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m A lattice L with zero is lower finite, if
L|a:={xeL|x<a} is finite for each a € L.

m We say that L is a k-ladder, if it is lower finite and every
element of L has at most k lower covers.

m We say that L has breadth < k, if for every nonempty
finite X C L, there exists Y C X such that |Y| < k and

VX=VY.
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Every k-ladder has breadth < k.
The converse is false.

The lattice M3 below has breadth 2. It is a 3-ladder but not a
2-ladder.
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An upper bound for the size of a k-ladder

3-ladders For any set Q2 and any positive integer n, we set
« [Q = {X CQ|X]| = n};
Background [ ] [Q]<UJ = {X g Q ‘ X |S f|n|te}

Kuratowski's Free Set Theorem (1951)

Let k be a positive integer and let Q be a set. Then || > X,
iff for every ®: [Q]% — [Q]<¥, there exists H € [Q]**! such
that x ¢ ®(H \ {x}) for each x € H. (We say that H is free
with respect to ®.)

For a k-ladder (or even a lattice of breadth < k) L, we obtain,
by applying this to the map X — L | \/ X,

Proposition (S.Z. Ditor, 1984)

Let k be a positive integer. Then every lower finite lattice L of
breadth < k has cardinality at most Ny_.
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3-ladders
m Every finite chain is a 1-ladder. So is the chain w of all
natural numbers. There are no other 1-ladders.

m And 2-ladders?

Background

Theorem (S. Z. Ditor 1984)

There exists a 2-ladder of cardinality N;j.

Examples of applications:

Every distributive algebraic lattice with < X; compact elements
is isomorphic to

m the congruence lattice of some lattice (A. P. Huhn 1989).

m the lattice of all normal subgroups of some locally finite
group (P. Razitka, J. Tdma, and F. Wehrung 2006).
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3-ladders

Background

Proof of existence of a 2-ladder of cardinality X;: We
construct F :=J(Fn | @ < w1), the Fys constructed
inductively. Start with Fp := {0}. At limit stages A\ < wy, set
Frx:=UFa | a<A).

The problem is the successor case. Suppose F, constructed.
It is a countable 2-ladder (induction hypothesis).
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Background

...and that's Fo41

Pick a cofinal chain C of F,.
Add a copy (' ={x' | xe C} = C...
And we are done (Fp41 := F, U C')!
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3-ladders

m Denote by Conc A the (V, 0)-semilattice of all compact
(i.e., finitely generated) congruences of an algebra A.

Critical points

m For a class C of algebras, put
Con.C:={S|(FA€C)(S = ConcA)}.

m For classes A and B of algebras, denote by crit(.A, B)
(critical point of (A, B)) the least possible value of |S]
where S € Con. A\ Conc B, if it exists; 0o, otherwise (i.e.,
if Conc A C Conc B).
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For every locally finite variety A and every finitely generated
congruence-distributive variety B, exactly one of the following
holds:

m crit(A, B) is finite;
m crit(A, B) = X, for some natural number n;
m crit(A, B) = .

Critical points

Finitely generated varieties A and B of (bounded) lattices have
been found with either one of the following situations:
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m crit(MP, D) = Rg and crit( ML, M) = R, (M.
Plos¢ica 2000, 2003) (later extended to unbounded
lattices by P. Gillibert);

Critical points m crit(A, B) = Xy, where A is generated by the top lattice

and B is generated by the three bottom lattices in the

picture below (P. Gillibert 2007).
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Can one go further?

3-ladders

Critical points

Question:

Are there finitely generated lattice varieties A and B such that
crit(A, B) = N3?

Answer: nobody knows so far, but there's a feeling that
3-ladders of cardinality Ny could help.
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Possible existence of large 3-ladders?

3-ladders

Question (S.Z. Ditor 1984)

Does there exist a 3-ladder of cardinality N»?

Try to extend the argument used above for 2-ladders, to the
construction of 3-ladders of cardinality N.

Problem: C should be not only a 2-ladder, cofinal in F, (now
a < wp and |F,| < Np), but also a meet-subsemilattice of F,.
This is just in order to ensure that F,1 is a lattice.

MA(Ry;
precaliber Ny)

Question:

Let K be a lower finite lattice of cardinality < N;. Does K
have a cofinal 2-ladder that is also a meet-subsemilattice of K?

Partial answer (F. Wehrung 2008):
Yes, provided MA(Ry; precaliber X;) holds.
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MA(Ry;
precaliber Ny)

Corollary (F. Wehrung 2008):

If MA(Ry; precaliber 1) holds, then there exists a 3-ladder of
cardinality N,.
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What is MA(Ry; precaliber X;)?

Fledders m A subset X in a poset P is centered, if every finite subset

of X has a lower bound in P (not necessarily in X!).

m A poset P has precaliber Ny, if every uncountable subset
of P has an uncountable centered subset.

’:Irz:(ax?it;er ) m For a collection D of subsets of P, a filter G of P is

D-generic, if G N D # & for each coinitial D € D.

m MA(Ry; precaliber X;) holds, if for every poset P of
precaliber 8; and every collection D of subsets of P, if
|D| < Ry, then there exists a D-generic filter of P.

o MA(Ry; precaliber N;) is consistent with ZFC (Solovay and
Tennenbaum, 1971).

e MA(Ry; precaliber X;) implies that 2% = 2% (Martin and
Solovay, 1970). In particular, it contradicts the Continuum
Hypothesis.
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Simplified gap-1 morasses

3-ladders

m a + 3 :=sum of two ordinals a and 3 (non-commutative).
m 3 — « :=unique ordinal £ such that a + & = [.
Morasses m For a < 3, define 7o 3: 5 — B+ (8 — «) by

£, if§ <o,

rasll) = {ﬂ+(s—a), ife>a.
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Defining (r, 1)-morasses

3-ladders

Definition (D. J. Velleman 1984)

Let x be an infinite cardinal. A simplified (x, 1)-morass is a
structure

M:((9a|a§m),(fa7/@|a<ﬁ§n))

Morasses
satisfying the following conditions:

(P0) (a) 6p=2,0< 0, <k for each a < k, and 6,, = K.
(b) Fa,p is a set of order-embeddings from 6, into 83, for all
a< B <k,

(P1) |Fopl <k, foralla < f <k,

(P2) If & < B < v < K, then
Fany={fog|feFp,and g€ F,g}.

(to be continued)



3-ladders

Morasses

Defining simplified (x,1)-morasses (cont'd)

(end of definition of a simplified (x,1)-morass)

(P3) For each a < k, there exists a nonzero ordinal §,, < 6,
such that 0,41 = 04 + (0o — ) and
Fa,at1 = {ido, s 64,00 }-

(P4) For every limit ordinal A < &, all ; < X and f; € F,, z, for
i < 2, there exists o < A with ag, a1 < a together with
f! € Foan for i <2, and g € F, 5 such that f; = g o f/
for each i < 2.

(P5) The equality 8, = |J(f[f¢] | £ < @ and f € F¢ ) holds for
each a > 0.



Do these things exist at all?

3-ladders

e Simplified (wy, 1)-morasses exist in L[A], for each A C w1 (R.
Jensen 1970, K. Devlin 1984, and D. J. Velleman 1984).
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e Simplified (wy, 1)-morasses exist in L[A], for each A C w1 (R.
Jensen 1970, K. Devlin 1984, and D. J. Velleman 1984).
o If there exists no simplified (w1, 1)-morass, then wy is
inaccessible in the constructible universe L (R. Jensen 1970, K.
Devlin 1984, and D. J. Velleman 1984)

o If there exists an inaccessible cardinal, then there exists a
generic extension without a “Kurepa tree”, and thus without a
simplified (w1, 1)-morass (J. Silver 1971).

Morasses
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What does this have to do with 3-ladders?

3-ladders

Theorem (F. Wehrung 2008)

If there exists a simplified (w1, 1)-morass, then there exists a
3-ladder of cardinality N».

Morasses

Corollary

If there exists no 3-ladder of cardinality Np, then wy is
inaccessible in L.

Corollary

The existence of a 3-ladder of cardinality Y, is consistent with
both the Continuum Hypothesis and its negation.
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The question remains:

3-ladders

Question

Is the existence of a 3-ladder of cardinality N> a theorem of
ZFC?

Morasses

Eerie situation: The existence of a 3-ladder of cardinality Np
follows from either one of two axioms that are usually thought
of as ‘orthogonal’ to each other.
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