∇

Consonance an difference operations

Basic properties The Extension Lemma

Back to $Op(\mathcal{H})$ Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Definition

Let *L* be a lattice and let *S* be a lattice with zero. A map $L \times L \rightarrow S$, $(x, y) \mapsto x \smallsetminus y$ is a difference operation if

- 1 $x \smallsetminus x = 0, \forall x \in L;$
- 2 $x \setminus z = (x \setminus y) \lor (y \setminus z)$, whenever $x \ge y \ge z$ in *L*;
- $x \setminus y = (x \lor y) \setminus y = x \setminus (x \land y), \forall x, y \in L.$

It is a normal difference operation if $(x \setminus y) \land (y \setminus x) = 0 \ \forall x, y \in L$.

Spectral spaces

Generalities

l-representable lattices Additional properties of $\operatorname{Spec}_{\ell} G / \operatorname{Id}_{C} \circ$ Negative results Known positive results

The lattices Op(ℋ)

Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to $Op(\mathcal{H})$ Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Let *L* be a lattice and let *S* be a lattice with zero. A map $L \times L \rightarrow S$, $(x, y) \mapsto x \smallsetminus y$ is a difference operation if

1 $x \smallsetminus x = 0, \forall x \in L;$

Definition

- 2 $x \setminus z = (x \setminus y) \lor (y \setminus z)$, whenever $x \ge y \ge z$ in *L*;

It is a normal difference operation if $(x \setminus y) \land (y \setminus x) = 0 \ \forall x, y \in L$.

Lemma (*Triangle Inequality*)

 $x \smallsetminus z \leq (x \smallsetminus y) \lor (y \smallsetminus z), \forall x, y, z \in L.$

Spectral spaces

Generalities

The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ *G* / ld_C *G* Negative results Known positive results

The lattices Op(チ)

Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to $Op(\mathcal{H})$ Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Definition

Let L be a lattice and let S be a lattice with zero. A map $L \times L \rightarrow S$, $(x, y) \mapsto x \smallsetminus y$ is a difference operation if

- 1 $x \smallsetminus x = 0, \forall x \in L;$
- 2 $x \setminus z = (x \setminus y) \lor (y \setminus z)$, whenever $x \ge y \ge z$ in *L*;
- $x \setminus y = (x \lor y) \setminus y = x \setminus (x \land y), \ \forall x, y \in L.$

It is a normal difference operation if $(x \setminus y) \land (y \setminus x) = 0 \ \forall x, y \in L$.

Lemma (*Triangle Inequality*)

 $x \setminus z \leq (x \setminus y) \lor (y \setminus z), \forall x, y, z \in L.$

Lemma

Let *L* be finite. Then $a \setminus b = \bigvee (p \setminus p_* \mid p \in \text{Ji } L, p \leq a, p \nleq b)$, $\forall a, b \in L$.

3

イロト 不同 トイヨト イヨト

Pseudo-differences again

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec $_{\ell}$ *G* / Id_C *G* Negative results Known positive results

The lattices Op(H) Basic propert

Join-irreducibles and ∇

Consonance an difference operations

Basic properties The Extension Lemma

Back to $Op(\mathcal{H})$

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Lemma

Let *D* be a finite distributive lattice. Then the pseudo-difference, $(x, y) \mapsto x \searrow_D y =$ least $z \in D$ such that $x \le y \lor z$, is a *D*-valued difference operation on *D*, normal on every consonant sublattice of *D*.

Pseudo-differences again

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ *G* / Id_C *G* Negative results Known positive results

The lattices Op(ℋ) Basic properties Join-irreducibles and ▽

Consonance anc difference operations

Basic properties The Extension Lemma

Back to $Op(\mathcal{H})$

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Lemma

Let *D* be a finite distributive lattice. Then the pseudo-difference, $(x, y) \mapsto x \searrow_D y =$ least $z \in D$ such that $x \le y \lor z$, is a *D*-valued difference operation on *D*, normal on every consonant sublattice of *D*.

Now we state two lemmas that will be crucial for further computations.

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ *G* / ld_C *G* Negative results Known positive results

The lattices Op(チ) Basic propert

Join-irreducibles and ∇

Consonance an difference operations

Basic properties The Extension Lemma

Back to $Op(\mathcal{H})$

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Lemma

Let D be a finite distributive lattice and let $a_1, a_2, b \in D$. Then

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec $_{\ell}$ G / Id_C G Negative results Known positive results

The lattices Op(升)

Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to $Op(\mathcal{H})$

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Lemma

Let *D* be a finite distributive lattice and let $a_1, a_2, b \in D$. Then 1 $(a_1 \lor a_2) \searrow_D b = (a_1 \searrow_D b) \lor (a_2 \searrow_D b);$ 2 if $a_1 \sim a_2$, then $(a_1 \land a_2) \searrow_D b = (a_1 \searrow_D b) \land (a_2 \searrow_D b);$

3 the dual statements ($\leq \rightleftharpoons \geq$) hold.

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ *G* / Id_C *G* Negative results Known positive results

The lattices Op(H)

Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to Op(H)

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Lemma

Let *D* be a finite distributive lattice and let $a_1, a_2, b \in D$. Then 1 $(a_1 \lor a_2) \searrow_D b = (a_1 \bigtriangledown_D b) \lor (a_2 \bigtriangledown_D b);$ 2 if $a_1 \sim a_2$, then $(a_1 \land a_2) \searrow_D b = (a_1 \bigtriangledown_D b) \land (a_2 \bigtriangledown_D b);$ 1 the dual statements $(a_1 \land a_2) \lor_D b = (a_1 \lor_D b) \land (a_2 \lor_D b);$

3 the dual statements ($\leq \rightleftharpoons \geq$) hold.

Proof.

(1) is straightforward. Let us see (2).

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ *G* / Id_C *G* Negative results Known positive results

The lattices Op(H)

Basic properties Join-irreducibles and ∇

Consonance an difference operations

Basic properties The Extension Lemma

Back to $Op(\mathcal{H})$

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Lemma

Let *D* be a finite distributive lattice and let $a_1, a_2, b \in D$. Then 1 $(a_1 \lor a_2) \searrow_D b = (a_1 \searrow_D b) \lor (a_2 \searrow_D b);$ 2 if $a_1 \sim a_2$, then $(a_1 \land a_2) \searrow_D b = (a_1 \searrow_D b) \land (a_2 \searrow_D b);$ 3 the dual statements $(\leq i \geq 2)$ hold.

Proof.

(1) is straightforward. Let us see (2).

$$\begin{aligned} \mathsf{a}_1 \searrow_D b &\leq \left(\mathsf{a}_1 \searrow_D \left(\mathsf{a}_1 \land \mathsf{a}_2\right)\right) \lor \left(\left(\mathsf{a}_1 \land \mathsf{a}_2\right) \searrow_D b\right) \\ &= \left(\mathsf{a}_1 \searrow_D \mathsf{a}_2\right) \lor \left(\left(\mathsf{a}_1 \land \mathsf{a}_2\right) \searrow_D b\right). \end{aligned}$$

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ *G* / Id_C *G* Negative results Known positive results

The lattices Op(H) Basic proper

Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to $Op(\mathcal{H})$

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Lemma

Let *D* be a finite distributive lattice and let $a_1, a_2, b \in D$. Then 1 $(a_1 \lor a_2) \searrow_D b = (a_1 \searrow_D b) \lor (a_2 \searrow_D b);$ 2 if $a_1 \sim a_2$, then $(a_1 \land a_2) \searrow_D b = (a_1 \searrow_D b) \land (a_2 \searrow_D b);$ 3 the dual statements $(\leq i \geq 2)$ hold.

Proof.

(1) is straightforward. Let us see (2).

$$\begin{aligned} \mathsf{a}_1 \searrow_D b &\leq \left(\mathsf{a}_1 \searrow_D \left(\mathsf{a}_1 \land \mathsf{a}_2\right)\right) \lor \left(\left(\mathsf{a}_1 \land \mathsf{a}_2\right) \searrow_D b\right) \\ &= \left(\mathsf{a}_1 \searrow_D \mathsf{a}_2\right) \lor \left(\left(\mathsf{a}_1 \land \mathsf{a}_2\right) \searrow_D b\right). \end{aligned}$$

Likewise, $a_2 \searrow_D b \leq (a_2 \searrow_D a_1) \lor ((a_1 \land a_2) \searrow_D b)$.

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ *G* / Id_C *G* Negative results Known positive results

The lattices Op(H) Basic propert

Join-irreducibles and ∇

Consonance an difference operations

Basic properties The Extension Lemma

Back to $Op(\mathcal{H})$

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Lemma

Let *D* be a finite distributive lattice and let $a_1, a_2, b \in D$. Then 1 $(a_1 \lor a_2) \searrow_D b = (a_1 \searrow_D b) \lor (a_2 \searrow_D b);$ 2 if $a_1 \sim a_2$, then $(a_1 \land a_2) \searrow_D b = (a_1 \searrow_D b) \land (a_2 \searrow_D b);$ 3 the dual statements $(\leq i \geq b)$ hold.

Proof.

(1) is straightforward. Let us see (2).

$$\begin{aligned} \mathsf{a}_1 \searrow_D b &\leq \left(\mathsf{a}_1 \searrow_D \left(\mathsf{a}_1 \land \mathsf{a}_2\right)\right) \lor \left(\left(\mathsf{a}_1 \land \mathsf{a}_2\right) \searrow_D b\right) \\ &= \left(\mathsf{a}_1 \searrow_D \mathsf{a}_2\right) \lor \left(\left(\mathsf{a}_1 \land \mathsf{a}_2\right) \searrow_D b\right). \end{aligned}$$

Likewise, $a_2 \searrow_D b \le (a_2 \searrow_D a_1) \lor ((a_1 \land a_2) \searrow_D b)$. The relation $a_1 \sim a_2$ can be rewritten $(a_1 \searrow_D a_2) \land (a_2 \searrow_D a_1) = 0$.

First crucial lemma

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ *G* / Id_C *G* Negative results Known positive results

The lattices Op(H) Basic propert

Join-irreducibles and ∇

Consonance an difference operations

Basic properties The Extension Lemma

Back to $Op(\mathcal{H})$

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Lemma

Let *D* be a finite distributive lattice and let $a_1, a_2, b \in D$. Then 1 $(a_1 \lor a_2) \searrow_D b = (a_1 \searrow_D b) \lor (a_2 \searrow_D b);$ 2 if $a_1 \sim a_2$, then $(a_1 \land a_2) \searrow_D b = (a_1 \searrow_D b) \land (a_2 \searrow_D b);$ 3 the dual statements $(\leq i \geq 2)$ hold.

Proof.

(1) is straightforward. Let us see (2).

$$\begin{aligned} a_1 \searrow_D b &\leq (a_1 \searrow_D (a_1 \land a_2)) \lor ((a_1 \land a_2) \searrow_D b) \\ &= (a_1 \searrow_D a_2) \lor ((a_1 \land a_2) \searrow_D b) \,. \end{aligned}$$

Likewise, $a_2 \searrow_D b \le (a_2 \searrow_D a_1) \lor ((a_1 \land a_2) \searrow_D b)$. The relation $a_1 \sim a_2$ can be rewritten $(a_1 \searrow_D a_2) \land (a_2 \searrow_D a_1) = 0$. Thus (distributivity) $(a_1 \searrow_D b) \land (a_2 \searrow_D b) \le (a_1 \land a_2) \searrow_D b$.

Second crucial lemma

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec $_{\ell}$ *G* / Id_C *G* Negative results Known positive results

The lattices Op(H)

Join-irreducibles and ∇

Consonance an difference operations

Basic properties The Extension Lemma

Back to $Op(\mathcal{H})$

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Lemma

If $a_1 \sim a_2$ and $a_1 \wedge a_2 \leq b_1 \wedge b_2$, then $(a_1 \smallsetminus_D b_1) \wedge (a_2 \smallsetminus_D b_2) = 0$.

Second crucial lemma

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec $_{\ell}$ *G* / Id_C *G* Negative results Known positive results

The lattices Op(チ)

Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to $Op(\mathcal{H})$

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Lemma

If $a_1 \sim a_2$ and $a_1 \wedge a_2 \leq b_1 \wedge b_2$, then $(a_1 \smallsetminus_D b_1) \wedge (a_2 \smallsetminus_D b_2) = 0$.

Proof.

Set
$$b = b_1 \wedge b_2$$
. We compute

・ロ・・四・・ヨ・・ヨ・ ヨー うへぐ

Second crucial lemma

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec $_{\ell}$ *G* / Id_C *G* Negative results Known positive results

The lattices Op(升)

Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to Op(H)

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Lemma

If $a_1 \sim a_2$ and $a_1 \wedge a_2 \leq b_1 \wedge b_2$, then $(a_1 \smallsetminus_D b_1) \wedge (a_2 \smallsetminus_D b_2) = 0$.

Proof.

Set $b = b_1 \wedge b_2$. We compute

$$(a_1 \searrow_D b_1) \land (a_2 \searrow_D b_2) \le (a_1 \searrow_D b) \land (a_2 \searrow_D b)$$

= $(a_1 \land a_2) \searrow_D b$ (because $a_1 \sim a_2$)
= 0 (because $a_1 \land a_2 \le b$).

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec $_{\ell}$ *G* / ld_c *G* Negative results Known positive results

The lattices Op(H)

Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to $Op(\mathcal{H})$

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof Problem: we are given finite distributive lattices E and L, a 0, 1-sublattice D of E, and a 0-lattice homomorphism $f: D \rightarrow L$.

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ *G* / ldc *G* Negative results Known positive results

The lattices Op(允)

Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to $Op(\mathcal{H})$

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof Problem: we are given finite distributive lattices E and L, a 0, 1-sublattice D of E, and a 0-lattice homomorphism $f: D \rightarrow L$. Find a sufficient condition for f to have an extension to a lattice homomorphism $g: E \rightarrow L$.

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ *G* / Idc *G* Negative results Known positive results

The lattices Op(H)

Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to Op(H)

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof Problem: we are given finite distributive lattices E and L, a 0, 1-sublattice D of E, and a 0-lattice homomorphism $f: D \rightarrow L$. Find a sufficient condition for f to have an extension to a lattice homomorphism $g: E \rightarrow L$.

Extension Lemma for lattices

Suppose that there are $a, b \in E$ such that the following statements hold:

Spectral spaces

- Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ *G* / Id_C *G* Negative results Known positive results
- The lattices Op(H)
- Basic properties Join-irreducibles and ∇
- Consonance an difference operations
- Basic propertie The Extension Lemma

Back to $Op(\mathcal{H})$

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof Problem: we are given finite distributive lattices E and L, a 0, 1-sublattice D of E, and a 0-lattice homomorphism $f: D \rightarrow L$. Find a sufficient condition for f to have an extension to a lattice homomorphism $g: E \rightarrow L$.

Extension Lemma for lattices

Suppose that there are $a, b \in E$ such that the following statements hold:

- **1** (The range of) *f* is consonant in *L*;
- **2** E = D[a, b];
- **3** D is a Heyting subalgebra of E;
- **4** $a \wedge b = 0;$

5 $\forall p \in \text{Ji } D, p \leq p_* \lor a \lor b \Rightarrow (p \leq p_* \lor a \text{ or } p \leq p_* \lor b);$

∀p, q ∈ Ji D, (p ≤ p_{*} ∨ a and q ≤ q_{*} ∨ b) ⇒ (p and q are incomparable).

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ *G* / Id_C *G* Negative results Known positive results

The lattices Op(ℋ)

Basic properties Join-irreducibles and ∇

Consonance an difference operations

Basic propertie The Extension Lemma

Back to $Op(\mathcal{H})$

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof Problem: we are given finite distributive lattices E and L, a 0, 1-sublattice D of E, and a 0-lattice homomorphism $f: D \rightarrow L$. Find a sufficient condition for f to have an extension to a lattice homomorphism $g: E \rightarrow L$.

Extension Lemma for lattices

Suppose that there are $a, b \in E$ such that the following statements hold:

1 (The range of) *f* is consonant in *L*;

2
$$E = D[a, b];$$

- **3** D is a Heyting subalgebra of E;
- **4** $a \wedge b = 0;$

5 $\forall p \in \text{Ji } D, \ p \leq p_* \lor a \lor b \Rightarrow (p \leq p_* \lor a \text{ or } p \leq p_* \lor b);$

∀p, q ∈ Ji D, (p ≤ p_{*} ∨ a and q ≤ q_{*} ∨ b) ⇒ (p and q are incomparable).

Then such an extension g exists, with $g(a) = f_*(a)$ and $g(b) = f_*(b)$, where $f_*(t) = \bigvee (f(p) \searrow_L f(p_*) \mid p \in \text{Ji } D, p \leq p_* \lor t), \forall t \in E$.

We want to define

Spectral spaces

- Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec $_{\ell}$ G / ldc G Negative results Known positive results
- The lattices Op(H)
- Join-irreducibles and ∇
- Consonance and difference operations
- Basic properties The Extension Lemma

Back to $Op(\mathcal{H})$

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ / Id_c o Negative results Known positive results

The lattices Op(ℋ)

Basic properties Join-irreducibles and ∇

Consonance an difference operations

Basic properties The Extension Lemma

Back to $Op(\mathcal{H})$

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

- We want to define $g((x \land a) \lor (y \land b) \lor z) \stackrel{=}{_{def}} (f(x) \land f_*(a)) \lor (f(y) \land f_*(b)) \lor f(z)$ $\forall x, y, z \in D$. We must verify certain compatibility relations.
- $(x, y) \mapsto f(x) \searrow_L f(y)$ defines a normal difference operation $D \times D \to L$.

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ / Id_c G Negative results Known positive results

The lattices Op(H)

Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to $Op(\mathcal{H})$

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

- We want to define
 - $g((x \land a) \lor (y \land b) \lor z) = (f(x) \land f_*(a)) \lor (f(y) \land f_*(b)) \lor f(z)$ $\forall x, y, z \in D. \text{ We must verify certain compatibility relations.}$
 - $(x, y) \mapsto f(x) \searrow_L f(y)$ defines a normal difference operation $D \times D \to L$.
 - We must prove, for example, that $\forall x, y \in D, x \leq y \lor a \lor b$ implies $f(x) \leq f(y) \lor f_*(a) \lor f_*(b)$. That is, $f(x) \searrow_L f(y) \leq f_*(a) \lor f_*(b)$.

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ G / Id_c G Negative results Known positive results

The lattices Op(ℋ)

Basic properties Join-irreducibles and ∇

Consonance an difference operations

Basic properties The Extension Lemma

Back to $Op(\mathcal{H})$

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof

- We want to define
 - $g((x \land a) \lor (y \land b) \lor z) = (f(x) \land f_*(a)) \lor (f(y) \land f_*(b)) \lor f(z)$ $\forall x, y, z \in D. \text{ We must verify certain compatibility relations.}$
- $(x, y) \mapsto f(x) \searrow_L f(y)$ defines a normal difference operation $D \times D \to L$.
- We must prove, for example, that $\forall x, y \in D, x \leq y \lor a \lor b$ implies $f(x) \leq f(y) \lor f_*(a) \lor f_*(b)$. That is, $f(x) \searrow_L f(y) \leq f_*(a) \lor f_*(b)$.
- We may assume that $x = p \in \text{Ji } D$ and $y = p_*$.

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ G / Id_c G Negative results Known positive results

The lattices Op(H)

Basic properties Join-irreducibles and ∇

Consonance an difference operations

Basic properties The Extension Lemma

Back to $Op(\mathcal{H})$

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof We want to define

- $(x, y) \mapsto f(x) \searrow_L f(y)$ defines a normal difference operation $D \times D \to L$.
- We must prove, for example, that $\forall x, y \in D, x \leq y \lor a \lor b$ implies $f(x) \leq f(y) \lor f_*(a) \lor f_*(b)$. That is, $f(x) \searrow_L f(y) \leq f_*(a) \lor f_*(b)$.
- We may assume that $x = p \in \text{Ji } D$ and $y = p_*$.
- By Assumption (5), either $p \leq p_* \lor a$ or $p \leq p_* \lor b$.

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ G / Id_C G Negative results Known positive results

The lattices Op(H)

Basic properties Join-irreducibles and ∇

Consonance an difference operations

Basic properties The Extension Lemma

Back to $Op(\mathcal{H})$

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof We want to define

- $(x, y) \mapsto f(x) \searrow_L f(y)$ defines a normal difference operation $D \times D \to L$.
- We must prove, for example, that $\forall x, y \in D, x \leq y \lor a \lor b$ implies $f(x) \leq f(y) \lor f_*(a) \lor f_*(b)$. That is, $f(x) \searrow_L f(y) \leq f_*(a) \lor f_*(b)$.
- We may assume that $x = p \in \text{Ji } D$ and $y = p_*$.
- By Assumption (5), either $p \leq p_* \lor a$ or $p \leq p_* \lor b$.
- By the definitions of f_{*}(a) and f_{*}(b), either f(p) ≤ f(p_{*}) ∨ f_{*}(a) or f(p) ≤ f(p) ∨ f_{*}(b), so we are done here.

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ G / Id_c G Negative results Known positive results

The lattices Op(H)

Basic properties Join-irreducibles and ∇

Consonance an difference operations

Basic properties The Extension Lemma

Back to Op(H)

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof We want to define

- $(x, y) \mapsto f(x) \searrow_L f(y)$ defines a normal difference operation $D \times D \to L$.
- We must prove, for example, that $\forall x, y \in D, x \leq y \lor a \lor b$ implies $f(x) \leq f(y) \lor f_*(a) \lor f_*(b)$. That is, $f(x) \searrow_L f(y) \leq f_*(a) \lor f_*(b)$.
- We may assume that $x = p \in \text{Ji } D$ and $y = p_*$.
- By Assumption (5), either $p \leq p_* \lor a$ or $p \leq p_* \lor b$.
- By the definitions of f_{*}(a) and f_{*}(b), either f(p) ≤ f(p_{*}) ∨ f_{*}(a) or f(p) ≤ f(p) ∨ f_{*}(b), so we are done here.
- Assumption (3) used for $x \land a \leq y \Rightarrow f(x) \land f_*(a) \leq f(y)$.

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ G / Id_c G Negative results Known positive results

The lattices Op(H)

Basic properties Join-irreducibles and ∇

Consonance an difference operations

Basic properties The Extension Lemma

Back to Op(H)

Extending homomorphisms from $Op(\mathcal{H})$ Concluding the proof We want to define

- $(x, y) \mapsto f(x) \searrow_L f(y)$ defines a normal difference operation $D \times D \to L$.
- We must prove, for example, that $\forall x, y \in D, x \leq y \lor a \lor b$ implies $f(x) \leq f(y) \lor f_*(a) \lor f_*(b)$. That is, $f(x) \searrow_L f(y) \leq f_*(a) \lor f_*(b)$.
- We may assume that $x = p \in \text{Ji } D$ and $y = p_*$.
- By Assumption (5), either $p \leq p_* \lor a$ or $p \leq p_* \lor b$.
- By the definitions of f_{*}(a) and f_{*}(b), either f(p) ≤ f(p_{*}) ∨ f_{*}(a) or f(p) ≤ f(p) ∨ f_{*}(b), so we are done here.
- Assumption (3) used for $x \land a \leq y \Rightarrow f(x) \land f_*(a) \leq f(y)$.
- Assumption (6) used for $f_*(a) \wedge f_*(b) = 0$.

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ *G* / Idc *G* Negative results Known positive results

The lattices Op(チ)

Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to $Op(\mathcal{H})$

Extending homomorphisms from $Op(\mathcal{H})$

Concluding the proof

Extension Lemma for $Op(\mathcal{H})$

Let \mathcal{H} be a finite set of closed hyperplanes in a topological vector space \mathbb{E} , let H be a closed hyperplane of \mathbb{E} , and let L be a finite distributive lattice.

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ *G* / Id_C *G* Negative results Known positive results

The lattices Op(ℋ)

Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to $Op(\mathcal{H})$

Extending homomorphisms from $Op(\mathcal{H})$

Concluding the proof

Extension Lemma for $Op(\mathcal{H})$

Let \mathcal{H} be a finite set of closed hyperplanes in a topological vector space \mathbb{E} , let H be a closed hyperplane of \mathbb{E} , and let L be a finite distributive lattice. Then every consonant 0-lattice homomorphism $f: \operatorname{Op}(\mathcal{H}) \to L$ can be extended to a unique lattice homomorphism $g: \operatorname{Op}(\mathcal{H} \cup \{H\}) \to L$ such that $g(H^{\pm}) = f_*(H^{\pm})$, where

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec $_{\ell}$ *G* / ld_C *G* Negative results Known positive results

Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to $Op(\mathcal{H})$

Extending homomorphisms from $Op(\mathcal{H})$

Concluding the proof

Extension Lemma for $Op(\mathcal{H})$

Let \mathcal{H} be a finite set of closed hyperplanes in a topological vector space \mathbb{E} , let H be a closed hyperplane of \mathbb{E} , and let L be a finite distributive lattice. Then every consonant 0-lattice homomorphism $f: \operatorname{Op}(\mathcal{H}) \to L$ can be extended to a unique lattice homomorphism $g: \operatorname{Op}(\mathcal{H} \cup \{H\}) \to L$ such that $g(H^{\pm}) = f_*(H^{\pm})$, where

$$f_*(U) \stackrel{=}{\underset{\mathrm{def}}{\longrightarrow}} \bigvee (f(P) \searrow_L f(P_*) \mid P \in \operatorname{Ji} D, \ P \cap \nabla P \subseteq U) \ , \ \forall U \, .$$

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec $_{\ell}$ *G* / ld_C *G* Negative results Known positive results

The lattices Op(H)

Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic propertie The Extension Lemma

Back to Op(H)

Extending homomorphisms from $Op(\mathcal{H})$

Concluding th proof

Extension Lemma for $Op(\mathcal{H})$

Let \mathcal{H} be a finite set of closed hyperplanes in a topological vector space \mathbb{E} , let H be a closed hyperplane of \mathbb{E} , and let L be a finite distributive lattice. Then every consonant 0-lattice homomorphism $f: \operatorname{Op}(\mathcal{H}) \to L$ can be extended to a unique lattice homomorphism $g: \operatorname{Op}(\mathcal{H} \cup \{H\}) \to L$ such that $g(H^{\pm}) = f_*(H^{\pm})$, where

$$f_*(U) \stackrel{=}{\underset{\mathrm{def}}{\longrightarrow}} \bigvee (f(P) \searrow_L f(P_*) \mid P \in \operatorname{Ji} D, \ P \cap \nabla P \subseteq U) \ , \ \forall U \, .$$

Outline of proof. Verify one by one the conditions of the Extension Lemma for lattices, with $D := Op(\mathcal{H})$, $E := Op(\mathcal{H} \cup \{H\})$, $a := H^+$, and $b := H^-$.

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ *G* / Id_C *G* Negative results Known positive results

Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic propertie The Extension Lemma

Back to $Op(\mathcal{H})$

Extending homomorphisms from $Op(\mathcal{H})$

Concluding the proof

Extension Lemma for $Op(\mathcal{H})$

Let \mathcal{H} be a finite set of closed hyperplanes in a topological vector space \mathbb{E} , let H be a closed hyperplane of \mathbb{E} , and let L be a finite distributive lattice. Then every consonant 0-lattice homomorphism $f: \operatorname{Op}(\mathcal{H}) \to L$ can be extended to a unique lattice homomorphism $g: \operatorname{Op}(\mathcal{H} \cup \{H\}) \to L$ such that $g(H^{\pm}) = f_*(H^{\pm})$, where

$$f_*(U) \stackrel{=}{\underset{\mathrm{def}}{\longrightarrow}} \bigvee (f(P) \searrow_L f(P_*) \mid P \in \operatorname{Ji} D, \ P \cap \nabla P \subseteq U) \ , \ \forall U \, .$$

Outline of proof. Verify one by one the conditions of the Extension Lemma for lattices, with $D := Op(\mathcal{H})$, $E := Op(\mathcal{H} \cup \{H\})$, $a := H^+$, and $b := H^-$.

Every basic open set in $Op(\mathcal{H} \cup \{H\})$ has the form U or $U \cap H^{\pm}$, where U is basic open in $Op(\mathcal{H})$; whence E = D[a, b].

イロト 不得下 イヨト イヨト 二日

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec $_{\ell}$ *G* / ld_C *G* Negative results Known positive results

The lattices Op(H)

Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to $Op(\mathcal{H})$

Extending homomorphisms from Op(*H*)

Concluding the proof Both D = Op(ℋ) and E = Op(ℋ ∪ {H}) are Heyting subalgebras of the lattice of all open subsets of 𝔅; whence D is a Heyting subalgebra of E.

・ロト・西ト・西ト・西・ うらく

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ G / Idc G Negative results Known positive results

The lattices Op(チ)

Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to $Op(\mathcal{H})$

Extending homomorphisms from Op(*H*)

Concluding the proof ■ Both D = Op(H) and E = Op(H ∪ {H}) are Heyting subalgebras of the lattice of all open subsets of E; whence D is a Heyting subalgebra of E.

Condition (4) now. Let $P \subseteq P_* \cup H^+ \cup H^-$, that is, $P \cap \nabla P \subseteq H^+ \cup H^-$.

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ *G* / Id_C *G* Negative results Known positive results

Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to $Op(\mathcal{H})$

Extending homomorphisms from $Op(\mathcal{H})$

Concluding the proof ■ Both D = Op(H) and E = Op(H ∪ {H}) are Heyting subalgebras of the lattice of all open subsets of E; whence D is a Heyting subalgebra of E.

Condition (4) now. Let $P \subseteq P_* \cup H^+ \cup H^-$, that is, $P \cap \nabla P \subseteq H^+ \cup H^-$.

Since $P \cap \nabla P$ is convex, either $P \cap \nabla P \subseteq H^+$ or $P \cap \nabla P \subseteq H^-$, that is, either $P \subseteq P_* \cup H^+$ or $P \subseteq P_* \cup H^-$.

Spectral spaces

- Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spe ℓ_{ℓ} G / Id_c G Negative results Known positive results
- The lattices Op(H)
- Basic properties Join-irreducibles and ∇
- Consonance and difference operations
- Basic properties The Extension Lemma

Back to $Op(\mathcal{H})$

Extending homomorphisms from $Op(\mathcal{H})$

Concluding th proof

- Both D = Op(H) and E = Op(H ∪ {H}) are Heyting subalgebras of the lattice of all open subsets of E; whence D is a Heyting subalgebra of E.
- Condition (4) now. Let $P \subseteq P_* \cup H^+ \cup H^-$, that is, $P \cap \nabla P \subseteq H^+ \cup H^-$.
- Since $P \cap \nabla P$ is convex, either $P \cap \nabla P \subseteq H^+$ or $P \cap \nabla P \subseteq H^-$, that is, either $P \subseteq P_* \cup H^+$ or $P \subseteq P_* \cup H^-$.
- Condition (5) now. Let $P \cap \nabla P \subseteq H^+$ and $Q \cap \nabla Q \subseteq H^-$. Suppose, by way of contradiction, that $P \subseteq Q$.

Spectral spaces

- Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spe ℓ_{ℓ} G / Id_c G Negative results Known positive results
- The lattices Op(H)
- Basic properties Join-irreducibles and ∇
- Consonance an difference operations
- Basic properties The Extension Lemma

Back to $Op(\mathcal{H})$

Extending homomorphisms from $Op(\mathcal{H})$

Concluding th proof

- Both D = Op(H) and E = Op(H ∪ {H}) are Heyting subalgebras of the lattice of all open subsets of E; whence D is a Heyting subalgebra of E.
- Condition (4) now. Let $P \subseteq P_* \cup H^+ \cup H^-$, that is, $P \cap \nabla P \subseteq H^+ \cup H^-$.
- Since $P \cap \nabla P$ is convex, either $P \cap \nabla P \subseteq H^+$ or $P \cap \nabla P \subseteq H^-$, that is, either $P \subseteq P_* \cup H^+$ or $P \subseteq P_* \cup H^-$.
- Condition (5) now. Let $P \cap \nabla P \subseteq H^+$ and $Q \cap \nabla Q \subseteq H^-$. Suppose, by way of contradiction, that $P \subseteq Q$.
- Then $P^{\dagger} \subseteq Q^{\dagger}$, so $cl(Q \cap \nabla Q) \subseteq cl(P \cap \nabla P) \subseteq \overline{H}^{+}$.

Spectral spaces

- Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spe ℓ_{ℓ} G / Id_c G Negative results Known positive results
- The lattices Op(H)
- Basic properties Join-irreducibles and ∇
- Consonance an difference operations
- Basic properties The Extension Lemma

Back to $Op(\mathcal{H})$

Extending homomorphisms from $Op(\mathcal{H})$

Concluding the proof

- Both D = Op(H) and E = Op(H ∪ {H}) are Heyting subalgebras of the lattice of all open subsets of E; whence D is a Heyting subalgebra of E.
- Condition (4) now. Let $P \subseteq P_* \cup H^+ \cup H^-$, that is, $P \cap \nabla P \subseteq H^+ \cup H^-$.
- Since $P \cap \nabla P$ is convex, either $P \cap \nabla P \subseteq H^+$ or $P \cap \nabla P \subseteq H^-$, that is, either $P \subseteq P_* \cup H^+$ or $P \subseteq P_* \cup H^-$.
- Condition (5) now. Let $P \cap \nabla P \subseteq H^+$ and $Q \cap \nabla Q \subseteq H^-$. Suppose, by way of contradiction, that $P \subseteq Q$.
- Then $P^{\dagger} \subseteq Q^{\dagger}$, so $cl(Q \cap \nabla Q) \subseteq cl(P \cap \nabla P) \subseteq \overline{H}^{+}$.
- Hence $Q \cap \nabla Q \subseteq H^- \cap \overline{H}^+ = \emptyset$, a contradiction.

29/34

Where we are in the plan...

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ *G* / ld_c *G* Negative results Known positive results

Op(チ) Basic properti

Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to $Op(\mathcal{H})$

Extending homomorphisms from $Op(\mathcal{H})$

Concluding the proof • Given a countable, completely normal distributive lattice D with zero, construct inductively a closed, surjective lattice homomorphism $f = \bigcup_{n < \omega} f_n$: $\mathsf{Id}_c \mathsf{F}_\ell(\omega) \twoheadrightarrow D$, where (using Baker-Beynon duality) all $E_n = \mathsf{Op}^-(\mathcal{H}_n) \underset{\text{def}}{=} \mathsf{Op}(\mathcal{H}_n) \setminus \{\mathbb{R}^{(\omega)}\}$ and $f_n \colon E_n \to D$.

Where we are in the plan...

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ *G* / Id_C *G* Negative results Known positive results

The lattices Op(H) Basic proper

Join-irreducibles and ∇

Consonance anc difference operations

Basic properties The Extension Lemma

Back to Op(H)

Extending homomorphisms from $Op(\mathcal{H})$

Concluding the proof

- Given a countable, completely normal distributive lattice D with zero, construct inductively a closed, surjective lattice homomorphism $f = \bigcup_{n < \omega} f_n$: $\operatorname{Id}_c F_\ell(\omega) \rightarrow D$, where (using Baker-Beynon duality) all $E_n = \operatorname{Op}^-(\mathcal{H}_n) \underset{\text{def}}{=} \operatorname{Op}(\mathcal{H}_n) \setminus \{\mathbb{R}^{(\omega)}\}$ and $f_n \colon E_n \rightarrow D$.
- The Extension Lemma for $Op(\mathcal{H})$ makes it possible to ensure $Id_c F_{\ell}(\omega) = \bigcup_{n < \omega} E_n$ (i.e., *f* defined everywhere).

Where we are in the plan...

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ G / Id_C G Negative results Known positive results

Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to Op(H)

Extending homomorphisms from $Op(\mathcal{H})$

Concluding the proof

- Given a countable, completely normal distributive lattice D with zero, construct inductively a closed, surjective lattice homomorphism $f = \bigcup_{n < \omega} f_n$: $\operatorname{Id}_c F_\ell(\omega) \to D$, where (using Baker-Beynon duality) all $E_n = \operatorname{Op}^-(\mathcal{H}_n) \underset{\operatorname{def}}{=} \operatorname{Op}(\mathcal{H}_n) \setminus \{\mathbb{R}^{(\omega)}\}$ and $f_n \colon E_n \to D$.
- The Extension Lemma for $Op(\mathcal{H})$ makes it possible to ensure $Id_c F_{\ell}(\omega) = \bigcup_{n < \omega} E_n$ (i.e., f defined everywhere).
- (Ensuring f surjective) If H is "independent" from \mathcal{H} , then $Op(\mathcal{H} \cup \{H\}) \cong Op(\mathcal{H}) * J_2$ (free distributive product), where J_2 is

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

Spectral spaces • We want to ensure f be closed!

Concluding the proof

Spectral spaces

Generalities The *l*-spectr *l*-representa lattices Additional

- The lattices Op(H) Basic propertie
- Join-irreducibles and ∇
- Consonance and difference operations
- Basic properties The Extension Lemma

Back to $Op(\mathcal{H})$

Extending homomorphisms from Op(H)

Concluding the proof • We want to ensure f be closed! (i.e., $f(a) \le f(b) \lor c \Rightarrow (\exists x)$ $a \le b \lor x$ and $f(x) \le c$)

Spectral spaces

Generalities The ℓ -spectrur ℓ -representable lattices Additional properties of Spec ℓ *G* / ld_c Negative result

Known positive results

The lattices Op(H)

Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to $Op(\mathcal{H})$

Extending homomorphisms from $Op(\mathcal{H})$

Concluding the proof

- We want to ensure f be closed! (i.e., $f(a) \le f(b) \lor c \Rightarrow (\exists x)$ $a \le b \lor x$ and $f(x) \le c$)
- Given $f_n: \operatorname{Op}^-(\mathcal{H}_n) \to D$, $U, V \in \operatorname{Op}^-(\mathcal{H}_n)$, and $\gamma \in L$ such that $f_n(U) \leq f_n(V) \lor \gamma$, we want to find $\mathcal{H}_{n+1}, X \in \operatorname{Op}^-(\mathcal{H}_{n+1})$, and f_{n+1} such that $U \subseteq V \cup X$ and $f_{n+1}(X) \leq \gamma$.

Spectral spaces

Generalities The ℓ -spectru ℓ -representabl lattices Additional properties of Spec ℓ *G* / Id_C

- Negative results Known positive results
- The lattice: Op(旡)
- Basic properties Join-irreducibles and ∇
- Consonance and difference operations
- Basic properties The Extension Lemma
- Back to Op(H)
- Extending homomorphisms from $Op(\mathcal{H})$
- Concluding the proof

- We want to ensure f be closed! (i.e., $f(a) \le f(b) \lor c \Rightarrow (\exists x)$ $a \le b \lor x$ and $f(x) \le c$)
- Given $f_n: \operatorname{Op}^-(\mathcal{H}_n) \to D$, $U, V \in \operatorname{Op}^-(\mathcal{H}_n)$, and $\gamma \in L$ such that $f_n(U) \leq f_n(V) \lor \gamma$, we want to find \mathcal{H}_{n+1} , $X \in \operatorname{Op}^-(\mathcal{H}_{n+1})$, and f_{n+1} such that $U \subseteq V \cup X$ and $f_{n+1}(X) \leq \gamma$.
- By the earlier lemmas about consonance (and some amount of work), it is sufficient to do this in case $U = A^+$ and $V = B^+$, where $A, B \in \mathcal{H}_n$.

Spectral spaces

Generalities The ℓ -spectru ℓ -representabl lattices Additional properties of Spec $_{\ell}$ *G* / Id_c

Negative results Known positive results

The lattices Op(H)

Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to Op(H)

Extending homomorphisms from Op(9c)

Concluding the proof

- We want to ensure f be closed! (i.e., $f(a) \le f(b) \lor c \Rightarrow (\exists x)$ $a \le b \lor x$ and $f(x) \le c$)
- Given $f_n: \operatorname{Op}^-(\mathcal{H}_n) \to D$, $U, V \in \operatorname{Op}^-(\mathcal{H}_n)$, and $\gamma \in L$ such that $f_n(U) \leq f_n(V) \lor \gamma$, we want to find \mathcal{H}_{n+1} , $X \in \operatorname{Op}^-(\mathcal{H}_{n+1})$, and f_{n+1} such that $U \subseteq V \cup X$ and $f_{n+1}(X) \leq \gamma$.
- By the earlier lemmas about consonance (and some amount of work), it is sufficient to do this in case $U = A^+$ and $V = B^+$, where $A, B \in \mathcal{H}_n$.
- "Correct any instance of $f(A^+) \leq f(B^+) \lor \gamma$ ".

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec $_{\ell}$ *G* / Id_C *G* Negative results Known positive results

The lattices Op(ℋ)

Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to $Op(\mathcal{H})$

Extending homomorphisms from Op(H)

Concluding the proof Let $\mathbb{E} := \mathbb{R}^{(\omega)}$, with canonical inner product $(x|y) \stackrel{=}{=} \sum_{n < \omega} x_n y_n$ and weak topology (making all $(x|_{-})$ continuous).

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ *G* / Id_C *G* Negative results Known positive results

The lattices $Op(\mathcal{H})$

Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to Op(H)

Extending homomorphisms from $Op(\mathcal{H})$

Concluding the proof Let $\mathbb{E} := \mathbb{R}^{(\omega)}$, with canonical inner product $(x|y) \stackrel{=}{=} \sum_{n < \omega} x_n y_n$ and weak topology (making all $(x|_{-})$ continuous).

Lemma

Let \mathcal{H} be a finite set of closed hyperplanes, let $A = \ker(a)$ and $B = \ker(b)$ in \mathcal{H} . Set $C_m \stackrel{=}{=} \ker(a - mb)$ and $\mathcal{H}_m \stackrel{=}{=} \mathcal{H} \cup \{C_m\}$, $\forall m < \omega$.

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ *G* / Id_C *G* Negative results Known positive results

The lattices Op(H) Basic propertie

Consonance and difference operations

Basic properties The Extension Lemma

Back to Op(H)

Extending homomorphisms from $Op(\mathcal{H})$

Concluding the proof Let $\mathbb{E} := \mathbb{R}^{(\omega)}$, with canonical inner product $(x|y) \underset{\text{def}}{=} \sum_{n < \omega} x_n y_n$ and weak topology (making all $(x|_{-})$ continuous).

Lemma

Let \mathcal{H} be a finite set of closed hyperplanes, let $A = \ker(a)$ and $B = \ker(b)$ in \mathcal{H} . Set $C_m = \ker(a - mb)$ and $\mathcal{H}_m = \mathcal{H} \cup \{C_m\}$, $\forall m < \omega$. Let L be a finite distributive lattice and let $f \colon \operatorname{Op}(\mathcal{H}) \to L$ be a consonant homomorphism.

・ロン ・四 と ・ ヨ と ・ ヨ と … ヨ

32/34

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ G / Id_C G Negative results Known positive results

The lattices Op(H) Basic properties Join-irreducibles

Consonance and difference operations

Basic properties The Extension Lemma

Back to Op(H)

Extending homomorphisms from $Op(\mathcal{H})$

Concluding the proof

Let $\mathbb{E} := \mathbb{R}^{(\omega)}$, with canonical inner product $(x|y) \underset{\text{def}}{=} \sum_{n < \omega} x_n y_n$ and weak topology (making all $(x|_{-})$ continuous).

Lemma

Let \mathcal{H} be a finite set of closed hyperplanes, let $A = \ker(a)$ and $B = \ker(b)$ in \mathcal{H} . Set $C_m = \ker(a - mb)$ and $\mathcal{H}_m = \mathcal{H} \cup \{C_m\}$, $\forall m < \omega$. Let L be a finite distributive lattice and let $f : \operatorname{Op}(\mathcal{H}) \to L$ be a consonant homomorphism. Then for all large enough m (*independent of* L), f extends to a homomorphism $g : \operatorname{Op}(\mathcal{H}_m) \to L$ such that $g(A^+ \smallsetminus_{\operatorname{Op}(\mathcal{H}_m)} B^+) = f(A^+) \searrow_L f(B^+)$.

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec $_{\ell}$ *G* / Id_C *G* Negative results Known positive results

The lattices Op(ℋ) Basic properties Join-irreducibles and ▽

Consonance an difference operations

Basic properties The Extension Lemma

Back to Op(H)

Extending homomorphisms from Op(H)

Concluding the proof

Let $\mathbb{E} := \mathbb{R}^{(\omega)}$, with canonical inner product $(x|y) \underset{\text{def}}{=} \sum_{n < \omega} x_n y_n$ and weak topology (making all $(x|_{-})$ continuous).

Lemma

Let \mathcal{H} be a finite set of closed hyperplanes, let $A = \ker(a)$ and $B = \ker(b)$ in \mathcal{H} . Set $C_m = \ker(a - mb)$ and $\mathcal{H}_m = \mathcal{H} \cup \{C_m\}$, $\forall m < \omega$. Let L be a finite distributive lattice and let $f : \operatorname{Op}(\mathcal{H}) \to L$ be a consonant homomorphism. Then for all large enough m (*independent of L*), f extends to a homomorphism $g : \operatorname{Op}(\mathcal{H}_m) \to L$ such that $g(A^+ \smallsetminus_{\operatorname{Op}(\mathcal{H}_m)} B^+) = f(A^+) \searrow_L f(B^+)$.

• "Large enough": setting $C_m^- = \{x \mid a(x) < mb(x)\}$ and $B^+ = \{x \mid b(x) > 0\}$, we need $\forall X \in Op(\mathcal{H}), \ C_m^- \subseteq X \Rightarrow B^+ \subseteq X$.

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec $_{\ell}$ *G* / Id_C *G* Negative results Known positive results

The lattices Op(ℋ) Basic properties Join-irreducibles and ▽

Consonance an difference operations

Basic properties The Extension Lemma

Back to $Op(\mathcal{H})$

Extending homomorphisms from Op(H)

Concluding the proof

Let $\mathbb{E} := \mathbb{R}^{(\omega)}$, with canonical inner product $(x|y) \underset{\text{def}}{=} \sum_{n < \omega} x_n y_n$ and weak topology (making all $(x|_{-})$ continuous).

Lemma

Let \mathcal{H} be a finite set of closed hyperplanes, let $A = \ker(a)$ and $B = \ker(b)$ in \mathcal{H} . Set $C_m = \ker(a - mb)$ and $\mathcal{H}_m = \mathcal{H} \cup \{C_m\}$, $\forall m < \omega$. Let L be a finite distributive lattice and let $f : \operatorname{Op}(\mathcal{H}) \to L$ be a consonant homomorphism. Then for all large enough m (*independent of L*), f extends to a homomorphism $g : \operatorname{Op}(\mathcal{H}_m) \to L$ such that $g(A^+ \smallsetminus_{\operatorname{Op}(\mathcal{H}_m)} B^+) = f(A^+) \searrow_L f(B^+)$.

- "Large enough": setting $C_m^- = \{x \mid a(x) < mb(x)\}$ and $B^+ = \{x \mid b(x) > 0\}$, we need $\forall X \in Op(\mathcal{H}), \ C_m^- \subseteq X \Rightarrow B^+ \subset X$.
- Existence of *m* ensured by Farkas' Lemma (Hahn-Banach Theorem).

Convex ℓ -subgroups of ℓ -groups

Spectral spaces

Generalities

The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ *G* / Id_c *G* Negative results Known positive results

The lattices Op(チ)

Basic properties Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to Op(H)

Extending homomorphisms from $Op(\mathcal{H})$

Concluding the proof Putting all this together (with some work), the proof can be concluded.

Convex ℓ -subgroups of ℓ -groups

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ G / ldc ℓ Negative results Known positive

The lattices Op(チ) Basic propert

Join-irreducibles and ∇

Consonance an difference operations

Basic properties The Extension Lemma

Back to $Op(\mathcal{H})$

Extending homomorphisms from $Op(\mathcal{H})$

Concluding the proof Putting all this together (with some work), the proof can be concluded.

Corollary

For any countable ℓ -group G, there exists a countable Abelian ℓ -group A such that the lattices of all convex ℓ -subgroups of G and A are isomorphic.

Convex ℓ -subgroups of ℓ -groups

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec $_{\ell}$ *G* / ld_C *G* Negative results Known positive results

The lattices Op(H) Basic properti

Consonance and difference

Basic properties The Extension Lemma

Back to Op(H)

Extending homomorphisms from $Op(\mathcal{H})$

Concluding the proof Putting all this together (with some work), the proof can be concluded.

Corollary

For any countable ℓ -group G, there exists a countable Abelian ℓ -group A such that the lattices of all convex ℓ -subgroups of G and A are isomorphic.

Uncountable analogue of corollary above: fails (Kenoyer 1984, McCleary 1986).

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec $_{\ell}$ *G* / ld_c *G* Negative results Known positive results

The lattices Op(ℋ) Basic proper

Join-irreducibles and ∇

Consonance and difference operations

Basic properties The Extension Lemma

Back to $Op(\mathcal{H})$

Extending homomorphisms from Op(H)

Concluding the proof

About real spectra now.

Spectral spaces

- Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec $_{\ell}$ *G* / Id_C *G* Negative results Known positive results
- The lattices Op(チ)
- Basic properties Join-irreducibles and ∇
- Consonance and difference operations
- Basic properties The Extension Lemma

Back to $Op(\mathcal{H})$

Extending homomorphisms from $Op(\mathcal{H})$

Concluding the proof

- About real spectra now.
- The real spectrum of any commutative, unital ring is known to be a completely normal spectral space.

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec $_{\ell}$ G / Id_C G Negative results Known positive results

The lattices Op(H) Basic properties Join-irreducible

Consonance and difference operations

Basic properties The Extension Lemma

Back to Op(H)

Extending homomorphisms from $Op(\mathcal{H})$

Concluding the proof

- About real spectra now.
- The real spectrum of any commutative, unital ring is known to be a completely normal spectral space.

Corollary (W 2017)

For every countable commutative unital ring R, there exists a countable Abelian ℓ -group G with unit such that $\text{Spec}_{\ell} G$ is homeomorphic to the real spectrum of R.

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ G / Id_C GNegative results Known positive results

The lattices Op(ℋ) Basic properties Join-irreducibles and ▽

Consonance an difference operations

Basic properties The Extension Lemma

Back to Op(H)

Extending homomorphisms from Op(96)

Concluding the proof

- About real spectra now.
- The real spectrum of any commutative, unital ring is known to be a completely normal spectral space.

Corollary (W 2017)

For every countable commutative unital ring R, there exists a countable Abelian ℓ -group G with unit such that $\text{Spec}_{\ell} G$ is homeomorphic to the real spectrum of R.

■ Fails in the uncountable case: neither class (real spectra, *l*-spectra) is contained in the other, with separating counterexamples having bases of cardinality ℵ₁ (W 2017).

Spectral spaces

Generalities The ℓ -spectrum ℓ -representable lattices Additional properties of Spec ℓ *G* / Id_C *G* Negative results Known positive results

The lattices Op(H) Basic properties Join-irreducibles and ∇

Consonance an difference operations

Basic properties The Extension Lemma

Back to Op(H)

Extending homomorphisms from $Op(\mathcal{H})$

Concluding the proof

- About real spectra now.
- The real spectrum of any commutative, unital ring is known to be a completely normal spectral space.

Corollary (W 2017)

For every countable commutative unital ring R, there exists a countable Abelian ℓ -group G with unit such that $\text{Spec}_{\ell} G$ is homeomorphic to the real spectrum of R.

- Fails in the uncountable case: neither class (real spectra, *l*-spectra) is contained in the other, with separating counterexamples having bases of cardinality ℵ₁ (W 2017).
- It is not known whether every second countable, completely normal spectral space is homeomorphic to the real spectrum of some commutative unital ring.