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The weak Bruhat ordering

Obtained from the Cayley graph P(N) by:

1 directing edges along increasing length of a permutation;

2 taking the reflexive-transitive closure of this DAG.

P(4)
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What is a permutohedron (II)?

The weak Bruhat ordering (on SN) is characterized by the
formula:

α ≤ β ⇐⇒ Inv(α) ⊆ Inv(β) ,

where we set

[N] =
def.
{1, 2, . . . ,N} ,

IN =
def.
{(i , j) ∈ [N]× [N] | i < j} ,

Inv(α) =
def.
{(i , j) ∈ IN | α−1(i) > α−1(j)} .

Alternative definition of the permutohedron:

P(N) := {Inv(σ) | σ ∈ SN}, ordered by ⊆.
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The a string diagram of the permutation 35412:

1 2 3 4 5

1 2 3 4 5
??

??
??

??
??

??
??

??
??

tttttttttttttttttttttttt

tttttttttttttttttttttttt

o

o
o

o

o
o

o

Inv(σ) =

{(i , j) | (i , j) is a crossing on the string diagram of σ}
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What are the Inv(σ) (II)?

Both Inv(σ) and IN \ Inv(σ) are transitive relations on [N].

(Proof: let (i , j) ∈ IN . Then (i , j) ∈ Inv(σ) iff σ−1(i) > σ−1(j);
(i , j) /∈ Inv(σ) iff σ−1(i) < σ−1(j).)

Conversely, every subset x ⊆ IN , such that both x and IN \ x are
transitive, is Inv(σ) for a unique σ ∈ SN (Dushnik and Miller
1941, Guilbaud and Rosenstiehl 1963).

Say that x ⊆ IN is closed if it is transitive, open if IN \ x is
closed, and clopen if it is both closed and open.

Hence P(N) = {x ⊆ IN | x is clopen}, ordered by ⊆.

Observe that each x ∈ P(N) is a strict ordering. It can be
proved (Dushnik and Miller 1941) that those are exactly the
finite strict orderings of order-dimension 2.
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The permutohedra P(2), P(3), and P(4).

123

12

21 231 312

213 132

321

P(4)P(3)P(2)

4321

3421 42314312

3241 24313412 42134132

23413214
2413

3142 41231432

23142143
31241423

1342

2134
12431324

1234
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Permutohedra are ortholattices

Theorem (Guilbaud and Rosenstiehl 1963)

The permutohedron P(N) is a lattice, for every positive integer N.

The assignment x 7→ xc = IN \ x defines an orthocomplementation
on P(N):

x ≤ y⇒ yc ≤ xc ;

(xc)c = x ;

x ∧ xc = 0 (equivalently, x ∨ xc = 1) .

Hence P(N) is an ortholattice.
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P(E) 7→ Reg(e)

Bipartitions

Structure of
Reg(e)
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R(E) 6|=
Open problems

What makes P(N) a lattice?

Every x ⊆ IN is contained in a least closed set, namely, cl(x) =
transitive closure of x:

cl(x) = {(k0, kn) | k0 < k1 < · · · < kn , all (ks , ks+1) ∈ x} .

Dually, every x ⊆ IN contains a largest open set, namely,
int(x) = IN \ cl(IN \ x):

int(x) = {(i , j) | ∀i = k0 < · · · < kn = j ,

some (ks , ks+1) ∈ x} .

Theorem (Guilbaud and Rosenstiehl 1963 ?)

int(x) is closed, for any closed x ⊆ IN .
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Open problems

Proof.

Let (i , j), (j , k) ∈ int(x) and suppose that (i , k) /∈ int(x).

There is a subdivision i = k0 < k1 < · · · < kn = k such that each
(ks , ks+1) /∈ x. There is s such that ks ≤ j < ks+1. Since
i = k0 < · · · < ks ≤ j , we get (ks , j) ∈ x. Since
j < ks+1 < · · · < kn = k, we get (j , ks+1) ∈ x. Since x is closed (i.e.,
transitive), we get (ks , ks+1) ∈ x, a contradiction.
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Open problems

Now the lattice property of P(N)

Evaluate x ∧ y, where x, y ∈ P(N).

x ∩ y is no good: it is closed, but usually not open.

However, by the theorem above, the smaller set int(x ∩ y) is
clopen. Hence x ∧ y = int(x ∩ y).

Likewise, x ∪ y is open, and x ∨ y = cl(x ∪ y).
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Permutohedra are even more peculiar lattices

Theorem (Duquenne and Cherfouh 1994, Le Conte de Poly-Barbut
1994)

The permutohedron P(N) is semidistributive (i.e.,
x ∧ z = y ∧ z ⇒ x ∧ z = (x ∨ y) ∧ z , and dually), for every positive
integer N. Thus it is also pseudocomplemented (i.e., ∀x ∃ largest x∗

such that x ∧ x∗ = 0).

Theorem (Caspard 2000)

The permutohedron P(N) is McKenzie-bounded, for every positive
integer N.
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Recap: McKenzie-bounded lattices

A lattice L is McKenzie-bounded if there are a free lattice F and
a surjective lattice homomorphism f : F � L such that each
f −1{x} has a least and a largest element.

A finite lattice L is McKenzie-bounded iff
| Ji(L)| = |Mi(L)| = | Ji(Con L)|(= |Mi(Con L)|) (where Ji(L) is
the set of all join-irreducible elements of L and Mi(L) is the set
of all meet-irreducible elements of L).

The lattice N5 is McKenzie-bounded, while the lattice M3 is not.
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The associahedron, or Stasheff polytope

(from http://www.math.tamu.edu/~jwhite/math613.html)
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Open problems

Minimal subdirect decomposition of the
permutohedron P(N)

For U ⊆ [N], denote by AU(N) the set of all transitive x ⊆ IN

such that

(
i < j < k and (i , k) ∈ x

)⇒ {
(i , j) ∈ x (if j ∈ U) ,

(j , k) ∈ x (if j /∈ U) .

AU(N) is a sublattice of P(N). More is true:

Theorem (S. and W. 2011)

Each AU(N) is a lattice-theoretical retract of P(N), and P(N) is a
subdirect product of all AU(N). Furthermore, the AU(N) are
isomorphic to N. Reading’s Cambrian lattices of type A.
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(i , j) ∈ IN and U ⊆ [N].
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OD-graphs of Cambrian lattices

〈x , y〉U ≤ 〈z ,w〉U iff

[x , y ] ⊆ [z ,w ],
z < x implies x 6∈ U,
y < w implies y ∈ U.

minimal join-covers are of the form

〈x , y〉U ≤
∨
{〈zi , zi+1〉U | i < n}

where

x = z0 < z1 < . . . < zn = y

is a subdivision of the interval [x , y ].
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All isomorphisms and dual isomorphisms between
Cambrians of type A

An easy result:

Proposition

Set i∗ = N + 1− i (for i ∈ [N]), U∗ = {i∗ | i ∈ U} (for U ⊆ [N]),
a∗ = {(j∗, i∗) | (i , j) ∈ a} (for a ⊆ IN). Then a 7→ a∗ defines an
isomorphism from AU(N) onto A[N]\U∗(N).

A∅(N) ∼= A[N](N) is the Tamari lattice on N + 1 letters.

A more difficult result:

Proposition

There is an isomorphism ψU : AUc (N)→ AU(N)op.

ψU(y) = {(i , j) ∈ IN | 〈i , j〉U ∩ y = ∅}, for all y ∈ AUc (N).
Keep this in mind for Luigi’s talk!
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Picturing the Cambrian lattices of type A, for
N = 4

12

12

1313

14
14

2323

24
24

34

34

N. Reading observed that each AU(N) has cardinality 1
N+1

(
2N
N

)
.
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Grätzer’s problem for Tamari lattices

Problem (Grätzer 1971)

Characterize the (finite) lattices that can be embedded into some
Tamari lattice A(N).

At that time, no reasonable guess for a solution to Grätzer’s
problem.

It is still unknown whether

{L | (∃N)(L ↪→ A(N))}

is decidable.
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Geyer’s Conjecture

The following conjecture is natural:

Conjecture (Geyer 1994)

Every finite McKenzie-bounded lattice can be embedded (as a
sublattice) into some Tamari lattice A(N).

Conjecture easy to verify for finite distributive lattices.
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The lattices B(m, n)

p

p

B(1, 3) and B(2, 2), non-atom join-irreducible element is p.

The lattice B(m, n) is defined by doubling the join of m atoms in
an (m + n)-atom Boolean lattice.

All lattices B(m, n) are McKenzie-bounded.
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B(m, n), A(N), and P(N)

Theorem (S. and W. 2010)

B(m, n) can be embedded into a Tamari lattice iff
min{m, n} ≤ 1.

P(N) can be embedded into a Tamari lattice iff N ≤ 3.

In particular:

Neither B(2, 2) nor P(4) can be embedded into any A(N) (although
they are both McKenzie-bounded).
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Vegetables and Gazpachos

An identity witnessing B(2, 2) 6↪→ A(N) is (Veg1):

(a1 ∨ a2 ∨ b1) ∧ (a1 ∨ a2 ∨ b2) ≤
_

i,j∈{1,2}

`
(ai ∨ b̃j) ∧ (a1 ∨ a2 ∨ b3−j)

´
,

with b̃j = (b1 ∨ b2) ∧ (a1 ∨ a2 ∨ bj ),

satisfied by all A(N) but not by B(2, 2).

An infinite collection of identities, the Gazpacho identities, were
discovered to hold in all A(N).

(Veg1) is a (consequence of a) Gazpacho identity.

The Gazpacho identity (Veg2):

(a1 ∨ b1) ∧ (a2 ∨ b2) ≤
2_

i=1

2̂

j=1

(ai ∨ b̃j) ,

with b̃i = (b1 ∨ b2) ∧ (ai ∨ bi ),

is satisfied by all A(N) but not by P(4).
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R(E) 6|=
Open problems

. . . and permutohedra?

Theorem (S. and W. 2011)

B(m, n) embeds into some permutohedron iff min{m, n} ≤ 2.

In particular, B(3, 3) cannot be embedded into any
permutohedron (difficult).

A most useful tool for proving this is the notion of U-polarized
measure, µ : IN → L.

For a finite lattice L, certain U-polarized measures with values
in L correspond to lattice embeddings of L into AU(N).
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R(E) 6|=
Open problems

Can B(3, 3) 6↪→ P(N) be done via an identity?

Negative embeddability results for the A(N)
lead to discover separating identities.

Attempts to get an identity that
holds in all the P(N) but not in B(3, 3): failed.

In fact, there is no such identity!

Theorem (S. and W. 2011)

B(3, 3) is a homomorphic image of a sublattice of P(12).

We prove that a certain AU(12) does not satisfy the splitting
identity of B(3, 3):∧

1≤j≤3

(x1 ∨ x2 ∨ x3 ∨ yj) ≤
∨

1≤i≤3

(x̂i ∧ ŷ1 ∧ ŷ2 ∧ ŷ3) ,

where x = x1 ∨ x2 ∨ x3, y = y1 ∨ y2 ∨ y3, x̂1 = x2 ∨ x3 ∨ y,
ŷ1 = y2 ∨ y3 ∨ x, etc.
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Can B(3, 3) 6↪→ P(N) be done via an identity?

Negative embeddability results for the A(N)
lead to discover separating identities.

Attempts to get an identity that
holds in all the P(N) but not in B(3, 3): failed.

In fact, there is no such identity!

Theorem (S. and W. 2011)

B(3, 3) is a homomorphic image of a sublattice of P(12).

We prove that a certain AU(12) does not satisfy the splitting
identity of B(3, 3):∧

1≤j≤3

(x1 ∨ x2 ∨ x3 ∨ yj) ≤
∨

1≤i≤3

(x̂i ∧ ŷ1 ∧ ŷ2 ∧ ŷ3) ,

where x = x1 ∨ x2 ∨ x3, y = y1 ∨ y2 ∨ y3, x̂1 = x2 ∨ x3 ∨ y,
ŷ1 = y2 ∨ y3 ∨ x, etc.
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Interlude: splitting lattices and splitting identities

A lattice K is splitting if there is a largest lattice variety CK such
that K /∈ CK .

Necessarily, CK = {L | K /∈ HSP(L)}.
R. McKenzie proved in 1972 that K is splitting iff it is finite,
subdirectly irreducible, and McKenzie-bounded.

Furthermore,
CK is defined by a single identity θK , called “the” splitting
identity of K .

Hence θK is the weakest identity failing in K .

If K is splitting and K ∈ HSP(X), then K ∈ HSP(L) for some
L ∈ X.

(Proof: HSP(X) 6⊆ CK , that is, X 6⊆ CK , so there exists
L ∈ X with L /∈ CK .)
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No separating identity for B(3, 3) (cont’d)

Relevant values of the xi , yi obtained with help of the
Prover9-Mace4 program (yields U = {5, 6, 9, 10, 11}).

Variety membership problem, in the AU(N), captured by
combinatorial objects called scores.

An (m, n)-score, with respect to U ⊆ [N], expresses a certain
tiling property of m + n copies of [N].
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Theorem (S. and W. 2014)

The following statements are equivalent, for all positive integers m,
n, N and all U ⊆ [N]:

1 B(m, n) belongs to the lattice variety generated by AU(N).

2 AU(N) does not satisfy the splitting identity of B(m, n).

3 There exists an (m, n)-score on [N] with respect to U.
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The score for B(3, 3) ∈ HS(AU(12))

(A1) 1
b1 −→

2
a1 ←−

5
b2 −→

8
a1 ←−

11
b3

12

(A2) 1
b1 −→

3
a2 ←−

6
b2 ←−

9
b3

12

(A3) 1
b1 −→

4
b2 −→

7
a3 ←−

10
b3

12

(B1) 1
b1 −→

2
a1 −→

3
a2 −→

4
a3 −→

8
a1

12

(B2) 1
a1 ←−

5
a2 ←−

6
b2 −→

7
a3 −→

8
a1

12

(B3) 1
a1 ←−

5
a2 ←−

9
a3 ←−

10
a1 ←−

11
b3

12
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Open problems

Suggests the following question.

Question (S. and W. 2011)

Is there a nontrivial lattice-theoretical identity satisfied by all
permutohedra P(N)? Answer: on Thursday.

It is well-known (Day 1977) that every identity satisfied by all
finite splitting lattices is trivial.

Due to the splitting identities, the question above is equivalent
to: “Is every finite McKenzie-bounded (resp., splitting) lattice a
homomorphic image of a sublattice of some P(N)?”

Verified above in the case of B(3, 3) (with P(12)).
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Outline

1 Elementary theory of permutohedra

2 An identity satisfied by all the permutohedra
EA-duets, sopranos, and bassos
Tensor prod
Box prod
P(N) |= θL

3 Decidability of the weak Bruhat ordering on permutations via
MSOL and S1S

4 No identities for generalized permutohedra
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Constraints in lattice theory

Two variables: E and A, interpret them in H.

E and A are both singers.

E is male and A is female.

They are close to each other (lovers, possibly?).

An approximate solution :

Any solution ?
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The Soprano: Aloysia Weber (1760 – 1839)

“Born in Zell im Wiesental (Baden-Württemberg, Germany), Aloysia
Weber (later on Aloysia Weber-Lange) was one of the four daughters
of the musical Weber family.”
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The Bass: Édouard de Reszke (1853 – 1917)

“A Polish bass from Warsaw. Born with an impressive natural voice
and equipped with compelling histrionic skills, he became one of the
most illustrious opera singers active in Europe and America during
the late-Victorian era.”
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Galois adjunctions

A Galois adjunction between posets K and L is a pair (f , h),
where f : K → L, h : L→ K , and

f (x) ≤ y ⇔ x ≤ h(y) , ∀(x , y) ∈ K × L .

f is the lower adjoint and h is the upper adjoint.

f is a join-homomorphism and h is a meet-homomorphism.

Each one of f and h determines the other.
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EA-duets

Definition

For lattices K and L, a pair (f , g), where f , g : K → L, is an EA-duet
if there are

a sublattice H 6 L, and

a surjective lattice homomorphism h : H � K such that

f is the lower adjoint of h and g is the upper adjoint of h.

Relations from the adjunction.

f (x) ≤ y ⇔ x ≤ h(y) ,

y ≤ g(x)⇔ h(y) ≤ x ,

f (x) = least element of h−1{x} ,
g(x) = largest element of h−1{x} .

Remark !!! In categorical logic, we would write

f := ∃h a h a ∀h =: g .

Whence, EA-duet.
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Lemma

Let f , g : K → L. Then (f , g) is an EA-duet iff f is a
join-homomorphism, g is a meet-homomorphism, and

f (x) ≤ g(y)⇔ x ≤ y , ∀(x , y) ∈ K × K .

Necessarily,

H =
⋃
x∈K

[f (x), g(x)] ,

h(y) = unique x ∈ K such that f (x) ≤ y ≤ g(x) .
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Let K be subdirectly irreducible.

Call a pair (u, v) ∈ K × K prime critical if u ∧ v ≺ u and
conK (u ∧ v , u) is the monolith (i.e., least nonzero congruence) of K .

Lemma

Let (u, v) be a prime critical pair of K .
A pair f , g : K → L is an EA-duet iff

f is a join-homomorphism, g is a meet-homomorphism,

f ≤ g, and f (u) � g(v).
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Proof.

Prove the nontrivial direction.

If (f , g) is not an EA-duet, then there are x , y ∈ K such that
f (x) ≤ g(y) and x � y .
Since f (x) ≤ g(x) and g is a meet-homomorphism, we obtain that
f (x) ≤ g(x ∧ y).
Since x ∧ y < x , the congruence con(x ∧ y , x) is nonzero, thus it
contains the monolith con(u ∧ v , u) of K .
Since u ∧ v is a lower cover of u, the weak projectivity
[x ∧ y , x ]⇒ [u ∧ v , u] holds.
Since f (u) � g(u ∧ v), it follows that f (x) � g(x ∧ y), a
contradiction.
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R(E) 6|=
Open problems

Proof.

Prove the nontrivial direction.
If (f , g) is not an EA-duet, then there are x , y ∈ K such that
f (x) ≤ g(y) and x � y .
Since f (x) ≤ g(x) and g is a meet-homomorphism, we obtain that
f (x) ≤ g(x ∧ y).
Since x ∧ y < x , the congruence con(x ∧ y , x) is nonzero, thus it
contains the monolith con(u ∧ v , u) of K .

Since u ∧ v is a lower cover of u, the weak projectivity
[x ∧ y , x ]⇒ [u ∧ v , u] holds.
Since f (u) � g(u ∧ v), it follows that f (x) � g(x ∧ y), a
contradiction.
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Use:

Lemma

If [a, b] weakly transposes to [c , d ], then
f (b) ≤ g(a) implies f (d) ≤ g(c).

For example, if d = b ∨ c and a ≤ c , then

f (d) = f (b) ∨ f (c) ≤ g(a) ∨ g(c) ≤ g(c) .
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Bringing Édouard and Aloysia tighter together

For f : K → L, we set

f ∨ =
∨

(g | g is a join-homomorphism and g ≤ f ) .

Hence f ∨ is the largest join-homomorphism below f .

f ∧, the least meet-homomorphism above f , defined dually.

Hence f ∨ ≤ f ≤ f ∧.
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Tight pairs . . .

Definition

For lattices K and L, a pair f , g : K → L is tight if f = g∨ and
g = f ∧.

Necessarily, f is a join-homomorphism, g is a
meet-homomorphism, and f ≤ g .

f : K → L is a lattice homomorphism iff (f , f ) is tight.
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. . . agree on basic things

A nonzero element p ∈ L is join-prime in L if p ≤ x ∨ y implies that
either p ≤ x or p ≤ y , ∀x , y ∈ L.

Meet-primeness is defined dually.

Lemma

For lattices K and L of finite length, let (f , g) be a tight EA-duet on
(K , L). Then f and g agree on 0K , 1K , all join-primes, and all
meet-primes of K .
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Proof.

Prove that whenever p is join-prime and g is isotone, g(p) = g∨(p).

The map g ′ : K → L defined by

g ′(x) =

{
g(p) , if p ≤ x ,

g(0K ) , otherwise

is a join-homomorphism and g ′ ≤ g , thus g ′ ≤ g∨.

Now g(p) = g ′(p) ≤ g∨(p) ≤ g(p).

Similar for g(0) = g∨(0).
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Lemma

TFAE, for lattices K and L of finite length:

1 K ∈ HS(L).

2 There is an EA-duet on (K , L).

3 There is a tight EA-duet on (K , L).

Moreover, if K is subdirectlky irreducible, the above holds iff

4 K ∈ HSP(L).

Proof.

If (f , g) is an EA-duet, then (f ∧∨, f ∧) is a tight EA-duet, with
f ≤ f ∧∨ ≤ f ∧ ≤ g .

. . . use congruence distributivity and Jónsson Lemma.
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Interlude:
splitting lattices and splitting identities

A lattice K is splitting if there is a largest lattice variety CK such
that K /∈ CK .

Necessarily, CK = {L | K /∈ HSP(L)}.
R. McKenzie proved in 1972 that K is splitting iff it is finite,
subdirectly irreducible, and McKenzie-bounded.

Furthermore,
CK is defined by a single identity θK , called “the” splitting
identity of K .

Hence θK is the weakest identity failing in K .

If K is splitting and K ∈ HSP(X), then K ∈ HSP(L) for some
L ∈ X.

(Proof: HSP(X) 6⊆ CK , that is, X 6⊆ CK , so there exists
L ∈ X with L /∈ CK .)
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Scores again

(A1) 1
b1 −→

2
a1 ←−

5
b2 −→

8
a1 ←−

11
b3

12

(A2) 1
b1 −→

3
a2 ←−

6
b2 ←−

9
b3

12

(A3) 1
b1 −→

4
b2 −→

7
a3 ←−

10
b3

12

(B1) 1
b1 −→

2
a1 −→

3
a2 −→

4
a3 −→

8
a1

12

(B2) 1
a1 ←−

5
a2 ←−

6
b2 −→

7
a3 −→

8
a1

12

(B3) 1
a1 ←−

5
a2 ←−

9
a3 ←−

10
a1 ←−

11
b3

12
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R(E) 6|=
Open problems

(n,m)-scores witness existence of an EA-duet from B(n,m) to
some AU(N).

There exists such a score iff P(N) 6|= θB(n,m), for some N ≥ 1.

There exists no such score iff P(N) |= θB(n,m), for every N ≥ 1.

We tried to build (n,m)-scores, for n ≥ 3 and m ≥ 3 and
n + m ≥ 7.

We could not disprove existence of such a score.

Needed some different ideas, and to step away from the B(n,m).
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Open problems

Tensor products of (∨, 0)-semilattices

G. Fraser defined in 1978 the tensor product of join-semilattices.

Grätzer, Lakser, and Quackenbush considered in 1981 tensor
products of (∨, 0)-semilattices.

For (∨, 0)-semilattices A and B, a bi-ideal of A× B is a lower
subset I ⊆ A× B, containing

0A,B = ({0A} × B) ∪ (A× {0B}) ,

such that (a, b0), (a, b1) ∈ I implies that (a, b0 ∨ b1) ∈ I , and
symmetrically (A� B).

The bi-ideals form an algebraic lattice.

A⊗ B = (∨, 0)-semilattice of all compact bi-ideals of A× B.
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Useful bi-ideals, universal property

Useful bi-ideals :

Pure tensors:

a⊗ b = 0A,B ∪ {(x , y) | x ≤ a and y ≤ b} .

Boxes:
a� b = {(x , y) | x ≤ a or y ≤ b} .

Belongs to A⊗ B if A and B both have a unit.

Mixed tensors: (a⊗ b′) ∪ (a′ ⊗ b), where a ≤ a′ and b ≤ b′.

Universal property of A⊗ B:

(a, b) 7→ a⊗ b is a bimorphism: a⊗ 0B = 0A,B ,
a⊗ (b0 ∨ b1) = (a⊗ b0) ∨ (a⊗ b1), and symmetrically.

The map (a, b) 7→ a⊗ b is the universal bimorphism on A× B.
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Boxes:
a� b = {(x , y) | x ≤ a or y ≤ b} .

Belongs to A⊗ B if A and B both have a unit.

Mixed tensors: (a⊗ b′) ∪ (a′ ⊗ b), where a ≤ a′ and b ≤ b′.

Universal property of A⊗ B:

(a, b) 7→ a⊗ b is a bimorphism:

a⊗ 0B = 0A,B ,
a⊗ (b0 ∨ b1) = (a⊗ b0) ∨ (a⊗ b1), and symmetrically.

The map (a, b) 7→ a⊗ b is the universal bimorphism on A× B.
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Tensor product as a lattice

This construction does not preserve lattices: for example, M3 ⊗ F(3)
is not a lattice (Grätzer and W. 1999).

Definition (Grätzer and W. 1999)

A subset C ⊆ A⊗ B is

a sub-tensor product if it contains all mixed tensors, is closed
under nonempty finite intersection, and is a lattice under ⊆.

capped if every element of C is a finitely generated lower subset
(not only finitely generated bi-ideal) of A× B.

If C is a capped sub-tensor product, then it is a lattice under ⊆.

The converse fails:

by a very sophisticated counterexample by
Bogdan Chornomaz (2013), There is a lattice L of finite length
such that L⊗ Lop is a lattice, yet it is not a capped sub-tensor
product.

For finite lattices this does not matter.
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Tensor products and congruences

Theorem (Grätzer and W. 1999)

Let C be a capped sub-tensor product of A⊗ B. Then

Conc C ∼= (Conc A)⊗ (Conc B) ,

where Conc L denotes the (∨, 0)-semilattice of all compact
congruences of L.
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The tensor product A⊗ B does not work

We need a construction that preserves splitting lattices.

Recall that a finite lattice L is McKenzie-bounded iff
| Ji(L)| = |Mi(L)| = | Ji(Con L)|.
Although N5 is splitting, the tensor product N5 ⊗ N5 is not
splitting.

Indeed, it has 9 join-irreducible elements and 10
meet-irreducible elements, thus it is not McKenzie-bounded.
(Note: it is McKenzie-lower bounded.)

Thus we need another construction.
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The box product

Definition (Grätzer and W. 1999)

The box product of lattices A and B, denoted by A� B, is the set of
all finite intersections

⋂
i<n(ai � bi ), where all (ai , bi ) ∈ A× B.

Proposition (Grätzer and W. 1999)

Let A and B be bounded lattices (i.e., lattices with a least and a
largest element). Then A� B is the least sub-tensor product
of A⊗ B. It is always a capped sub-tensor product.

Analogue, for bounded lattices, of Wille’s tensor product of
concept lattices. Equivalent in the finite case.

Lemma

Let A and B be finite lattices. If A and B are both
McKenzie-bounded (resp., splitting), then so is A� B.
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Analogue, for bounded lattices, of Wille’s tensor product of
concept lattices. Equivalent in the finite case.

Lemma

Let A and B be finite lattices. If A and B are both
McKenzie-bounded (resp., splitting), then so is A� B.
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The variety of permutohedra is non-trivial

Theorem (W. and S. 2014)

P(N) |= θL, for each N ≥ 1.

The lattice L is N5 � B(3, 2).

It is a splitting lattice.

Brute force computation shows that it has 3,338 elements.
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A portrait view of N5 � B(3, 2)
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Some ideas for the proof

Set L = N5 � B(3, 2)

(so θL is the splitting equation of N5 � B(3, 2))

.

Suppose that some P(N) does not satisfy θL.

Since P(N) is a subdirect product of all AU(N), there exists
U ⊆ [N] such that AU(N) does not satisfy θL.

This means that
L ∈ HSP(AU(N)).

Take N least possible.

There is a tight EA-duet (f , g) of maps L→ AU(N).
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Label the join-irreducible elements of N5 and B(3, 2) as on the
following picture.

p

p∗ c a1 a2 a3 b1 b2

q

One can verify that (p ⊗ q, p∗ � q∗) is prime critical in L.
Hence (f , g) being an EA-duet means that

1 f is a join-homomorphism,
2 g is a meet-homomorphism,
3 f ≤ g , and f (p ⊗ q) � g(p∗ � q∗) (in AU(N))

.
Pick (u, v) ∈ f (p ⊗ q) \ g(p∗ � q∗).

Everything can be projected on [u, v ], which ⊆ [1,N].
By the minimality assumption on N, u = 1 and v = N.

We have thus obtained that

(1,N) ∈ f (p ⊗ q) \ g(p∗ � q∗) .
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.
Pick (u, v) ∈ f (p ⊗ q) \ g(p∗ � q∗).

Everything can be projected on [u, v ], which ⊆ [1,N].
By the minimality assumption on N, u = 1 and v = N.
We have thus obtained that

(1,N) ∈ f (p ⊗ q) \ g(p∗ � q∗) .
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A crucial lemma

Lemma

〈1,N〉U ∩ f (c ⊗ q) ⊆ g(0)

(⊆ g(c ⊗ q∗)) .

〈1,N〉U ⊆ f (p ⊗ q), thus

〈1,N〉U ∩ f (c ⊗ q) ⊆ f (p ⊗ q) ∧ f (c ⊗ q)

⊆ g(p ⊗ q) ∧ g(c ⊗ q)

= g
(
(p ⊗ q) ∧ (c ⊗ q)

)
= g

(
(p ∧ c)⊗ q

)
= g(0) .

63/131



Equational theory

El. theory

Permutohedra

Cambrians

Geyer’s Conj

6↪→ A(N)

6↪→ P(N)

∈ HS(AU (N))

An identity

EA-duets

Tensor prod

Box prod

P(N) |= θL

Decidability

Recaps

Towards
decidability . . .

. . . getting
there!!!

Open problems

Generalized
permutohedra

P(E) 7→ Reg(e)

Bipartitions

Structure of
Reg(e)

Bip-Cambrians

R(E) 6|=
Open problems

A crucial lemma

Lemma

〈1,N〉U ∩ f (c ⊗ q) ⊆ g(0) (⊆ g(c ⊗ q∗)) .

〈1,N〉U ⊆ f (p ⊗ q), thus

〈1,N〉U ∩ f (c ⊗ q) ⊆ f (p ⊗ q) ∧ f (c ⊗ q)

⊆ g(p ⊗ q) ∧ g(c ⊗ q)

= g
(
(p ⊗ q) ∧ (c ⊗ q)

)
= g

(
(p ∧ c)⊗ q

)
= g(0) .

63/131



Equational theory

El. theory

Permutohedra

Cambrians

Geyer’s Conj

6↪→ A(N)

6↪→ P(N)

∈ HS(AU (N))

An identity

EA-duets

Tensor prod

Box prod

P(N) |= θL

Decidability

Recaps

Towards
decidability . . .

. . . getting
there!!!

Open problems

Generalized
permutohedra

P(E) 7→ Reg(e)

Bipartitions

Structure of
Reg(e)

Bip-Cambrians

R(E) 6|=
Open problems

A crucial lemma

Lemma

〈1,N〉U ∩ f (c ⊗ q) ⊆ g(0) (⊆ g(c ⊗ q∗)) .

〈1,N〉U ⊆ f (p ⊗ q), thus

〈1,N〉U ∩ f (c ⊗ q) ⊆ f (p ⊗ q) ∧ f (c ⊗ q)

⊆ g(p ⊗ q) ∧ g(c ⊗ q)

= g
(
(p ⊗ q) ∧ (c ⊗ q)

)
= g

(
(p ∧ c)⊗ q

)
= g(0) .

63/131



Equational theory

El. theory

Permutohedra

Cambrians

Geyer’s Conj

6↪→ A(N)

6↪→ P(N)

∈ HS(AU (N))

An identity

EA-duets

Tensor prod

Box prod

P(N) |= θL

Decidability

Recaps

Towards
decidability . . .

. . . getting
there!!!

Open problems

Generalized
permutohedra

P(E) 7→ Reg(e)

Bipartitions

Structure of
Reg(e)

Bip-Cambrians

R(E) 6|=
Open problems

A (more?) crucial lemma

Most of the difficulty of the proof is concentrated in the following
lemma.

Lemma

f (c ⊗ q) ⊆ g(c ⊗ q∗).

Since c ⊗ q 6≤ c ⊗ q∗, we get a contradiction.
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Pick (x , y) ∈ f (c ⊗ q).

∀j ∈ {1, 2},

q ≤
3∨

i=1

ai ∨ bj ,

thus

c ⊗ q ≤
3∨

i=1

(c ⊗ ai ) ∨ (c ⊗ bj) ,

and thus

(x , y) ∈f (c ⊗ q) ≤
3∨

i=1

f (c ⊗ ai ) ∨ f (c ⊗ bj) .
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Hence there are subdivisions

x = z j
0 < · · · < z j

nj
= y ,

where j ∈ {1, 2}, where each (z j
i , z

j
i+1) ∈ f (c ⊗ d j

i ) for some

d j
i ∈ {a1, a2, a3, bj}.

Take nj least possible.
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If nj = 1, then (x , y) ∈ f (c ⊗ d) ⊆ g(c ⊗ d),

but
(x , y) ∈ f (c ⊗ q) ⊆ g(c ⊗ q),

thus, since g is a meet-homomorphism,

(x , y) ∈ g
(
c ⊗ d

) ∧ g
(
c ⊗ q

)
= g

(
c ⊗ (d ∧ q)

)
.

.

Now d ∈ {a1, a2, a3, bj} thus d ∧ q ≤ q∗, so (x , y) ∈ g(c ⊗ q∗)
and we are done.

We may thus assume that nj > 1 ∀j ∈ {1, 2}.
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Open problems

The following claim expresses a crucial pattern of the finite sequences
(z j

i )0≤i≤nj , with respect to belonging to U.

Claim

There is no i < nj such that z j
i /∈ U and z j

i+1 ∈ U.

Suppose otherwise, with (say) i > 0.

Let d ∈ {a1, a2, a3, bj} such that (z j
i−1, z

j
i ) ∈ f (c ⊗ d).

Since (z j
i , z

j
i+1) ∈ 〈1,N〉U (by assumption) and (x , y) ∈ f (c ⊗d),

we get (z j
i , z

j
i+1) ∈ g(0) ⊆ g(c ⊗ d) by the Lemma.

Now c and d are both join-prime, thus so is c ⊗ d .

Since (f , g) is a tight EA-duet and by “agreement on basic

things”, (z j
i , z

j
i+1) ∈ f (c ⊗ d).
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Since (z j
i−1, z

j
i ) ∈ f (c ⊗ d) as well, we get

(z j
i−1, z

j
i+1) ∈ f (c ⊗ d).

In contradiction with the minimality of nj .

Thus for each j ∈ {1, 2}, there exists a unique mj ∈ [0, nj − 1]
such that

z j
i ∈ U whenever 0 < i ≤ mj ,

z j
i /∈ U whenever mj+1 < i < nj .

From then on, the proof becomes quite complicated, comparing
the positions of the z j

i , using repeatedly “agreement on basic
things”, and calculating various joins in N5 � B(3, 2).
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A zoo of cases
28 L. SANTOCANALE AND F. WEHRUNG

u  �
xi

c⌦bj �!
yi

c⌦bi yj
c⌦bj

u v
c⌦bj

yjxj
c⌦bj

u  �
xi

c⌦bj �!
yi

c⌦bi  ��
xj0

yj
c⌦bj

u v
c⌦bj

u  �
xi

c⌦bj  �
xj

c⌦bi yj
c⌦bj

u v
c⌦bj

xi yi
c⌦bi

Figure 10.1. Cases 1.a (up-left), 1.b (up-right), and 2 (down) in
the proof of (u, v) 2 f(c⌦ ak) [� in Claim 3

(b) If yi < xj , then, since yi /2 U and xj 2 U , we get (yi, xj) 2 h1, NiU ,
thus, since (yi, xj) 2 hx, yiU ✓ f(c⌦q) and by Lemma 10.2, (yi, xj) 2
g(0), and thus, a fortiori, (yi, xj) 2 g(c ⌦ bj). Since c ⌦ bj is join-
prime, it follows from Lemma 9.11 that (yi, xj) 2 f(c ⌦ bj). Since
(xj , yj) 2 f(c⌦ bj), (10.4) follows again.

Hence, (10.4) is valid in any case. Now it follows from (xi, yi) 2 f(c⌦bi),
together with (10.2) and (10.4), that (u, yj) 2 f(c⌦(b1_b2)), thus (u, yj) 2
g(c ⌦ (b1 _ b2)). By applying the meet-homomorphism g to (8.1) and by
using (10.3), we obtain that (u, yj) belongs to

g
�
c⌦ (q⇤ _ bj)

� ^ g
�
c⌦ (b1 _ b2)

�
= g

⇣�
c⌦ (q⇤ _ bj)

� ^ �
c⌦ (b1 _ b2)

�⌘
= g(c⌦ bj)

= f(c⌦ bj) (use again Lemma 9.11) .

It follows that the subdivision, obtained from Zj by removing all the el-
ements of Zj \ ]u, yj [ (in particular, xj), fills the same purpose as Zj ; a
contradiction by the minimality assumption on nj .

Case 2. yj < yi. From xi < xj < yi, xj 2 U , and (xi, yi) 2 f(c ⌦ bi) it follows
that (xi, xj) 2 f(c ⌦ bi). By (10.2) together with (xj , yj) 2 f(c ⌦ bj), it
follows that (u, yj) 2 f(c ⌦ (b1 _ b2)), thus (u, yj) 2 g(c ⌦ (b1 _ b2)). By
applying the meet-homomorphism g to (8.1) and by using (10.3), it follows
again, as in Case 1 above, that (u, yj) 2 f(c⌦ bj), which leads to the same
contradiction as at the end of the proof of Case 1.

This completes the proof that (u, v) 2 f(c ⌦ ak) for some k 2 {1, 2, 3}. Since
x  u  xi < v and xi 2 {x} [ U , it follows that

(u, xi) 2 f(c⌦ ak) [� . (10.5)
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u  �
xi

c⌦ak  �
xj

c⌦bi

xi yi
c⌦bi

u v
c⌦ak

u  �
xi

c⌦ak �!
yi

c⌦bi  �
xj0

u v
c⌦ak

Figure 10.2. Cases 1 (left) and 2 (right) in the proof of v = xj in Claim 3

u  �
x2

c⌦ai �!
y2

c⌦b2
v

c⌦aj

u x1
c⌦ai y1 v

c⌦aj
u  �

x1

c⌦ai y1
c⌦b1

v
c⌦aj

u x2
c⌦ai �!

y2

c⌦b2
v

c⌦aj

Figure 10.3. Final cases in the proof of Lemma 10.3: Case 1
(left) and Case 2 (right)

Now we must prove that v = xj . We argue by separating cases. In all cases, the
key point is to show that (u, xj) 2 f(c⌦ (ak _ bi)); see Figure 10.2.
Case 1. xj  yi. From (xi, yi) 2 f(c ⌦ bi), xi < xj  yi, and xj 2 U it fol-

lows that (xi, xj) 2 f(c ⌦ bi). Hence, by (10.5), it follows that (u, xj) 2
f
�
c⌦ (ak _ bi)

�
, thus (u, xj) 2 g

�
c⌦ (ak _ bi)

�
. By using (10.3) and by

applying the meet-homomorphism g to (8.2), it follows that (u, xj) 2
g(c ⌦ ak), thus, by Lemma 9.11, (u, xj) 2 f(c ⌦ ak). It follows that the
subdivision, obtained by removing from Zj all the elements of Zj \ ]u, xj [,
fills the same purpose as Zj ; whence, by the minimality assumption on Zj ,
we get v = xj .

Case 2. yi < xj . Then (yi, xj) 2 h1, NiU , thus, since (yi, xj) 2 hx, yiU ✓ f(c ⌦ q)
and by Lemma 10.2, (yi, xj) 2 g(0), and thus, a fortiori, (yi, xj) 2 g(c⌦bi),
and hence, by Lemma 9.11, (yi, xj) 2 f(c ⌦ bi). Since (xi, yi) 2 f(c ⌦ bi)
and by (10.5), it follows that (u, xj) 2 f(c ⌦ (ak _ bi)). The conclusion
v = xj is then obtained in the same way as in Case 1 above.

This completes the proof of Claim 3. ⇤ Claim 3.

In order to finish the proof of Lemma 10.3, we argue by separating cases, ac-
cording to the relative positions of the intervals [x1, y1] and [x2, y2]. By symmetry,
there are two cases to consider (see Figure 10.3).
Case 1. [x1, y1] ✓ [x2, y2]. Denote by (u, x1) and (y1, v) the left fin and the right fin

of S1, respectively (cf. Claim 3). In particular, u  x2  x1 < y1  y2  v.
Furthermore, by Claim 3, there are i, j 2 {1, 2, 3} such that (u, x1) 2
f(c⌦ai)[� and (y1, v) 2 f(c⌦aj)[�. From x  u  x2  x1, (u, x1) 2
f(c ⌦ ai) [ �, and x2 2 {x} [ U it follows that (u, x2) 2 f(c ⌦ ai) [ �.
Symmetrically, (y2, v) 2 f(c ⌦ aj) [ �. Since (x2, y2) 2 f(c ⌦ b2) [ �,
it follows that (u, v) 2 f

�
c⌦ (ai _ aj _ b2)

�
. On the other hand, from

{u, v} ✓ Z1 and u < v it follows that (u, v) 2 f
�
c⌦ (q⇤ _ b1)

�
. Since

f  g and by applying the meet-homomorphism g to (8.3), it follows
that (u, v) 2 g

�
c⌦ (ai _ aj)

�
; whence (u, v) 2 g(c ⌦ q⇤). Now, from the
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1 Elementary theory of permutohedra

2 An identity satisfied by all the permutohedra
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Permutohedra as lattices

Theorem (Guilbaud et Rosenstiehl, 1963)

The permutohedra P(N) (with the weak Bruhat order) are lattices.

State of art before (W. and S. 2014, . . . ):

Theorem (Claude Le Conte de Poly-Barbut, 1994)

The permutohedra P(N) are semi-distributive.

Theorem (Nathalie Caspard, 1999)

The permutohedra P(N) are McKenzie–bounded.
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The equational theory of permutohedra

The word problem for permutohedra

Given lattice terms s and t, does the equality

P(N) |= s = t ,

hold, for each N ≥ 1 ?

Theorem (W. and S. 2014)

The word problem for permutohedra is decidable.
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The equational theory of permutohedra

The word problem for permutohedra

Given lattice terms s and t, does the equality

P(N) |= s = t ,

hold, for each N ≥ 1 ?
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The Cambrian lattice AU(N)

Fix N and U ⊆ {1, . . . ,N}.
Definition

A subset X ⊆ {(i , j) | 1 ≤ i < j ≤ N} is U-closed if

1 it is transitive : (i , j), (j , k) ∈ X implies (i , k) ∈ X ;

2 if i < j < k and (i , k) ∈ X , then

j ∈ U implies (i , j) ∈ X ,
j 6∈ U implies (j , k) ∈ X .

Let :

AU(N) := {X ⊆ IN | X est U-closed} .

Proposition

AU(N), with subset inclusion, is a lattice.
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Pemutohedra and Cambrians lattices

Proposition

For all pair of lattice terms s, t, we have

P(N) |= s = t for all N

iff

AU(N) |= s = t for all N and U ⊆ [1, . . . ,N] .

As the Cambrian lattices are the subdirectly irreducible quotients of
the permutohedra.
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The lattice B(4, 4)

q

q*
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The lattices B(n,m)

The lattice B(n,m) is obtained from a Boolean-algebra over n + m
atoms, by doubling the join of n-atoms. Let HSP(P) be the variety
generated by the Permutohedra.

Problem

Given n and m, does the lattice B(n,m) belong to HSP(P)?
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EA-duets and scores

Proposition

TFAE:

1 B(n,m) ∈ HSP(P(N) | N ≥ 1),

2 ∃N,U s.t. B(n,m) ∈ HSP(AU(N)),

3 ∃N,U s.t. B(n,m) ∈ HS(AU(N)),

4 ∃N,U and an EA-duet (f , g) : B(n,m) −−−→ AU(N),

5 ∃N,U and an (n,m,N,U)-score.

Recall: an EA-duet (f , g) : B(n,m) −−−→ AU(N) is such that

1 f is a ∨-homomorphism,

2 g is a ∧-homomorphism,

3 f (x) ≤ g(y) iff x ≤ y .
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How does an (n,m,N ,U)-score look like?

A (3, 3, 12, {5, 6, 9, 10, 11})-score :

(A1) 1
b1 −→

2
a1 ←−

5
b2 −→

8
a1 ←−

11
b3

12

(A2) 1
b1 −→

3
a2 ←−

6
b2 ←−

9
b3

12

(A3) 1
b1 −→

4
b2 −→

7
a3 ←−

10
b3

12

(B1) 1
b1 −→

2
a1 −→

3
a2 −→

4
a3 −→

8
a1

12

(B2) 1
a1 ←−

5
a2 ←−

6
b2 −→

7
a3 −→

8
a1

12

(B3) 1
a1 ←−

5
a2 ←−

9
a3 ←−

10
a1 ←−

11
b3

12

(therefore B(3, 3) ∈ HSP(P(N) | N ≥ 1)).
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Open problems

Def. of an (n,m,N ,U)-score

Basso parts: for i = 1, . . . , n,

a subdivision of the interval [1,N],
each interval of the subdivision being labeled by
aj , j = 1, . . . ,m, or bi ;

Alto parts: for j = 1, . . . ,m,

a subdivision of the interval [1,N],
each interval of the subdivision being labeled by
bi , i = 1, . . . , n, or aj ;

Solos: every Basso peak is a bi ; every Soprano valley is an aj ;

Consonances: for each (x , y) of some basso, (z ,w) of some soprano,
if (x , y) 6⊥U (z ,w), then the label of (x , y) is equal to
the label of (z ,w).
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Generalized
permutohedra

P(E) 7→ Reg(e)

Bipartitions

Structure of
Reg(e)

Bip-Cambrians

R(E) 6|=
Open problems

Scores from EA-duets

The half-score of Bassos codes the join-homorphism

B(n,m)
f−−→ AU(N) .

The half-score of Altos codes the join-homorphism g ′ defined by

B(m, n)
'−→

B(n,m)

op

g−−→ AU(N)

op ψU−−−→ A[1,N]\U(N)

(whence the meet-homomorphism g : B(n,m) −→ AU(N)).

Solos and consonances contraints translate the relations f ≤ g
and f (q) 6≤ g(q∗).
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Half scores code join-homomorphisms

By the example.

Minimal non-trivial join-cover relations in B(3, 3).

q ≤
_
∨a1 ∨ a2 ∨ a3 ∨ bj , j = 1, 2, 3 .

These relations represented as subdivisions:

(B1) 1
b1

2
a1

3
a2

4
a3

8
a1

12

(B2) 1
a1

5
a2

6
b2

7
a3

8
a1

12

(B3) 1
a1

5
a2

9
a3

10
a1

11
b3

12

Define then:

f (x) :=
_
{〈i , j〉U | (i , j) is labeled by x} , for x and atom ,

f (q) := 〈1,N〉U ∨
_
{f (x) | x ≤ q, x ∈ Ji(B(3, 3))} .
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Back to def of an (n,m,N ,U)-score

Basso parts: for i = 1, . . . , n,

a subdivision of the interval [1,N],
each interval of the subdivision being labeled by
aj , j = 1, . . . ,m, or bi ;

Alto parts: for j = 1, . . . ,m,

a subdivision of the interval [1,N],
each interval of the subdivision being labeled by
bi , i = 1, . . . , n, or aj ;

Solos: every Basso peak is a bi ; every Soprano valley is an aj

;

Consonances: for each (x , y) of some basso, (z ,w) of some soprano,
if (x , y) 6⊥U (z ,w), then the label of (x , y) is equal to
the label of (z ,w).
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Summarizing

We can represent a (n,m,N,U)-score via subsets

Bi ,Aj , Bi,σ , Aj,σ ,

where i = 1, . . .m, j = 1, . . . n , σ ∈ {a1, . . . , an, b1, . . . , bm},

satisfying certain simple conditions (solos, consonances);

We can suppose that Bi ,Aj , Bi,σ , Aj,σ are all subsets of
integers (that is unary predicates or monadic) ;

The property

Bi ,Aj ,Bi,σ,Aj,σ is an (n,m,N,U)-score

is definable in MSOL(succ) (monadic second order logic of one
successor).
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MSOL(succ), S1S , and Büchi’s Theorem

MSOL(succ) : logic formulas built via the grammar

φ := succ(x , y) | x = y | x ∈ X

| φ ∧ φ | φ ∨ φ | ¬φ | φ→ φ | ∃x .φ | ∀x .φ

| ∃X .φ | ∀X .φ

S1S : subsets of formulas of MSOL(succ) holding on
non-negative integers.

Theorem (Büchi 1962)

The set S1S is decidable.

Corollary

The problem B(n,m) ∈ HSP(P(N) | N ≥ 1) is decidable.
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Generalizing to splitting lattices

Via MSOL(succ) and S1S we can decide :

Problem

Given a splitting lattice L, does L belong to HSP(P).

we need to know minimal join-covers of L and Lop . . .

Remark : in DB, minimal join-covers are called the “canonical
direct base of implications ”

. . . and represent iterated scores within MSOL(succ).
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Generalizing to equations

By R. McKenzie theory, splitting lattices are almost failure of
equations. For example:

N5 ∈ HSP(K ) iff K 6|= modular equation .

A lattice term is naturally structured in join-covers.
For example, for t := x ∧ (y ∨ z), we have:

t ← x , t ← {y , z} .
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Scores for a pair of terms

Given two terms s, t, we can define (within MSOL(succ)) the notion
of (s, t,N,U, )-score, so that:

Proposition

TFAE:

1 P 6|= s ≤ t;

2 ∃N,U s.t. AU(N) 6|= t ≤ s;

3 ∃N,U, v : vars(s, t) −−−−−−−→ AU(N) s.t. s(v) 6≤ t(v);

4 ∃N ′,U ′ and an (t, s,N ′,U ′)-score.
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Decidability results (W. and S. 2014)

Theorem

We can decide whether an equation s = t is valid over all the
Permutohedra.

Proposition

Let (Ui | i ∈ I ) be collections of subsets of N, definable in MSOL. We
can decide whether an equation s = t is valid over all the Cambrian
lattices of the form AUi (N).

Theorem

We can decide whether an equation s = t is valid over all the
Associahedra.
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Let (Ui | i ∈ I ) be collections of subsets of N, definable in MSOL. We
can decide whether an equation s = t is valid over all the Cambrian
lattices of the form AUi (N).

Theorem

We can decide whether an equation s = t is valid over all the
Associahedra.
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Open problems (complaints to TCScientists)

Does there exists N and U and an (N,U, 4, 3)-score ? . . . we
don’t know.

A MONA program seems to be stuck after few seconds.
Make MONA to work.

Other algorithms: combinatorics of scores?

Complexity of formulas expressing existence of a score (1st order
matrices . . . )

Why B(3, 2) ∈ HSP(P(N) | N ≥ 1), while
N5 � B(3, 2) 6∈ HSP(P(N) | N ≥ 1)?
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Outline

1 Elementary theory of permutohedra

2 An identity satisfied by all the permutohedra

3 Decidability of the weak Bruhat ordering on permutations via
MSOL and S1S

4 No identities for generalized permutohedra
From P(E ) to Reg(e)
Bipartitions
Structure of Reg(e)
Bip-Cambrians
R(E ) 6|=
Further generalisations (open problems)
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Generalized
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Structure of
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R(E) 6|=
Open problems

Basic definitions

The definition of the permutohedron got extended to any
poset E , in a 1995 paper by Pouzet, Reuter, Rival, and Zaguia.

Setting δE = {(x , y) ∈ E × E | x < y}, let a ⊆ δE be closed if it
is transitive, open if δE \ a is closed, and clopen if it is both
closed and open.

Then we set

P(E ) =
def.
{a ⊆ δE | a is clopen} , (that’s our guy)

P∗(E ) =
def.
{u ∩ δE | u strict linear ordering on E} .

Obviously, P∗(E ) ⊆ P(E ).

Also, both P(E ) and P∗(E ) are orthocomplemented posets.

Obviously, P([1,N]) = P(N) !!!
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Is P(E ) a lattice?

Theorem (Pouzet, Reuter, Rival, and Zaguia 1995)

The following statements hold, for any poset E .

1 P(E ) is a lattice iff E is square-free.

2 P(E ) = P∗(E ) iff E is crown-free.

Illustrating square and crowns:
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What about McKenzie-boundedness?

Theorem (Caspard, S., and W. 2011)

Let E be a square-free poset. Then the lattice P(E ) is a subdirect
product of the P(C ), for all maximal chains C of E .

By invoking Caspard’s 2000 theorem, we get the following extension
of that result.

Corollary (Caspard, S., and W. 2011)

Let E be a finite square-free poset. Then P(E ) is McKenzie-bounded.

“Square-free” is just put there in order to ensure that P(E ) be a
lattice.

For E an infinite chain, P(E ) is not even semidistributive.
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Why is P∗(E ) sometimes better than P(E )?

Theorem (Pouzet, Reuter, Rival, and Zaguia 1995)

Let E be a finite poset. Then the inclusion mapping from P∗(E ) into
the powerset of δE is cover-preserving.

Theorem (Caspard, S., and W. 2011)

There is a finite poset E such that the inclusion mapping from P(E )
into the powerset of δE is not height-preserving (thus also not
cover-preserving).

Here is the counterexample:

x0

y01y12 y45y50

z1 z5

x2

y23 y34

z3

x4

95/131



Equational theory

El. theory

Permutohedra

Cambrians

Geyer’s Conj

6↪→ A(N)

6↪→ P(N)

∈ HS(AU (N))

An identity

EA-duets

Tensor prod

Box prod

P(N) |= θL

Decidability

Recaps

Towards
decidability . . .

. . . getting
there!!!

Open problems

Generalized
permutohedra

P(E) 7→ Reg(e)

Bipartitions

Structure of
Reg(e)

Bip-Cambrians

R(E) 6|=
Open problems

Why is P∗(E ) sometimes better than P(E )?

Theorem (Pouzet, Reuter, Rival, and Zaguia 1995)

Let E be a finite poset. Then the inclusion mapping from P∗(E ) into
the powerset of δE is cover-preserving.

Theorem (Caspard, S., and W. 2011)

There is a finite poset E such that the inclusion mapping from P(E )
into the powerset of δE is not height-preserving (thus also not
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Setting the problem

Lattice-theoretical properties of P(E ): make sense only in
case P(E ) is a lattice, that is, E is square-free.

Is there anything left in case E is not square-free?

It turns out that yes.
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Getting past the “square-free” restriction

Definition

A subset x of a transitive (binary) relation e is

closed if it is transitive,

open if e \ x is closed,

clopen if it is both open and closed,

regular closed if x = cl(int(x)),

regular open if x = int(cl(x)).

Operators cl and int defined as before:

cl(x) is the transitive closure of x,

int(x) = e \ cl(e \ x).
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The lattices Reg(e) and Regop(e)

Notation

For a transitive relation e,

Clop(e) =
def.
{x ⊆ e | x is clopen} .

Reg(e) =
def.
{x ⊆ e | x is regular closed} .

Regop(e) =
def.
{x ⊆ e | x is regular open} .

x 7→ xc = e \ x defines a dual isomorphism between Reg(e) and
Regop(e).

x 7→ x⊥ = cl(xc) defines an orthocomplementation on Reg(e).
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The lattices (cont’d)

int ◦ cl: closure operator on open sets,

cl ◦ int: interior operator in closed sets.

Proposition

Reg(e) and Regop(e) are isomorphic ortholattices, intersecting in
Clop(e).

Clop(e) is an orthocomplemented poset.

It may not be a lattice (e.g., P(E ) = Clop(δE ), for any poset E ;
take E non square-free).
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Some notation

For a transitive relation e on a set E , write

x Ce y ⇐⇒
def.

(x , y) ∈ e ,

x Ee y ⇐⇒
def.

(either x Ce y or x = y) ,

for all x , y ∈ E .

We also set

[a, b]e = {x | a Ee x and x Ee b} ,
[a, b[e = {x | a Ee x and x Ce b} ,
]a, b]e = {x | a Ce x and x Ee b} ,

for all a, b ∈ E .

As a Ce a may occur, a may belong to ]a, b]e.
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Square-free transitive relations

Definition

A transitive relation e on a set E is square-free if the preordered set
(E ,Ee) is square-free. That is,

(∀a, b, x , y)
((

a Ee x and a Ee y and x Ee b and y Ee b
)

=⇒ (either x Ee y or y Ee x)
)
.
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When is Clop(e) a lattice?

Theorem (S. and W. 2012)

The following are equivalent, for any transitive relation e:

1 Clop(e) is a lattice.

2 Clop(e) = Reg(e).

3 int(x) is closed, for any closed x ⊆ e.

4 e is square-free.

The particular case where e is antisymmetric is already taken
care of by the abovementioned 1995 work by Pouzet, Reuter,
Rival, and Zaguia.

The particular case where e is full (i.e., e = E × E ) follows
from 2011 work by Hetyei and Krattenthaler.

In that case,
e is always square-free, and Clop(e) = Reg(e) is denoted by
Bip(E ), the lattice of all bipartitions of a set E .

102/131



Equational theory

El. theory

Permutohedra

Cambrians

Geyer’s Conj

6↪→ A(N)

6↪→ P(N)

∈ HS(AU (N))

An identity

EA-duets

Tensor prod

Box prod

P(N) |= θL

Decidability

Recaps

Towards
decidability . . .

. . . getting
there!!!

Open problems

Generalized
permutohedra

P(E) 7→ Reg(e)

Bipartitions

Structure of
Reg(e)

Bip-Cambrians

R(E) 6|=
Open problems

When is Clop(e) a lattice?

Theorem (S. and W. 2012)

The following are equivalent, for any transitive relation e:

1 Clop(e) is a lattice.

2 Clop(e) = Reg(e).

3 int(x) is closed, for any closed x ⊆ e.

4 e is square-free.

The particular case where e is antisymmetric is already taken
care of by the abovementioned 1995 work by Pouzet, Reuter,
Rival, and Zaguia.

The particular case where e is full (i.e., e = E × E ) follows
from 2011 work by Hetyei and Krattenthaler.

In that case,
e is always square-free, and Clop(e) = Reg(e) is denoted by
Bip(E ), the lattice of all bipartitions of a set E .

102/131



Equational theory

El. theory

Permutohedra

Cambrians

Geyer’s Conj

6↪→ A(N)

6↪→ P(N)

∈ HS(AU (N))

An identity

EA-duets

Tensor prod

Box prod

P(N) |= θL

Decidability

Recaps

Towards
decidability . . .

. . . getting
there!!!

Open problems

Generalized
permutohedra

P(E) 7→ Reg(e)

Bipartitions

Structure of
Reg(e)

Bip-Cambrians

R(E) 6|=
Open problems

When is Clop(e) a lattice?

Theorem (S. and W. 2012)

The following are equivalent, for any transitive relation e:

1 Clop(e) is a lattice.

2 Clop(e) = Reg(e).

3 int(x) is closed, for any closed x ⊆ e.

4 e is square-free.

The particular case where e is antisymmetric is already taken
care of by the abovementioned 1995 work by Pouzet, Reuter,
Rival, and Zaguia.

The particular case where e is full (i.e., e = E × E ) follows
from 2011 work by Hetyei and Krattenthaler.

In that case,
e is always square-free, and Clop(e) = Reg(e) is denoted by
Bip(E ), the lattice of all bipartitions of a set E .

102/131



Equational theory

El. theory

Permutohedra

Cambrians

Geyer’s Conj

6↪→ A(N)

6↪→ P(N)

∈ HS(AU (N))

An identity

EA-duets

Tensor prod

Box prod

P(N) |= θL

Decidability

Recaps

Towards
decidability . . .

. . . getting
there!!!

Open problems

Generalized
permutohedra

P(E) 7→ Reg(e)

Bipartitions

Structure of
Reg(e)

Bip-Cambrians

R(E) 6|=
Open problems

When is Clop(e) a lattice?

Theorem (S. and W. 2012)

The following are equivalent, for any transitive relation e:

1 Clop(e) is a lattice.

2 Clop(e) = Reg(e).

3 int(x) is closed, for any closed x ⊆ e.

4 e is square-free.

The particular case where e is antisymmetric is already taken
care of by the abovementioned 1995 work by Pouzet, Reuter,
Rival, and Zaguia.

The particular case where e is full (i.e., e = E × E ) follows
from 2011 work by Hetyei and Krattenthaler.

In that case,
e is always square-free, and Clop(e) = Reg(e) is denoted by
Bip(E ), the lattice of all bipartitions of a set E .

102/131



Equational theory

El. theory

Permutohedra

Cambrians

Geyer’s Conj

6↪→ A(N)

6↪→ P(N)

∈ HS(AU (N))

An identity

EA-duets

Tensor prod

Box prod

P(N) |= θL

Decidability

Recaps

Towards
decidability . . .

. . . getting
there!!!

Open problems

Generalized
permutohedra

P(E) 7→ Reg(e)

Bipartitions

Structure of
Reg(e)

Bip-Cambrians

R(E) 6|=
Open problems

When is Clop(e) a lattice?

Theorem (S. and W. 2012)

The following are equivalent, for any transitive relation e:

1 Clop(e) is a lattice.

2 Clop(e) = Reg(e).

3 int(x) is closed, for any closed x ⊆ e.

4 e is square-free.

The particular case where e is antisymmetric is already taken
care of by the abovementioned 1995 work by Pouzet, Reuter,
Rival, and Zaguia.

The particular case where e is full (i.e., e = E × E ) follows
from 2011 work by Hetyei and Krattenthaler.

In that case,
e is always square-free, and Clop(e) = Reg(e) is denoted by
Bip(E ), the lattice of all bipartitions of a set E .

102/131



Equational theory

El. theory

Permutohedra

Cambrians

Geyer’s Conj

6↪→ A(N)

6↪→ P(N)

∈ HS(AU (N))

An identity

EA-duets

Tensor prod

Box prod

P(N) |= θL

Decidability

Recaps

Towards
decidability . . .

. . . getting
there!!!

Open problems

Generalized
permutohedra

P(E) 7→ Reg(e)

Bipartitions

Structure of
Reg(e)

Bip-Cambrians

R(E) 6|=
Open problems

When is Clop(e) a lattice?

Theorem (S. and W. 2012)

The following are equivalent, for any transitive relation e:

1 Clop(e) is a lattice.

2 Clop(e) = Reg(e).

3 int(x) is closed, for any closed x ⊆ e.

4 e is square-free.

The particular case where e is antisymmetric is already taken
care of by the abovementioned 1995 work by Pouzet, Reuter,
Rival, and Zaguia.

The particular case where e is full (i.e., e = E × E ) follows
from 2011 work by Hetyei and Krattenthaler.

In that case,
e is always square-free, and Clop(e) = Reg(e) is denoted by
Bip(E ), the lattice of all bipartitions of a set E .

102/131



Equational theory

El. theory

Permutohedra

Cambrians

Geyer’s Conj

6↪→ A(N)

6↪→ P(N)

∈ HS(AU (N))

An identity

EA-duets

Tensor prod

Box prod

P(N) |= θL

Decidability

Recaps

Towards
decidability . . .

. . . getting
there!!!

Open problems

Generalized
permutohedra

P(E) 7→ Reg(e)

Bipartitions

Structure of
Reg(e)

Bip-Cambrians

R(E) 6|=
Open problems

When is Clop(e) a lattice?

Theorem (S. and W. 2012)

The following are equivalent, for any transitive relation e:

1 Clop(e) is a lattice.

2 Clop(e) = Reg(e).

3 int(x) is closed, for any closed x ⊆ e.

4 e is square-free.

The particular case where e is antisymmetric is already taken
care of by the abovementioned 1995 work by Pouzet, Reuter,
Rival, and Zaguia.

The particular case where e is full (i.e., e = E × E ) follows
from 2011 work by Hetyei and Krattenthaler.

In that case,
e is always square-free, and Clop(e) = Reg(e) is denoted by
Bip(E ), the lattice of all bipartitions of a set E .

102/131



Equational theory

El. theory

Permutohedra

Cambrians

Geyer’s Conj

6↪→ A(N)

6↪→ P(N)

∈ HS(AU (N))

An identity

EA-duets

Tensor prod

Box prod

P(N) |= θL

Decidability

Recaps

Towards
decidability . . .

. . . getting
there!!!

Open problems

Generalized
permutohedra

P(E) 7→ Reg(e)

Bipartitions

Structure of
Reg(e)

Bip-Cambrians

R(E) 6|=
Open problems

When is Clop(e) a lattice?

Theorem (S. and W. 2012)

The following are equivalent, for any transitive relation e:

1 Clop(e) is a lattice.

2 Clop(e) = Reg(e).

3 int(x) is closed, for any closed x ⊆ e.

4 e is square-free.

The particular case where e is antisymmetric is already taken
care of by the abovementioned 1995 work by Pouzet, Reuter,
Rival, and Zaguia.

The particular case where e is full (i.e., e = E × E ) follows
from 2011 work by Hetyei and Krattenthaler.

In that case,
e is always square-free, and Clop(e) = Reg(e) is denoted by
Bip(E ), the lattice of all bipartitions of a set E .

102/131



Equational theory

El. theory

Permutohedra

Cambrians

Geyer’s Conj

6↪→ A(N)

6↪→ P(N)

∈ HS(AU (N))

An identity

EA-duets

Tensor prod

Box prod

P(N) |= θL

Decidability

Recaps

Towards
decidability . . .

. . . getting
there!!!

Open problems

Generalized
permutohedra

P(E) 7→ Reg(e)

Bipartitions

Structure of
Reg(e)

Bip-Cambrians

R(E) 6|=
Open problems

When is Clop(e) a lattice?

Theorem (S. and W. 2012)

The following are equivalent, for any transitive relation e:

1 Clop(e) is a lattice.

2 Clop(e) = Reg(e).

3 int(x) is closed, for any closed x ⊆ e.

4 e is square-free.

The particular case where e is antisymmetric is already taken
care of by the abovementioned 1995 work by Pouzet, Reuter,
Rival, and Zaguia.

The particular case where e is full (i.e., e = E × E ) follows
from 2011 work by Hetyei and Krattenthaler. In that case,
e is always square-free, and Clop(e) = Reg(e) is denoted by
Bip(E ), the lattice of all bipartitions of a set E .

102/131



Equational theory

El. theory

Permutohedra

Cambrians

Geyer’s Conj

6↪→ A(N)

6↪→ P(N)

∈ HS(AU (N))

An identity

EA-duets

Tensor prod

Box prod

P(N) |= θL

Decidability

Recaps

Towards
decidability . . .

. . . getting
there!!!

Open problems

Generalized
permutohedra

P(E) 7→ Reg(e)

Bipartitions

Structure of
Reg(e)

Bip-Cambrians

R(E) 6|=
Open problems

Permutohedra on non square-free posets

Recall that P(E ) = Clop(δE ), for any poset E .

Set R(E ) = Reg(δE ) (the extended permutohedron on E ), for
any poset E .

In particular, R(E ) is always a lattice.

By earlier results, P(E ) is a lattice, iff P(E ) = R(E ), iff E is
square-free.
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The extended permutohedron on the square B2

There it goes:

a0a1 b0

c00 c01c10 c11

u

u⊥

a⊥0 a⊥1
b⊥0b⊥1

c⊥00c⊥01 c⊥10
c⊥11

b1
0

1

a b

R(B2)B2

card R(B2) = 20 while card P(B2) = 18.

Every join-irreducible element of R(B2) is clopen (general
explanation coming later).

The two elements u and u⊥ of R(B2) \ P(B2) are marked by
doubled circles on the picture above.
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Generalized
permutohedra

P(E) 7→ Reg(e)

Bipartitions

Structure of
Reg(e)

Bip-Cambrians

R(E) 6|=
Open problems

Bip(N): basic observations

Bip(N) = Bip([N]) is the ortholattice of all binary relations x
on [N] that are both transitive and co-transitive, ordered by ⊆.

The bipartition lattices Bip(N) are
“permutohedra without order”.

card Bip(2) = 10, card Bip(3) = 74, card Bip(4) = 730,
card Bip(5) = 9,002.

Each Bip(N) is a graded lattice (Hetyei and Krattenthaler 2011).
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Bip(N), the bipartition representation

Example (N = 5):

Part(x) := ({2, 3}, {4}, {1, 5})

gives

x = {(2, 4), (2, 1), (2, 5), (3, 4), (3, 1), (3, 5),

(4, 4), (4, 1), (4, 5), (1, 1), (1, 5), (5, 1), (5, 5)} .

What is the bipartition representation of

xc?

the upper covers of x?

the lower covers of x?
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Small bipartition lattices

Here is a picture of Bip(2), together with the join-dependency
relation on its join-irreducible elements.
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b1
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b2

b2

Bip(2) The relation     D           on Ji(Bip(2))

In particular, Bip(2) is McKenzie-bounded.

This does not extend to higher bipartition lattices: for example,
M3 embeds into Bip(3), so Bip(3) is not even semidistributive.
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Some open problems

Problem (S. and W. 2012)

Can every finite ortholattice be embedded into some Bip(N)?

A related problem (cf. G. Bruns 1976 for ortholattices):

Problem (S. and W. 2012)

Is there a nontrivial lattice (ortholattice) identity satisfied by every
Bip(N)?
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Some notation

We denote by F(e) the set of all triples (a, b,U), where
(a, b) ∈ e, U ⊆ [a, b]e, and a 6= b implies that a /∈ U and b ∈ U.

We set Uc = [a, b]e \ U, and

〈a, b; U〉 =


{(x , y) | a Ee x Ce y Ee b , x /∈ U , y ∈ U} ,
if a 6= b ,

({a} ∪ Uc)× ({a} ∪ U) ,

if a = b ,

for each (a, b,U) ∈ F(e).

Observe that 〈a, b; U〉 is bipartite (i.e., it cannot have both (x , y)
and (y , z) ) iff a 6= b. If a = b, say that 〈a, b; U〉 is a clepsydra.
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Structure of
Reg(e)

Bip-Cambrians

R(E) 6|=
Open problems

Recognizing the completely join-irreducible
elements in Reg(e)

Theorem (S. and W. 2012)

The following statements hold, for any transitive relation e.

1 The completely join-irreducible elements of Reg(e) are exactly
the 〈a, b; U〉, where (a, b,U) ∈ F(e). They are all clopen.

2 Every open (resp., regular closed) subset of e is a set-theoretical
union (resp., join) of completely join-irreducible elements
of Reg(e).

Corollary (S. and W. 2012)

Reg(e) is the Dedekind-MacNeille completion of Clop(e), for any
transitive relation e.
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The join-dependency relation on Reg(e),
the antisymmetric case

Lemma (S. and W. 2012)

Let e be a finite, antisymmetric, transitive relation and let
pi = 〈ai , bi ; Ui 〉 be completely join-irreducible in Reg(e), for
i ∈ {0, 1}. Then p0 D p1 in Reg(e) iff

[a1, b1]e $ [a0, b0]e, and

U1 =
(
(U0 ∩ [a1, b1]e) \ {a1}

) ∪ {b1}.

Corollary (S. and W. 2012)

The join-dependency relation on Reg(e) is a strict ordering, for any
finite, antisymmetric, transitive relation e.

Corollary (S. and W. 2012)

The lattice Reg(e) is McKenzie-bounded, for any finite,
antisymmetric, transitive relation e.
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Bounded lattices Reg(e)

Theorem (S. and W. 2012)

The following are equivalent, for any finite, transitive relation e:

1 Reg(e) is McKenzie-bounded.

2 Reg(e) is semidistributive.

3 Reg(e) is pseudocomplemented.

4 Every connected component of the preordering Ee is either
antisymmetric or has the form {a, b} with a 6= b, (a, b) ∈ e, and
(b, a) ∈ e.

Hence, if Reg(e) is McKenzie-bounded, then it is a direct product of
extended permutohedra on finite posets and copies of {0, 1}
and Bip(2).
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4 Every connected component of the preordering Ee is either
antisymmetric or has the form {a, b} with a 6= b, (a, b) ∈ e, and
(b, a) ∈ e.

Hence, if Reg(e) is McKenzie-bounded, then it is a direct product of
extended permutohedra on finite posets and copies of {0, 1}
and Bip(2).
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More open problems

Problem (S. and W. 2012)

Can every finite McKenzie-bounded ortholattice be embedded
into R(E ), for some finite poset E ?

Problem (S. and W. 2012)

Is there a nontrivial ortholattice identity that holds in R(E ) for any
finite poset E ?

Case of finite chains: solved above (all P(N) |= θN5�B(3,2)).
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Join-irreducible elements in Bip(N)

Bipartite (a 6= b):

Part(〈a, b; U〉) = (Uc,U) ,

these are atoms.

Clepsydra (a = b):

Part(〈a, a; U〉) = (Uc, {a},U),

or ({a},N \ {a}), ([N] \ {a}, {a}) .
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Structure of
Reg(e)

Bip-Cambrians

R(E) 6|=
Open problems

Minimal subdirect decomposition of Bip(N)

a ∈ [N] is isolated in x ∈ Bip(N) if ((i , a) ∈ x and
(a, i) ∈ x)⇔ i = a, ∀i ∈ [N].

a is isolated in x iff it is an overlined singleton in Part(x).

For 0 ≤ k < N, a ∈ [N], and U ⊆ [N] \ {a} with k elements,
denote (. . . ) by S(N, k) the poset of all x ∈ Bip(N) such that
each isolated point of x is equal to a, and if a is isolated, then
(Uc × {a}) ∪ ({a} × U) ⊆ x.

S(N, k) is a self-dual lattice (not necessarily a sublattice
of Bip(N)), and S(N, k) ∼= S(N,N − 1− k) (so it suffices to
consider 0 ≤ 2k < N).

Theorem (S. and W. 2012)

Bip(N) is a subdirect product of copies of the S(N, k) (minimal
subdirect decomposition).

If N ≥ 3, then S(N, k) 6↪→ Bip(N).
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Open problems

The bip-Cambrian lattices S(N , k)

Cardinalities for small values: card S(3, 0) = 24,
card S(3, 1) = 21; card S(4, 0) = 158, card S(4, 1) = 142;
card S(5, 0) = 1,320, card S(5, 1) = 1,202, card S(5, 2) = 1,198.

Hence card S(N, k) depends on k .
Recall the picture of Bip(3):
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Pictures of S(3, 0) and S(3, 1)
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The congruence lattice of Bip(N)

The description of all join-irreducible elements of Bip(N) (and their
relation D) makes it possible to prove the following.

Lemma (S. and W. 2012)

Let p and q be join-irreducible elements in Bip(N), where N ≥ 3.
Then con(p∗,p) ⊆ con(q∗,q) iff

either q is bipartite, or

p = q is a clepsydra.

Corollary (S. and W. 2012)

Let N ≥ 3. Then the congruence lattice of Bip(N) is Boolean on
N · 2N−1 atoms, with a top element added.
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Then con(p∗,p) ⊆ con(q∗,q) iff

either q is bipartite, or

p = q is a clepsydra.

Corollary (S. and W. 2012)

Let N ≥ 3. Then the congruence lattice of Bip(N) is Boolean on
N · 2N−1 atoms, with a top element added.
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No identities in all R(E )

Theorem (S. and W. 2014)

There is no nontrivial lattice identity satisfied by all R(E ), for E a
countable directed union of finite dismantlable lattices.

The proof uses polarized measures.

µ : δE → L is a polarized measure if

µ(x , y) ≤ µ(x , z) ≤ µ(x , y) ∨ µ(y , z)

whenever x < y < z in E .

A relation of the form

µ(x , y) ≤ a0 ∨ a1

is a refinement problem for µ.

A solution of that refinement problem is a subdivision

x = z0 < z1 < · · · < zn = y

such that µ(zi , zi+1) ≤ aji , for each i < n.
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Given a polarized measure µ : δE → L, the map ϕ : L→ R(E )
defined by

ϕ(a) = {(x , y) ∈ δE | µ(x , y) ≤ a}, ∀a ∈ L,

is a meet-homomorphism.

If every refinement problem has a solution, then ϕ is a
join-homomorphism.
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Proof of “no identities in all R(E )”

Given a finite meet-semidistributive lattice L, a finite
dismantlable lattice S , a polarized measure µ : δS → L, and a
refinement problem µ(u, v) ≤ a0 ∨ a1,

we find a finite
dismantlable lattice T extending S and a polarized measure
ν : δT → L extending µ, such that the refinement problem
ν(u, v) ≤ a0 ∨ a1 has a solution in T .

S >

v

u

⊥

⊆

T >

v

u

⊥

3 =N_p��
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Proof (cont’d I)

Set ε(n) = n (mod 2) for all n.

Define a map f : (S ↓ u)× ω → L inductively, by

f (x , 0) = µ(x , u) ,

f (x , k + 1) =
∧(

µ(x , t) ∨ f (t, k + 1)
)

∧ (f (x , k) ∨ aε(k)) ∧ µ(x , v) ,

where the
∧

is taken over all t with x < t ≤ u.
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Proof (cont’d II)

Then f (x , k) ≤ f (x , k + 1), thus, since L is finite, there exists m
such that f (x , k) = f (x ,m) ∀x ≤ u and ∀k ≥ m.

Set
g(x) = f (x ,m).

By using the meet-semidistributivity of L, we can prove that
g(x) = µ(x , v) ∀x ∈ S .

We set T = S ∪ {t1, . . . , tm−1}, where u < t1 < · · · < tm−1 < v ,
and we set

ν(x , tk) = f (x , k) for x ≤ u ,

ν(tk , tl) =
∨

k≤i<l

aε(i) ,

ν(tk , y) =
∨

k≤i<m

aε(i) ∨ µ(v , y) for y ≥ v .

Then T and ν are as required.
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Proof (end)

By starting with µ0 surjective (e.g., E0 = L \ {0}, µ0(x , y) = x),
and by repeating the process countably many times, we reach a
surjective polarized measure µ : δE → L, where E is a countable
union of finite dismantlable lattices, for which every refinement
problem has a solution.

Then ϕ : L→ R(E ), defined by

ϕ(a) = {(x , y) ∈ δE | µ(x , y) ≤ a}, ∀a ∈ L.

is a lattice embedding.

Since there is no nontrivial lattice identity satisfied by all finite
meet-semidistributive lattices, there is also no nontrivial lattice
identity satisfied by all R(E ).
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meet-semidistributive lattices, there is also no nontrivial lattice
identity satisfied by all R(E ).
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Loose ends

The proof above does not say anything about the case where E
is finite.

However, define A(E ) from R(E ) the same way A(N) is defined
from P(N) (the map ϕ above takes its values in A(E )).

Then There is no nontrivial lattice identity satisfied by all A(E ),
for E a finite dismantlable lattice.

Extension of the latter result to square-free case hopeless,
because in that case, R(E ) = P(E ) is a subdirect product of
P(N)s.
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Regular closed sets

Closure space: pair (Ω, ϕ), where ϕ : P(Ω)→ P(Ω), with
ϕ(∅) = ∅, X ⊆ Y ⇒ ϕ(X ) ⊆ ϕ(Y ), X ⊆ ϕ(X ), ϕ ◦ ϕ = ϕ.

Associated interior operator: ϕ̌(X ) = Ω \ ϕ(Ω \ X ).

Closed sets: ϕ(X ) = X . Open sets: ϕ̌(X ) = X . Clopen sets:
ϕ(X ) = ϕ̌(X ) = X . Regular closed sets: X = ϕϕ̌(X ).

Clop(Ω, ϕ) (the clopen sets) is contained in Reg(Ω, ϕ) (the
regular closed sets).

Reg(Ω, ϕ) is always an ortholattice (with x⊥ = ϕ(xc)), but
Clop(Ω, ϕ) may not be a lattice.

Every orthoposet appears as some Clop(Ω, ϕ) (Iturrioz 1982,
Mayet 1982, Katrnoška 1982)
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Open problems

What happens for convex geometries?

Convex geometry: closure space (Ω, ϕ) such that (x closed,
p, q ∈ Ω \ x, and ϕ(x ∪ {p}) = ϕ(x ∪ {q})) ⇒ p = q.

Theorem (S. and W. 2012)

For (more general spaces than) finite convex geometries, the lattice
Reg(Ω, ϕ) is always pseudocomplemented.
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Open problems

Says things about R(G ) (G a graph), Reg(S) (S a
join-semilattice), Reg(H) (H hyperplane arrangement). . .

finite Coxeter lattices are particular cases of the latter.

Questions of the type above (equational theory) arise for such
objects.

Largely unexplored yet. Example of question: Does any Coxeter
lattice of type Dn embed into some permutohedron P(N)?
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