Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices

The spectrum Problem for Abelian *l*-groups: an overview

Friedrich Wehrung

Normandie Université, UNICAEN LMNO, CNRS UMR 6139 14000 Caen *E-mail:* friedrich.wehrung01@unicaen.fr *URL:* http://wehrungf.users.lmno.cnrs.fr

ADMA - ICDM 2024 (Pune), June 2024

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices • A partially ordered group is a group G, equipped with a partial ordering \leq , which is translation-invariant (i.e., $x \leq y \Rightarrow xz \leq yz$ and $x \leq y \Rightarrow zx \leq zy$).

<ロト < 部ト < 目ト < 目ト 目 のへの 2/16

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices A partially ordered group is a group G, equipped with a partial ordering ≤, which is translation-invariant (i.e., x ≤ y ⇒ xz ≤ yz and x ≤ y ⇒ zx ≤ zy). Ordering characterized by G⁺ ^{def} {x ∈ G | 0 ≤ x}.

<ロト < 部 ト < 目 ト < 目 ト 目 の Q (P 2/16

Framework

Lattice formulatior

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices A partially ordered group is a group *G*, equipped with a partial ordering ≤, which is translation-invariant (i.e., x ≤ y ⇒ xz ≤ yz and x ≤ y ⇒ zx ≤ zy). Ordering characterized by G⁺ ^{def} {x ∈ G | 0 ≤ x}.

■ If \leq is a lattice order (i.e., $\forall x, y \in G$ there exist $x \lor y = \sup\{x, y\}$ and $x \land y = \inf\{x, y\}$) we say that G is a lattice-ordered group, in short ℓ -group.

Framework

Lattice formulatior

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices A partially ordered group is a group G, equipped with a partial ordering ≤, which is translation-invariant (i.e., x ≤ y ⇒ xz ≤ yz and x ≤ y ⇒ zx ≤ zy). Ordering characterized by G⁺ ^{def} {x ∈ G | 0 ≤ x}.

■ If ≤ is a lattice order (i.e., $\forall x, y \in G$ there exist $x \lor y = \sup\{x, y\}$ and $x \land y = \inf\{x, y\}$) we say that G is a lattice-ordered group, in short ℓ -group.

2/16

Examples: (C(X, ℝ), +, 0, ≤) (where X topological space), (Aut T, ∘, id, ≤) (where T is a chain).

Framework

Lattice formulatior

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices A partially ordered group is a group G, equipped with a partial ordering ≤, which is translation-invariant (i.e., x ≤ y ⇒ xz ≤ yz and x ≤ y ⇒ zx ≤ zy). Ordering characterized by G⁺ ^{def} {x ∈ G | 0 ≤ x}.

- If ≤ is a lattice order (i.e., ∀x, y ∈ G there exist x ∨ y = sup{x, y} and x ∧ y = inf{x, y}) we say that G is a lattice-ordered group, in short ℓ-group.
- Examples: (C(X, ℝ), +, 0, ≤) (where X topological space), (Aut T, ∘, id, ≤) (where T is a chain). In both cases, ≤ is the componentwise ordering (i.e., f ≤ g iff f(x) ≤ g(x) for all x).

Framework

Lattice formulation

- Negative results
- The \aleph_1 case

A polarized metric on *l*representable lattices A partially ordered group is a group *G*, equipped with a partial ordering ≤, which is translation-invariant (i.e., x ≤ y ⇒ xz ≤ yz and x ≤ y ⇒ zx ≤ zy). Ordering characterized by G⁺ ^{def} {x ∈ G | 0 ≤ x}.

- If \leq is a lattice order (i.e., $\forall x, y \in G$ there exist $x \lor y = \sup\{x, y\}$ and $x \land y = \inf\{x, y\}$) we say that G is a lattice-ordered group, in short ℓ -group.
- Examples: (C(X, ℝ), +, 0, ≤) (where X topological space), (Aut T, ∘, id, ≤) (where T is a chain). In both cases, ≤ is the componentwise ordering (i.e., f ≤ g iff f(x) ≤ g(x) for all x).
- In all what follows, restrict attention to Abelian ℓ-groups with order-unit (element u ∈ G⁺ such that (∀x)(∃n ∈ ℕ)(x ≤ nu)).

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulatior

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices ■ A subset *I*, in an Abelian *l*-group *G*, is an *l*-ideal if it is an order-convex subgroup closed under ∨ (equivalently, ∧).

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices ■ A subset *I*, in an Abelian *l*-group *G*, is an *l*-ideal if it is an order-convex subgroup closed under ∨ (equivalently, ∧).

• It is prime if $I \neq G$ and $x \wedge y \in I \Rightarrow \{x, y\} \cap I \neq \emptyset$.

<ロト < 部 ト < 目 ト < 目 ト 目 の < で 3/16

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

- A subset *I*, in an Abelian ℓ-group *G*, is an ℓ-ideal if it is an order-convex subgroup closed under ∨ (equivalently, ∧).
- It is prime if $I \neq G$ and $x \wedge y \in I \Rightarrow \{x, y\} \cap I \neq \emptyset$.
- Spec_ℓ G ^{def} {prime ℓ-ideals of G}, topologized by the closed sets the {P ∈ Spec_ℓ G | X ⊆ P} for X ⊆ G (hull-kernel topology).

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

- A subset *I*, in an Abelian ℓ-group *G*, is an ℓ-ideal if it is an order-convex subgroup closed under ∨ (equivalently, ∧).
- It is prime if $I \neq G$ and $x \wedge y \in I \Rightarrow \{x, y\} \cap I \neq \emptyset$.
- Spec_ℓ $G \stackrel{\text{def}}{=} \{ \text{prime } ℓ \text{-ideals of } G \}, \text{ topologized by the closed sets the } \{ P \in \text{Spec}_{ℓ} G \mid X \subseteq P \} \text{ for } X \subseteq G \text{ (hull-kernel topology).}$
- The topological space $\text{Spec}_{\ell} G$ is called the ℓ -spectrum (or just spectrum) of G.

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices

- A subset *I*, in an Abelian ℓ-group *G*, is an ℓ-ideal if it is an order-convex subgroup closed under ∨ (equivalently, ∧).
- It is prime if $I \neq G$ and $x \wedge y \in I \Rightarrow \{x, y\} \cap I \neq \emptyset$.
- Spec_ℓ G ^{def} = {prime ℓ-ideals of G}, topologized by the closed sets the {P ∈ Spec_ℓ G | X ⊆ P} for X ⊆ G (hull-kernel topology).
- The topological space Spec_ℓ G is called the ℓ-spectrum (or just spectrum) of G.

Problem (Mundici 2011, but originating much earlier, e.g. Martínez 1973)

Describe the topological spaces of the form $\operatorname{Spec}_\ell G,$ with G an Abelian $\ell\text{-group}$ with order-unit.

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices

■ A topological space X is an ℓ-spectrum iff (∃ unital ℓ-group G)(X ≅ Spec_ℓ G).

<ロ> < 湿> < 湿> < 豆> < 豆> < 豆> < 豆 のへへ 4/16

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices A topological space X is an ℓ-spectrum iff
 (∃ unital ℓ-group G)(X ≅ Spec_ℓ G). Formally this counts as a "description"; of course it is useless.

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices A topological space X is an ℓ-spectrum iff
 (∃ unital ℓ-group G)(X ≅ Spec_ℓ G). Formally this counts as a "description"; of course it is useless.

4/16

■ Look for some additional properties, satisfied by every ℓ-spectrum, that would characterize such spaces?

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

- A topological space X is an ℓ-spectrum iff
 (∃ unital ℓ-group G)(X ≅ Spec_ℓ G). Formally this counts as a "description"; of course it is useless.
- Look for some additional properties, satisfied by every ℓ-spectrum, that would characterize such spaces?
 - Every ℓ -spectrum X is a spectral space:

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

- A topological space X is an ℓ-spectrum iff
 (∃ unital ℓ-group G)(X ≅ Spec_ℓ G). Formally this counts as a "description"; of course it is useless.
- Look for some additional properties, satisfied by every *l*-spectrum, that would characterize such spaces?
 - Every ℓ -spectrum X is a spectral space: that is, it is T_0 , every irreducible closed subset is some $\overline{\{x\}}$, and $\overset{\circ}{\mathcal{K}}(X) \stackrel{\text{def}}{=} \{\text{compact open subsets of } X\}$ is a basis of open sets in X, closed under finite intersections (thus X is compact).

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

- A topological space X is an ℓ-spectrum iff
 (∃ unital ℓ-group G)(X ≅ Spec_ℓ G). Formally this counts as a "description"; of course it is useless.
- Look for some additional properties, satisfied by every ℓ-spectrum, that would characterize such spaces?
 - Every ℓ-spectrum X is a spectral space: that is, it is T₀, every irreducible closed subset is some {x}, and [°] 𝔅(X) ^{def} {compact open subsets of X} is a basis of open sets in X, closed under finite intersections (thus X is compact).
- Spectral spaces are exactly the Zariski spectra of commutative unital rings (Hochster 1969)...

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

- Negative results
- The \aleph_1 case

- A topological space X is an ℓ-spectrum iff
 (∃ unital ℓ-group G)(X ≅ Spec_ℓ G). Formally this counts as a "description"; of course it is useless.
- Look for some additional properties, satisfied by every ℓ-spectrum, that would characterize such spaces?
- Every ℓ-spectrum X is a spectral space: that is, it is T₀, every irreducible closed subset is some {x}, and [×]_K(X) ^{def} {compact open subsets of X} is a basis of open sets in X, closed under finite intersections (thus X is compact).
- Spectral spaces are exactly the Zariski spectra of commutative unital rings (Hochster 1969)... not sufficient for ℓ-spectra!

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices Specialization preorder on a topological space X: $x \leq y$ if $y \in \overline{\{x\}}$.

<ロト < 部 ト < 目 ト < 目 ト 目 の < で 5/16

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices Specialization preorder on a topological space X: $x \leq y$ if $y \in \overline{\{x\}}$.

• On Spec_{ℓ} G, $P \leq Q \Leftrightarrow P \subseteq Q$.

<ロト < 部 ト < 目 ト < 目 ト 目 の < で 5/16

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices

- Specialization preorder on a topological space $X: x \leq y$ if $y \in \overline{\{x\}}$.
- On $\operatorname{Spec}_{\ell} G$, $P \leqslant Q \Leftrightarrow P \subseteq Q$.
- Hence ≤ is an order (not just a preorder) iff X is T₀ (so this holds if X is spectral).

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

5/16

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices

- Specialization preorder on a topological space $X: x \leq y$ if $y \in \overline{\{x\}}$.
- On $\operatorname{Spec}_{\ell} G$, $P \leqslant Q \Leftrightarrow P \subseteq Q$.
- Hence ≤ is an order (not just a preorder) iff X is T₀ (so this holds if X is spectral).
- A topological space is completely normal if ≤ is a root system,

5/16

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices Specialization preorder on a topological space $X: x \leq y$ if $y \in \overline{\{x\}}$.

- On $\operatorname{Spec}_{\ell} G$, $P \leqslant Q \Leftrightarrow P \subseteq Q$.
- Hence ≤ is an order (not just a preorder) iff X is T₀ (so this holds if X is spectral).
- A topological space is completely normal if ≤ is a root system, that is,

 $(x \leq y_1 \text{ and } x \leq y_2) \Rightarrow (y_1 \leqslant y_2 \text{ or } y_2 \leqslant y_1).$

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices • Specialization preorder on a topological space $X: x \leq y$ if $y \in \overline{\{x\}}$.

- On $\operatorname{Spec}_{\ell} G$, $P \leqslant Q \Leftrightarrow P \subseteq Q$.
- Hence ≤ is an order (not just a preorder) iff X is T₀ (so this holds if X is spectral).
- A topological space is completely normal if ≤ is a root system, that is,

 $(x \leq y_1 \text{ and } x \leq y_2) \Rightarrow (y_1 \leqslant y_2 \text{ or } y_2 \leqslant y_1).$

■ Every ℓ-spectrum is a completely normal spectral space (Keimel 1971).

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices • Specialization preorder on a topological space $X: x \leq y$ if $y \in \overline{\{x\}}$.

- On $\operatorname{Spec}_{\ell} G$, $P \leqslant Q \Leftrightarrow P \subseteq Q$.
- Hence ≤ is an order (not just a preorder) iff X is T₀ (so this holds if X is spectral).
- A topological space is completely normal if ≤ is a root system, that is,

 $(x \leq y_1 \text{ and } x \leq y_2) \Rightarrow (y_1 \leqslant y_2 \text{ or } y_2 \leqslant y_1).$

- Every ℓ-spectrum is a completely normal spectral space (Keimel 1971).
- This is still not sufficient for characterizing ℓ-spectra (Delzell and Madden 1994.

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices • Specialization preorder on a topological space X: $x \leq y$ if $y \in \overline{\{x\}}$.

- On $\operatorname{Spec}_{\ell} G$, $P \leqslant Q \Leftrightarrow P \subseteq Q$.
- Hence ≤ is an order (not just a preorder) iff X is T₀ (so this holds if X is spectral).
- A topological space is completely normal if ≤ is a root system, that is,

 $(x \leq y_1 \text{ and } x \leq y_2) \Rightarrow (y_1 \leqslant y_2 \text{ or } y_2 \leqslant y_1).$

- Every ℓ-spectrum is a completely normal spectral space (Keimel 1971).
- This is still not sufficient for characterizing *l*-spectra (Delzell and Madden 1994. Their counterexample has ℵ₁ compact open members).

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices ■ Recall that the closed subsets of $\text{Spec}_{\ell} G$ are the $\{P \in \text{Spec}_{\ell} G \mid X \subseteq P\}$ for $X \subseteq G$.

<ロト < 部 ト < 目 ト < 目 ト 目 の < で 6/16

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

- Recall that the closed subsets of $\text{Spec}_{\ell} G$ are the $\{P \in \text{Spec}_{\ell} G \mid X \subseteq P\}$ for $X \subseteq G$.
- Note that $\bigcap \{ P \in \operatorname{Spec}_{\ell} G \mid X \subseteq P \} = \langle X \rangle$, the ℓ -ideal generated by X.

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices

- Recall that the closed subsets of $\text{Spec}_{\ell} G$ are the $\{P \in \text{Spec}_{\ell} G \mid X \subseteq P\}$ for $X \subseteq G$.
- Note that $\bigcap \{ P \in \operatorname{Spec}_{\ell} G \mid X \subseteq P \} = \langle X \rangle$, the ℓ -ideal generated by X.
- Hence $\operatorname{Spec}_{\ell} G$ is determined by the lattice $\operatorname{Id}_{c}^{\ell} G$ of all finitely generated (equivalently, principal) ℓ -ideals of G...

・ロト ・ 雪 ト ・ ヨ ト ・ ヨ ト

6/16

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices

- Recall that the closed subsets of $\text{Spec}_{\ell} G$ are the $\{P \in \text{Spec}_{\ell} G \mid X \subseteq P\}$ for $X \subseteq G$.
- Note that $\bigcap \{ P \in \operatorname{Spec}_{\ell} G \mid X \subseteq P \} = \langle X \rangle$, the ℓ -ideal generated by X.
- Hence Spec_ℓ G is determined by the lattice Id^ℓ_c G of all finitely generated (equivalently, principal) ℓ-ideals of G... and conversely (can be formalized via Stone duality).

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

6/16

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices

- Recall that the closed subsets of $\text{Spec}_{\ell} G$ are the $\{P \in \text{Spec}_{\ell} G \mid X \subseteq P\}$ for $X \subseteq G$.
- Note that $\bigcap \{ P \in \operatorname{Spec}_{\ell} G \mid X \subseteq P \} = \langle X \rangle$, the ℓ -ideal generated by X.
- Hence Spec_ℓ G is determined by the lattice Id^ℓ_c G of all finitely generated (equivalently, principal) ℓ-ideals of G... and conversely (can be formalized via Stone duality).

• $\operatorname{Id}_{c}^{\ell} G = \{\langle a \rangle \mid a \in G^{+}\}, \text{ where we set}$ $\langle a \rangle \stackrel{\text{def}}{=} \{x \in G \mid (\exists n \in \mathbb{N})(|x| \leq na)\} \text{ (where } |x| \stackrel{\text{def}}{=} x \lor (-x)).$

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

- Negative results
- The \aleph_1 case

- Recall that the closed subsets of $\text{Spec}_{\ell} G$ are the $\{P \in \text{Spec}_{\ell} G \mid X \subseteq P\}$ for $X \subseteq G$.
- Note that $\bigcap \{ P \in \operatorname{Spec}_{\ell} G \mid X \subseteq P \} = \langle X \rangle$, the ℓ -ideal generated by X.
- Hence Spec_ℓ G is determined by the lattice Id^ℓ_c G of all finitely generated (equivalently, principal) ℓ-ideals of G... and conversely (can be formalized via Stone duality).
- $\operatorname{Id}_{c}^{\ell} G = \{ \langle a \rangle \mid a \in G^{+} \}$, where we set $\langle a \rangle \stackrel{\text{def}}{=} \{ x \in G \mid (\exists n \in \mathbb{N})(|x| < na) \}$ (where
 - $\langle a \rangle \stackrel{\text{def}}{=} \{ x \in G \mid (\exists n \in \mathbb{N}) (|x| \le na) \} \text{ (where } |x| \stackrel{\text{def}}{=} x \lor (-x) \text{). }$
- For every unital ℓ -group G, $Id_c^{\ell} G$ is a bounded distributive lattice

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices

- Recall that the closed subsets of $\text{Spec}_{\ell} G$ are the $\{P \in \text{Spec}_{\ell} G \mid X \subseteq P\}$ for $X \subseteq G$.
- Note that $\bigcap \{ P \in \operatorname{Spec}_{\ell} G \mid X \subseteq P \} = \langle X \rangle$, the ℓ -ideal generated by X.
- Hence Spec_ℓ G is determined by the lattice Id^ℓ_c G of all finitely generated (equivalently, principal) ℓ-ideals of G... and conversely (can be formalized via Stone duality).

•
$$\operatorname{Id}_{c}^{\ell} G = \{ \langle a \rangle \mid a \in G^{+} \}$$
, where we set
 $\langle a \rangle \stackrel{\text{def}}{=} \{ x \in G \mid (\exists n \in \mathbb{N})(|x| \leq na) \}$ (where $|x| \stackrel{\text{def}}{=} x \lor (-x)$).

• For every unital ℓ -group G, $\operatorname{Id}_c^\ell G$ is a bounded distributive lattice (e.g., $\langle a \rangle \lor \langle b \rangle = \langle a + b \rangle = \langle a \lor b \rangle$ and $\langle a \rangle \land \langle b \rangle = \langle a \land b \rangle$).

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

- Recall that the closed subsets of $\text{Spec}_{\ell} G$ are the $\{P \in \text{Spec}_{\ell} G \mid X \subseteq P\}$ for $X \subseteq G$.
- Note that $\bigcap \{ P \in \operatorname{Spec}_{\ell} G \mid X \subseteq P \} = \langle X \rangle$, the ℓ -ideal generated by X.
- Hence Spec_ℓ G is determined by the lattice Id^ℓ_c G of all finitely generated (equivalently, principal) ℓ-ideals of G... and conversely (can be formalized via Stone duality).

•
$$\operatorname{Id}_{c}^{\ell} G = \{\langle a \rangle \mid a \in G^{+}\}, \text{ where we set}$$

 $\langle a \rangle \stackrel{\text{def}}{=} \{x \in G \mid (\exists n \in \mathbb{N})(|x| \leq na)\} \text{ (where } |x| \stackrel{\text{def}}{=} x \lor (-x)).$

- For every unital ℓ -group G, $\mathrm{Id}_{\mathrm{c}}^{\ell} G$ is a bounded distributive lattice (e.g., $\langle a \rangle \lor \langle b \rangle = \langle a + b \rangle = \langle a \lor b \rangle$ and $\langle a \rangle \land \langle b \rangle = \langle a \land b \rangle$).
- Let us call such lattices ℓ-representable.

Recasting the ℓ -spectrum Problem

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices

l-spectrum Problem (lattice-theoretical formulation)

Characterize *l*-representable lattices

Recasting the ℓ -spectrum Problem

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices

l-spectrum Problem (lattice-theoretical formulation)

Characterize ℓ -representable lattices (i.e., those of the form $Id_c^{\ell} G$).

Recasting the *l*-spectrum Problem

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices

l-spectrum Problem (lattice-theoretical formulation)

Characterize ℓ -representable lattices (i.e., those of the form $Id_c^{\ell} G$).

 Complete normality translates (via Stone duality) to (∀a, b)(∃x, y)(a ∨ b = a ∨ y = x ∨ b and x ∧ y = 0). (Monteiro 1954).

Recasting the *l*-spectrum Problem

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices

l-spectrum Problem (lattice-theoretical formulation)

Characterize ℓ -representable lattices (i.e., those of the form $Id_c^{\ell} G$).

• Complete normality translates (*via* Stone duality) to

 $(\forall a, b)(\exists x, y)(a \lor b = a \lor y = x \lor b \text{ and } x \land y = 0).$

- (Monteiro 1954).
- Every *l*-representable lattice satisfies the following infinitary sentence (CBD, "countably based differences"):

 $(\forall a, b)(\exists_{n \in \mathbb{N}} c_n)(\forall x)$ $(a \le b \lor x \Leftrightarrow (\exists n \in \mathbb{N})(c_n \le x)).$

Recasting the *l*-spectrum Problem

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices

l-spectrum Problem (lattice-theoretical formulation)

Characterize ℓ -representable lattices (i.e., those of the form $Id_c^{\ell} G$).

• Complete normality translates (*via* Stone duality) to

 $(\forall a, b)(\exists x, y)(a \lor b = a \lor y = x \lor b \text{ and } x \land y = 0).$

- (Monteiro 1954).
- Every *l*-representable lattice satisfies the following infinitary sentence (CBD, "countably based differences"):

 $(\forall a, b)(\exists_{n\in\mathbb{N}}c_n)(\forall x)$ $(a \leq b \lor x \Leftrightarrow (\exists n \in \mathbb{N})(c_n \leq x)).$

■ Delzell and Madden's 1994 counterexample is a completely normal lattice of cardinality ℵ₁, without CBD.

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices

The following is a full solution of the ℓ -spectrum Problem for countable lattices:

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices The following is a full solution of the ℓ -spectrum Problem for countable lattices:

Theorem (W 2019)

Every countable completely normal bounded distributive lattice is $\ell\text{-representable}.$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

クへで 8/16

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices The following is a full solution of the ℓ -spectrum Problem for countable lattices:

Theorem (W 2019)

Every countable completely normal bounded distributive lattice is ℓ -representable.

Extends to vector lattices over countable totally ordered fields (or even division rings).

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices The following is a full solution of the ℓ -spectrum Problem for countable lattices:

Theorem (W 2019)

Every countable completely normal bounded distributive lattice is $\ell\text{-representable}.$

 Extends to vector lattices over countable totally ordered fields (or even division rings).

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

クへで 8/16

Fails for uncountable fields!

No second-order existential characterization

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices

• The class of all ℓ -representable lattices can be defined as

 $\ell\text{-}\mathsf{Rep} = \{D \mid (\exists f, G)(f \colon G^+ \to D)$

induces an isomorphism $\operatorname{Id}_{\operatorname{c}}^{\ell} G \to D)$.

No second-order existential characterization

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices • The class of all ℓ -representable lattices can be defined as

 $\ell\text{-}\mathsf{Rep} = \{D \mid (\exists f, G)(f \colon G^+ \to D)$

induces an isomorphism $\operatorname{Id}_{\operatorname{c}}^{\ell} G \to D)$.

9/16

Despite appearances, this is not a second-order existential characterization of *l*-Rep: the condition
 "*f*: *G*⁺ → *D* induces an isomorphism Id^{*l*}_c *G* → *D*" is
 *L*_{ω₁ω} (not *L*_{ωω}). In fact,

No second-order existential characterization

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices \blacksquare The class of all $\ell\text{-representable}$ lattices can be defined as

$$-\mathbf{Rep} = \{D \mid (\exists f, G)(f \colon G^+ \to D)\}$$

induces an isomorphism $\operatorname{Id}_{\operatorname{c}}^{\ell} G \to D)$.

Despite appearances, this is not a second-order existential characterization of *l*-Rep: the condition
 "*f*: *G*⁺ → *D* induces an isomorphism Id^{*l*}_c *G* → *D*" is
 *L*_{ω1ω} (not *L*_{ωω}). In fact,

Theorem (Di Nola and Lenzi 2020)

l

The class of all ℓ -representable lattices is not closed under ultrapowers. In particular, it is not the class of all models of a set of existential second-order sentences.

Projective vs. co-projective

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices

Recall from previous frame that

 ℓ -**Rep** = { $D \mid (\exists f, G)$ (some $\mathscr{L}_{\omega_1 \omega}$ formula)}.

イロト イポト イヨト イヨト 二日

クへで 10/16

Projective vs. co-projective

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulatior

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices Recall from previous frame that

 ℓ -**Rep** = { $D \mid (\exists f, G)$ (some $\mathscr{L}_{\omega_1 \omega}$ formula)}.

■ Such a description is called projective:

 $\ell\text{-}\mathbf{Rep} = \{D \mid (\text{second-order } \exists \text{ quantifiers}) \\ (\text{some } \mathscr{L}_{\infty\infty} \text{ formula})\}.$

Projective vs. co-projective

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulatior

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices

■ Recall from previous frame that ℓ -**Rep** = { $D \mid (\exists f, G)$ (some $\mathscr{L}_{\omega_1\omega}$ formula)}.

• Such a description is called **projective**:

 $\ell\text{-}\mathbf{Rep} = \{D \mid (\text{second-order } \exists \text{ quantifiers}) \\ (\text{some } \mathscr{L}_{\infty\infty} \text{ formula})\}.$

A co-projective characterization would be of the form

 $\ell\text{-}\mathbf{Rep} = \{D \mid (\text{second-order } \forall \text{ quantifiers}) \\ (\text{some } \mathscr{L}_{\infty\infty} \text{ formula})\}.$

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices

Theorem (W 2023)

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices

Theorem (W 2023)

The class of all ℓ -representable lattices has no co-projective characterization.

As seen above, the class *l*-**Rep** is projective (here, second-order ∃ followed by *L*_{ω1ω} formula).

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices

Theorem (W 2023)

- As seen above, the class *l*-**Rep** is projective (here, second-order ∃ followed by *L*_{ω1ω} formula).
- Hence, if *l*-Rep were co-projective, then, by Tuuri's Interpolation Theorem, it would be characterized by a sentence from some infinitely deep language *M*_{∞∞}.

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices

Theorem (W 2023)

The class of all ℓ -representable lattices has no co-projective characterization.

- As seen above, the class ℓ -**Rep** is projective (here, second-order \exists followed by $\mathscr{L}_{\omega_1\omega}$ formula).
- Hence, if *l*-Rep were co-projective, then, by Tuuri's Interpolation Theorem, it would be characterized by a sentence from some infinitely deep language *M*_{∞∞}.
- Those are defined via games clocked by infinite trees.

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices

Theorem (W 2023)

- As seen above, the class *l*-**Rep** is projective (here, second-order ∃ followed by *L*_{ω1ω} formula).
- Hence, if *l*-Rep were co-projective, then, by Tuuri's Interpolation Theorem, it would be characterized by a sentence from some infinitely deep language *M*_{∞∞}.
- Those are defined *via* games clocked by infinite trees.
- The class of all models of any *M*_{∞∞}-sentence is closed under a certain level of back-and forth.

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices

Theorem (W 2023)

- As seen above, the class *l*-**Rep** is projective (here, second-order ∃ followed by *L*_{ω1ω} formula).
- Hence, if *l*-Rep were co-projective, then, by Tuuri's Interpolation Theorem, it would be characterized by a sentence from some infinitely deep language *M*_{∞∞}.
- Those are defined *via* games clocked by infinite trees.
- The class of all models of any $\mathscr{M}_{\infty\infty}$ -sentence is closed under a certain level of back-and forth.
- By using the condensate construction, one then proves that this is not the case for *l*-**Rep**.

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices

Theorem (W 2023)

- As seen above, the class *l*-**Rep** is projective (here, second-order ∃ followed by *L*_{ω1ω} formula).
- Hence, if *l*-Rep were co-projective, then, by Tuuri's Interpolation Theorem, it would be characterized by a sentence from some infinitely deep language *M*_{∞∞}.
- Those are defined *via* games clocked by infinite trees.
- The class of all models of any $\mathscr{M}_{\infty\infty}$ -sentence is closed under a certain level of back-and forth.
- By using the condensate construction, one then proves that this is not the case for ℓ-Rep. Thus: compl. normal + CBD not enough (starts at cardinality ℵ₂)!

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulatior

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices ■ Recall (from W 2019) that every countable completely normal bounded distributive lattice is *ℓ*-representable, and

<ロト < 部ト < 目ト < 目ト 目 のへの 12/16

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices ■ Recall (from W 2019) that every countable completely normal bounded distributive lattice is *ℓ*-representable, and (from Delzell and Madden 1994) that that result does not extend to lattices of cardinality ℵ₁.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

12/16

• Nonetheless, something remains true at cardinality \aleph_1 :

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices

- Recall (from W 2019) that every countable completely normal bounded distributive lattice is *l*-representable, and (from Delzell and Madden 1994) that that result does not extend to lattices of cardinality ℵ₁.
- Nonetheless, something remains true at cardinality \aleph_1 :

Theorem (Ploščica and W 2023)

Every completely normal bounded distributive lattice, of cardinality $\leq \aleph_1$, is a (\lor, \land) -homomorphic image of some ℓ -representable lattice (converse trivial).

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices ■ Recall (from W 2019) that every countable completely normal bounded distributive lattice is *ℓ*-representable, and (from Delzell and Madden 1994) that that result does not extend to lattices of cardinality ℵ₁.

12/16

• Nonetheless, something remains true at cardinality \aleph_1 :

Theorem (Ploščica and W 2023)

Every completely normal bounded distributive lattice, of cardinality $\leq \aleph_1$, is a (\lor, \land) -homomorphic image of some ℓ -representable lattice (converse trivial).

• Method: a refinement of the countable case.

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices

- Recall (from W 2019) that every countable completely normal bounded distributive lattice is *l*-representable, and (from Delzell and Madden 1994) that that result does not extend to lattices of cardinality ℵ₁.
- Nonetheless, something remains true at cardinality \aleph_1 :

Theorem (Ploščica and W 2023)

Every completely normal bounded distributive lattice, of cardinality $\leq \aleph_1$, is a (\lor, \land) -homomorphic image of some ℓ -representable lattice (converse trivial).

- Method: a refinement of the countable case.
- Because of Delzell and Madden's counterexample, "homomorphic image" cannot be replaced by "isomorphic copy".

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices

- Recall (from W 2019) that every countable completely normal bounded distributive lattice is *l*-representable, and (from Delzell and Madden 1994) that that result does not extend to lattices of cardinality ℵ₁.
- Nonetheless, something remains true at cardinality \aleph_1 :

Theorem (Ploščica and W 2023)

Every completely normal bounded distributive lattice, of cardinality $\leq \aleph_1$, is a (\lor, \land) -homomorphic image of some ℓ -representable lattice (converse trivial).

- Method: a refinement of the countable case.
- Because of Delzell and Madden's counterexample, "homomorphic image" cannot be replaced by "isomorphic copy".
- Fails at cardinalities $\geq \aleph_2$.

<ロト < 部 > < 目 > < 目 > 目 の Q () 12/16

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulatior

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices The following was considerably harder to get. It is a full solution of the ℓ -spectrum Problem for lattices of cardinality $\leq \aleph_1$:

<ロト < 部 ト < 目 ト < 目 ト 目 の Q () 13/16

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices The following was considerably harder to get. It is a full solution of the ℓ -spectrum Problem for lattices of cardinality $\leq \aleph_1$:

Theorem (Ploščica and W 2024)

Every completely normal bounded distributive lattice with CBD, of cardinality $\leq \aleph_1$, is ℓ -representable.

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulatior

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices The following was considerably harder to get. It is a full solution of the ℓ -spectrum Problem for lattices of cardinality $\leq \aleph_1$:

Theorem (Ploščica and W 2024)

Every completely normal bounded distributive lattice with CBD, of cardinality $\leq \aleph_1$, is ℓ -representable.

■ By the above-mentioned methods about "non co-projective", the representation result above does not extend to cardinalities ≥ ℵ₂.

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulatior

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices The following was considerably harder to get. It is a full solution of the ℓ -spectrum Problem for lattices of cardinality $\leq \aleph_1$:

Theorem (Ploščica and W 2024)

Every completely normal bounded distributive lattice with CBD, of cardinality $\leq \aleph_1$, is ℓ -representable.

- By the above-mentioned methods about "non co-projective", the representation result above does not extend to cardinalities ≥ ℵ₂.
- Lots of the work above (e.g., "countable", "non co-projective") extends (not always with the same proof) to real spectra of commutative unital rings.

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulatior

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices The following was considerably harder to get. It is a full solution of the ℓ -spectrum Problem for lattices of cardinality $\leq \aleph_1$:

Theorem (Ploščica and W 2024)

Every completely normal bounded distributive lattice with CBD, of cardinality $\leq \aleph_1$, is ℓ -representable.

- By the above-mentioned methods about "non co-projective", the representation result above does not extend to cardinalities ≥ ℵ₂.
- Lots of the work above (e.g., "countable", "non co-projective") extends (not always with the same proof) to real spectra of commutative unital rings.
- The \aleph_1 work has no known extension to real spectra.

An open problem (illustrating that after all, the unit matters)

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulatior

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices ■ The class of all Id^ℓ_c G, G Archimedean ℓ-group (not necessarily with unit), is not co-projective.

<ロ> < 母> < 豆> < 豆> < 豆> < 豆> < 豆 > のへの 14/16

An open problem (illustrating that after all, the unit matters)

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices ■ The class of all Id^ℓ_c G, G Archimedean ℓ-group (not necessarily with unit), is not co-projective.

・ロト ・ 理ト ・ ヨト ・ ヨト

14/16

■ Not known for Archimedean ℓ-groups with unit.

An open problem (illustrating that after all, the unit matters)

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices

- The class of all Id^ℓ_c G, G Archimedean ℓ-group (not necessarily with unit), is not co-projective.
- Not known for Archimedean ℓ-groups with unit.
- Reason for this: the arrows from the only known {0,1}³-indexed non-commutative diagram of *l*-groups, entailing, *via* condensates, the "non co-projective" statement, do not preserve order-units.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulatior

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices ■ For any Abelian ℓ -group G and $\mathbf{x} \in \operatorname{Id}_{c}^{\ell} G$, pick $x = \gamma(\mathbf{x}) \in \mathbf{x}$, and then set $\mathbf{x} \setminus \mathbf{y} \stackrel{\text{def}}{=} \langle x - x \wedge y \rangle$.

<ロト < 部ト < 目ト < 目ト 目 のへで 15/16

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulatior

Negative results

The \aleph_1 case

A polarized metric on ℓ representable lattices

- For any Abelian ℓ -group G and $\mathbf{x} \in \operatorname{Id}_{c}^{\ell} G$, pick $x = \gamma(\mathbf{x}) \in \mathbf{x}$, and then set $\mathbf{x} \setminus \mathbf{y} \stackrel{\text{def}}{=} \langle x x \wedge y \rangle$.
- The operation \smallsetminus is a deviation: $x \le y \lor (x \lor y)$; $(x \lor y) \land (y \lor x) = 0.$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on ℓ representable lattices

- For any Abelian ℓ -group G and $\mathbf{x} \in \mathsf{Id}_c^\ell G$, pick $x = \gamma(\mathbf{x}) \in \mathbf{x}$, and then set $\mathbf{x} \setminus \mathbf{y} \stackrel{\text{def}}{=} \langle x x \wedge y \rangle$.
- The operation $\$ is a deviation: $x \le y \lor (x \lor y);$ $(x \lor y) \land (y \lor x) = 0.$
- This deviation is Cevian: $x \setminus z \leq (x \setminus y) \lor (y \setminus z)$.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices

- For any Abelian ℓ -group G and $\mathbf{x} \in \mathsf{Id}_c^\ell G$, pick $x = \gamma(\mathbf{x}) \in \mathbf{x}$, and then set $\mathbf{x} \setminus \mathbf{y} \stackrel{\text{def}}{=} \langle x x \wedge y \rangle$.
- The operation $\$ is a deviation: $x \le y \lor (x \lor y);$ $(x \lor y) \land (y \lor x) = 0.$
- This deviation is Cevian: $x \setminus z \leq (x \setminus y) \lor (y \setminus z)$.
- Every completely normal distributive lattice has a deviation, but some compl. normal distr. latt. with ℵ₂ elements have no Cevian deviation (W 2020).

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices

- For any Abelian ℓ -group G and $\mathbf{x} \in \mathsf{Id}_c^\ell G$, pick $x = \gamma(\mathbf{x}) \in \mathbf{x}$, and then set $\mathbf{x} \setminus \mathbf{y} \stackrel{\text{def}}{=} \langle x x \wedge y \rangle$.
- The operation $\$ is a deviation: $x \le y \lor (x \lor y);$ $(x \lor y) \land (y \lor x) = 0.$
- This deviation is Cevian: $x \setminus z \leq (x \setminus y) \lor (y \setminus z)$.
- Every completely normal distributive lattice has a deviation, but some compl. normal distr. latt. with ℵ₂ elements have no Cevian deviation (W 2020). The bound ℵ₂ is sharp (Ploščica 2021).

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices A deviation (x, y) → x \ y (on a distributive lattice D) is monotone if it is order-preserving in x and order-reversing in y (e.g., x₁ ≤ x₂ ⇒ x₁ \ y ≤ x₂ \ y).

クへで 16/16

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on ℓ representable lattices A deviation (x, y) → x \ y (on a distributive lattice D) is monotone if it is order-preserving in x and order-reversing in y (e.g., x₁ ≤ x₂ ⇒ x₁ \ y ≤ x₂ \ y).

16/16

Every countable compl. normal distr. latt. has a monotone Cevian deviation.

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices

- A deviation (x, y) → x \ y (on a distributive lattice D) is monotone if it is order-preserving in x and order-reversing in y (e.g., x₁ ≤ x₂ ⇒ x₁ \ y ≤ x₂ \ y).
- Every countable compl. normal distr. latt. has a monotone Cevian deviation.

Theorem (Ploščica and W 2024)

There exists an Abelian (and even Archimedean) \mathbb{Q} -vector lattice G with order-unit, with \aleph_1 elements, such that $\operatorname{Id}_c^{\ell} G$ has no monotone deviation.

The spectrum Problem for Abelian ℓ-groups: an overview

Framework

Lattice formulation

Negative results

The \aleph_1 case

A polarized metric on *l*representable lattices

- A deviation (x, y) → x \ y (on a distributive lattice D) is monotone if it is order-preserving in x and order-reversing in y (e.g., x₁ ≤ x₂ ⇒ x₁ \ y ≤ x₂ \ y).
- Every countable compl. normal distr. latt. has a monotone Cevian deviation.

Theorem (Ploščica and W 2024)

There exists an Abelian (and even Archimedean) \mathbb{Q} -vector lattice G with order-unit, with \aleph_1 elements, such that $\operatorname{Id}_c^{\ell} G$ has no monotone deviation.

G has generators e_{α} ($0 \le \alpha \le \omega_1$), with each $0 \le e_{\alpha} \le e_{\omega_1}$, and $0 < \gamma < \beta \Rightarrow e_{\gamma} \le 2e_{\beta}$.