The extended permutohedron

The extended permutohedron on a transitive relation

Luigi Santocanale and Friedrich Wehrung

LIF (Marseille) and LMNO (Caen)
E-mail (Santocanale): luigi.santocanale@lif.univ-mrs.fr URL (Santocanale): http://www.lif.univ-mrs.fr/~Isantoca

E-mail (Wehrung): wehrung@math.unicaen.fr
URL (Wehrung): http://www.math.unicaen.fr/ ${ }^{\text {w }}$ whrung

SSAOS 2012, Nový Smokovec, September 2012

What is the permutohedron?

The extended permutohedron

■ The permutohedron on n letters, denoted by $\mathrm{P}(n)$, can be defined as the set of all permutations of n letters, with the ordering

What is it about?

An extension
to every poset
Regular closed
subsets of a
transitive
relation
Back to
bipartitions
Completely join-irreducible elements in $\operatorname{Reg}(e)$

Bip-Cambrian lattices

What is the permutohedron?

The extended permutohedron

■ The permutohedron on n letters, denoted by $\mathrm{P}(n)$, can be defined as the set of all permutations of n letters, with the ordering

$$
\alpha \leq \beta \underset{\text { def. }}{\Longleftrightarrow} \operatorname{lnv}(\alpha) \subseteq \operatorname{lnv}(\beta)
$$

What is the permutohedron?

The extended permutohedron

What is it about?

An extension
to every poset
Regular closed
subsets of a
transitive relation

Back to
bipartitions
Completely
join-irreducible elements in $\operatorname{Reg}(e)$

Bip-Cambrian lattices

■ The permutohedron on n letters, denoted by $\mathrm{P}(n)$, can be defined as the set of all permutations of n letters, with the ordering

$$
\alpha \leq \beta \underset{\text { def. }}{\Longleftrightarrow} \operatorname{Inv}(\alpha) \subseteq \operatorname{lnv}(\beta),
$$

- where we set

$$
\begin{gathered}
{[n] \underset{\text { def. }}{=}\{1,2, \ldots, n\},} \\
\mathcal{J}_{n} \underset{\text { def. }}{=}\{(i, j) \in[n] \times[n] \mid i<j\}, \\
\operatorname{lnv}(\alpha) \underset{\text { def. }}{=}\left\{(i, j) \in \mathcal{J}_{n} \mid \alpha^{-1}(i)>\alpha^{-1}(j)\right\} .
\end{gathered}
$$

What is the permutohedron?

The extended

 permutohedronWhat is it about?

An extension
to every poset
Regular closed
subsets of a
transitive relation

Back to
bipartitions
Completely
join-irreducible elements in $\operatorname{Reg}(e)$ lattices

■ The permutohedron on n letters, denoted by $\mathrm{P}(n)$, can be defined as the set of all permutations of n letters, with the ordering

$$
\alpha \leq \beta \underset{\text { def. }}{\Longleftrightarrow} \operatorname{Inv}(\alpha) \subseteq \operatorname{lnv}(\beta)
$$

- where we set

$$
\begin{gathered}
{[n] \underset{\text { def. }}{=}\{1,2, \ldots, n\}} \\
\mathcal{J}_{n} \underset{\text { def. }}{=}\{(i, j) \in[n] \times[n] \mid i<j\}, \\
\operatorname{lnv}(\alpha) \underset{\text { def. }}{=}\left\{(i, j) \in \mathcal{J}_{n} \mid \alpha^{-1}(i)>\alpha^{-1}(j)\right\} .
\end{gathered}
$$

■ Alternate definition: $\mathrm{P}(n)=\left\{\operatorname{lnv}(\sigma) \mid \sigma \in \mathfrak{S}_{n}\right\}$, ordered by \subseteq.

What are the $\operatorname{Inv}(\sigma)$?

The extended permutohedron

■ Both $\operatorname{Inv}(\sigma)$ and $\mathcal{J}_{n} \backslash \operatorname{lnv}(\sigma)$ are transitive relations on $[n]$.

What are the $\operatorname{Inv}(\sigma)$?

The extended permutohedron

What is it about?

An extension to every poset

Regular closed subsets of a
transitive
relation
Back to
bipartitions
Completely join-irreducible elements in $\operatorname{Reg}(\mathrm{e})$

Bip-Cambrian lattices

■ Both $\operatorname{lnv}(\sigma)$ and $\mathcal{J}_{n} \backslash \operatorname{lnv}(\sigma)$ are transitive relations on $[n]$. (Proof: let $(i, j) \in \mathcal{J}_{n}$. Then $(i, j) \in \operatorname{lnv}(\sigma)$ iff $\sigma^{-1}(i)>\sigma^{-1}(j) ;(i, j) \notin \operatorname{lnv}(\sigma)$ iff $\sigma^{-1}(i)<\sigma^{-1}(j)$.)

What are the $\operatorname{Inv}(\sigma)$?

The extended

■ Both $\operatorname{Inv}(\sigma)$ and $\mathcal{J}_{n} \backslash \operatorname{lnv}(\sigma)$ are transitive relations on $[n]$. (Proof: let $(i, j) \in \mathcal{J}_{n}$. Then $(i, j) \in \operatorname{lnv}(\sigma)$ iff $\sigma^{-1}(i)>\sigma^{-1}(j) ;(i, j) \notin \operatorname{lnv}(\sigma)$ iff $\sigma^{-1}(i)<\sigma^{-1}(j)$.)
■ Conversely, every subset $\mathbf{x} \subseteq \mathcal{J}_{n}$, such that both \mathbf{x} and $\mathcal{J}_{n} \backslash \mathbf{x}$ are transitive, is $\operatorname{lnv}(\sigma)$ for a unique $\sigma \in \mathfrak{S}_{n}$
(Dushnik and Miller 1941, Guilbaud and Rosenstiehl 1963).

What are the $\operatorname{Inv}(\sigma)$?

■ Both $\operatorname{lnv}(\sigma)$ and $\mathcal{J}_{n} \backslash \operatorname{lnv}(\sigma)$ are transitive relations on $[n]$. (Proof: let $(i, j) \in \mathcal{J}_{n}$. Then $(i, j) \in \operatorname{lnv}(\sigma)$ iff $\sigma^{-1}(i)>\sigma^{-1}(j) ;(i, j) \notin \operatorname{lnv}(\sigma)$ iff $\left.\sigma^{-1}(i)<\sigma^{-1}(j).\right)$
■ Conversely, every subset $\mathbf{x} \subseteq \mathcal{J}_{n}$, such that both \mathbf{x} and $\mathcal{J}_{n} \backslash \mathbf{x}$ are transitive, is $\operatorname{lnv}(\sigma)$ for a unique $\sigma \in \mathfrak{S}_{n}$
(Dushnik and Miller 1941, Guilbaud and Rosenstiehl 1963).
■ Say that $\mathbf{x} \subseteq \mathcal{J}_{n}$ is closed if it is transitive, open if $\mathcal{J}_{n} \backslash \mathbf{x}$ is closed, and clopen if it is both closed and open.

What are the $\operatorname{Inv}(\sigma)$?

■ Both $\operatorname{lnv}(\sigma)$ and $\mathcal{J}_{n} \backslash \operatorname{lnv}(\sigma)$ are transitive relations on $[n]$. (Proof: let $(i, j) \in \mathcal{J}_{n}$. Then $(i, j) \in \operatorname{lnv}(\sigma)$ iff $\sigma^{-1}(i)>\sigma^{-1}(j) ;(i, j) \notin \operatorname{lnv}(\sigma)$ iff $\left.\sigma^{-1}(i)<\sigma^{-1}(j).\right)$
■ Conversely, every subset $\mathbf{x} \subseteq \mathcal{J}_{n}$, such that both \mathbf{x} and $\mathcal{J}_{n} \backslash \mathbf{x}$ are transitive, is $\operatorname{lnv}(\sigma)$ for a unique $\sigma \in \mathfrak{S}_{n}$
(Dushnik and Miller 1941, Guilbaud and Rosenstiehl 1963).

- Say that $\mathbf{x} \subseteq \mathcal{J}_{n}$ is closed if it is transitive, open if $\mathcal{J}_{n} \backslash \mathbf{x}$ is closed, and clopen if it is both closed and open.
- Hence $\mathrm{P}(n)=\left\{\mathbf{x} \subseteq \mathcal{J}_{n} \mid \mathbf{x}\right.$ is clopen $\}$, ordered by \subseteq.

What are the $\operatorname{Inv}(\sigma)$?

■ Both $\operatorname{Inv}(\sigma)$ and $\mathcal{J}_{n} \backslash \operatorname{lnv}(\sigma)$ are transitive relations on $[n]$. (Proof: let $(i, j) \in \mathcal{J}_{n}$. Then $(i, j) \in \operatorname{lnv}(\sigma)$ iff $\sigma^{-1}(i)>\sigma^{-1}(j) ;(i, j) \notin \operatorname{lnv}(\sigma)$ iff $\left.\sigma^{-1}(i)<\sigma^{-1}(j).\right)$
■ Conversely, every subset $\mathbf{x} \subseteq \mathcal{J}_{n}$, such that both \mathbf{x} and $\mathcal{J}_{n} \backslash \mathbf{x}$ are transitive, is $\operatorname{lnv}(\sigma)$ for a unique $\sigma \in \mathfrak{S}_{n}$
(Dushnik and Miller 1941, Guilbaud and Rosenstiehl 1963).

- Say that $\mathbf{x} \subseteq \mathcal{J}_{n}$ is closed if it is transitive, open if $\mathcal{J}_{n} \backslash \mathbf{x}$ is closed, and clopen if it is both closed and open.
- Hence $\mathrm{P}(n)=\left\{\mathbf{x} \subseteq \mathcal{J}_{n} \mid \mathbf{x}\right.$ is clopen $\}$, ordered by \subseteq.
- Observe that each $\mathbf{x} \in \mathrm{P}(n)$ is a strict ordering. It can be proved (Dushnik and Miller 1941) that those are exactly the finite strict orderings of order-dimension 2.

The permutohedra $\mathrm{P}(2), \mathrm{P}(3)$, and $\mathrm{P}(4)$.

The extended permutohedron

What is it about?

An extension to every poset

Regular closed
subsets of a

transitive

 relation
Back to

bipartitions
Completely join-irreducible
elements in $\operatorname{Reg}(\mathrm{e})$

Bip-Cambrian lattices

Permutohedra are ortholattices

The extended permutohedron

Theorem (Guilbaud and Rosenstiehl 1963)
What is it about?

An extension
to every poset
Regular closed
subsets of a
transitive
relation
Back to
bipartitions
Completely join-irreducible elements in $\operatorname{Reg}(e)$

Bip-Cambrian lattices

Permutohedra are ortholattices

What is it about?

An extension
to every poset
Regular closed
subsets of a
transitive
relation
Back to
bipartitions
Completely
join-irreducible
elements in $\operatorname{Reg}(e)$

Bip-Cambrian lattices

Theorem (Guilbaud and Rosenstiehl 1963)
The permutohedron $\mathrm{P}(n)$ is a lattice, for every positive integer n.

Permutohedra are ortholattices

Theorem (Guilbaud and Rosenstiehl 1963)
The permutohedron $\mathrm{P}(n)$ is a lattice, for every positive integer n.

The assignment $\mathbf{x} \mapsto \mathbf{x}^{\mathrm{c}}=\mathcal{J}_{n} \backslash \mathbf{x}$ defines an orthocomplementation on $\mathrm{P}(n)$:

Permutohedra are ortholattices

Theorem (Guilbaud and Rosenstiehl 1963)
The permutohedron $\mathrm{P}(n)$ is a lattice, for every positive integer n.

The assignment $\mathbf{x} \mapsto \mathbf{x}^{\mathrm{c}}=\mathcal{J}_{n} \backslash \mathbf{x}$ defines an orthocomplementation on $\mathrm{P}(n)$:

$$
\begin{aligned}
\mathbf{x} \leq \mathbf{y} & \Rightarrow \mathbf{y}^{c} \leq \mathbf{x}^{c} \\
\left(\mathbf{x}^{c}\right)^{c} & =\mathbf{x} \\
\mathbf{x} \wedge \mathbf{x}^{c} & \left.=0 \quad \text { (equivalently, } \mathbf{x} \vee \mathbf{x}^{c}=1\right)
\end{aligned}
$$

Permutohedra are ortholattices

Theorem (Guilbaud and Rosenstiehl 1963)
The permutohedron $\mathrm{P}(n)$ is a lattice, for every positive integer n.

The assignment $\mathbf{x} \mapsto \mathbf{x}^{\mathrm{c}}=\mathcal{J}_{n} \backslash \mathbf{x}$ defines an orthocomplementation on $\mathrm{P}(n)$:

$$
\begin{aligned}
\mathbf{x} \leq \mathbf{y} & \Rightarrow \mathbf{y}^{c} \leq \mathbf{x}^{c} \\
\left(\mathbf{x}^{c}\right)^{c} & =\mathbf{x} \\
\mathbf{x} \wedge \mathbf{x}^{c} & \left.=0 \quad \text { (equivalently, } \mathbf{x} \vee \mathbf{x}^{c}=1\right)
\end{aligned}
$$

Hence $\mathrm{P}(n)$ is an ortholattice.

What makes $\mathrm{P}(n)$ a lattice?

The extended permutohedron

What is it about?

An extension to every poset

Regular closed subsets of a transitive
relation
Back to
bipartitions
Completely join-irreducible elements in $\operatorname{Reg}(\mathrm{e})$

Bip-Cambrian lattices

■ Every $\mathbf{x} \in \mathcal{J}_{n}$ is contained in a least closed set (namely, $\mathrm{cl}(\mathbf{x})=$ transitive closure of $\mathbf{x})$.

What makes $\mathrm{P}(n)$ a lattice?

The extended permutohedron

What is it about?

An extension
to every poset
Regular closed
subsets of a
transitive
relation
Back to
bipartitions
Completely join-irreducible elements in $\operatorname{Reg}(\mathrm{e})$

Bip-Cambrian lattices

■ Every $\mathbf{x} \in \mathcal{J}_{n}$ is contained in a least closed set (namely, $\mathrm{cl}(\mathbf{x})=$ transitive closure of $\mathbf{x})$.

- Dually, every $\mathbf{x} \subseteq \mathcal{J}_{n}$ contains a largest open set (namely, $\left.\operatorname{int}(\mathbf{x})=\mathcal{J}_{n} \backslash \operatorname{cl}\left(\mathcal{J}_{n} \backslash \mathbf{x}\right)\right)$.

What makes $\mathrm{P}(n)$ a lattice?

The extended permutohedron

What is it about?

An extension
to every poset
Regular closed
subsets of a
Theorem (Guilbaud and Rosenstiehl 1963)
■ Every $\mathbf{x} \in \mathcal{J}_{n}$ is contained in a least closed set (namely, $\mathrm{cl}(\mathbf{x})=$ transitive closure of $\mathbf{x})$.

- Dually, every $\mathbf{x} \subseteq \mathcal{J}_{n}$ contains a largest open set (namely, $\left.\operatorname{int}(\mathbf{x})=\mathcal{J}_{n} \backslash \mathrm{cl}\left(\mathcal{J}_{n} \backslash \mathbf{x}\right)\right)$.

What makes $\mathrm{P}(n)$ a lattice?

■ Every $\mathbf{x} \in \mathcal{J}_{n}$ is contained in a least closed set (namely, $\mathrm{cl}(\mathbf{x})=$ transitive closure of $\mathbf{x})$.
■ Dually, every $\mathbf{x} \subseteq \mathcal{J}_{n}$ contains a largest open set (namely, $\left.\operatorname{int}(\mathbf{x})=\mathcal{J}_{n} \backslash \mathrm{cl}\left(\mathcal{J}_{n} \backslash \mathbf{x}\right)\right)$.

Theorem (Guilbaud and Rosenstiehl 1963)
$\operatorname{int}(\mathbf{x})$ is closed, for any closed $\mathbf{x} \subseteq \mathcal{J}_{n}$.

What makes $\mathrm{P}(n)$ a lattice?

■ Every $\mathbf{x} \in \mathcal{J}_{n}$ is contained in a least closed set (namely, $\mathrm{cl}(\mathbf{x})=$ transitive closure of $\mathbf{x})$.
■ Dually, every $\mathbf{x} \subseteq \mathcal{J}_{n}$ contains a largest open set (namely, $\left.\operatorname{int}(\mathbf{x})=\mathcal{J}_{n} \backslash \operatorname{cl}\left(\mathcal{J}_{n} \backslash \mathbf{x}\right)\right)$.

Theorem (Guilbaud and Rosenstiehl 1963)
$\operatorname{int}(\mathbf{x})$ is closed, for any closed $\mathbf{x} \subseteq \mathcal{J}_{n}$.
In particular, the join of $\{\mathbf{x}, \mathbf{y}\}$ in $\mathrm{P}(n)$ is $\operatorname{cl}(\mathbf{x} \cup \mathbf{y})$. Dually, the meet of $\{\mathbf{x}, \mathbf{y}\}$ in $\mathrm{P}(n)$ is $\operatorname{int}(\mathbf{x} \cap \mathbf{y})$.

Permutohedra are even more peculiar lattices

The extended permutohedron

Theorem (Duquenne and Cherfouh 1994, Le Conte de Poly-Barbut 1994)

What is it about?

An extension
to every poset
Regular closed
subsets of a
transitive
relation
Back to
bipartitions
Completely join-irreducible elements in $\operatorname{Reg}(e)$

Bip-Cambrian lattices

Permutohedra are even more peculiar lattices

The extended permutohedron

What is it about?

An extension

Theorem (Duquenne and Cherfouh 1994, Le Conte de Poly-Barbut 1994)

The permutohedron $\mathrm{P}(n)$ is semidistributive, for every positive integer n. Thus it is also pseudocomplemented.

Permutohedra are even more peculiar lattices

The extended permutohedron

What is it about?

An extension to every poset

Regular closed subsets of a transitive relation

Back to bipartitions

Comptetely join-irreducible elements in $\operatorname{Reg}(e)$

Bip-Cambrian lattices

Theorem (Duquenne and Cherfouh 1994, Le Conte de Poly-Barbut 1994)

The permutohedron $\mathrm{P}(n)$ is semidistributive, for every positive integer n. Thus it is also pseudocomplemented.

Semidistributivity means that

$$
\begin{aligned}
& x \vee z=y \vee z \Rightarrow x \vee z=(x \wedge y) \vee z, \text { and, dually, } \\
& x \wedge z=y \wedge z \Rightarrow x \wedge z=(x \vee y) \wedge z
\end{aligned}
$$

Permutohedra are even more peculiar lattices

The extended permutohedron

What is it about?

An extension to every poset

Regular closed subsets of a transitive relation

Back to
bipartitions
Completely join-irreducible elements in $\operatorname{Reg}(e)$

Bip-Cambrian lattices

Theorem (Duquenne and Cherfouh 1994, Le Conte de Poly-Barbut 1994)

The permutohedron $\mathrm{P}(n)$ is semidistributive, for every positive integer n. Thus it is also pseudocomplemented.

Semidistributivity means that

$$
\begin{aligned}
& x \vee z=y \vee z \Rightarrow x \vee z=(x \wedge y) \vee z, \text { and, dually, } \\
& x \wedge z=y \wedge z \Rightarrow x \wedge z=(x \vee y) \wedge z
\end{aligned}
$$

Theorem (Caspard 2000)

Permutohedra are even more peculiar lattices

The extended

What is it about?

An extension to every poset

Regular closed subsets of a transitive relation

Back to
bipartitions
Completely join-irreducible elements in $\operatorname{Reg}(\mathrm{e})$

Bip-Cambrian lattices

Theorem (Duquenne and Cherfouh 1994, Le Conte de Poly-Barbut 1994)

The permutohedron $\mathrm{P}(n)$ is semidistributive, for every positive integer n. Thus it is also pseudocomplemented.

Semidistributivity means that

$$
\begin{aligned}
& x \vee z=y \vee z \Rightarrow x \vee z=(x \wedge y) \vee z, \text { and, dually, } \\
& x \wedge z=y \wedge z \Rightarrow x \wedge z=(x \vee y) \wedge z
\end{aligned}
$$

Theorem (Caspard 2000)

The permutohedron $\mathrm{P}(n)$ is a bounded homomorphic image of a free lattice, for every positive integer n.

Permutohedra are even more peculiar lattices

What is it about?

An extension to every poset

Regular closed subsets of a transitive relation

Back to
bipartitions
Completely join-irreducible elements in $\operatorname{Reg}(e)$

Bip-Cambrian lattices

Theorem (Duquenne and Cherfouh 1994, Le Conte de Poly-Barbut 1994)

The permutohedron $\mathrm{P}(n)$ is semidistributive, for every positive integer n. Thus it is also pseudocomplemented.

Semidistributivity means that

$$
\begin{aligned}
& x \vee z=y \vee z \Rightarrow x \vee z=(x \wedge y) \vee z, \text { and, dually, } \\
& x \wedge z=y \wedge z \Rightarrow x \wedge z=(x \vee y) \wedge z
\end{aligned}
$$

Theorem (Caspard 2000)

The permutohedron $\mathrm{P}(n)$ is a bounded homomorphic image of a free lattice, for every positive integer n.

This means that there are a finitely generated free lattice F and a surjective lattice homomorphism $f: F \rightarrow \mathrm{P}(n)$ such that each $f^{-1}\{x\}$ has both a least and a largest element.

Basic definitions

The extended permutohedron

- The definition of the permutohedron got extended to any poset E, in a 1995 paper by Pouzet, Reuter, Rival, and Zaguia.

What is it about?

An extension to every poset

Regular closed subsets of a transitive relation

Back to bipartitions

Completely join-irreducible elements in $\operatorname{Reg}(\mathrm{e})$

Basic definitions

The extended permutohedron

What is it about?

An extension to every poset

Regular closed subsets of a transitive relation

Back to bipartitions

Completely join-irreducible elements in $\operatorname{Reg}(\mathrm{e})$

■ The definition of the permutohedron got extended to any poset E, in a 1995 paper by Pouzet, Reuter, Rival, and Zaguia.
■ Setting $\delta_{E}=\{(x, y) \in E \times E \mid x<y\}$, let $\mathbf{a} \subseteq \delta_{E}$ be closed if it is transitive, open if $\boldsymbol{\delta}_{E} \backslash \mathbf{a}$ is closed, and clopen if it is both closed and open.

Basic definitions

The extended

 permutohedronWhat is it about?

An extension to every poset

Regular closed subsets of a transitive relation

Back to
bipartitions
Completely
join-irreducible elements in $\operatorname{Reg}(e)$

- The definition of the permutohedron got extended to any poset E, in a 1995 paper by Pouzet, Reuter, Rival, and Zaguia.
■ Setting $\delta_{E}=\{(x, y) \in E \times E \mid x<y\}$, let $\mathbf{a} \subseteq \delta_{E}$ be closed if it is transitive, open if $\boldsymbol{\delta}_{E} \backslash \mathbf{a}$ is closed, and clopen if it is both closed and open.
- Then we set

$$
\begin{gathered}
\mathrm{P}(E) \underset{\text { def. }}{=}\left\{\mathbf{a} \subseteq \boldsymbol{\delta}_{E} \mid \mathbf{a} \text { is clopen }\right\}, \quad \text { (that's our guy) } \\
\mathrm{P}^{*}(E) \underset{\text { def. }}{=}\left\{\mathbf{u} \cap \boldsymbol{\delta}_{E} \mid \mathbf{u} \text { strict linear ordering on } E\right\} .
\end{gathered}
$$

Basic definitions

■ The definition of the permutohedron got extended to any poset E, in a 1995 paper by Pouzet, Reuter, Rival, and Zaguia.
■ Setting $\delta_{E}=\{(x, y) \in E \times E \mid x<y\}$, let $\mathbf{a} \subseteq \delta_{E}$ be closed if it is transitive, open if $\delta_{E} \backslash \mathbf{a}$ is closed, and clopen if it is both closed and open.

- Then we set

$$
\begin{gathered}
\mathrm{P}(E) \underset{\text { def. }}{=}\left\{\mathbf{a} \subseteq \boldsymbol{\delta}_{E} \mid \mathbf{a} \text { is clopen }\right\}, \quad \text { (that's our guy) } \\
\mathrm{P}^{*}(E) \underset{\text { def. }}{=}\left\{\mathbf{u} \cap \boldsymbol{\delta}_{E} \mid \mathbf{u} \text { strict linear ordering on } E\right\} .
\end{gathered}
$$

- Obviously, $\mathrm{P}^{*}(E) \subseteq \mathrm{P}(E)$.

Basic definitions

- The definition of the permutohedron got extended to any poset E, in a 1995 paper by Pouzet, Reuter, Rival, and Zaguia.
- Setting $\boldsymbol{\delta}_{E}=\{(x, y) \in E \times E \mid x<y\}$, let $\mathbf{a} \subseteq \boldsymbol{\delta}_{E}$ be closed if it is transitive, open if $\boldsymbol{\delta}_{E} \backslash \mathbf{a}$ is closed, and clopen if it is both closed and open.
- Then we set

$$
\begin{gathered}
\mathrm{P}(E) \underset{\text { def. }}{=}\left\{\mathbf{a} \subseteq \boldsymbol{\delta}_{E} \mid \mathbf{a} \text { is clopen }\right\}, \quad \text { (that's our guy) } \\
\mathrm{P}^{*}(E) \underset{\text { def. }}{=}\left\{\mathbf{u} \cap \boldsymbol{\delta}_{E} \mid \mathbf{u} \text { strict linear ordering on } E\right\} .
\end{gathered}
$$

- Obviously, $\mathrm{P}^{*}(E) \subseteq \mathrm{P}(E)$.
- Also, both $\mathrm{P}(E)$ and $\mathrm{P}^{*}(E)$ are orthocomplemented posets.

Is $\mathrm{P}(E)$ a lattice?

The extended permutohedron

Theorem (Pouzet, Reuter, Rival, and Zaguia 1995)
What is it about?

An extension
to every poset
Regular closed
subsets of a
transitive
relation
Back to
bipartitions
Completely join-irreducible elements in Reg(e)

Bip-Cambrian lattices

Is $\mathrm{P}(E)$ a lattice?

The extended permutohedron

What is it about?

An extension to every poset

Regular closed subsets of a transitive
relation
Back to
bipartitions
Completely join-irreducible elements in $\operatorname{Reg}(\mathrm{e})$

Bip-Cambrian lattices

Theorem (Pouzet, Reuter, Rival, and Zaguia 1995)
The following statements hold, for any poset E.

Is $\mathrm{P}(E)$ a lattice?

The extended permutohedron

What is it about?

An extension to every poset

Regular closed subsets of a
relation
Back to
bipartitions
Completely join-irreducible elements in Reg(e)

Bip-Cambrian lattices

Theorem (Pouzet, Reuter, Rival, and Zaguia 1995)

The following statements hold, for any poset E.
$1 \mathrm{P}(E)$ is a lattice iff E is square-free.

Is $\mathrm{P}(E)$ a lattice?

The extended permutohedron

What is it about?

An extension to every poset

Regular closed subsets of a

Theorem (Pouzet, Reuter, Rival, and Zaguia 1995)

The following statements hold, for any poset E.
$1 \mathrm{P}(E)$ is a lattice iff E is square-free.
$2 \mathrm{P}(E)=\mathrm{P}^{*}(E)$ iff E is crown-free.

Is $\mathrm{P}(E)$ a lattice?

Theorem (Pouzet, Reuter, Rival, and Zaguia 1995)

The following statements hold, for any poset E.
$1 \mathrm{P}(E)$ is a lattice iff E is square-free.
$2 \mathrm{P}(E)=\mathrm{P}^{*}(E)$ iff E is crown-free.
Illustrating square and crowns:

What about boundedness?

The extended permutohedron

Theorem (Caspard, Santocanale, and W 2011)

What is it about?

An extension to every poset

Regular closed subsets of a

What about boundedness?

The extended permutohedron

What is it about?

An extension to every poset

Regular closed subsets of a transitive relation

Back to
bipartitions
Completely join-irreducible elements in $\operatorname{Reg}(e)$

Bip-Cambrian lattices

Theorem (Caspard, Santocanale, and W 2011)

Let E be a square-free poset. Then the lattice $\mathrm{P}(E)$ is a subdirect product of the $P(C)$, for all maximal chains C of E.

What about boundedness?

Theorem (Caspard, Santocanale, and W 2011)

Let E be a square-free poset. Then the lattice $\mathrm{P}(E)$ is a subdirect product of the $P(C)$, for all maximal chains C of E.

By invoking Caspard's 2000 theorem, we get the following extension of that result.

What about boundedness?

The extended permutohedron

What is it about?

An extension to every poset

Regular closed subsets of a transitive relation

Back to bipartitions

Completely join-irreducible elements in $\operatorname{Reg}(\mathrm{e})$ lattices

Theorem (Caspard, Santocanale, and W 2011)

Let E be a square-free poset. Then the lattice $\mathrm{P}(E)$ is a subdirect product of the $P(C)$, for all maximal chains C of E.

By invoking Caspard's 2000 theorem, we get the following extension of that result.

Corollary (Caspard, Santocanale, and W 2011)

What about boundedness?

Theorem (Caspard, Santocanale, and W 2011)

Let E be a square-free poset. Then the lattice $\mathrm{P}(E)$ is a subdirect product of the $P(C)$, for all maximal chains C of E.

By invoking Caspard's 2000 theorem, we get the following extension of that result.

Corollary (Caspard, Santocanale, and W 2011)

Let E be a finite square-free poset. Then $\mathrm{P}(E)$ is a bounded homomorphic image of a free lattice.

What about boundedness?

Theorem (Caspard, Santocanale, and W 2011)

Let E be a square-free poset. Then the lattice $\mathrm{P}(E)$ is a subdirect product of the $P(C)$, for all maximal chains C of E.

By invoking Caspard's 2000 theorem, we get the following extension of that result.

Corollary (Caspard, Santocanale, and W 2011)

Let E be a finite square-free poset. Then $\mathrm{P}(E)$ is a bounded homomorphic image of a free lattice.

- "Square-free" is just put there in order to ensure that $\mathrm{P}(E)$ be a lattice.

What about boundedness?

Theorem (Caspard, Santocanale, and W 2011)

Let E be a square-free poset. Then the lattice $\mathrm{P}(E)$ is a subdirect product of the $P(C)$, for all maximal chains C of E.

By invoking Caspard's 2000 theorem, we get the following extension of that result.

Corollary (Caspard, Santocanale, and W 2011)

Let E be a finite square-free poset. Then $\mathrm{P}(E)$ is a bounded homomorphic image of a free lattice.

- "Square-free" is just put there in order to ensure that $\mathrm{P}(E)$ be a lattice.
■ For E an infinite chain, $\mathrm{P}(E)$ is not even semidistributive.

Why is $\mathrm{P}^{*}(E)$ sometimes better than $\mathrm{P}(E)$?

The extended permutohedron

Theorem (Pouzet, Reuter, Rival, and Zaguia 1995)

What is it about?

An extension to every poset

Regular closed subsets of a transitive
relation
Back to
bipartitions
Completely join-irreducible elements in Reg(e)

Bip-Cambrian lattices

Why is $\mathrm{P}^{*}(E)$ sometimes better than $\mathrm{P}(E)$?

The extended permutohedron

What is it about?

An extension to every poset

Regular closed subsets of a transitive relation

Back to
bipartitions
Completely join-irreducible elements in $\operatorname{Reg}(\mathrm{e})$

Bip-Cambrian lattices

Theorem (Pouzet, Reuter, Rival, and Zaguia 1995)

Let E be a finite poset. Then the inclusion mapping from $\mathrm{P}^{*}(E)$ into the powerset of δ_{E} is cover-preserving.

Why is $\mathrm{P}^{*}(E)$ sometimes better than $\mathrm{P}(E)$?

The extended permutohedron

What is it about?

An extension to every poset

Regular closed subsets of a transitive relation

Back to
bipartitions
Completely join-irreducible elements in $\operatorname{Reg}(\mathrm{e})$

Theorem (Pouzet, Reuter, Rival, and Zaguia 1995)
Let E be a finite poset. Then the inclusion mapping from $\mathrm{P}^{*}(E)$ into the powerset of δ_{E} is cover-preserving.

Theorem (Caspard, Santocanale, and W 2011)

Why is $\mathrm{P}^{*}(E)$ sometimes better than $\mathrm{P}(E)$?

Theorem (Pouzet, Reuter, Rival, and Zaguia 1995)

Let E be a finite poset. Then the inclusion mapping from $\mathrm{P}^{*}(E)$ into the powerset of $\boldsymbol{\delta}_{E}$ is cover-preserving.

Theorem (Caspard, Santocanale, and W 2011)
There is a finite poset E such that the inclusion mapping from $\mathrm{P}(E)$ into the powerset of δ_{E} is not height-preserving (thus also not cover-preserving).

Why is $\mathrm{P}^{*}(E)$ sometimes better than $\mathrm{P}(E)$?

Theorem (Pouzet, Reuter, Rival, and Zaguia 1995)

Let E be a finite poset. Then the inclusion mapping from $\mathrm{P}^{*}(E)$ into the powerset of δ_{E} is cover-preserving.

Theorem (Caspard, Santocanale, and W 2011)
There is a finite poset E such that the inclusion mapping from $\mathrm{P}(E)$ into the powerset of δ_{E} is not height-preserving (thus also not cover-preserving).

Here is the counterexample:

Setting the problem

The extended permutohedron

What is it about?

An extension to every poset

Regular closed subsets of a transitive relation

Back to

bipartitions
Completely join-irreducible elements in $\operatorname{Reg}(e)$

Bip-Cambrian lattices

■ Lattice-theoretical properties of $\mathrm{P}(E)$: make sense only in case $P(E)$ is a lattice (duh), that is, E is square-free.

Setting the problem

```
The extended
permutohe-
    dron
What is it
about?
An extension
to every poset
Regular closed
subsets of a
transitive
relation
Back to
bipartitions
Completely
join-irreducible
elements in
Reg(e)
Bip-Cambrian
lattices
```

- Lattice-theoretical properties of $\mathrm{P}(E)$: make sense only in case $P(E)$ is a lattice (duh), that is, E is square-free.
- Is there anything left in case E is not square-free?

Setting the problem

```
The extended
permutohe-
    dron
What is it
about?
An extension
to every poset
Regular closed
subsets of a
transitive
relation
Back to
bipartitions
Completely
join-irreducible
elements in
Reg(e)
Bip-Cambrian
lattices
```

- Lattice-theoretical properties of $\mathrm{P}(E)$: make sense only in case $P(E)$ is a lattice (duh), that is, E is square-free.
- Is there anything left in case E is not square-free?
- It turns out that yes.

Getting past the "square-free" restriction

The extended permutohedron

Definition

What is it

 about?An extension
to every poset
Regular closed subsets of a transitive relation

Back to bipartitions

Completely join-irreducible elements in $\operatorname{Reg}(e)$

Bip-Cambrian lattices

Getting past the "square-free" restriction

The extended permutohedron

What is it about?

An extension

```
to every poset
```

Regular closed subsets of a transitive relation

Back to

bipartitions
Completely join-irreducible elements in $\operatorname{Reg}(e)$

Bip-Cambrian lattices

Definition

A subset \mathbf{x} of a transitive (binary) relation \mathbf{e} is

Getting past the "square-free" restriction

The extended permutohedron

What is it about?

An extension

to every poset

Regular closed subsets of a transitive relation

Back to
bipartitions
Completely join-irreducible elements in $\operatorname{Reg}(e)$

Bip-Cambrian lattices

Definition

A subset \mathbf{x} of a transitive (binary) relation \mathbf{e} is

- closed if it is transitive,

Getting past the "square-free" restriction

The extended permutohedron

What is it about?

An extension

to every poset

Regular closed
subsets of a transitive relation

Back to
bipartitions
Completely join-irreducible elements in $\operatorname{Reg}(e)$

Bip-Cambrian lattices

Definition

A subset \mathbf{x} of a transitive (binary) relation \mathbf{e} is

- closed if it is transitive,
- open if $\mathbf{e} \backslash \mathbf{x}$ is closed,

Getting past the "square-free" restriction

The extended permutohedron

What is it about?

An extension

```
to every poset
```

Regular closed
subsets of a transitive relation

Back to
bipartitions
Completely join-irreducible elements in $\operatorname{Reg}(e)$

Bip-Cambrian lattices

Definition

A subset \mathbf{x} of a transitive (binary) relation \mathbf{e} is

- closed if it is transitive,
- open if $\mathbf{e} \backslash \mathbf{x}$ is closed,
- regular closed if $\mathbf{x}=\operatorname{cl}(\operatorname{int}(\mathbf{x}))$,

Getting past the "square-free" restriction

The extended permutohedron

What is it about?

An extension

```
to every poset
```

Regular closed
subsets of a transitive relation

Back to
bipartitions
Completely join-irreducible elements in $\operatorname{Reg}(\mathrm{e})$

Bip-Cambrian lattices

Definition

A subset \mathbf{x} of a transitive (binary) relation \mathbf{e} is

- closed if it is transitive,
- open if $\mathbf{e} \backslash \mathbf{x}$ is closed,
- regular closed if $\mathbf{x}=\operatorname{cl}(\operatorname{int}(\mathbf{x}))$,
- regular open if $\mathbf{x}=\operatorname{int}(\mathrm{cl}(\mathbf{x}))$.

Getting past the "square-free" restriction

The extended permutohedron

What is it about?

An extension to every poset

Regular closed
subsets of a transitive relation

Back to
bipartitions
Completely join-irreducible elements in $\operatorname{Reg}(e)$

Bip-Cambrian lattices

Definition

A subset \mathbf{x} of a transitive (binary) relation \mathbf{e} is

- closed if it is transitive,
- open if $\mathbf{e} \backslash \mathbf{x}$ is closed,
- regular closed if $\mathbf{x}=\operatorname{cl}(\operatorname{int}(\mathbf{x}))$,
- regular open if $\mathbf{x}=\operatorname{int}(\mathrm{cl}(\mathbf{x}))$.
- clopen if it is both open and closed.

Getting past the "square-free" restriction

Definition

A subset \mathbf{x} of a transitive (binary) relation \mathbf{e} is

- closed if it is transitive,
- open if $\mathbf{e} \backslash \mathbf{x}$ is closed,
- regular closed if $\mathbf{x}=\operatorname{cl}(\operatorname{int}(\mathbf{x}))$,
- regular open if $\mathbf{x}=\operatorname{int}(\mathrm{cl}(\mathbf{x}))$.
- clopen if it is both open and closed.

Operators cl and int defined as before: $\mathrm{cl}(\mathbf{x})$ is the transitive closure of $\mathbf{x}, \operatorname{int}(\mathbf{x})=\mathbf{e} \backslash \mathrm{cl}(\mathbf{e} \backslash \mathbf{x})$.

The lattices $\operatorname{Reg}(\mathbf{e})$ and $\operatorname{Reg}_{o p}(\mathbf{e})$

The extended permutohedron

Notation

What is it about?

An extension
to every poset
Regular closed subsets of a transitive relation

Back to bipartitions

Completely join-irreducible elements in $\operatorname{Reg}(\mathrm{e})$

Bip-Cambrian lattices

The lattices $\operatorname{Reg}(\mathbf{e})$ and $\operatorname{Reg}_{\text {op }}(\mathbf{e})$

The extended permutohedron

Notation

For a transitive relation e,

What is it about?

An extension
to every poset
Regular closed subsets of a transitive relation

Back to
bipartitions
Completely join-irreducible elements in $\operatorname{Reg}(\mathrm{e})$

Bip-Cambrian lattices

The lattices $\operatorname{Reg}(\mathbf{e})$ and $\operatorname{Reg}_{\text {op }}(\mathbf{e})$

The extended permutohedron

Notation

For a transitive relation e,

$$
\begin{aligned}
\operatorname{Clop}(\mathbf{e}) \underset{\text { def. }}{=}\{\mathbf{x} \subseteq \mathbf{e} \mid \mathbf{x} \text { is clopen }\} \\
\operatorname{Reg}(\mathbf{e}) \underset{\text { def. }}{=}\{\mathbf{x} \subseteq \mathbf{e} \mid \mathbf{x} \text { is regular closed }\} \\
\operatorname{Reg}_{\text {op }}(\mathbf{e}) \underset{\text { def. }}{=}\{\mathbf{x} \subseteq \mathbf{e} \mid \mathbf{x} \text { is regular open }\}
\end{aligned}
$$

The lattices $\operatorname{Reg}(\mathbf{e})$ and $\operatorname{Reg}_{\text {op }}(\mathbf{e})$

The extended permutohedron

Notation

For a transitive relation e, $\operatorname{Reg}(\mathbf{e})$ and $\operatorname{Reg}_{\text {op }}(\mathbf{e})$.

$$
\begin{gathered}
\text { Clop(e) }(\mathbf{e})=\{\mathbf{x} \subseteq \mathbf{e} \mid \mathbf{x} \text { is clopen }\} . \\
\operatorname{Reg}(\mathbf{e}) \underset{\text { def. }}{=}\{\mathbf{x} \subseteq \mathbf{e} \mid \mathbf{x} \text { is regular closed }\} . \\
\operatorname{Reg}_{\text {op }}(\mathbf{e}) \underset{\text { def. }}{=}\{\mathbf{x} \subseteq \mathbf{e} \mid \mathbf{x} \text { is regular open }\} .
\end{gathered}
$$

$■ \mathbf{x} \mapsto \mathbf{x}^{\mathbf{c}}=\mathbf{e} \backslash \mathbf{x}$ defines a dual isomorphism between

The lattices $\operatorname{Reg}(\mathbf{e})$ and $\operatorname{Reg}_{\text {op }}(\mathbf{e})$

The extended

 permutohedron
Notation

For a transitive relation e, $\operatorname{Reg}(\mathbf{e})$ and $\operatorname{Reg}_{\mathrm{op}}(\mathbf{e})$.

$$
\begin{aligned}
\operatorname{Clop}(\mathbf{e}) \underset{\text { def. }}{=}\{\mathbf{x} \subseteq \mathbf{e} \mid \mathbf{x} \text { is clopen }\} \\
\operatorname{Reg}(\mathbf{e}) \underset{\text { def. }}{=}\{\mathbf{x} \subseteq \mathbf{e} \mid \mathbf{x} \text { is regular closed }\} \\
\operatorname{Reg}_{\text {op }}(\mathbf{e}) \underset{\text { def. }}{=}\{\mathbf{x} \subseteq \mathbf{e} \mid \mathbf{x} \text { is regular open }\}
\end{aligned}
$$

$■ \mathbf{x} \mapsto \mathbf{x}^{\mathbf{c}}=\mathbf{e} \backslash \mathbf{x}$ defines a dual isomorphism between

■ $\mathbf{x} \mapsto \mathbf{x}^{\perp}=\mathrm{cl}\left(\mathbf{x}^{\mathrm{c}}\right)$ defines an orthocomplementation on $\operatorname{Reg}(\mathbf{e})$.

The lattices (cont'd)

The extended permutohedron

What is it about?

An extension
to every poset
Regular closed subsets of a transitive relation

Back to
bipartitions
Completely join-irreducible elements in $\operatorname{Reg}(\mathrm{e})$

Bip-Cambrian lattices

Proposition

The lattices (cont'd)

The extended permutohedron

What is it about?

An extension

```
to every poset
```

Regular closed subsets of a transitive relation

Back to

bipartitions
Completely join-irreducible elements in $\operatorname{Reg}(e)$

Bip-Cambrian lattices

Proposition

Reg(e) and $\operatorname{Reg}_{o p}(\mathbf{e})$ are isomorphic ortholattices, intersecting in Clop(e).

The lattices (cont'd)

The extended permutohedron

What is it about?

An extension

```
to every poset
```

Regular closed subsets of a transitive relation

Back to
bipartitions
Completely join-irreducible elements in $\operatorname{Reg}(\mathrm{e})$

Bip-Cambrian lattices

Proposition

Reg(e) and $\operatorname{Reg}_{o p}(\mathbf{e})$ are isomorphic ortholattices, intersecting in Clop(e).

Clop(e) is an orthocomplemented poset.

The lattices (cont'd)

The extended permutohedron

Proposition

Reg(e) and $\operatorname{Reg}_{o p}(\mathbf{e})$ are isomorphic ortholattices, intersecting in Clop(e).

Clop(e) is an orthocomplemented poset. It may not be a lattice (e.g., $\mathrm{P}(E)=\operatorname{Clop}\left(\delta_{E}\right)$, for any poset E; take E non square-free).

Some notation

The extended

permutohedron

What is it about?

An extension to every poset

Regular closed subsets of a transitive relation

Back to
bipartitions
Completely join-irreducible elements in $\operatorname{Reg}(\mathrm{e})$

For a transitive relation \mathbf{e} on a set E, write

$$
\begin{aligned}
& x \triangleleft_{\mathrm{e}} y \underset{\text { def. }}{\Longleftrightarrow}(x, y) \in \mathbf{e} \\
& x \unlhd_{\mathrm{e}} y \underset{\text { def. }}{\Longleftrightarrow}\left(\text { either } x \triangleleft_{\mathrm{e}} y \text { or } x=y\right)
\end{aligned}
$$

for all $x, y \in E$. We also set

$$
\begin{aligned}
& {[a, b]_{\mathrm{e}}=\left\{x \mid a \unlhd_{\mathrm{e}} x \text { and } x \unlhd_{\mathrm{e}} b\right\},} \\
& {\left[a, b\left[_{\mathrm{e}}=\left\{x \mid a \unlhd_{\mathrm{e}} x \text { and } x \unlhd_{\mathrm{e}} b\right\},\right.\right.} \\
&] a, b]_{\mathrm{e}}=\left\{x \mid a \unlhd_{\mathrm{e}} x \text { and } x \unlhd_{\mathrm{e}} b\right\},
\end{aligned}
$$

for all $a, b \in E$. As $a \triangleleft_{\mathrm{e}} a$ may occur, a may belong to $\left.] a, b\right]_{\mathrm{e}}$.

Square-free transitive relations

The extended permutohedron

What is it

Definition

Square-free transitive relations

The extended permutohedron

What is it about?

An extension

```
to every poset
```

Regular closed subsets of a transitive relation

Back to
bipartitions
Completely join-irreducible elements in $\operatorname{Reg}(\mathrm{e})$

Bip-Cambrian lattices

Definition

A transitive relation e on a set E is square-free if the preordered set $\left(E, \unlhd_{\mathrm{e}}\right)$ is square-free. That is,

$$
\begin{aligned}
(\forall a, b, x, y)\left(\left(a \unlhd_{\mathrm{e}} x \text { and } a\right.\right. & \left.\unlhd_{\mathrm{e}} y \text { and } x \unlhd_{\mathrm{e}} b \text { and } y \unlhd_{\mathrm{e}} b\right) \\
& \left.\Longrightarrow\left(\text { either } x \unlhd_{\mathrm{e}} y \text { or } y \unlhd_{\mathrm{e}} x\right)\right) .
\end{aligned}
$$

When is $\operatorname{Clop}(\mathbf{e})$ a lattice?

```
The extended
permutohe-
    dron
What is it about?
An extension
to every poset
Regular closed subsets of a transitive relation
Back to
bipartitions
Completely join-irreducible elements in \(\operatorname{Reg}(\mathrm{e})\)
Bip-Cambrian lattices
```

Theorem (Santocanale and W 2012)

When is Clop(e) a lattice?

```
The extended
permutohe-
    dron

Theorem (Santocanale and W 2012)
The following are equivalent, for any transitive relation e:

\section*{When is Clop(e) a lattice?}

The extended permutohedron

What is it about?

An extension
to every poset
Regular closed subsets of a transitive relation

Back to
bipartitions
Completely join-irreducible elements in \(\operatorname{Reg}(\mathrm{e})\)

Bip-Cambrian lattices

Theorem (Santocanale and W 2012)
The following are equivalent, for any transitive relation e:
1 Clop(e) is a lattice.

\section*{When is Clop(e) a lattice?}

The extended permutohedron

What is it about?

An extension
to every poset
Regular closed subsets of a transitive relation

Back to
bipartitions
Completely join-irreducible elements in \(\operatorname{Reg}(\mathrm{e})\)

Bip-Cambrian lattices

Theorem (Santocanale and W 2012)
The following are equivalent, for any transitive relation e:
1 Clop(e) is a lattice.
\(2 \operatorname{Clop}(\mathbf{e})=\operatorname{Reg}(\mathbf{e})\).

\section*{When is Clop(e) a lattice?}

The extended permutohedron

What is it about?

An extension to every poset

Regular closed subsets of a transitive relation

Back to
bipartitions
Completely join-irreducible elements in \(\operatorname{Reg}(\mathrm{e})\)

Bip-Cambrian lattices

Theorem (Santocanale and W 2012)
The following are equivalent, for any transitive relation e:
1 Clop(e) is a lattice.
\(2 \operatorname{Clop}(\mathbf{e})=\operatorname{Reg}(\mathbf{e})\).
\(3 \operatorname{int}(\mathbf{x})\) is closed, for any closed \(\mathbf{x} \subseteq \mathbf{e}\).

\section*{When is Clop(e) a lattice?}

The extended permutohedron

What is it about?

An extension

Regular closed
subsets of a transitive relation

Back to
bipartitions
Completely join-irreducible elements in \(\operatorname{Reg}(\mathrm{e})\)

Bip-Cambrian lattices

Theorem (Santocanale and W 2012)
The following are equivalent, for any transitive relation e:
1 Clop(e) is a lattice.
\(2 \operatorname{Clop}(\mathbf{e})=\operatorname{Reg}(\mathbf{e})\).
\(3 \operatorname{int}(\mathbf{x})\) is closed, for any closed \(\mathbf{x} \subseteq \mathbf{e}\).
4 e is square-free.

\section*{When is Clop(e) a lattice?}

The extended

\section*{Theorem (Santocanale and W 2012)}

The following are equivalent, for any transitive relation e:
1 Clop(e) is a lattice.
\(2 \operatorname{Clop}(\mathbf{e})=\operatorname{Reg}(\mathbf{e})\).
\(3 \operatorname{int}(\mathbf{x})\) is closed, for any closed \(\mathbf{x} \subseteq \mathbf{e}\).
4 e is square-free.
- The particular case where \(\mathbf{e}\) is antisymmetric is already taken care of by the abovementioned 1995 work by Pouzet, Reuter, Rival, and Zaguia.

\section*{When is \(\operatorname{Clop}(\mathbf{e})\) a lattice?}

\section*{Theorem (Santocanale and W 2012)}

The following are equivalent, for any transitive relation e:
\(1 \mathrm{Clop}(\mathrm{e})\) is a lattice.
\(2 \operatorname{Clop}(\mathbf{e})=\operatorname{Reg}(\mathbf{e})\).
\(3 \operatorname{int}(\mathbf{x})\) is closed, for any closed \(\mathbf{x} \subseteq \mathbf{e}\).
4 e is square-free.
- The particular case where \(\mathbf{e}\) is antisymmetric is already taken care of by the abovementioned 1995 work by Pouzet, Reuter, Rival, and Zaguia.
■ The particular case where \(\mathbf{e}\) is full (i.e., \(\mathbf{e}=E \times E\) ) follows from 2011 work by Hetyei and Krattenthaler.

\section*{When is \(\operatorname{Clop}(\mathbf{e})\) a lattice?}

\section*{Theorem (Santocanale and W 2012)}

The following are equivalent, for any transitive relation e:
\(1 \operatorname{Clop}(\mathbf{e})\) is a lattice.
\(2 \operatorname{Clop}(\mathbf{e})=\operatorname{Reg}(\mathbf{e})\).
\(3 \operatorname{int}(\mathbf{x})\) is closed, for any closed \(\mathbf{x} \subseteq \mathbf{e}\).
4 e is square-free.
- The particular case where \(\mathbf{e}\) is antisymmetric is already taken care of by the abovementioned 1995 work by Pouzet, Reuter, Rival, and Zaguia.
■ The particular case where \(\mathbf{e}\) is full (i.e., \(\mathbf{e}=E \times E\) ) follows from 2011 work by Hetyei and Krattenthaler. In that case, \(\mathbf{e}\) is always square-free, and \(\operatorname{Clop}(\mathbf{e})=\operatorname{Reg}(\mathbf{e})\) is denoted by \(\operatorname{Bip}(E)\), the lattice of all bipartitions of a set \(E\).

\section*{Permutohedra on non square-free posets}

The extended permutohedron

What is it about?

An extension
- Recall that \(\mathrm{P}(E)=\operatorname{Clop}\left(\delta_{E}\right)\), for any poset \(E\).

\section*{Permutohedra on non square-free posets}

The extended permutohedron
- Recall that \(\mathrm{P}(E)=\operatorname{Clop}\left(\delta_{E}\right)\), for any poset \(E\).

■ Set \(\mathrm{R}(E)=\operatorname{Reg}\left(\boldsymbol{\delta}_{E}\right)\) (the extended permutohedron on \(E\) ), for any poset \(E\).

\section*{Permutohedra on non square-free posets}

The extended permutohedron
- In particular, \(\mathrm{R}(E)\) is always a lattice.

\section*{Permutohedra on non square-free posets}
- Recall that \(\mathrm{P}(E)=\operatorname{Clop}\left(\delta_{E}\right)\), for any poset \(E\).

■ Set \(\mathrm{R}(E)=\operatorname{Reg}\left(\boldsymbol{\delta}_{E}\right)\) (the extended permutohedron on \(E\) ), for any poset \(E\).
- In particular, \(\mathrm{R}(E)\) is always a lattice.

■ By earlier results, \(\mathrm{P}(E)\) is a lattice, iff \(\mathrm{P}(E)=\mathrm{R}(E)\), iff \(E\) is square-free.

\section*{The extended permutohedron on the square \(B_{2}\)}

\author{
The extended permutohedron \\ \section*{What is it} about? \\ An extension \\ ```
to every poset
``` \\ Regular closed subsets of a transitive relation \\ Back to \\ bipartitions \\ Completely join-irreducible elements in \(\operatorname{Reg}(\mathrm{e})\)
}

There it goes:

\(B_{2}\)

\section*{The extended permutohedron on the square \(B_{2}\)}

The extended permutohedron

What is it about?

An extension to every poset

Regular closed subsets of a transitive relation

Back to
bipartitions
Completely join-irreducible elements in \(\operatorname{Reg}(e)\)

There it goes:

\(B_{2}\)

- \(\operatorname{card} \mathrm{R}\left(\mathrm{B}_{2}\right)=20\) while card \(\mathrm{P}\left(\mathrm{B}_{2}\right)=18\).

\section*{The extended permutohedron on the square \(B_{2}\)}

\section*{The extended permutohe-} dron

What is it about?

An extension to every poset

Regular closed subsets of a transitive relation

Back to
bipartitions
Completely join-irreducible elements in \(\operatorname{Reg}(e)\)

Bip-Cambrian lattices

There it goes:

\(B_{2}\)

- \(\operatorname{card} \mathrm{R}\left(\mathrm{B}_{2}\right)=20\) while card \(\mathrm{P}\left(\mathrm{B}_{2}\right)=18\).
- Every join-irreducible element of \(R\left(B_{2}\right)\) is clopen (general explanation coming later).

\section*{The extended permutohedron on the square \(B_{2}\)}

\section*{The extended permutohedron}

What is it about?

An extension to every poset

Regular closed subsets of a transitive relation

Back to bipartitions

Completely join-irreducible elements in \(\operatorname{Reg}(e)\)

Bip-Cambrian lattices

There it goes:

\(B_{2}\)

- card \(\mathrm{R}\left(\mathrm{B}_{2}\right)=20\) while card \(\mathrm{P}\left(\mathrm{B}_{2}\right)=18\).
- Every join-irreducible element of \(R\left(B_{2}\right)\) is clopen (general explanation coming later).
- The two elements \(\mathbf{u}\) and \(\mathbf{u}^{\perp}\) of \(R\left(B_{2}\right) \backslash P\left(B_{2}\right)\) are marked by doubled circles on the picture above.

\section*{Basic observations}

The extended permutohedron

What is it about?

An extension to every poset

Regular closed subsets of a transitive
relation
Back to bipartitions

Completely join-irreducible elements in \(\operatorname{Reg}(\mathrm{e})\)

Bip-Cambrian lattices

■ \(\operatorname{Bip}(n)=\operatorname{Bip}([n])\) is the ortholattice of all binary relations \(\mathbf{x}\) on \([n]\) that are both transitive and co-transitive, ordered by \(\subseteq\).

\section*{Basic observations}
- \(\operatorname{Bip}(n)=\operatorname{Bip}([n])\) is the ortholattice of all binary relations \(\mathbf{x}\) on \([n]\) that are both transitive and co-transitive, ordered by \(\subseteq\).
■ The bipartition lattices \(\operatorname{Bip}(n)\) are "permutohedra without order".

\section*{Basic observations}

■ \(\operatorname{Bip}(n)=\operatorname{Bip}([n])\) is the ortholattice of all binary relations \(\mathbf{x}\) on \([n]\) that are both transitive and co-transitive, ordered by \(\subseteq\).
- The bipartition lattices \(\operatorname{Bip}(n)\) are "permutohedra without order".
- \(\operatorname{card} \operatorname{Bip}(2)=10, \operatorname{card} \operatorname{Bip}(3)=74, \operatorname{card} \operatorname{Bip}(4)=730\), card \(\operatorname{Bip}(5)=9,002\).

\section*{Basic observations}

■ \(\operatorname{Bip}(n)=\operatorname{Bip}([n])\) is the ortholattice of all binary relations \(\mathbf{x}\) on \([n]\) that are both transitive and co-transitive, ordered by \(\subseteq\).
■ The bipartition lattices \(\operatorname{Bip}(n)\) are "permutohedra without order".
- \(\operatorname{card} \operatorname{Bip}(2)=10, \operatorname{card} \operatorname{Bip}(3)=74, \operatorname{card} \operatorname{Bip}(4)=730\), card \(\operatorname{Bip}(5)=9,002\).
- Each \(\operatorname{Bip}(n)\) is a graded lattice (Hetyei and Krattenthaler 2011).

\section*{Small bipartition lattices}

\section*{The extended} permutohedron
- Here is a picture of \(\operatorname{Bip}(2)\), together with the join-dependency relation on its join-irreducible elements.

The \(D\) relation on \(\operatorname{Ji}(\operatorname{Bip}(2))\)

\section*{Small bipartition lattices}

The extended permutohedron
- Here is a picture of \(\operatorname{Bip}(2)\), together with the join-dependency relation on its join-irreducible elements.

The \(D\) relation on \(\operatorname{Ji}(\operatorname{Bip}(2))\)
- In particular, \(\operatorname{Bip}(2)\) is a bounded homomorphic image of a free lattice.

\section*{Small bipartition lattices}
- Here is a picture of \(\operatorname{Bip}(2)\), together with the join-dependency relation on its join-irreducible elements.

The \(D\) relation on \(\operatorname{Ji}(\operatorname{Bip}(2))\)
- In particular, \(\operatorname{Bip}(2)\) is a bounded homomorphic image of a free lattice.
- This does not extend to higher bipartition lattices: for example, \(M_{3}\) embeds into \(\operatorname{Bip}(3)\), so \(\operatorname{Bip}(3)\) is not even semidistributive.

\section*{The lattice Bip(3)}

The extended permutohedron

\section*{What is it} about?

An extension to every poset

Regular closed subsets of a transitive relation

Back to
bipartitions
Completely join-irreducible elements in Reg(e)

Bip-Cambrian lattices

\section*{The lattice Bip(4)}

The extended permutohe-
dron

What is it about?

An extension to every poset

Regular closed subsets of a transitive relation

Back to
bipartitions
Completely join-irreducible elements in \(\operatorname{Reg}(\mathrm{e})\)

Bip-Cambrian lattices

\section*{Some open problems}

The extended permutohedron

What is it about?

\section*{Problem (Santocanale and W 2012)}

An extension
to every poset
Regular closed
subsets of a
transitive
relation
Back to
bipartitions
Completely
join-irreducible
elements in
Reg(e)
Bip-Cambrian lattices

\section*{Some open problems}

The extended permutohedron

What is it about?

An extension
to every poset
Regular closed subsets of a transitive
relation
Back to
bipartitions
Completely join-irreducible elements in \(\operatorname{Reg}(e)\)

Bip-Cambrian lattices

\section*{Problem (Santocanale and W 2012)}

Can every finite ortholattice be embedded into some \(\operatorname{Bip}(n)\) ?

\section*{Some open problems}

The extended permutohedron

What is it about?

An extension
to every poset
Regular closed
subsets of a
transitive
relation
Back to
bipartitions
Completely join-irreducible elements in \(\operatorname{Reg}(\mathrm{e})\)

Bip-Cambrian lattices

\section*{Problem (Santocanale and W 2012)}

Can every finite ortholattice be embedded into some \(\operatorname{Bip}(n)\) ?
A related problem (cf. G. Bruns 1976 for ortholattices):

\section*{Some open problems}

\section*{Problem (Santocanale and W 2012)}

Can every finite ortholattice be embedded into some \(\operatorname{Bip}(n)\) ?
A related problem (cf. G. Bruns 1976 for ortholattices):

\section*{Problem (Santocanale and W 2012)}

\section*{Some open problems}

\section*{Problem (Santocanale and W 2012)}

Can every finite ortholattice be embedded into some \(\operatorname{Bip}(n)\) ?
A related problem (cf. G. Bruns 1976 for ortholattices):

\section*{Problem (Santocanale and W 2012)}

Is there a lattice (ortholattice) identity satisfied by every \(\operatorname{Bip}(n)\) ?

\section*{Some notation}

The extended permutohedron

What is it about?

An extension to every poset

Regular closed subsets of a transitive relation

Back to

\section*{bipartitions}

Completely join-irreducible elements in \(\operatorname{Reg}(\mathbf{e})\)

Bip-Cambrian lattices

■ We denote by \(\mathcal{C}(\mathbf{e})\) the set of all triples \((a, b, U)\), where \((a, b) \in \mathbf{e}, U \subseteq[a, b]_{\mathrm{e}}\), and \(a \neq b\) implies that \(a \notin U\) and \(b \in U\).

\section*{Some notation}

\section*{The extended} permutohedron

\section*{What is it} about?

An extension to every poset

Regular closed subsets of a

Completely join-irreducible elements in \(\operatorname{Reg}(e)\)

■ We denote by \(\mathcal{C}(\mathbf{e})\) the set of all triples \((a, b, U)\), where \((a, b) \in \mathbf{e}, U \subseteq[a, b]_{\mathrm{e}}\), and \(a \neq b\) implies that \(a \notin U\) and \(b \in U\).
\(\square\) We set \(U^{c}=[a, b]_{\mathrm{e}} \backslash U\), and
\(\langle a, b ; U\rangle=\left\{\begin{array}{l}\left\{(x, y) \mid a \unlhd_{\mathrm{e}} x \unlhd_{\mathrm{e}} y \unlhd_{\mathrm{e}} b, x \notin U, y \in U\right\}, \\ \text { if } a \neq b, \\ \left(\{a\} \cup U^{c}\right) \times(\{a\} \cup U), \\ \text { if } a=b,\end{array}\right.\)
for each \((a, b, U) \in \mathcal{C}(\mathbf{e})\).

\section*{Some notation}

\section*{The extended} permutohedron

What is it about?

An extension to every poset

Regular closed subsets of a transitive relation

Back to bipartitions

Completely join-irreducible elements in \(\operatorname{Reg}(\mathbf{e})\) lattices

■ We denote by \(\mathcal{C}(\mathbf{e})\) the set of all triples \((a, b, U)\), where \((a, b) \in \mathbf{e}, U \subseteq[a, b]_{\mathrm{e}}\), and \(a \neq b\) implies that \(a \notin U\) and \(b \in U\).
- We set \(U^{c}=[a, b]_{\mathbf{e}} \backslash U\), and
\[
\langle a, b ; U\rangle=\left\{\begin{array}{l}
\left\{(x, y) \mid a \unlhd_{\mathbf{e}} x \unlhd_{\mathrm{e}} y \unlhd_{\mathrm{e}} b, x \notin U, y \in U\right\}, \\
\text { if } a \neq b, \\
\left(\{a\} \cup U^{c}\right) \times(\{a\} \cup U), \\
\text { if } a=b,
\end{array}\right.
\]
for each \((a, b, U) \in \mathcal{C}(\mathbf{e})\).
■ Observe that \(\langle a, b ; U\rangle\) is bipartite (i.e., it cannot have both \((x, y)\) and \((y, z))\) iff \(a \neq b\). If \(a=b\), say that \(\langle a, b ; U\rangle\) is a clepsydra.

\section*{Recognizing the completely join-irreducible elements in \(\operatorname{Reg}(\mathbf{e})\)}

The extended permutohedron

\section*{Theorem (Santocanale and W 2012)}

What is it about?

An extension
to every poset
Regular closed subsets of a transitive
relation
Back to
bipartitions
Completely join-irreducible elements in \(\operatorname{Reg}(\mathrm{e})\)

Bip-Cambrian lattices

\section*{Recognizing the completely join-irreducible elements in Reg(e)}

The extended permutohedron

What is it about?

An extension
to every poset
Regular closed
subsets of a
transitive
relation
Back to
bipartitions
Completely join-irreducible elements in \(\operatorname{Reg}(\mathrm{e})\)

Bip-Cambrian lattices

\section*{Theorem (Santocanale and W 2012)}

The following statements hold, for any transitive relation \(\mathbf{e}\).

\title{
Recognizing the completely join-irreducible elements in Reg(e)
}

\section*{Theorem (Santocanale and W 2012)}

The following statements hold, for any transitive relation e.
1 The completely join-irreducible elements of \(\operatorname{Reg}(\mathbf{e})\) are exactly the \(\langle a, b ; U\rangle\), where \((a, b, U) \in \mathcal{C}(\mathbf{e})\). They are all clopen.

\title{
Recognizing the completely join-irreducible elements in Reg(e)
}

What is it about?

An extension to every poset

Regular closed subsets of a transitive relation

Back to

\section*{Theorem (Santocanale and W 2012)}

The following statements hold, for any transitive relation \(\mathbf{e}\).
1 The completely join-irreducible elements of \(\operatorname{Reg}(\mathbf{e})\) are exactly the \(\langle a, b ; U\rangle\), where \((a, b, U) \in \mathcal{C}(\mathbf{e})\). They are all clopen.
2 Every open (resp., regular closed) subset of \(\mathbf{e}\) is a set-theoretical union (resp., join) of completely join-irreducible elements of \(\operatorname{Reg}(\mathbf{e})\).

\section*{Recognizing the completely join-irreducible elements in Reg(e)}

What is it about?

An extension to every poset

Regular closed
subsets of a transitive relation

Back to
bipartitions
Completely join-irreducible elements in \(\operatorname{Reg}(\mathbf{e})\)

\section*{Theorem (Santocanale and W 2012)}

The following statements hold, for any transitive relation \(\mathbf{e}\).
1 The completely join-irreducible elements of \(\operatorname{Reg}(\mathbf{e})\) are exactly the \(\langle a, b ; U\rangle\), where \((a, b, U) \in \mathcal{C}(\mathbf{e})\). They are all clopen.
2 Every open (resp., regular closed) subset of \(\mathbf{e}\) is a set-theoretical union (resp., join) of completely join-irreducible elements of \(\operatorname{Reg}(\mathbf{e})\).

\section*{Corollary (Santocanale and W 2012)}

\section*{Recognizing the completely join-irreducible elements in Reg(e)}

\section*{Theorem (Santocanale and W 2012)}

The following statements hold, for any transitive relation \(\mathbf{e}\).
1 The completely join-irreducible elements of \(\operatorname{Reg}(\mathbf{e})\) are exactly the \(\langle a, b ; U\rangle\), where \((a, b, U) \in \mathcal{C}(\mathbf{e})\). They are all clopen.
2 Every open (resp., regular closed) subset of \(\mathbf{e}\) is a set-theoretical union (resp., join) of completely join-irreducible elements of \(\operatorname{Reg}(\mathbf{e})\).

\section*{Corollary (Santocanale and W 2012)}
\(\operatorname{Reg}(\mathbf{e})\) is the Dedekind-MacNeille completion of Clop(e), for any transitive relation \(\mathbf{e}\).

\section*{The join-dependency relation on \(\operatorname{Reg}(\mathbf{e})\) in the antisymmetric case}

The extended permutohedron

\section*{Lemma (Santocanale and W 2012)}

What is it about?

An extension
to every poset
Regular closed
subsets of a
transitive
relation
Back to
bipartitions
Completely join-irreducible elements in \(\operatorname{Reg}(\mathrm{e})\)

Bip-Cambrian lattices

\section*{The join-dependency relation on \(\operatorname{Reg}(\mathbf{e})\) in the antisymmetric case}

The extended permutohedron

What is it about?

An extension to every poset

Regular closed subsets of a transitive relation

Back to

\section*{bipartitions}

Completely join-irreducible elements in \(\operatorname{Reg}(\mathbf{e})\)

Bip-Cambrian lattices

\section*{Lemma (Santocanale and W 2012)}

Let \(\mathbf{e}\) be a finite, antisymmetric, transitive relation and let \(\mathbf{p}_{i}=\left\langle a_{i}, b_{i} ; U_{i}\right\rangle\) be completely join-irreducible in \(\operatorname{Reg}(\mathbf{e})\), for \(i \in\{0,1\}\). Then \(\mathbf{p}_{0} D \mathbf{p}_{1}\) in \(\operatorname{Reg}(\mathbf{e})\) iff \(\left[a_{1}, b_{1}\right]_{\mathbf{e}} \varsubsetneqq\left[a_{0}, b_{0}\right]_{\mathbf{e}}\) and \(U_{1}=\left(\left(U_{0} \cap\left[a_{1}, b_{1}\right]_{\mathbf{e}}\right) \backslash\left\{a_{1}\right\}\right) \cup\left\{b_{1}\right\}\).

\section*{The join-dependency relation on \(\operatorname{Reg}(\mathbf{e})\) in the antisymmetric case}

The extended permutohedron

What is it about?

An extension to every poset

Regular closed subsets of a transitive relation

\section*{Lemma (Santocanale and W 2012)}

Let \(\mathbf{e}\) be a finite, antisymmetric, transitive relation and let \(\mathbf{p}_{i}=\left\langle a_{i}, b_{i} ; U_{i}\right\rangle\) be completely join-irreducible in \(\operatorname{Reg}(\mathbf{e})\), for \(i \in\{0,1\}\). Then \(\mathbf{p}_{0} D \mathbf{p}_{1}\) in \(\operatorname{Reg}(\mathbf{e})\) iff \(\left[a_{1}, b_{1}\right]_{\mathbf{e}} \nRightarrow\left[a_{0}, b_{0}\right]_{\mathbf{e}}\) and \(U_{1}=\left(\left(U_{0} \cap\left[a_{1}, b_{1}\right]_{\mathbf{e}}\right) \backslash\left\{a_{1}\right\}\right) \cup\left\{b_{1}\right\}\).

\section*{Corollary (Santocanale and W 2012)}

\section*{The join-dependency relation on \(\operatorname{Reg}(\mathbf{e})\) in the antisymmetric case}

The extended permutohedron

What is it about?

An extension to every poset

Regular closed subsets of a transitive relation

Back to bipartitions

Completely join-irreducible elements in \(\operatorname{Reg}(\mathbf{e})\)

Bip-Cambrian lattices

\section*{Lemma (Santocanale and W 2012)}

Let \(\mathbf{e}\) be a finite, antisymmetric, transitive relation and let \(\mathbf{p}_{i}=\left\langle a_{i}, b_{i} ; U_{i}\right\rangle\) be completely join-irreducible in \(\operatorname{Reg}(\mathbf{e})\), for \(i \in\{0,1\}\). Then \(\mathbf{p}_{0} D \mathbf{p}_{1}\) in \(\operatorname{Reg}(\mathbf{e})\) iff \(\left[a_{1}, b_{1}\right]_{\mathbf{e}} \nexists\left[a_{0}, b_{0}\right]_{\mathbf{e}}\) and \(U_{1}=\left(\left(U_{0} \cap\left[a_{1}, b_{1}\right]_{\mathrm{e}}\right) \backslash\left\{a_{1}\right\}\right) \cup\left\{b_{1}\right\}\).

\section*{Corollary (Santocanale and W 2012)}

The join-dependency relation on \(\operatorname{Reg}(\mathbf{e})\) is a strict ordering, for any finite, antisymmetric, transitive relation \(\mathbf{e}\).

\section*{The join-dependency relation on \(\operatorname{Reg}(\mathbf{e})\) in the antisymmetric case}

The extended

What is it about?

An extension to every poset

Regular closed subsets of a transitive relation

Back to bipartitions

Completely join-irreducible elements in \(\operatorname{Reg}(\mathbf{e})\)

Bip-Cambrian lattices

Lemma (Santocanale and W 2012)
Let \(\mathbf{e}\) be a finite, antisymmetric, transitive relation and let \(\mathbf{p}_{i}=\left\langle a_{i}, b_{i} ; U_{i}\right\rangle\) be completely join-irreducible in \(\operatorname{Reg}(\mathbf{e})\), for \(i \in\{0,1\}\). Then \(\mathbf{p}_{0} D \mathbf{p}_{1}\) in \(\operatorname{Reg}(\mathbf{e})\) iff \(\left[a_{1}, b_{1}\right]_{\mathbf{e}} \nexists\left[a_{0}, b_{0}\right]_{\mathbf{e}}\) and \(U_{1}=\left(\left(U_{0} \cap\left[a_{1}, b_{1}\right]_{\mathbf{e}}\right) \backslash\left\{a_{1}\right\}\right) \cup\left\{b_{1}\right\}\).

\section*{Corollary (Santocanale and W 2012)}

The join-dependency relation on \(\operatorname{Reg}(\mathbf{e})\) is a strict ordering, for any finite, antisymmetric, transitive relation \(\mathbf{e}\).

Corollary (Santocanale and W 2012)

\section*{The join-dependency relation on \(\operatorname{Reg}(\mathbf{e})\) in the} antisymmetric case

The extended

What is it about?

An extension to every poset

Regular closed subsets of a transitive relation

Back to
bipartitions
Completely join-irreducible elements in \(\operatorname{Reg}(\mathrm{e})\)

Bip-Cambrian lattices

Lemma (Santocanale and W 2012)
Let \(\mathbf{e}\) be a finite, antisymmetric, transitive relation and let \(\mathbf{p}_{i}=\left\langle a_{i}, b_{i} ; U_{i}\right\rangle\) be completely join-irreducible in \(\operatorname{Reg}(\mathbf{e})\), for \(i \in\{0,1\}\). Then \(\mathbf{p}_{0} D \mathbf{p}_{1}\) in \(\operatorname{Reg}(\mathbf{e})\) iff \(\left[a_{1}, b_{1}\right]_{\mathbf{e}} \nexists\left[a_{0}, b_{0}\right]_{\mathbf{e}}\) and \(U_{1}=\left(\left(U_{0} \cap\left[a_{1}, b_{1}\right]_{\mathbf{e}}\right) \backslash\left\{a_{1}\right\}\right) \cup\left\{b_{1}\right\}\).

\section*{Corollary (Santocanale and W 2012)}

The join-dependency relation on \(\operatorname{Reg}(\mathbf{e})\) is a strict ordering, for any finite, antisymmetric, transitive relation \(\mathbf{e}\).

\section*{Corollary (Santocanale and W 2012)}

The lattice \(\operatorname{Reg}(\mathbf{e})\) is a bounded homomorphic image of a free lattice, for any finite, antisymmetric, transitive relation e.

\section*{Bounded lattices Reg(e)}

The extended permutohedron

In particular, \(\mathrm{R}(E)\) is a bounded homomorphic image of a free lattice, for any finite (not necessarily square-free) poset \(E\).

\section*{What is it} about?

An extension
to every poset
Regular closed subsets of a
transitive
relation
Back to
bipartitions
Completely join-irreducible elements in \(\operatorname{Reg}(\mathbf{e})\)

Bip-Cambrian lattices

\section*{Bounded lattices Reg(e)}

The extended permutohedron

What is it about?

An extension
to every poset
Regular closed subsets of a

In particular, \(\mathrm{R}(E)\) is a bounded homomorphic image of a free lattice, for any finite (not necessarily square-free) poset \(E\).

\section*{Theorem (Santocanale and W 2012)}

\section*{Bounded lattices \(\operatorname{Reg}(\mathbf{e})\)}

The extended permutohedron

What is it about?

An extension
to every poset
Regular closed subsets of a transitive relation

Back to

\section*{bipartitions}

Completely join-irreducible elements in \(\operatorname{Reg}(\mathbf{e})\)

Bip-Cambrian lattices

In particular, \(\mathrm{R}(E)\) is a bounded homomorphic image of a free lattice, for any finite (not necessarily square-free) poset \(E\).

\section*{Theorem (Santocanale and W 2012)}

The following are equivalent, for any finite, transitive relation \(\mathbf{e}\) :

\section*{Bounded lattices \(\operatorname{Reg}(\mathbf{e})\)}

The extended permutohedron

What is it about?

An extension to every poset

Regular closed subsets of a transitive relation

Back to bipartitions

Completely join-irreducible elements in \(\operatorname{Reg}(\mathbf{e})\) lattices

In particular, \(\mathrm{R}(E)\) is a bounded homomorphic image of a free lattice, for any finite (not necessarily square-free) poset \(E\).

\section*{Theorem (Santocanale and W 2012)}

The following are equivalent, for any finite, transitive relation \(\mathbf{e}\) :
\(1 \operatorname{Reg}(\mathbf{e})\) is a bounded homomorphic image of a free lattice.

\section*{Bounded lattices \(\operatorname{Reg}(\mathbf{e})\)}

The extended permutohedron

What is it about?

An extension to every poset

Regular closed subsets of a transitive relation

Back to bipartitions

Completely join-irreducible elements in \(\operatorname{Reg}(\mathbf{e})\) lattices

In particular, \(\mathrm{R}(E)\) is a bounded homomorphic image of a free lattice, for any finite (not necessarily square-free) poset \(E\).

\section*{Theorem (Santocanale and W 2012)}

The following are equivalent, for any finite, transitive relation \(\mathbf{e}\) :
\(1 \operatorname{Reg}(\mathbf{e})\) is a bounded homomorphic image of a free lattice.
\(2 \operatorname{Reg}(\mathrm{e})\) is semidistributive.

\section*{Bounded lattices \(\operatorname{Reg}(\mathbf{e})\)}

The extended permutohedron

What is it about?

An extension to every poset

Regular closed subsets of a transitive relation

Back to
bipartitions
Completely join-irreducible elements in \(\operatorname{Reg}(\mathbf{e})\) lattices

In particular, \(\mathrm{R}(E)\) is a bounded homomorphic image of a free lattice, for any finite (not necessarily square-free) poset \(E\).

\section*{Theorem (Santocanale and W 2012)}

The following are equivalent, for any finite, transitive relation \(\mathbf{e}\) :
\(1 \operatorname{Reg}(\mathbf{e})\) is a bounded homomorphic image of a free lattice.
\(2 \operatorname{Reg}(\mathrm{e})\) is semidistributive.
\(3 \operatorname{Reg}(\mathbf{e})\) is pseudocomplemented.

\section*{Bounded lattices \(\operatorname{Reg}(\mathbf{e})\)}

The extended permutohedron

What is it about?

An extension to every poset

Regular closed subsets of a transitive relation

Back to
bipartitions
Completely join-irreducible elements in \(\operatorname{Reg}(\mathbf{e})\)

Bip-Cambrian lattices

In particular, \(\mathrm{R}(E)\) is a bounded homomorphic image of a free lattice, for any finite (not necessarily square-free) poset \(E\).

\section*{Theorem (Santocanale and W 2012)}

The following are equivalent, for any finite, transitive relation \(\mathbf{e}\) :
\(1 \operatorname{Reg}(\mathbf{e})\) is a bounded homomorphic image of a free lattice.
\(2 \operatorname{Reg}(\mathrm{e})\) is semidistributive.
\(3 \operatorname{Reg}(\mathbf{e})\) is pseudocomplemented.
4 Every connected component of the preordering \(\unlhd_{\mathrm{e}}\) is either antisymmetric or has the form \(\{a, b\}\) with \(a \neq b\), \((a, b) \in \mathbf{e}\), and \((b, a) \in \mathbf{e}\).

\section*{Bounded lattices Reg(e)}

The extended permutohedron

What is it about?

An extension to every poset

Regular closed subsets of a transitive relation

Back to
bipartitions
Completely join-irreducible elements in \(\operatorname{Reg}(\mathbf{e})\)

Bip-Cambrian lattices

In particular, \(\mathrm{R}(E)\) is a bounded homomorphic image of a free lattice, for any finite (not necessarily square-free) poset \(E\).

\section*{Theorem (Santocanale and W 2012)}

The following are equivalent, for any finite, transitive relation \(\mathbf{e}\) :
\(1 \operatorname{Reg}(\mathbf{e})\) is a bounded homomorphic image of a free lattice.
\(2 \operatorname{Reg}(\mathrm{e})\) is semidistributive.
\(3 \operatorname{Reg}(\mathbf{e})\) is pseudocomplemented.
4 Every connected component of the preordering \(\unlhd_{\mathrm{e}}\) is either antisymmetric or has the form \(\{a, b\}\) with \(a \neq b\), \((a, b) \in \mathbf{e}\), and \((b, a) \in \mathbf{e}\).

Hence if \(\operatorname{Reg}(\mathbf{e})\) is a bounded homomorphic image of a free lattice, then it is a direct product of extended permutohedra on finite posets and copies of \(\{0,1\}\) and \(\operatorname{Bip}(2)\).

\section*{More open problems}

\section*{The extended permutohe-} dron

\section*{Problem (Santocanale and W 2012)}

\section*{What is it} about?

An extension
to every poset
Regular closed
subsets of a
transitive
relation
Back to
bipartitions
Completely
join-irreducible elements in \(\operatorname{Reg}(\mathrm{e})\)

Bip-Cambrian lattices

\section*{More open problems}

The extended permutohedron

What is it about?

An extension to every poset

Regular closed subsets of a

Problem (Santocanale and W 2012)
Can every finite ortholattice, which is also a bounded homomorphic image of a free lattice, be embedded into \(\mathrm{R}(E)\), for some finite poset \(E\) ?

\section*{More open problems}

The extended permutohedron

What is it about?

An extension to every poset

Regular closed
subsets of a
transitive
relation
Back to

\section*{bipartitions}

Completely join-irreducible elements in \(\operatorname{Reg}(\mathrm{e})\)

Bip-Cambrian lattices

\section*{Problem (Santocanale and W 2012)}

Can every finite ortholattice, which is also a bounded homomorphic image of a free lattice, be embedded into \(\mathrm{R}(E)\), for some finite poset \(E\) ?

Problem (Santocanale and W 2012)

\section*{More open problems}

The extended permutohedron

What is it about?

An extension to every poset

Regular closed
subsets of a
transitive
relation
Back to

\section*{bipartitions}

Completely join-irreducible elements in \(\operatorname{Reg}(\mathrm{e})\)

Bip-Cambrian lattices

\section*{Problem (Santocanale and W 2012)}

Can every finite ortholattice, which is also a bounded homomorphic image of a free lattice, be embedded into \(\mathrm{R}(E)\), for some finite poset \(E\) ?

\section*{Problem (Santocanale and W 2012)}

Is there a nontrivial ortholattice identity that holds in \(\mathrm{R}(E)\) for any finite poset \(E\) ?

\section*{More open problems}

\section*{Problem (Santocanale and W 2012)}

Can every finite ortholattice, which is also a bounded homomorphic image of a free lattice, be embedded into \(\mathrm{R}(E)\), for some finite poset \(E\) ?

\section*{Problem (Santocanale and W 2012)}

Is there a nontrivial ortholattice identity that holds in \(\mathrm{R}(E)\) for any finite poset \(E\) ?

Not even known for \(E\) a finite chain:

\section*{More open problems}

\section*{Problem (Santocanale and W 2012)}

Can every finite ortholattice, which is also a bounded homomorphic image of a free lattice, be embedded into \(\mathrm{R}(E)\), for some finite poset \(E\) ?

\section*{Problem (Santocanale and W 2012)}

Is there a nontrivial ortholattice identity that holds in \(\mathrm{R}(E)\) for any finite poset \(E\) ?

Not even known for \(E\) a finite chain:
Problem (Santocanale and W 2011)

\section*{More open problems}

\section*{Problem (Santocanale and W 2012)}

Can every finite ortholattice, which is also a bounded homomorphic image of a free lattice, be embedded into \(\mathrm{R}(E)\), for some finite poset \(E\) ?

\section*{Problem (Santocanale and W 2012)}

Is there a nontrivial ortholattice identity that holds in \(\mathrm{R}(E)\) for any finite poset \(E\) ?

Not even known for \(E\) a finite chain:

\section*{Problem (Santocanale and W 2011)}

Is there a nontrivial lattice (ortholattice) identity that holds in \(\mathrm{P}(n)\) for any positive integer \(n\) ?

\section*{Minimal subdirect decomposition of the permutohedron \(\mathrm{P}(n)\)}

The extended permutohedron

■ For \(U \subseteq[n]\), denote by \(\mathrm{A}_{U}(n)\) the set of all transitive \(\mathbf{x} \in \mathcal{J}_{n}\) such that

What is it about?

An extension to every poset

Regular closed subsets of a
relation
Back to

\section*{Minimal subdirect decomposition of the permutohedron \(\mathrm{P}(n)\)}

■ For \(U \subseteq[n]\), denote by \(\mathrm{A}_{U}(n)\) the set of all transitive \(\mathbf{x} \in \mathcal{J}_{n}\) such that
\[
(i<j<k \text { and }(i, k) \in \mathbf{x}) \Rightarrow \begin{cases}(i, j) \in \mathbf{x} & (\text { if } j \in U) \\ (j, k) \in \mathbf{x} & (\text { if } j \notin U)\end{cases}
\]
- \(\mathrm{A}_{U}(n)\) is a sublattice of \(\mathrm{P}(n)\). More is true:

\section*{Minimal subdirect decomposition of the permutohedron \(\mathrm{P}(n)\)}

The extended permutohedron

■ For \(U \subseteq[n]\), denote by \(\mathrm{A}_{U}(n)\) the set of all transitive \(\mathbf{x} \in \mathcal{J}_{n}\) such that
\[
(i<j<k \text { and }(i, k) \in \mathbf{x}) \Rightarrow \begin{cases}(i, j) \in \mathbf{x} & (\text { if } j \in U) \\ (j, k) \in \mathbf{x} & (\text { if } j \notin U)\end{cases}
\]
- \(\mathrm{A}_{U}(n)\) is a sublattice of \(\mathrm{P}(n)\). More is true:

\section*{Theorem (Santocanale and W 2011)}

\section*{Minimal subdirect decomposition of the permutohedron \(\mathrm{P}(n)\)}

The extended permutohedron

What is it about?

An extension to every poset

Regular closed subsets of a transitive relation

Back to bipartitions

Completely join-irreducible elements in \(\operatorname{Reg}(\mathrm{e})\)

Bip-Cambrian lattices

■ For \(U \subseteq[n]\), denote by \(\mathrm{A}_{U}(n)\) the set of all transitive \(\mathbf{x} \in \mathcal{J}_{n}\) such that
\[
(i<j<k \text { and }(i, k) \in \mathbf{x}) \Rightarrow \begin{cases}(i, j) \in \mathbf{x} & (\text { if } j \in U) \\ (j, k) \in \mathbf{x} & (\text { if } j \notin U)\end{cases}
\]
- \(\mathrm{A}_{U}(n)\) is a sublattice of \(\mathrm{P}(n)\). More is true:

Theorem (Santocanale and W 2011)
Each \(\mathrm{A}_{U}(n)\) is a lattice-theoretical retract of \(\mathrm{P}(n)\), and \(\mathrm{P}(n)\) is a subdirect product of all \(\mathrm{A}_{U}(n)\).

\section*{Minimal subdirect decomposition of the permutohedron \(\mathrm{P}(n)\)}

The extended permutohedron

What is it about?

An extension to every poset

Regular closed subsets of a transitive relation

Back to bipartitions

Completely join-irreducible elements in \(\operatorname{Reg}(\mathrm{e})\)

Bip-Cambrian lattices

■ For \(U \subseteq[n]\), denote by \(\mathrm{A}_{U}(n)\) the set of all transitive \(x \in \mathcal{J}_{n}\) such that
\[
(i<j<k \text { and }(i, k) \in \mathbf{x}) \Rightarrow \begin{cases}(i, j) \in \mathbf{x} & (\text { if } j \in U) \\ (j, k) \in \mathbf{x} & (\text { if } j \notin U)\end{cases}
\]
- \(\mathrm{A}_{U}(n)\) is a sublattice of \(\mathrm{P}(n)\). More is true:

\section*{Theorem (Santocanale and W 2011)}

Each \(\mathrm{A}_{U}(n)\) is a lattice-theoretical retract of \(\mathrm{P}(n)\), and \(\mathrm{P}(n)\) is a subdirect product of all \(\mathrm{A}_{U}(n)\). Furthermore, the \(\mathrm{A}_{U}(n)\) are isomorphic to N. Reading's Cambrian lattices of type A.

\section*{Minimal subdirect decomposition of the permutohedron \(\mathrm{P}(n)\)}

The extended permutohedron

What is it about?

An extension to every poset

Regular closed subsets of a transitive relation

Back to bipartitions

Completely join-irreducible elements in \(\operatorname{Reg}(\mathrm{e})\)

Bip-Cambrian lattices

■ For \(U \subseteq[n]\), denote by \(\mathrm{A}_{U}(n)\) the set of all transitive \(\mathbf{x} \in \mathcal{J}_{n}\) such that
\[
(i<j<k \text { and }(i, k) \in \mathbf{x}) \Rightarrow \begin{cases}(i, j) \in \mathbf{x} & (\text { if } j \in U) \\ (j, k) \in \mathbf{x} & (\text { if } j \notin U)\end{cases}
\]
- \(\mathrm{A}_{U}(n)\) is a sublattice of \(\mathrm{P}(n)\). More is true:

\section*{Theorem (Santocanale and W 2011)}

Each \(\mathrm{A}_{U}(n)\) is a lattice-theoretical retract of \(\mathrm{P}(n)\), and \(\mathrm{P}(n)\) is a subdirect product of all \(\mathrm{A}_{U}(n)\). Furthermore, the \(\mathrm{A}_{U}(n)\) are isomorphic to \(N\). Reading's Cambrian lattices of type A.
\(\mathrm{A}_{\varnothing}(n) \cong \mathrm{A}_{[n]}(n)\) is the Tamari lattice on \(n+1\) letters (associahedron).

\section*{Picturing the Cambrian lattices of type A, for \(n=4\)}

The extended permutohedron

What is it about?

An extension to every poset

Regular closed subsets of a transitive relation

\section*{Back to}

\section*{bipartitions}

Completely join-irreducible elements in \(\operatorname{Reg}(e)\)

Bip-Cambrian lattices

\section*{Picturing the Cambrian lattices of type A, for \(n=4\)}
The extended
permutohe-
dron

\section*{What is it} about?

An extension to every poset Regular closed subsets of a transitive relation

\section*{Back to}
bipartitions
Completely join-irreducible elements in \(\operatorname{Reg}(e)\)

Bip-Cambrian lattices

N. Reading observed that each \(\mathrm{A}_{U}(n)\) has cardinality \(\frac{1}{n+1}\binom{2 n}{n}\).

\section*{Minimal subdirect decomposition of \(\operatorname{Bip}(n)\)}

The extended permutohedron
- \(a \in[n]\) is isolated in \(\mathbf{x} \in \operatorname{Bip}(n)\) if \(((i, a) \in \mathbf{x}\) and \((a, i) \in \mathbf{x}) \Leftrightarrow i=a, \forall i \in[n]\).

What is it about?

An extension to every poset

Regular closed subsets of a transitive
relation
Back to
bipartitions
Completely join-irreducible elements in \(\operatorname{Reg}(\mathrm{e})\)

Bip-Cambrian lattices

\section*{Minimal subdirect decomposition of \(\operatorname{Bip}(n)\)}

\section*{The extended}
- \(a \in[n]\) is isolated in \(\mathbf{x} \in \operatorname{Bip}(n)\) if \(((i, a) \in \mathbf{x}\) and \((a, i) \in \mathbf{x}) \Leftrightarrow i=a, \forall i \in[n]\).
- For \(0 \leq k<n, a \in[n]\), and \(U \subseteq[n] \backslash\{a\}\) with \(k\) elements, denote (...) by \(S(n, k)\) the poset of all \(\mathbf{x} \in \operatorname{Bip}(n)\) such that each isolated point of \(\mathbf{x}\) is equal to \(a\), and if \(a\) is isolated, then \(\left(U^{c} \times\{a\}\right) \cup(\{a\} \times U) \subseteq \mathbf{x}\).

\section*{Minimal subdirect decomposition of \(\operatorname{Bip}(n)\)}

The extended
- \(a \in[n]\) is isolated in \(\mathbf{x} \in \operatorname{Bip}(n)\) if \(((i, a) \in \mathbf{x}\) and \((a, i) \in \mathbf{x}) \Leftrightarrow i=a, \forall i \in[n]\).
- For \(0 \leq k<n, a \in[n]\), and \(U \subseteq[n] \backslash\{a\}\) with \(k\) elements, denote (\(\ldots\)) by \(S(n, k)\) the poset of all \(\mathbf{x} \in \operatorname{Bip}(n)\) such that each isolated point of \(\mathbf{x}\) is equal to \(a\), and if \(a\) is isolated, then \(\left(U^{c} \times\{a\}\right) \cup(\{a\} \times U) \subseteq \mathbf{x}\).
- \(S(n, k)\) is a self-dual lattice (not necessarily a sublattice of \(\operatorname{Bip}(n)\)), and \(S(n, k) \cong S(n, n-1-k\)) (so it suffices to consider \(0 \leq 2 k<n\)).

\section*{Minimal subdirect decomposition of \(\operatorname{Bip}(n)\)}

The extended

What is it about?

An extension to every poset

Regular closed subsets of a transitive relation

Back to bipartitions

Completely join-irreducible elements in \(\operatorname{Reg}(\mathrm{e})\)
- \(a \in[n]\) is isolated in \(\mathbf{x} \in \operatorname{Bip}(n)\) if \(((i, a) \in \mathbf{x}\) and \((a, i) \in \mathbf{x}) \Leftrightarrow i=a, \forall i \in[n]\).
- For \(0 \leq k<n, a \in[n]\), and \(U \subseteq[n] \backslash\{a\}\) with \(k\) elements, denote (\(\ldots\)) by \(S(n, k)\) the poset of all \(\mathbf{x} \in \operatorname{Bip}(n)\) such that each isolated point of \(\mathbf{x}\) is equal to \(a\), and if \(a\) is isolated, then \(\left(U^{c} \times\{a\}\right) \cup(\{a\} \times U) \subseteq \mathbf{x}\).
- \(S(n, k)\) is a self-dual lattice (not necessarily a sublattice of \(\operatorname{Bip}(n)\)), and \(S(n, k) \cong S(n, n-1-k\)) (so it suffices to consider \(0 \leq 2 k<n\)).

\section*{Theorem (Santocanale and W 2012)}

\section*{Minimal subdirect decomposition of \(\operatorname{Bip}(n)\)}
- \(a \in[n]\) is isolated in \(\mathbf{x} \in \operatorname{Bip}(n)\) if \(((i, a) \in \mathbf{x}\) and \((a, i) \in \mathbf{x}) \Leftrightarrow i=a, \forall i \in[n]\).
- For \(0 \leq k<n, a \in[n]\), and \(U \subseteq[n] \backslash\{a\}\) with \(k\) elements, denote (...) by \(S(n, k)\) the poset of all \(\mathbf{x} \in \operatorname{Bip}(n)\) such that each isolated point of \(\mathbf{x}\) is equal to \(a\), and if \(a\) is isolated, then \(\left(U^{c} \times\{a\}\right) \cup(\{a\} \times U) \subseteq \mathbf{x}\).
- \(S(n, k)\) is a self-dual lattice (not necessarily a sublattice of \(\operatorname{Bip}(n)\)), and \(S(n, k) \cong S(n, n-1-k\)) (so it suffices to consider \(0 \leq 2 k<n\)).

\section*{Theorem (Santocanale and W 2012)}
\(\operatorname{Bip}(n)\) is a subdirect product of copies of the \(S(n, k)\) (minimal subdirect decomposition).

\section*{The bip-Cambrian lattices \(\mathrm{S}(n, k)\)}

The extended permutohedron

What is it about?

An extension to every poset

Regular closed subsets of a transitive relation

Back to bipartitions

Completely join-irreducible elements in \(\operatorname{Reg}(\mathrm{e})\)

Bip-Cambrian lattices

■ Cardinalities for small values: card \(\mathrm{S}(3,0)=24\), \(\operatorname{card} S(3,1)=21 ; \operatorname{card} S(4,0)=158, \operatorname{card} S(4,1)=142\); \(\operatorname{card} S(5,0)=1,320, \operatorname{card} S(5,1)=1,202\), \(\operatorname{card} S(5,2)=1,198\).

\section*{The bip-Cambrian lattices \(\mathrm{S}(n, k)\)}

The extended permutohedron

What is it about?

An extension to every poset

Regular closed subsets of a transitive relation

Back to bipartitions

Completely join-irreducible elements in \(\operatorname{Reg}(\mathrm{e})\)

Bip-Cambrian lattices

■ Cardinalities for small values: card \(S(3,0)=24\), \(\operatorname{card} S(3,1)=21 ; \operatorname{card} S(4,0)=158, \operatorname{card} S(4,1)=142\); \(\operatorname{card} S(5,0)=1,320, \operatorname{card} S(5,1)=1,202\), \(\operatorname{card} S(5,2)=1,198\). Hence card \(S(n, k)\) depends on \(k\).

\section*{The bip-Cambrian lattices \(\mathrm{S}(n, k)\)}

The extended permutohedron

What is it about?

An extension to every poset

Regular closed
subsets of a transitive relation

Back to bipartitions

Completely join-irreducible elements in \(\operatorname{Reg}(e)\)

Bip-Cambrian lattices
- Cardinalities for small values: card \(\mathrm{S}(3,0)=24\), \(\operatorname{card} S(3,1)=21 ; \operatorname{card} S(4,0)=158, \operatorname{card} S(4,1)=142\); \(\operatorname{card} S(5,0)=1,320, \operatorname{card} S(5,1)=1,202\), card \(S(5,2)=1,198\). Hence card \(S(n, k)\) depends on \(k\).
- Recall the picture of \(\operatorname{Bip}(3)\) :

\section*{Pictures of \(S(3,0)\) and \(S(3,1)\)}

The extended permutohedron

\section*{What is it} about?

An extension
to every poset
Regular closed subsets of a transitive relation

\section*{Back to}
bipartitions
Completely join-irreducible elements in Reg(e)

Bip-Cambrian lattices

\section*{The congruence lattice of \(\operatorname{Bip}(n)\)}

The extended

What is it about?

An extension to every poset

Regular closed subsets of a
transitive
relation
Back to
bipartitions
Completely join-irreducible elements in \(\operatorname{Reg}(\mathrm{e})\)

The description of all join-irreducible elements of \(\operatorname{Bip}(n)\) (and their \(D\) relation) makes it possible to prove the following.

\section*{The congruence lattice of \(\operatorname{Bip}(n)\)}

The description of all join-irreducible elements of \(\operatorname{Bip}(n)\) (and their \(D\) relation) makes it possible to prove the following.

Lemma (Santocanale and W 2012)

\section*{The congruence lattice of \(\operatorname{Bip}(n)\)}

The description of all join-irreducible elements of \(\operatorname{Bip}(n)\) (and their \(D\) relation) makes it possible to prove the following.

\section*{Lemma (Santocanale and W 2012)}

Let \(\mathbf{p}\) and \(\mathbf{q}\) be join-irreducible elements in \(\operatorname{Bip}(n)\), where \(n \geq 3\). Then \(\operatorname{con}\left(\mathbf{p}_{*}, \mathbf{p}\right) \subseteq \operatorname{con}\left(\mathbf{q}_{*}, \mathbf{q}\right)\) iff either \(\mathbf{q}\) is bipartite or \(\mathbf{p}=\mathbf{q}\) is a clepsydra.

\section*{The congruence lattice of \(\operatorname{Bip}(n)\)}

The description of all join-irreducible elements of \(\operatorname{Bip}(n)\) (and their \(D\) relation) makes it possible to prove the following.

\section*{Lemma (Santocanale and W 2012)}

Let \(\mathbf{p}\) and \(\mathbf{q}\) be join-irreducible elements in \(\operatorname{Bip}(n)\), where \(n \geq 3\). Then \(\operatorname{con}\left(\mathbf{p}_{*}, \mathbf{p}\right) \subseteq \operatorname{con}\left(\mathbf{q}_{*}, \mathbf{q}\right)\) iff either \(\mathbf{q}\) is bipartite or \(\mathbf{p}=\mathbf{q}\) is a clepsydra.

\section*{Corollary (Santocanale and W 2012)}

Let \(n \geq 3\). Then the congruence lattice of \(\operatorname{Bip}(n)\) is Boolean on \(n \cdot 2^{n-1}\) atoms, with a top element added.```

