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Université de Caen
LMNO, UMR 6139
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Background: ladders and breadth

A lattice L with zero is lower finite, if
L ↓ a := {x ∈ L | x ≤ a} is finite for each a ∈ L.

We say that L is a k-ladder, if it is lower finite and every
element of L has at most k lower covers.

We say that L has breadth ≤ k, if for every nonempty
finite X ⊆ L, there exists Y ⊆ X such that |Y | ≤ k and∨

X =
∨

Y .
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A simple relation between ladders and breadth

Lemma

Every k-ladder has breadth ≤ k.

The converse is false.

The lattice M3 below has breadth 2. It is a 3-ladder but not a
2-ladder.
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An upper bound for the size of a k-ladder

For any set Ω and any positive integer n, we set

[Ω]n := {X ⊆ Ω | |X | = n};

[Ω]<ω := {X ⊆ Ω | X is finite}.

Kuratowski’s Free Set Theorem (1951)

Let k be a positive integer and let Ω be a set. Then |Ω| ≥ ℵk

iff for every Φ: [Ω]k → [Ω]<ω, there exists H ∈ [Ω]k+1 such
that x /∈ Φ(H \ {x}) for each x ∈ H.

(We say that H is free
with respect to Φ.)

For a k-ladder (or even a lattice of breadth ≤ k) L, we obtain,
by applying this to the map X 7→ L ↓

∨
X ,

Proposition (S. Z. Ditor, 1984)

Let k be a positive integer. Then every lower finite lattice L of
breadth ≤ k has cardinality at most ℵk−1.
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1-ladders and 2-ladders

Every finite chain is a 1-ladder.

So is the chain ω of all
natural numbers. There are no other 1-ladders.

And 2-ladders?

Theorem (S. Z. Ditor 1984)

There exists a 2-ladder of cardinality ℵ1.

Examples of applications:

Every distributive algebraic lattice with ≤ ℵ1 compact elements
is isomorphic to

the congruence lattice of some lattice (A. P. Huhn 1989).

the lattice of all normal subgroups of some locally finite
group (P. Růžička, J. Tůma, and F. Wehrung 2006)

.
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group (P. Růžička, J. Tůma, and F. Wehrung 2006)

.



3-ladders

Background

Critical points

MA(ℵ1;
precaliber ℵ1)

Morasses

1-ladders and 2-ladders

Every finite chain is a 1-ladder. So is the chain ω of all
natural numbers. There are no other 1-ladders.

And 2-ladders?

Theorem (S. Z. Ditor 1984)

There exists a 2-ladder of cardinality ℵ1.

Examples of applications:

Every distributive algebraic lattice with ≤ ℵ1 compact elements
is isomorphic to

the congruence lattice of some lattice (A. P. Huhn 1989).

the lattice of all normal subgroups of some locally finite
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2-ladders (continued)

Proof of existence of a 2-ladder of cardinality ℵ1:

We
construct F :=

⋃
(Fα | α < ω1), the Fαs constructed

inductively. Start with F0 := {0}. At limit stages λ < ω1, set
Fλ :=

⋃
(Fα | α < λ).

The problem is the successor case. Suppose Fα constructed.
It is a countable 2-ladder (induction hypothesis).
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2-ladders (continued further)

0

Fα
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2-ladders (continued further)

0

Fα

C

Pick a cofinal chain C of Fα.
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2-ladders (continued further)

0

Fα

C

x
x ′

C ′

Pick a cofinal chain C of Fα.
Add a copy C ′ = {x ′ | x ∈ C} ∼= C . . .
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2-ladders (continued further)

0

Fα

C

x
x ′

C ′

. . . and that’s Fα+1

Pick a cofinal chain C of Fα.
Add a copy C ′ = {x ′ | x ∈ C} ∼= C . . .
And we are done (Fα+1 := Fα ∪ C ′)!
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Critical points: basic definitions

Denote by Conc A the (∨, 0)-semilattice of all compact
(i.e., finitely generated) congruences of an algebra A.

For a class C of algebras, put

Conc C := {S | (∃A ∈ C)(S ∼= Conc A)} .

For classes A and B of algebras, denote by crit(A,B)
(critical point of (A,B)) the least possible value of |S |
where S ∈ ConcA \ Conc B, if it exists; ∞, otherwise (i.e.,
if ConcA ⊆ Conc B).
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Theorem (P. Gillibert 2007)

For every locally finite variety A and every finitely generated
congruence-distributive variety B, exactly one of the following
holds:

crit(A,B) is finite;

crit(A,B) = ℵn, for some natural number n;

crit(A,B) =∞.

Finitely generated varieties A and B of (bounded) lattices have
been found with either one of the following situations:

crit(A,B) = ℵ0;

crit(A,B) = ℵ1;

crit(A,B) = ℵ2.
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More specifically,

crit(M01
3 ,D01) = ℵ0 and crit(M01

4 ,M01
3 ) = ℵ2 (M.

Ploščica 2000, 2003) (later extended to unbounded
lattices by P. Gillibert);

crit(A,B) = ℵ1, where A is generated by the top lattice
and B is generated by the three bottom lattices in the
picture below (P. Gillibert 2007).
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Can one go further?

Question:

Are there finitely generated lattice varieties A and B such that
crit(A,B) = ℵ3?

Answer: nobody knows so far, but there’s a feeling that
3-ladders of cardinality ℵ2 could help.
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Possible existence of large 3-ladders?

Question (S. Z. Ditor 1984)

Does there exist a 3-ladder of cardinality ℵ2?

Try to extend the argument used above for 2-ladders, to the
construction of 3-ladders of cardinality ℵ2.
Problem: C should be not only a 2-ladder, cofinal in Fα (now
α < ω2 and |Fα| ≤ ℵ1), but also a meet-subsemilattice of Fα.
This is just in order to ensure that Fα+1 is a lattice.

Question:

Let K be a lower finite lattice of cardinality ≤ ℵ1. Does K
have a cofinal 2-ladder that is also a meet-subsemilattice of K?

Partial answer (F. Wehrung 2008):

Yes, provided MA(ℵ1; precaliber ℵ1) holds.
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A first consistency result for 3-ladders of cardinality
ℵ2

Corollary (F. Wehrung 2008):

If MA(ℵ1; precaliber ℵ1) holds, then there exists a 3-ladder of
cardinality ℵ2.
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What is MA(ℵ1; precaliber ℵ1)?

A subset X in a poset P is centered, if every finite subset
of X has a lower bound in P (not necessarily in X !).

A poset P has precaliber ℵ1, if every uncountable subset
of P has an uncountable centered subset.
For a collection D of subsets of P, a filter G of P is
D-generic, if G ∩ D 6= ∅ for each coinitial D ∈ D.
MA(ℵ1; precaliber ℵ1) holds, if for every poset P of
precaliber ℵ1 and every collection D of subsets of P, if
|D| ≤ ℵ1, then there exists a D-generic filter of P.

What about this axiom?

• MA(ℵ1; precaliber ℵ1) is consistent with ZFC (Solovay and
Tennenbaum, 1971).
• MA(ℵ1; precaliber ℵ1) implies that 2ℵ0 = 2ℵ1 (Martin and
Solovay, 1970). In particular, it contradicts the Continuum
Hypothesis.
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Simplified gap-1 morasses

α + β :=sum of two ordinals α and β (non-commutative).

β − α :=unique ordinal ξ such that α + ξ = β.

For α ≤ β, define τα,β : β → β + (β − α) by

τα,β(ξ) :=

{
ξ , if ξ < α ,

β + (ξ − α) , if ξ ≥ α .
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β − α :=unique ordinal ξ such that α + ξ = β.
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Defining (κ, 1)-morasses

Definition (D. J. Velleman 1984)

Let κ be an infinite cardinal. A simplified (κ, 1)-morass is a
structure

M =
(
(θα | α ≤ κ), (Fα,β | α < β ≤ κ)

)
satisfying the following conditions:

(P0) (a) θ0 = 2, 0 < θα < κ for each α < κ, and θκ = κ+.
(b) Fα,β is a set of order-embeddings from θα into θβ , for all

α < β ≤ κ.

(P1) |Fα,β| < κ, for all α < β < κ.

(P2) If α < β < γ ≤ κ, then
Fα,γ = {f ◦ g | f ∈ Fβ,γ and g ∈ Fα,β}.
(to be continued)



3-ladders

Background

Critical points

MA(ℵ1;
precaliber ℵ1)

Morasses

Defining (κ, 1)-morasses

Definition (D. J. Velleman 1984)

Let κ be an infinite cardinal. A simplified (κ, 1)-morass is a
structure

M =
(
(θα | α ≤ κ), (Fα,β | α < β ≤ κ)

)

satisfying the following conditions:

(P0) (a) θ0 = 2, 0 < θα < κ for each α < κ, and θκ = κ+.
(b) Fα,β is a set of order-embeddings from θα into θβ , for all

α < β ≤ κ.

(P1) |Fα,β| < κ, for all α < β < κ.

(P2) If α < β < γ ≤ κ, then
Fα,γ = {f ◦ g | f ∈ Fβ,γ and g ∈ Fα,β}.
(to be continued)



3-ladders

Background

Critical points

MA(ℵ1;
precaliber ℵ1)

Morasses

Defining (κ, 1)-morasses

Definition (D. J. Velleman 1984)

Let κ be an infinite cardinal. A simplified (κ, 1)-morass is a
structure

M =
(
(θα | α ≤ κ), (Fα,β | α < β ≤ κ)

)
satisfying the following conditions:

(P0) (a) θ0 = 2, 0 < θα < κ for each α < κ, and θκ = κ+.
(b) Fα,β is a set of order-embeddings from θα into θβ , for all

α < β ≤ κ.

(P1) |Fα,β| < κ, for all α < β < κ.

(P2) If α < β < γ ≤ κ, then
Fα,γ = {f ◦ g | f ∈ Fβ,γ and g ∈ Fα,β}.
(to be continued)



3-ladders

Background

Critical points

MA(ℵ1;
precaliber ℵ1)

Morasses

Defining (κ, 1)-morasses

Definition (D. J. Velleman 1984)

Let κ be an infinite cardinal. A simplified (κ, 1)-morass is a
structure

M =
(
(θα | α ≤ κ), (Fα,β | α < β ≤ κ)

)
satisfying the following conditions:

(P0) (a) θ0 = 2, 0 < θα < κ for each α < κ, and θκ = κ+.
(b) Fα,β is a set of order-embeddings from θα into θβ , for all

α < β ≤ κ.

(P1) |Fα,β| < κ, for all α < β < κ.

(P2) If α < β < γ ≤ κ, then
Fα,γ = {f ◦ g | f ∈ Fβ,γ and g ∈ Fα,β}.
(to be continued)



3-ladders

Background

Critical points

MA(ℵ1;
precaliber ℵ1)

Morasses

Defining simplified (κ, 1)-morasses (cont’d)

(end of definition of a simplified (κ, 1)-morass)

(P3) For each α < κ, there exists a nonzero ordinal δα < θα
such that θα+1 = θα + (θα − δα) and
Fα,α+1 = {idθα , τδα,θα}.

(P4) For every limit ordinal λ ≤ κ, all αi < λ and fi ∈ Fαi ,λ, for
i < 2, there exists α < λ with α0, α1 < α together with
f ′i ∈ Fαi ,α, for i < 2, and g ∈ Fα,λ such that fi = g ◦ f ′i
for each i < 2.

(P5) The equality θα =
⋃

(f [θξ] | ξ < α and f ∈ Fξ,α) holds for
each α > 0.
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Do these things exist at all?

Theorem

• Simplified (ω1, 1)-morasses exist in L[A], for each A ⊆ ω1 (R.
Jensen 1970, K. Devlin 1984, and D. J. Velleman 1984).

• If there exists no simplified (ω1, 1)-morass, then ω2 is
inaccessible in the constructible universe L (R. Jensen 1970, K.
Devlin 1984, and D. J. Velleman 1984)
• If there exists an inaccessible cardinal, then there exists a
generic extension without a “Kurepa tree”, and thus without a
simplified (ω1, 1)-morass (J. Silver 1971).
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What does this have to do with 3-ladders?

Theorem (F. Wehrung 2008)

If there exists a simplified (ω1, 1)-morass, then there exists a
3-ladder of cardinality ℵ2.

Corollary

If there exists no 3-ladder of cardinality ℵ2, then ω2 is
inaccessible in L.

Corollary

The existence of a 3-ladder of cardinality ℵ2 is consistent with
both the Continuum Hypothesis and its negation.
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The question remains:

Question

Is the existence of a 3-ladder of cardinality ℵ2 a theorem of
ZFC?

Eerie situation: The existence of a 3-ladder of cardinality ℵ2

follows from either one of two axioms that are usually thought
of as ‘orthogonal’ to each other.
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