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Geomodular lattices

Definition

A lattice is geomodular if it is geometric and modular, that is,
algebraic, atomistic, and modular.

Theorem (G. Birkhoff 1935)

Every geomodular lattice L is complemented, that is, for each
x ∈ L, there exists y ∈ L such that x ∨ y = 1 (largest element
of L) and x ∧ y = 0 (smallest element of L). (Abbreviated
x ⊕ y = 1, and we say that y is a complement of x .)
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The Arguesian identity

Desargues’ identity (M. Schützenberger 1945, B. Jónsson 1953)

For variables x0, x1, x2, y0, y1, y2, we set

z0 := (x1 ∨ x2) ∧ (y1 ∨ y2) ,

z1 := (x0 ∨ x2) ∧ (y0 ∨ y2) ,

z2 := (x0 ∨ x1) ∧ (y0 ∨ y1) ,

z := z2 ∧ (z0 ∨ z1) .

Desargues’ identity is the lattice-theoretical identity

(x0∨y0)∧ (x1∨y1)∧ (x2∨y2) ≤
(
x0∧ (z ∨x1)

)
∨
(
y0∧ (z ∨y1)

)
.

A lattice is Arguesian, if it satisfies Desargues’ identity.
Every Arguesian lattice is modular, but the converse is false.
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Illustrating Desargues’ Rule

Desargues’ Rule (on atoms of some modular lattices)

Any two “centrally perspective” triangles are “axially
perspective”.
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Desargues’ Rule (on atoms of some modular lattices)
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a0 a1

a2

b0

b1b2

c0

c1

c2
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Desargues’ Rule versus Desargues’ identity

Theorem (M. Schützenberger 1945, B. Jónsson 1953)

A geomodular lattice is Arguesian if and only if its associated
projective geometry (defined on the atoms) satisfies Desargues’
Rule.

Other classes of Arguesian lattices:

The normal subgroup lattice NSub G of any group G .

The submodule lattice Sub M of any module M.

(more general) Any lattice of permuting equivalence
relations on a given set. (Note: ‘Arguesian’ is then not the
end of the story. . . )
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Fundamental examples of geomodular lattices

(1) The two-element lattice 2 := {0, 1},

the lattice Mκ of
length two and κ atoms (for a cardinal κ),

(2) the lattice Sub V of all subspaces of a vector space V of
dimension ≥ 3 (over any division ring),

(3) . . . and the non-Arguesian projective planes!
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The Coordinatization Theorem for projective
geometries

The Coordinatization Theorem for projective geometries (Von
Staudt 19th Century, O. Veblen and W. H. Young 1910,
von Neumann 1936)

Every geomodular lattice is isomorphic to a product
∏

i∈I Li ,
where each Li is isomorphic to one of the types (1)–(3) above.

The decomposition above is unique.
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Independent families in lattices with zero

Definition

In any lattice L with zero, a family (ai | i ∈ I ) is independent, if∨
(ai | i ∈ X ) ∧

∨
(ai | i ∈ Y ) =

∨
(ai | i ∈ X ∩ Y ) ,

for any finite subsets X and Y of I .

In case L is modular and I = {0, 1, . . . , n − 1}, this amounts to
saying that

ak ∧
∨

(ai | i < k) = 0 for all k < n .

Write a =
⊕

(ai | i < n), if a =
∨

(ai | i < n) and (ai | i < n)
is independent.
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Write a =
⊕

(ai | i < n), if a =
∨

(ai | i < n) and (ai | i < n)
is independent.
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Sectionally complemented modular lattices

Definition

A lattice L with zero is sectionally complemented, if for all
x ≤ y in L, there exists z ∈ L such that y = x ⊕ z .
A bounded lattice L is complemented, if for all x ∈ L, there
exists y ∈ L such that x ⊕ y = 1.

Proposition

A bounded modular lattice is complemented iff it is sectionally
complemented.
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Frink’s Embedding Theorem

Frink’s Embedding Theorem (O. Frink 1946)

Every CML L embeds into some geomodular lattice L, with the
same 0 and 1 as L.

Furthermore, one can assume that L satisfies the same
lattice-theoretical identities as L (B. Jónsson 1954).

Easiest example of a (finite) Arguesian lattice that cannot be
embedded into any CML (C. Herrmann and A. Huhn 1975):

Sub
(
(Z/4Z)3

)
, the subgroup lattice of (Z/4Z)3 .
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Von Neumann frames (spanning and large)

Definition

Elements a, b in a modular lattice L with 0 are perspective
with axis c (notation a ∼c b), if a⊕ c = b ⊕ c .

An n-frame is a system ((ai | 0 ≤ i < n), (ci | 1 ≤ i < n)),
where (ai | 0 ≤ i < n) is independent and a0 ∼ci ai for
1 ≤ i < n.

The frame is

— spanning, if L has a unit and 1 =
∨

i<n ai ,

— large, if every element of L is a finite join of elements
perspective to parts of a0 . (Hence spanning ⇒large).
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Von Neumann regular rings

Definition

A ring (associative, not necessarily unital) R is regular (in von
Neumann’s sense), if it satisfies

(∀x)(∃y)(xyx = x) .

Example: the endomorphism ring of a vector space (or even a
semisimple module) is regular. In particular, full matrix rings
over division rings (and even regular rings) are regular.
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Coordinatizable lattices

Theorem (Von Neumann 1936, Fryer and Halperin 1954)

Let R be a regular ring. Then the poset

L(R) := {xR | x ∈ R} ,

endowed with containment, is a sectionally complemented
sublattice of the right ideal lattice of R. In particular, it is
modular.

Furthermore, L defines a functor from regular rings and ring
homomorphisms to SCMLs and 0-lattice homomorphisms.
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Coordinatizable lattices (cont’d)

Definition

A lattice is coordinatizable, if it is isomorphic to L(R), for
some regular ring R.

So every coordinatizable lattice is sectionally complemented
and modular. The easiest example of non-coordinatizable CML
is M7.
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Coordinatization of CMLs

Von Neumann’s Coordinatization Theorem

If a CML has a spanning n-frame, with n ≥ 4, then it is
coordinatizable.

Improved by B. Jónsson in 1960:

Jónsson’s Coordinatization Theorem

If a CML has a large 4-frame, or it is Arguesian and it has a
large 3-frame, then it is coordinatizable.

A much more transparent proof of Jónsson’s Coordinatization
Theorem has recently been found by C. Herrmann.
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Coordinatization of CMLs (cont’d)

Both von Neumann’s condition (for fixed n) and Jónsson’s
condition (for either fixed or variable n) can be expressed by
first-order axioms. Nevertheless,

Theorem (FW 2006)

The class of all coordinatizable CMLs is not first-order, even for
countable 2-distributive lattices.

Von Neumann’s condition requires the lattice have a unit, while
Jónsson’s does not. Nevertheless, Jónsson’s Coordinatization
Theorem is stated for lattices with unit. Jónsson improved this
as follows:

Theorem (B. Jónsson 1962)

Let L be a SCML with either a large 4-frame or a large 3-frame
with L Arguesian. If L has a countable cofinal subset, then L is
coordinatizable.
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Can the countable cofinal subset assumption be
dispensed with?

Without the countable cofinal subset assumption, Jónsson
obtained a weaker representation result,

via the lattice of all
finitely generated submodules of some locally projective module
over a regular ring. Full coordinatization remained unsolved:

Question:

Is every SCML with a large 4-frame coordinatizable?

Answer in what follows. . .
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Banaschewski functions

Definition

A Banaschewski function on a bounded lattice L is an antitone
map f : L→ L such that x ⊕ f (x) = 1 for each x ∈ L.

Theorem

Sub V has a Banaschewski function, for any vector
space V (B. Banaschewski 1957).

Every geometric lattice has a Banaschewski function (M.
Saarimäki and P. Sorjonen 1991).

Banaschewski functions were first used in a simpler proof of
Hahn’s Embedding Theorem for totally ordered Abelian groups
(embedding into a lexicographical power of the reals).
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Existence result for Banaschewski functions

Theorem (FW 2008)

Every countable CML has a Banaschewski function with
Boolean range.

Furthermore, this range is uniquely
determined up to isomorphism.

For every countable field F, there exists a regular
F-algebra RF of cardinality ℵ1 such that L(RF) has no
Banaschewski function.

Hence there exists a coordinatizable CML of cardinality ℵ1

without a Banaschewski function.
However, in order to solve our coordinatization problem, more
is needed. . .
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Banaschewski measures

Definition

Let X be a subset in a 0-lattice L. A L-valued Banaschewski
measure on X is a map

	 : {(x , y) ∈ X × X | x ≤ y} → L , (x , y) 7→ y 	 x ,

such that y = x ⊕ (y 	 x) and z 	 x = (z 	 y)⊕ (y 	 x) for
x ≤ y ≤ z in X .
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Outline of construction of RF

F is any countable field.

ΣF :=
(

0︸︷︷︸
(0)

, 1︸︷︷︸
(0)

, −︸︷︷︸
(2)

, ·︸︷︷︸
(2)

, ′︸︷︷︸
(1)

, ( hλ︸︷︷︸
(1)

| λ ∈ F)
)

new

similarity type.

RegF:=variety of all F-algebras with ′ and the identity
xx ′x = x (=F-algebras with quasi-inversion).

Take a “large enough” subvariety V of RegF.

Define RF as the V-object defined by generators α̃
(α < ω1) and relations

α̃ = β̃ · α̃ (∀α ≤ β < ω1) .

Observe that 0̃ · RF ⊂ 1̃ · RF ⊂ · · · ξ̃ · RF ⊂ · · · . Set
XF := {ξ̃ · RF | ξ < ω1} ⊆ L(RF).
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What this construction does

We need the following strong form of non-existence of a
Banaschewski function on L(RF):

Theorem

There is no L(RF)-valued Banaschewski measure on XF.

That is, there exists no family (Iα,β | α ≤ β < ω1) of principal
right ideals of RF such that I0,α = α̃ · RF and Iα,γ = Iα,β ⊕ Iβ,γ
for all α ≤ β ≤ γ < ω1.
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Why does this construction work

This construction relies on the existence of idempotent
matrices A,B ∈ F3×3 such that A = BA 6= AB,

for example

A :=

1 0 0
0 0 0
0 0 0

 , B :=

1 0 1
0 1 0
0 0 0

 ,

together with the functoriality of the RF construction and
basic set-theoretical tools (∆-Lemma).
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Squeezing in a large 4-frame

Set SF := (RF)5×5

and define idempotent elements of SF by

e :=

(
14 04×1

01×4 0

)
, b :=

(
04 04×1

01×4 1

)
, bξ :=

(
04 04×1

01×4 ξ̃

)
,

for each ξ < ω1. Then set Uξ := (e + bξ)SF and
Aξ := {I ∈ L(SF) | I ⊆ Uξ}. Replace the Aξs by countable
sub-CMLs, with same unit and (Aξ | ξ < ω1) still increasing.

Let ~A the chain of models (SCMLs with enriched structure)

A0 ⊂ A1 ⊂ · · · ⊂ Aξ ⊂ · · · .

Each Aξ is a CML with a large 4-frame (coming from the 14

matrix in e), thus (by Jónsson’s Coordinatization Theorem) it
is coordinatizable. However,
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A0 ⊂ A1 ⊂ · · · ⊂ Aξ ⊂ · · · .

Each Aξ is a CML with a large 4-frame (coming from the 14

matrix in e), thus (by Jónsson’s Coordinatization Theorem) it
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Theorem

There is no chain of regular rings of the form

R0 ⊆ R1 ⊆ · · · ⊆ Rξ ⊆ · · ·

whose image under the L functor is isomorphic to the
diagram ~A.

Idea of proof: say L(Rξ) = Aξ (∀ξ < ω1). Set
YF := {Uξ | ξ < ω1}. Set uα :=the unit of Rα,
Vα,β := (uβ − uα)Rβ (∀α ≤ β < ω1). Then
(Vα,β | α ≤ β < ω1) defines a Banaschewski measure on YF
in L(SF), as α ≤ β ≤ γ < ω1 implies that

(uγ − uα)Rγ = (uγ − uβ)Rγ ⊕ (uβ − uα)Rγ .

But this can’t be (use the result for RF and XF).
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Last remaining task

Turn the ω1-chain ~A of SCMLs, not liftable (with respect to
the L functor) by a chain of regular rings, to

a single SCML,
with a large 4-frame, unliftable (with respect to the L functor)
by any regular ring (i.e., non-coordinatizable).

Final blow:

Use CLL and larders (P. Gillibert and FW 2008).
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CLL and larders

Informal definition

A larder consists of categories A, B, S together with functors
Φ: A → S and Ψ: B → S, and lots of extra junk.

In the present context,

A :=SCMLs with distinguished large 4-frame and a few
extra axioms,

B :=all regular rings,

S :=all SCMLs,

Φ :=forgetful functor A → S,

Ψ := L : B → S.

Informal statement of CLL

If Φ~A has no lifting wrt. Ψ (= L), then construct (effectively!)
a ‘condensate’ A of ~A such that Φ(A) has no lifting wrt. Ψ.
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For our current concerns,

Each card Aξ ≤ ℵ0, so

card A = ℵ1. So

Theorem

There exists a non-coordinatizable SCML A, of cardinality ℵ1,
with a large 4-frame. Furthermore, A is an ideal in a
(coordinatizable) CML with a 5-frame.

(The latter requires a bit more care in the choice of the Aξs.)



Von Neumann
Coordinatiza-

tion,
Banaschewski
functions, and

larders

Geomodular
lattices

SCMLs

Von Neumann
frames

Banaschewski
functions

Coordinatiza-
tion
defect

For our current concerns,

Each card Aξ ≤ ℵ0, so card A = ℵ1. So

Theorem

There exists a non-coordinatizable SCML A, of cardinality ℵ1,
with a large 4-frame. Furthermore, A is an ideal in a
(coordinatizable) CML with a 5-frame.

(The latter requires a bit more care in the choice of the Aξs.)



Von Neumann
Coordinatiza-

tion,
Banaschewski
functions, and

larders

Geomodular
lattices

SCMLs

Von Neumann
frames

Banaschewski
functions

Coordinatiza-
tion
defect

For our current concerns,

Each card Aξ ≤ ℵ0, so card A = ℵ1. So

Theorem

There exists a non-coordinatizable SCML A, of cardinality ℵ1,
with a large 4-frame. Furthermore, A is an ideal in a
(coordinatizable) CML with a 5-frame.

(The latter requires a bit more care in the choice of the Aξs.)



Von Neumann
Coordinatiza-

tion,
Banaschewski
functions, and

larders

Geomodular
lattices

SCMLs

Von Neumann
frames

Banaschewski
functions

Coordinatiza-
tion
defect

For our current concerns,

Each card Aξ ≤ ℵ0, so card A = ℵ1. So

Theorem

There exists a non-coordinatizable SCML A,

of cardinality ℵ1,
with a large 4-frame. Furthermore, A is an ideal in a
(coordinatizable) CML with a 5-frame.

(The latter requires a bit more care in the choice of the Aξs.)



Von Neumann
Coordinatiza-

tion,
Banaschewski
functions, and

larders

Geomodular
lattices

SCMLs

Von Neumann
frames

Banaschewski
functions

Coordinatiza-
tion
defect

For our current concerns,

Each card Aξ ≤ ℵ0, so card A = ℵ1. So

Theorem

There exists a non-coordinatizable SCML A, of cardinality ℵ1,

with a large 4-frame. Furthermore, A is an ideal in a
(coordinatizable) CML with a 5-frame.

(The latter requires a bit more care in the choice of the Aξs.)



Von Neumann
Coordinatiza-

tion,
Banaschewski
functions, and

larders

Geomodular
lattices

SCMLs

Von Neumann
frames

Banaschewski
functions

Coordinatiza-
tion
defect

For our current concerns,

Each card Aξ ≤ ℵ0, so card A = ℵ1. So

Theorem

There exists a non-coordinatizable SCML A, of cardinality ℵ1,
with a large 4-frame.

Furthermore, A is an ideal in a
(coordinatizable) CML with a 5-frame.

(The latter requires a bit more care in the choice of the Aξs.)



Von Neumann
Coordinatiza-

tion,
Banaschewski
functions, and

larders

Geomodular
lattices

SCMLs

Von Neumann
frames

Banaschewski
functions

Coordinatiza-
tion
defect

For our current concerns,

Each card Aξ ≤ ℵ0, so card A = ℵ1. So

Theorem

There exists a non-coordinatizable SCML A, of cardinality ℵ1,
with a large 4-frame. Furthermore, A is an ideal in a
(coordinatizable) CML with a 5-frame.

(The latter requires a bit more care in the choice of the Aξs.)



Von Neumann
Coordinatiza-

tion,
Banaschewski
functions, and

larders

Geomodular
lattices

SCMLs

Von Neumann
frames

Banaschewski
functions

Coordinatiza-
tion
defect

For our current concerns,

Each card Aξ ≤ ℵ0, so card A = ℵ1. So

Theorem

There exists a non-coordinatizable SCML A, of cardinality ℵ1,
with a large 4-frame. Furthermore, A is an ideal in a
(coordinatizable) CML with a 5-frame.

(The latter requires a bit more care in the choice of the Aξs.)



Von Neumann
Coordinatiza-

tion,
Banaschewski
functions, and

larders

Geomodular
lattices

SCMLs

Von Neumann
frames

Banaschewski
functions

Coordinatiza-
tion
defect

A further use of Banaschewski functions

Definition

A Banaschewski trace over a 0-lattice L is a family
(aj

i | i ≤ j in I ) of elements in L, where I is an upward directed
poset with zero, such that {ai

0 | i ∈ I} is cofinal in L and

ak
i = aj

i ⊕ ak
j for all i ≤ j ≤ k in I .

Theorem (FW 2008)

Every SCML with a countable cofinal subset has a
Banaschewski trace.

Every coordinatizable SCML has a Banaschewski trace.

Every SCML with a Banaschewski trace embeds as a
neutral ideal into some CML.

A SCML with a large 4-frame (or Arguesian with a large
3-frame) is coordinatizable iff it has a Banaschewski trace.



Von Neumann
Coordinatiza-

tion,
Banaschewski
functions, and

larders

Geomodular
lattices

SCMLs

Von Neumann
frames

Banaschewski
functions

Coordinatiza-
tion
defect

A further use of Banaschewski functions

Definition

A Banaschewski trace over a 0-lattice L is a family
(aj

i | i ≤ j in I ) of elements in L, where I is an upward directed
poset with zero, such that

{ai
0 | i ∈ I} is cofinal in L and

ak
i = aj

i ⊕ ak
j for all i ≤ j ≤ k in I .

Theorem (FW 2008)

Every SCML with a countable cofinal subset has a
Banaschewski trace.

Every coordinatizable SCML has a Banaschewski trace.

Every SCML with a Banaschewski trace embeds as a
neutral ideal into some CML.

A SCML with a large 4-frame (or Arguesian with a large
3-frame) is coordinatizable iff it has a Banaschewski trace.



Von Neumann
Coordinatiza-

tion,
Banaschewski
functions, and

larders

Geomodular
lattices

SCMLs

Von Neumann
frames

Banaschewski
functions

Coordinatiza-
tion
defect

A further use of Banaschewski functions

Definition

A Banaschewski trace over a 0-lattice L is a family
(aj

i | i ≤ j in I ) of elements in L, where I is an upward directed
poset with zero, such that {ai

0 | i ∈ I} is cofinal in L and

ak
i = aj

i ⊕ ak
j for all i ≤ j ≤ k in I .

Theorem (FW 2008)

Every SCML with a countable cofinal subset has a
Banaschewski trace.

Every coordinatizable SCML has a Banaschewski trace.

Every SCML with a Banaschewski trace embeds as a
neutral ideal into some CML.

A SCML with a large 4-frame (or Arguesian with a large
3-frame) is coordinatizable iff it has a Banaschewski trace.



Von Neumann
Coordinatiza-

tion,
Banaschewski
functions, and

larders

Geomodular
lattices

SCMLs

Von Neumann
frames

Banaschewski
functions

Coordinatiza-
tion
defect

A further use of Banaschewski functions

Definition

A Banaschewski trace over a 0-lattice L is a family
(aj

i | i ≤ j in I ) of elements in L, where I is an upward directed
poset with zero, such that {ai

0 | i ∈ I} is cofinal in L and

ak
i = aj

i ⊕ ak
j for all i ≤ j ≤ k in I .

Theorem (FW 2008)

Every SCML with a countable cofinal subset has a
Banaschewski trace.

Every coordinatizable SCML has a Banaschewski trace.

Every SCML with a Banaschewski trace embeds as a
neutral ideal into some CML.

A SCML with a large 4-frame (or Arguesian with a large
3-frame) is coordinatizable iff it has a Banaschewski trace.



Von Neumann
Coordinatiza-

tion,
Banaschewski
functions, and

larders

Geomodular
lattices

SCMLs

Von Neumann
frames

Banaschewski
functions

Coordinatiza-
tion
defect

A further use of Banaschewski functions

Definition

A Banaschewski trace over a 0-lattice L is a family
(aj

i | i ≤ j in I ) of elements in L, where I is an upward directed
poset with zero, such that {ai

0 | i ∈ I} is cofinal in L and

ak
i = aj

i ⊕ ak
j for all i ≤ j ≤ k in I .

Theorem (FW 2008)

Every SCML with a countable cofinal subset has a
Banaschewski trace.

Every coordinatizable SCML has a Banaschewski trace.

Every SCML with a Banaschewski trace embeds as a
neutral ideal into some CML.

A SCML with a large 4-frame (or Arguesian with a large
3-frame) is coordinatizable iff it has a Banaschewski trace.



Von Neumann
Coordinatiza-

tion,
Banaschewski
functions, and

larders

Geomodular
lattices

SCMLs

Von Neumann
frames

Banaschewski
functions

Coordinatiza-
tion
defect

A further use of Banaschewski functions

Definition

A Banaschewski trace over a 0-lattice L is a family
(aj

i | i ≤ j in I ) of elements in L, where I is an upward directed
poset with zero, such that {ai

0 | i ∈ I} is cofinal in L and

ak
i = aj

i ⊕ ak
j for all i ≤ j ≤ k in I .

Theorem (FW 2008)

Every SCML with a countable cofinal subset has a
Banaschewski trace.

Every coordinatizable SCML has a Banaschewski trace.

Every SCML with a Banaschewski trace embeds as a
neutral ideal into some CML.

A SCML with a large 4-frame (or Arguesian with a large
3-frame) is coordinatizable iff it has a Banaschewski trace.



Von Neumann
Coordinatiza-

tion,
Banaschewski
functions, and

larders

Geomodular
lattices

SCMLs

Von Neumann
frames

Banaschewski
functions

Coordinatiza-
tion
defect

A further use of Banaschewski functions

Definition

A Banaschewski trace over a 0-lattice L is a family
(aj

i | i ≤ j in I ) of elements in L, where I is an upward directed
poset with zero, such that {ai

0 | i ∈ I} is cofinal in L and

ak
i = aj

i ⊕ ak
j for all i ≤ j ≤ k in I .

Theorem (FW 2008)

Every SCML with a countable cofinal subset has a
Banaschewski trace.

Every coordinatizable SCML has a Banaschewski trace.

Every SCML with a Banaschewski trace embeds as a
neutral ideal into some CML.

A SCML with a large 4-frame (or Arguesian with a large
3-frame) is coordinatizable iff it has a Banaschewski trace.



Von Neumann
Coordinatiza-

tion,
Banaschewski
functions, and

larders

Geomodular
lattices

SCMLs

Von Neumann
frames

Banaschewski
functions

Coordinatiza-
tion
defect

A further use of Banaschewski functions

Definition

A Banaschewski trace over a 0-lattice L is a family
(aj

i | i ≤ j in I ) of elements in L, where I is an upward directed
poset with zero, such that {ai

0 | i ∈ I} is cofinal in L and

ak
i = aj

i ⊕ ak
j for all i ≤ j ≤ k in I .

Theorem (FW 2008)

Every SCML with a countable cofinal subset has a
Banaschewski trace.

Every coordinatizable SCML has a Banaschewski trace.

Every SCML with a Banaschewski trace embeds as a
neutral ideal into some CML.

A SCML with a large 4-frame (or Arguesian with a large
3-frame) is coordinatizable iff it has a Banaschewski trace.



Von Neumann
Coordinatiza-

tion,
Banaschewski
functions, and

larders

Geomodular
lattices

SCMLs

Von Neumann
frames

Banaschewski
functions

Coordinatiza-
tion
defect

A question

Question

Does every SCML embed, as an ideal (resp., a neutral ideal),
into some CML?
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