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What is the permutohedron?

The permutohedron on n letters, denoted by P(n), can be
defined as the set of all permutations of n letters, with the
ordering

α ≤ β ⇐⇒
def.

Inv(α) ⊆ Inv(β) ,

where we set

[n] =
def.
{1, 2, . . . , n} ,

In =
def.
{(i , j) ∈ [n]× [n] | i < j} ,

Inv(α) =
def.
{(i , j) ∈ In | α−1(i) > α−1(j)} .

Alternate definition: P(n) = {Inv(σ) | σ ∈ Sn}, ordered
by ⊆.
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What are the Inv(σ)?

Both Inv(σ) and In \ Inv(σ) are transitive relations on [n].

(Proof: let (i , j) ∈ In. Then (i , j) ∈ Inv(σ) iff
σ−1(i) > σ−1(j); (i , j) /∈ Inv(σ) iff σ−1(i) < σ−1(j).)

Conversely, every subset x ⊆ In, such that both x and
In \ x are transitive, is Inv(σ) for a unique σ ∈ Sn

(Dushnik and Miller 1941, Guilbaud and Rosenstiehl 1963).

Say that x ⊆ In is closed if it is transitive, open if In \ x is
closed, and clopen if it is both closed and open.

Hence P(n) = {x ⊆ In | x is clopen}, ordered by ⊆.

Observe that each x ∈ P(n) is a strict ordering. It can be
proved (Dushnik and Miller 1941) that those are exactly
the finite strict orderings of order-dimension 2.
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The permutohedra P(2), P(3), and P(4).
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Permutohedra are ortholattices

Theorem (Guilbaud and Rosenstiehl 1963)

The permutohedron P(n) is a lattice, for every positive
integer n.

The assignment x 7→ xc = In \ x defines an
orthocomplementation on P(n):

x ≤ y⇒ yc ≤ xc ;

(xc)c = x ;

x ∧ xc = 0 (equivalently, x ∨ xc = 1) .

Hence P(n) is an ortholattice.
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What makes P(n) a lattice?

Every x ∈ In is contained in a least closed set (namely,
cl(x) = transitive closure of x).

Dually, every x ⊆ In contains a largest open set (namely,
int(x) = In \ cl(In \ x)).

Theorem (Guilbaud and Rosenstiehl 1963)

int(x) is closed, for any closed x ⊆ In.

In particular, the join of {x, y} in P(n) is cl(x ∪ y). Dually, the
meet of {x, y} in P(n) is int(x ∩ y).
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Permutohedra are even more peculiar lattices

Theorem (Duquenne and Cherfouh 1994, Le Conte de
Poly-Barbut 1994)

The permutohedron P(n) is semidistributive, for every positive
integer n. Thus it is also pseudocomplemented.

Semidistributivity means that
x ∨ z = y ∨ z ⇒ x ∨ z = (x ∧ y) ∨ z , and, dually,
x ∧ z = y ∧ z ⇒ x ∧ z = (x ∨ y) ∧ z .

Theorem (Caspard 2000)

The permutohedron P(n) is a bounded homomorphic image of
a free lattice, for every positive integer n.

This means that there are a finitely generated free lattice F
and a surjective lattice homomorphism f : F � P(n) such that
each f −1{x} has both a least and a largest element.
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Basic definitions

The definition of the permutohedron got extended to any
poset E , in a 1995 paper by Pouzet, Reuter, Rival, and
Zaguia.

Setting δE = {(x , y) ∈ E × E | x < y}, let a ⊆ δE be
closed if it is transitive, open if δE \ a is closed, and
clopen if it is both closed and open.

Then we set

P(E ) =
def.
{a ⊆ δE | a is clopen} , (that’s our guy)

P∗(E ) =
def.
{u ∩ δE | u strict linear ordering on E} .

Obviously, P∗(E ) ⊆ P(E ).

Also, both P(E ) and P∗(E ) are orthocomplemented
posets.
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Is P(E ) a lattice?

Theorem (Pouzet, Reuter, Rival, and Zaguia 1995)

The following statements hold, for any poset E .

1 P(E ) is a lattice iff E is square-free.

2 P(E ) = P∗(E ) iff E is crown-free.

Illustrating square and crowns:
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What about boundedness?

Theorem (Caspard, Santocanale, and W 2011)

Let E be a square-free poset. Then the lattice P(E ) is a
subdirect product of the P(C ), for all maximal chains C of E .

By invoking Caspard’s 2000 theorem, we get the following
extension of that result.

Corollary (Caspard, Santocanale, and W 2011)

Let E be a finite square-free poset. Then P(E ) is a bounded
homomorphic image of a free lattice.

“Square-free” is just put there in order to ensure
that P(E ) be a lattice.

For E an infinite chain, P(E ) is not even semidistributive.
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Why is P∗(E ) sometimes better than P(E )?

Theorem (Pouzet, Reuter, Rival, and Zaguia 1995)

Let E be a finite poset. Then the inclusion mapping
from P∗(E ) into the powerset of δE is cover-preserving.

Theorem (Caspard, Santocanale, and W 2011)

There is a finite poset E such that the inclusion mapping from
P(E ) into the powerset of δE is not height-preserving (thus
also not cover-preserving).

Here is the counterexample:

x0
x2 x4

z1
z3 z5

y12 y01 y23 y34 y50 y45
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Setting the problem

Lattice-theoretical properties of P(E ): make sense only in
case P(E ) is a lattice (duh), that is, E is square-free.

Is there anything left in case E is not square-free?

It turns out that yes.
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Getting past the “square-free” restriction

Definition

A subset x of a transitive (binary) relation e is

closed if it is transitive,

open if e \ x is closed,

regular closed if x = cl(int(x)),

regular open if x = int(cl(x)).

clopen if it is both open and closed.

Operators cl and int defined as before: cl(x) is the transitive
closure of x, int(x) = e \ cl(e \ x).
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The lattices Reg(e) and Regop(e)

Notation

For a transitive relation e,

Clop(e) =
def.
{x ⊆ e | x is clopen} .

Reg(e) =
def.
{x ⊆ e | x is regular closed} .

Regop(e) =
def.
{x ⊆ e | x is regular open} .

x 7→ xc = e \ x defines a dual isomorphism between
Reg(e) and Regop(e).

x 7→ x⊥ = cl(xc) defines an orthocomplementation on
Reg(e).
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The lattices (cont’d)

Proposition

Reg(e) and Regop(e) are isomorphic ortholattices, intersecting
in Clop(e).

Clop(e) is an orthocomplemented poset. It may not be a
lattice (e.g., P(E ) = Clop(δE ), for any poset E ; take E non
square-free).
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Some notation

For a transitive relation e on a set E , write

x Ce y ⇐⇒
def.

(x , y) ∈ e ,

x Ee y ⇐⇒
def.

(either x Ce y or x = y) ,

for all x , y ∈ E . We also set

[a, b]e = {x | a Ee x and x Ee b} ,
[a, b[e = {x | a Ee x and x Ce b} ,
]a, b]e = {x | a Ce x and x Ee b} ,

for all a, b ∈ E . As a Ce a may occur, a may belong to ]a, b]e.
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Square-free transitive relations

Definition

A transitive relation e on a set E is square-free if the
preordered set (E ,Ee) is square-free. That is,

(∀a, b, x , y)
((

a Ee x and a Ee y and x Ee b and y Ee b
)

=⇒ (either x Ee y or y Ee x)
)
.
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When is Clop(e) a lattice?

Theorem (Santocanale and W 2012)

The following are equivalent, for any transitive relation e:

1 Clop(e) is a lattice.

2 Clop(e) = Reg(e).

3 int(x) is closed, for any closed x ⊆ e.

4 e is square-free.

The particular case where e is antisymmetric is already
taken care of by the abovementioned 1995 work by
Pouzet, Reuter, Rival, and Zaguia.

The particular case where e is full (i.e., e = E × E ) follows
from 2011 work by Hetyei and Krattenthaler. In that case,
e is always square-free, and Clop(e) = Reg(e) is denoted
by Bip(E ), the lattice of all bipartitions of a set E .
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Permutohedra on non square-free posets

Recall that P(E ) = Clop(δE ), for any poset E .

Set R(E ) = Reg(δE ) (the extended permutohedron on E ),
for any poset E .

In particular, R(E ) is always a lattice.

By earlier results, P(E ) is a lattice, iff P(E ) = R(E ), iff E
is square-free.
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The extended permutohedron on the square B2

There it goes:

a0a1 b0

c00 c01c10 c11

u

u⊥

a⊥0 a⊥1
b⊥0b⊥1

c⊥00c⊥01 c⊥10
c⊥11

b1
0

1

a b

R(B2)B2

card R(B2) = 20 while card P(B2) = 18.

Every join-irreducible element of R(B2) is clopen (general
explanation coming later).

The two elements u and u⊥ of R(B2) \ P(B2) are marked
by doubled circles on the picture above.
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Basic observations

Bip(n) = Bip([n]) is the ortholattice of all binary
relations x on [n] that are both transitive and
co-transitive, ordered by ⊆.

The bipartition lattices Bip(n) are “permutohedra without
order”.

card Bip(2) = 10, card Bip(3) = 74, card Bip(4) = 730,
card Bip(5) = 9,002.

Each Bip(n) is a graded lattice (Hetyei and Krattenthaler
2011).
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Small bipartition lattices

Here is a picture of Bip(2), together with the
join-dependency relation on its join-irreducible elements.

a0

a0

a1

a1

a2

a2b0

b0

b1

b1

b2

b2

Bip(2) The D relation on Ji(Bip(2))

In particular, Bip(2) is a bounded homomorphic image of a
free lattice.

This does not extend to higher bipartition lattices: for
example, M3 embeds into Bip(3), so Bip(3) is not even
semidistributive.
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example, M3 embeds into Bip(3), so Bip(3) is not even
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Small bipartition lattices

Here is a picture of Bip(2), together with the
join-dependency relation on its join-irreducible elements.

a0

a0

a1

a1

a2

a2b0

b0

b1

b1

b2

b2

Bip(2) The D relation on Ji(Bip(2))

In particular, Bip(2) is a bounded homomorphic image of a
free lattice.

This does not extend to higher bipartition lattices: for
example, M3 embeds into Bip(3), so Bip(3) is not even
semidistributive.
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Some notation

We denote by C(e) the set of all triples (a, b,U), where
(a, b) ∈ e, U ⊆ [a, b]e, and a 6= b implies that a /∈ U and
b ∈ U.

We set Uc = [a, b]e \ U, and

〈a, b; U〉 =


{(x , y) | a Ee x Ce y Ee b , x /∈ U , y ∈ U} ,
if a 6= b ,

({a} ∪ Uc)× ({a} ∪ U) ,

if a = b ,

for each (a, b,U) ∈ C(e).

Observe that 〈a, b; U〉 is bipartite (i.e., it cannot have
both (x , y) and (y , z) ) iff a 6= b. If a = b, say that
〈a, b; U〉 is a clepsydra.
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Recognizing the completely join-irreducible
elements in Reg(e)

Theorem (Santocanale and W 2012)

The following statements hold, for any transitive relation e.

1 The completely join-irreducible elements of Reg(e) are
exactly the 〈a, b; U〉, where (a, b,U) ∈ C(e). They are all
clopen.

2 Every open (resp., regular closed) subset of e is a
set-theoretical union (resp., join) of completely
join-irreducible elements of Reg(e).

Corollary (Santocanale and W 2012)

Reg(e) is the Dedekind-MacNeille completion of Clop(e), for
any transitive relation e.
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The join-dependency relation on Reg(e) in the
antisymmetric case

Lemma (Santocanale and W 2012)

Let e be a finite, antisymmetric, transitive relation and let
pi = 〈ai , bi ; Ui 〉 be completely join-irreducible in Reg(e), for
i ∈ {0, 1}. Then p0 D p1 in Reg(e) iff [a1, b1]e $ [a0, b0]e and
U1 =

(
(U0 ∩ [a1, b1]e) \ {a1}

)
∪ {b1}.

Corollary (Santocanale and W 2012)

The join-dependency relation on Reg(e) is a strict ordering, for
any finite, antisymmetric, transitive relation e.

Corollary (Santocanale and W 2012)

The lattice Reg(e) is a bounded homomorphic image of a free
lattice, for any finite, antisymmetric, transitive relation e.
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Bounded lattices Reg(e)

In particular, R(E ) is a bounded homomorphic image of a free
lattice, for any finite (not necessarily square-free) poset E .

Theorem (Santocanale and W 2012)

The following are equivalent, for any finite, transitive
relation e:

1 Reg(e) is a bounded homomorphic image of a free lattice.

2 Reg(e) is semidistributive.

3 Reg(e) is pseudocomplemented.

4 Every connected component of the preordering Ee is
either antisymmetric or has the form {a, b} with a 6= b,
(a, b) ∈ e, and (b, a) ∈ e.

Hence if Reg(e) is a bounded homomorphic image of a free
lattice, then it is a direct product of extended permutohedra on
finite posets and copies of {0, 1} and Bip(2).
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In particular, R(E ) is a bounded homomorphic image of a free
lattice, for any finite (not necessarily square-free) poset E .

Theorem (Santocanale and W 2012)

The following are equivalent, for any finite, transitive
relation e:

1 Reg(e) is a bounded homomorphic image of a free lattice.

2 Reg(e) is semidistributive.

3 Reg(e) is pseudocomplemented.

4 Every connected component of the preordering Ee is
either antisymmetric or has the form {a, b} with a 6= b,
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More open problems

Problem (Santocanale and W 2012)

Can every finite ortholattice, which is also a bounded
homomorphic image of a free lattice, be embedded into R(E ),
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Minimal subdirect decomposition of the
permutohedron P(n)

For U ⊆ [n], denote by AU(n) the set of all transitive
x ∈ In such that

(
i < j < k and (i , k) ∈ x

)
⇒

{
(i , j) ∈ x (if j ∈ U) ,

(j , k) ∈ x (if j /∈ U) .

AU(n) is a sublattice of P(n). More is true:

Theorem (Santocanale and W 2011)

Each AU(n) is a lattice-theoretical retract of P(n), and P(n) is
a subdirect product of all AU(n). Furthermore, the AU(n) are
isomorphic to N. Reading’s Cambrian lattices of type A.

A∅(n) ∼= A[n](n) is the Tamari lattice on n + 1 letters
(associahedron).
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Picturing the Cambrian lattices of type A, for n = 4
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N. Reading observed that each AU(n) has cardinality 1
n+1

(2n
n

)
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Minimal subdirect decomposition of Bip(n)

a ∈ [n] is isolated in x ∈ Bip(n) if ((i , a) ∈ x and
(a, i) ∈ x)⇔ i = a, ∀i ∈ [n].

For 0 ≤ k < n, a ∈ [n], and U ⊆ [n] \ {a} with k
elements, denote (. . . ) by S(n, k) the poset of all
x ∈ Bip(n) such that each isolated point of x is equal to a,
and if a is isolated, then (Uc × {a}) ∪ ({a} × U) ⊆ x.

S(n, k) is a self-dual lattice (not necessarily a sublattice
of Bip(n)), and S(n, k) ∼= S(n, n − 1− k) (so it suffices to
consider 0 ≤ 2k < n).

Theorem (Santocanale and W 2012)

Bip(n) is a subdirect product of copies of the S(n, k) (minimal
subdirect decomposition).
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The bip-Cambrian lattices S(n, k)

Cardinalities for small values: card S(3, 0) = 24,
card S(3, 1) = 21; card S(4, 0) = 158, card S(4, 1) = 142;
card S(5, 0) = 1,320, card S(5, 1) = 1,202,
card S(5, 2) = 1,198.

Hence card S(n, k) depends on k .
Recall the picture of Bip(3):
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The congruence lattice of Bip(n)

The description of all join-irreducible elements of Bip(n) (and
their D relation) makes it possible to prove the following.

Lemma (Santocanale and W 2012)

Let p and q be join-irreducible elements in Bip(n), where
n ≥ 3. Then con(p∗,p) ⊆ con(q∗,q) iff either q is bipartite or
p = q is a clepsydra.

Corollary (Santocanale and W 2012)

Let n ≥ 3. Then the congruence lattice of Bip(n) is Boolean on
n · 2n−1 atoms, with a top element added.
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