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e m The permutohedron on n letters, denoted by P(n), can be
dren defined as the set of all permutations of n letters, with the
ordering

What is it
about?

a<g = Inv(a) C Inv(f),

m where we set
= {12 ...
[n]def.{ 20},
I = {(id) € [l x In] | i < j}
ef.

Inv(a) = {(i,j) € In]| a”l(i) > a7 ()}

m Alternate definition: P(n) = {Inv(c) | o0 € &,}, ordered
by C.
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m Both Inv(o) and J,, \ Inv(o) are transitive relations on [n].
What i i (Proof. let (i,j) € Jp. Then (i,j) € Inv(o) iff
about? a7 1(i) > o7 ()); (i,)) ¢ Inv(o) iff o7 1(i) < 07 1(j).)
m Conversely, every subset x C J,, such that both x and
Jn \ x are transitive, is Inv(c) for a unique 0 € &,
(Dushnik and Miller 1941, Guilbaud and Rosenstiehl 1963).

m Say that x C J, is closed if it is transitive, open if J, \ x is
closed, and clopen if it is both closed and open.

m Hence P(n) = {x CJ, | x is clopen}, ordered by C.

m Observe that each x € P(n) is a strict ordering. It can be
proved (Dushnik and Miller 1941) that those are exactly
the finite strict orderings of order-dimension 2.
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Theorem (Guilbaud and Rosenstiehl 1963)

el The permutohedron P(n) is a lattice, for every positive

integer n.

The assignment x — x = J, \ x defines an
orthocomplementation on P(n):

x<y=y" <x%;
(x°)° = x;

xAX°=0 (equivalently, x Vx°=1).

Hence P(n) is an ortholattice.
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Tk m Every x € J, is contained in a least closed set (namely,
sbout? cl(x) = transitive closure of x).

m Dually, every x C J,, contains a largest open set (namely,

int(x) =J, \ cl(Tn \ x)).

Theorem (Guilbaud and Rosenstiehl 1963)

int(x) is closed, for any closed x C J,.

In particular, the join of {x,y} in P(n) is cl(x Uy). Dually, the
meet of {x,y} in P(n) is int(x Ny).
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Permutohedra are even more peculiar lattices

The extended

ey Theorem (Duquenne and Cherfouh 1994, Le Conte de
o Poly-Barbut 1994)

ik o The permutohedron P(n) is semidistributive, for every positive
about? . on o
integer n. Thus it is also pseudocomplemented.

Semidistributivity means that
xVz=yVz=xVz=(xAy)Vz and, dually,
xNz=yNz=xNz=(xVy)Az.

Theorem (Caspard 2000)

The permutohedron P(n) is a bounded homomorphic image of
a free lattice, for every positive integer n.

This means that there are a finitely generated free lattice F
and a surjective lattice homomorphism f: F — P(n) such that
each f~1{x} has both a least and a largest element.
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e poset E, in a 1995 paper by Pouzet, Reuter, Rival, and
Zaguia.
m Setting 6 = {(x,y) € EX E|x <y}, letaC dg be
A exension closed if it is transitive, open if ¢ \ a is closed, and
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clopen if it is both closed and open.
m Then we set

P(E)d:f {aC dc|aisclopen}, (that's our guy)
er.

P*(E) = {unNdg | u strict linear ordering on E}.

m Obviously, P*(E) C P(E).
m Also, both P(E) and P*(E) are orthocomplemented
posets.
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Theorem (Pouzet, Reuter, Rival, and Zaguia 1995)

The following statements hold, for any poset E.
P e P(E) is a lattice iff E is square-free.
oS P(E) = P*(E) iff E is crown-free.

[llustrating square and crowns:
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What about boundedness?

The extended

s Theorem (Caspard, Santocanale, and W 2011)

Let E be a square-free poset. Then the lattice P(E) is a
subdirect product of the P(C), for all maximal chains C of E.

An extension

Rl By invoking Caspard’s 2000 theorem, we get the following
extension of that result.

Corollary (Caspard, Santocanale, and W 2011)

Let E be a finite square-free poset. Then P(E) is a bounded
homomorphic image of a free lattice.

m “Square-free” is just put there in order to ensure
that P(E) be a lattice.

m For E an infinite chain, P(E) is not even semidistributive.



Why is P*(E) sometimes better than P(E)?

The extended

permutohe- [l 1 heorem (Pouzet, Reuter, Rival, and Zaguia 1995)

dron

An extension
to every poset




Why is P*(E) sometimes better than P(E)?

The extended

permutohe- [l 1 heorem (Pouzet, Reuter, Rival, and Zaguia 1995)

dron

Let E be a finite poset. Then the inclusion mapping
from P*(E) into the powerset of df is cover-preserving.

An extension
to every poset



Why is P*(E) sometimes better than P(E)?

The extended

permutohe- [l 1 heorem (Pouzet, Reuter, Rival, and Zaguia 1995)

dron

Let E be a finite poset. Then the inclusion mapping
from P*(E) into the powerset of df is cover-preserving.

An extension
to every poset

Theorem (Caspard, Santocanale, and W 2011)




Why is P*(E) sometimes better than P(E)?

The extended

permutohe- [l 1 heorem (Pouzet, Reuter, Rival, and Zaguia 1995)

dron

Let E be a finite poset. Then the inclusion mapping
from P*(E) into the powerset of df is cover-preserving.

An extension
to every poset

Theorem (Caspard, Santocanale, and W 2011)

There is a finite poset E such that the inclusion mapping from
P(E) into the powerset of df is not height-preserving (thus
also not cover-preserving).



Why is P*(E) sometimes better than P(E)?

The extended

permutohe- [l 1 heorem (Pouzet, Reuter, Rival, and Zaguia 1995)

dron

Let E be a finite poset. Then the inclusion mapping
from P*(E) into the powerset of df is cover-preserving.

An extension
to every poset

Theorem (Caspard, Santocanale, and W 2011)

There is a finite poset E such that the inclusion mapping from

P(E) into the powerset of df is not height-preserving (thus
also not cover-preserving).

Here is the counterexample:
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m Lattice-theoretical properties of P(E): make sense only in
Regular closed case P(E) is a lattice (duh), that is, E is square-free.

transitive m Is there anything left in case E is not square-free?

relation

m It turns out that yes.
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A subset x of a transitive (binary) relation e is

m closed if it is transitive,

Regular closed
subsets of a
transitive
relation

open if e\ x is closed,
regular closed if x = cl(int(x)),

regular open if x = int(cl(x)).

clopen if it is both open and closed.

Operators cl and int defined as before: cl(x) is the transitive
closure of x, int(x) = e\ cl(e\ x).
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For a transitive relation e,

Clop(e) = {x Ce|xis clopen}.
def

Regular closed
subsets of a
transitive

relation Regop(e) d?f, {X g e ’ X is regular Open} .

Reg(e) = {x C e|xis regular closed} .

m x — X° = e\ x defines a dual isomorphism between
Reg(e) and Regqp(e).

m x — x= = cl(x°) defines an orthocomplementation on
Reg(e).
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Proposition
N Reg(e) and Regop(€e) are isomorphic ortholattices, intersecting
subgsets of a in CIOp(e)

transitive
relation

Clop(e) is an orthocomplemented poset. It may not be a
lattice (e.g., P(E) = Clop(dg), for any poset E; take E non

square-free).
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For a transitive relation e on a set E, write

x<dey <= (x,y)€e,
def.

x Jey <= (either x <e y or x =y),
7 def.
egular closed
subsets of a

transitive for all x,y € E. We also set

relation

[a,b], = {x | @ <e x and x <¢ b},
[a, bl = {x | @ <e x and x < b},
la, bl, = {x | a <e x and x <¢ b},

for all a,b € E. As a <l¢ a may occur, a may belong to |a, b],.
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A transitive relation e on a set E is square-free if the
preordered set (E, <¢) is square-free. That is,
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The following are equivalent, for any transitive relation e:
Clop(e) is a lattice.
Clop(e) = Reg(e).
int(x) is closed, for any closed x C e.

Regular closed
subsets of a o
transitive e is square-free.

relation

m The particular case where e is antisymmetric is already
taken care of by the abovementioned 1995 work by
Pouzet, Reuter, Rival, and Zaguia.

m The particular case where e is full (i.e., e = E x E) follows
from 2011 work by Hetyei and Krattenthaler. In that case,
e is always square-free, and Clop(e) = Reg(e) is denoted
by Bip(E), the lattice of all bipartitions of a set E.
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m Recall that P(E) = Clop(dg), for any poset E.

m Set R(E) = Reg(dg) (the extended permutohedron on E),
i for any poset E.

transitive

relation m In particular, R(E) is always a lattice.

m By earlier results, P(E) is a lattice, iff P(E) = R(E), iff E
is square-free.
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The extended permutohedron on the square B,

The extended There it goes:
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1
a b
Regular closed
subsets of a
transitive
relation 0
B

m card R(B2) = 20 while card P(B;) = 18.

m Every join-irreducible element of R(B>) is clopen (general
explanation coming later).

m The two elements u and ut of R(B5) \ P(B>) are marked
by doubled circles on the picture above.
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Bip(n) = Bip([n]) is the ortholattice of all binary
relations x on [n] that are both transitive and
co-transitive, ordered by C.

m The bipartition lattices Bip(n) are “permutohedra without

order”.
Back to m card Bip(2) = 10, card Bip(3) = 74, card Bip(4) = 730,
Pipartiions card Bip(5) = 9,002.

m Each Bip(n) is a graded lattice (Hetyei and Krattenthaler
2011).
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Small bipartition lattices

The extended

permutohe. m Here is a picture of Bip(2), together with the
e join-dependency relation on its join-irreducible elements.

agp by

a,10” ay by by

Back to

bipartitions

The D relation on Ji(Bip(2))

m In particular, Bip(2) is a bounded homomorphic image of a
free lattice.

m This does not extend to higher bipartition lattices: for
example, M3 embeds into Bip(3), so Bip(3) is not even
semidistributive.
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Some open problems

The extended
permutohe-
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Problem (Santocanale and W 2012)

Can every finite ortholattice be embedded into some Bip(n)?
A related problem (cf. G. Bruns 1976 for ortholattices):

Problem (Santocanale and W 2012)

Back to
bipartitions

Is there a lattice (ortholattice) identity satisfied by every
Bip(n)?
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Some notation

The extended

permutohe- m We denote by C(e) the set of all triples (a, b, U), where
(a,b) € e, UC|a,b],, and a # b implies that a ¢ U and
beU.

m We set U = [a, b, \ U, and

{(X,y)|a§1ex<leyﬂeb,x¢U,yEU},

(2, by U) = ifa#b,
({a} v U%) x ({at U U),
Completely If a= b:
join—irredlfcible
Rt for each (a, b, U) € C(e).

m Observe that (a, b; U) is bipartite (i.e., it cannot have
both (x,y) and (y,z)) iff a # b. If a= b, say that
(a, b; U) is a clepsydra.
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The following statements hold, for any transitive relation e.
The completely join-irreducible elements of Reg(e) are
exactly the (a, b; U), where (a, b, U) € C(e). They are all
clopen.
Every open (resp., regular closed) subset of e is a
set-theoretical union (resp., join) of completely
join-irreducible elements of Reg(e).
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Corollary (Santocanale and W 2012)

Reg(e) is the Dedekind-MacNeille completion of Clop(e), for
any transitive relation e.
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Lemma (Santocanale and W 2012

)

Let e be a finite, antisymmetric, transitive relation and let

p; = (aj, bj; U;) be completely join-irreducible in Reg(e), for

i € {0,1}. Then pg D p; in Reg(e) iff [a1, b1], & [a0, bo], and
Ur = ((Uo N [ar, bile) \ {ar}) U {b1}.

Corollary (Santocanale and W 2012)

The join-dependency relation on Reg(e) is a strict ordering, for
jf:;{lﬁ'r:tdeu'iible any finite, antisymmetric, transitive relation e.

elements in

Reg(e)

Corollary (Santocanale and W 2012)

The lattice Reg(e) is a bounded homomorphic image of a free
lattice, for any finite, antisymmetric, transitive relation e.
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Bounded lattices Reg(e)

Wil In particular, R(E) is a bounded homomorphic image of a free

permutohe-

dron lattice, for any finite (not necessarily square-free) poset E.

Theorem (Santocanale and W 2012)

The following are equivalent, for any finite, transitive
relation e:

Reg(e) is a bounded homomorphic image of a free lattice.
Reg(e) is semidistributive.
Reg(e) is pseudocomplemented.

Completely 1 1
e @A Every connected component of the preordering < is

e n either antisymmetric or has the form {a, b} with a # b,
(a,b) € e, and (b, a) € e.

Hence if Reg(e) is a bounded homomorphic image of a free
lattice, then it is a direct product of extended permutohedra on
finite nosetes and coniecs of {0 1Y and Rin(?2)
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More open problems

The extended

™ Problem (Santocanale and W 2012)

Can every finite ortholattice, which is also a bounded
homomorphic image of a free lattice, be embedded into R(E),
for some finite poset E7?

Problem (Santocanale and W 2012)

Is there a nontrivial ortholattice identity that holds in R(E) for
any finite poset E?

Can_pletely_ .o .
join-irreducible Not even known for E a flnlte chain:

elements in
Reg(e)

Problem (Santocanale and W 2011)

Is there a nontrivial lattice (ortholattice) identity that holds
in P(n) for any positive integer n?
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Minimal subdirect decomposition of the

permutohedron P(n)

The extended

TS m For U C [n], denote by Ay(n) the set of all transitive
x € J, such that

(ij)ex (ifjeu),
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a subdirect product of all Ay(n). Furthermore, the Ay(n) are

i Cambrian isomorphic to N. Reading’s Cambrian lattices of type A.



Minimal subdirect decomposition of the

permutohedron P(n)

The extended

TS m For U C [n], denote by Ay(n) the set of all transitive
x € J, such that

(ij)ex (ifjeu),

(Rq<k“d““€”${umex(w¢uy

m Ay(n) is a sublattice of P(n). More is true:

Theorem (Santocanale and W 2011)

Each Ay(n) is a lattice-theoretical retract of P(n), and P(n) is
a subdirect product of all Ay(n). Furthermore, the Ay(n) are

i Cambrian isomorphic to N. Reading’s Cambrian lattices of type A.

Ag(n) = Ap;j(n) is the Tamari lattice on n + 1 letters
(associahedron).
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N. Reading observed that each Ay(n) has cardinality nil (2:)



Minimal subdirect decomposition of Bip(n)

The extended
permutohe-

dron m a € [n] is isolated in x € Bip(n) if ((i,a) € x and
(a,i) ex)= i=a, Vie]|n].
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Minimal subdirect decomposition of Bip(n)

The extended

i m a € [n] is isolated in x € Bip(n) if ((i,a) € x and
(a,i) ex)= i=a, Vie]|n].

mFor0< k<n, ac|n],and U C [n]\ {a} with k
elements, denote (...) by S(n, k) the poset of all
x € Bip(n) such that each isolated point of x is equal to a,

and if a is isolated, then (U° x {a}) U ({a} x U) C x.
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i m a € [n] is isolated in x € Bip(n) if ((i,a) € x and
(a,i) ex)= i=a, Vie]|n].

mFor0< k<n, ac|n],and U C [n]\ {a} with k
elements, denote (...) by S(n, k) the poset of all
x € Bip(n) such that each isolated point of x is equal to a,
and if a is isolated, then (U° x {a}) U ({a} x U) C x.

m S(n, k) is a self-dual lattice (not necessarily a sublattice
of Bip(n)), and S(n, k) = S(n,n — 1 — k) (so it suffices to
consider 0 < 2k < n).
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The extended

i m a € [n] is isolated in x € Bip(n) if ((i,a) € x and
(a,i) ex)= i=a, Vie]|n].

mFor0< k<n, ac|n],and U C [n]\ {a} with k
elements, denote (...) by S(n, k) the poset of all
x € Bip(n) such that each isolated point of x is equal to a,
and if a is isolated, then (U° x {a}) U ({a} x U) C x.

m S(n, k) is a self-dual lattice (not necessarily a sublattice
of Bip(n)), and S(n, k) = S(n,n — 1 — k) (so it suffices to
consider 0 < 2k < n).

Theorem (Santocanale and W 2012)
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Minimal subdirect decomposition of Bip(n)

The extended

i m a € [n] is isolated in x € Bip(n) if ((i,a) € x and
(a,i) ex)= i=a, Vie]|n].

mFor0< k<n, ac|n],and U C [n]\ {a} with k
elements, denote (...) by S(n, k) the poset of all
x € Bip(n) such that each isolated point of x is equal to a,
and if a is isolated, then (U° x {a}) U ({a} x U) C x.

m S(n, k) is a self-dual lattice (not necessarily a sublattice
of Bip(n)), and S(n, k) = S(n,n — 1 — k) (so it suffices to
consider 0 < 2k < n).

Theorem (Santocanale and W 2012)

Bip-Cambrian

jattices Bip(n) is a subdirect product of copies of the S(n, k) (minimal
subdirect decomposition).



The bip-Cambrian lattices S(n, k)

fihive m Cardinalities for small values: card S(3,0) = 24,
dren cardS(3,1) = 21; card S(4,0) = 158, card S(4, 1) = 142;
cardS(5,0) = 1,320, cardS(5,1) = 1,202,

card S(5,2) = 1,198.
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dren cardS(3,1) = 21; card S(4,0) = 158, card S(4, 1) = 142;
cardS(5,0) = 1,320, cardS(5,1) = 1,202,

card S(5,2) = 1,198. Hence card S(n, k) depends on k.
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The bip-Cambrian lattices S(n, k)

m Cardinalities for small values: card S(3,0) = 24,
cardS(3,1) = 21; card S(4,0) = 158, card S(4, 1) = 142;
cardS(5,0) = 1,320, cardS(5,1) = 1,202,
card S(5,2) = 1,198. Hence card S(n, k) depends on k.

m Recall the picture of Bip(3):

attices




Pictures of 5(3,0) and S(3,1)




The congruence lattice of Bip(n)

The extended
permutohe-
dron

The description of all join-irreducible elements of Bip(n) (and
their D relation) makes it possible to prove the following.
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their D relation) makes it possible to prove the following.

Lemma (Santocanale and W 2012)
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The extended
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dron

The description of all join-irreducible elements of Bip(n) (and
their D relation) makes it possible to prove the following.

Lemma (Santocanale and W 2012)

Let p and q be join-irreducible elements in Bip(n), where
n > 3. Then con(p,,p) C con(q,, q) iff either q is bipartite or
P = q is a clepsydra.
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The congruence lattice of Bip(n)

The extended
permutohe-
dron

The description of all join-irreducible elements of Bip(n) (and
their D relation) makes it possible to prove the following.

Lemma (Santocanale and W 2012)

Let p and q be join-irreducible elements in Bip(n), where
n > 3. Then con(p,,p) C con(q,, q) iff either q is bipartite or
P = q is a clepsydra.

Corollary (Santocanale and W 2012)

Let n > 3. Then the congruence lattice of Bip(n) is Boolean on
RN - 27! atoms, with a top element added.

lattices
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