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A partially ordered group is a group G, equipped with a
partial ordering <, which is translation-invariant (i.e.,
x<y=xz<yzand x <y = zx < zy). Ordering
characterized by G+ &' {x e G|0<x}.

If <'is a lattice order (i.e., Vx,y € G there exist

xVy =sup{x,y} and x Ay = inf{x,y}) we say that G is
a lattice-ordered group, in short /-group.

Examples: (C(X,R),+,0, <) (where X topological
space), (Aut T,o,id, <) (where T is a chain). In both
cases, < is the componentwise ordering (i.e., f < g iff
f(x) < g(x) for all x).

In all what follows, restrict attention to Abelian /-groups
with order-unit (element u € G such that

(Vx)(3n € N)(x < nu)).
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m Spec, G o {prime (-ideals of G}, topologized by the
closed sets the {P € Spec, G | X C P} for X C G
(hull-kernel topology).

m The topological space Spec, G is called the ¢-spectrum (or
just spectrum) of G.

Problem (Mundici 2011, but originating much earlier, e.g.

Martinez 1973)

Describe the topological spaces of the form Spec, G, with G an
Abelian Z-group with order-unit.
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A topological space X is an (-spectrum iff
(Junital ¢-group G)(X = Spec, G). Formally this counts
as a “description”; of course it is useless.

Look for some additional properties, satisfied by every
f-spectrum, that would characterize such spaces?

Every (-spectrum X is a spectral space: that is, it is T,
every irreducible closed subset is some {x}, and

iJOC(X) def {compact open subsets of X} is a basis of open
sets in X, closed under finite intersections (thus X is
compact).

Spectral spaces are exactly the Zariski spectra of
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m Every (-spectrum is a completely normal spectral space
(Keimel 1971).

m This is still not sufficient for characterizing /-spectra
(Delzell and Madden 1994. Their counterexample has N;
compact open members).
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(Va,b)(Ix,y)(avb=aVy=xVband x Ay =0).

(Monteiro 1954).
m Every /-representable lattice satisfies the following
infinitary sentence (CBD, “countably based differences”):

(Va, b)(HnENcn)(vx)
(a<bVvxe (FneN)(c <x)).
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formulation

m Delzell and Madden's 1994 counterexample is a completely
normal lattice of cardinality Ny, without CBD. 7/16
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Seiey The following is a full solution of the /-spectrum Problem for
countable lattices:

Theorem (W 2019)

Lattice
formulation

Every countable completely normal bounded distributive lattice
is /-representable.

m Extends to vector lattices over countable totally ordered

fields (or even division rings).

m Fails for uncountable fields!
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Theorem (Di Nola and Lenzi 2020)

The class of all /-representable lattices is not closed under
ultrapowers. In particular, it is not the class of all models of a
set of existential second-order sentences.

9/16



Projective vs. co-projective

The spectrum

Problem for m Recall from previous frame that

Abelian
£-groups: an

overview E-Rep = {D | (Hf, G)(Some gwlw formula)} .
Negative

results

10/16



Projective vs. co-projective

The spectrum

Problem for m Recall from previous frame that
Abelian
e (-Rep = {D | (3f, G)(some £, formula)}.

m Such a description is called projective:

Negative ¢-Rep = {D | (second-order 3 quantifiers)

results

(some Loooo formula)}.

10/16



Projective vs. co-projective

The spectrum

Problem for m Recall from previous frame that
Abelian
i (-Rep = {D | (3f, G)(some L., formula)}.

m Such a description is called projective:

Negative ¢-Rep = {D | (second-order 3 quantifiers)
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m Those are defined via games clocked by infinite trees.

m The class of all models of any .#Z....-sentence is closed
under a certain level of back-and forth.

m By using the condensate construction, one then proves
that this is not the case for /-Rep. Thus: compl. normal
+ CBD not enough (starts at cardinality Np)!
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Something always working at N,

The spectrum
Problem for

m Recall (from W 2019) that every countable completely
é_g’f:jgzz"an normal bounded distributive lattice is ¢-representable, and
overview (from Delzell and Madden 1994) that that result does not
extend to lattices of cardinality N;.
m Nonetheless, something remains true at cardinality N;:

Theorem (Plos¢ica and W 2023)

Every completely normal bounded distributive lattice, of
cardinality < Ny, is a (\VV, A)-homomorphic image of some
(-representable lattice (converse trivial).

The R case

m Method: a refinement of the countable case.
m Because of Delzell and Madden’s counterexample,
“homomorphic image” cannot be replaced by “isomorphic

copy”.

m Fails at cardinalities > N5. ‘
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m By the above-mentioned methods about “non
co-projective”, the representation result above does not
extend to cardinalities > N».

m Lots of the work above (e.g., “countable”, “non
co-projective”) extends (not always with the same proof)
to real spectra of commutative unital rings.

m The N; work has no known extension to real spectra.
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An open problem (illustrating that

)

The spectrum
Problem for
Abelian
£-groups: an
overview

m The class of all Id’ G, G Archimedean ¢-group (not
necessarily with unit), is not co-projective.
m Not known for Archimedean /-groups with unit.
m Reason for this: the arrows from the only known
The By case {0,1}3-indexed non-commutative diagram of /-groups,
entailing, via condensates, the “non co-projective”
statement, do not preserve order-units.
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x = 7(x) € x, and then setX\yd:ef<x—x/\y>.

m The operation \ is a deviation: x <y V (x \ y);
(x~y)A(y~x)=0.

m This deviation is Cevian: x ~z < (x\y)V (y \ 2).

m Every completely normal distributive lattice has a

A polarized

metric on (- deviation, but some compl. normal distr. latt. with N»
representable

lattices elements have no Cevian deviation (W 2020). The

bound 5 is sharp (Plos¢ica 2021).

15/16



Monotone-Cevian lattices

The spectrum

Problem for
Abeli I . . . . .
e m A deviation (x,y) — x \ y (on a distributive lattice D) is
overview apory s . . .
monotone if it is order-preserving in x and order-reversing
iny (eg, x1<x2=x1\y<xa\Yy).
A polarized

metric on £-
representable
lattices

16/16



Monotone-Cevian lattices

The spectrum

Problem for
Abeli I . . . . .
e m A deviation (x,y) — x \ y (on a distributive lattice D) is
overview e, - . . .
monotone if it is order-preserving in x and order-reversing
iny (eg, x1<x2=x1\y<xa\Yy).
m Every countable compl. normal distr. latt. has a
monotone Cevian deviation.
A polarized

metric on £-
representable
lattices

16/16



Monotone-Cevian lattices

The spectrum

Problem for
Z—g/?:j::l.::nan m A deviation (x,y) — x \ y (on a distributive lattice D) is
oree monotone if it is order-preserving in x and order-reversing
iny (eg, x1<x2=x1\y<xa\Yy).
m Every countable compl. normal distr. latt. has a
monotone Cevian deviation.
Theorem (Plos¢ica and W 2024)
CESEIEE There exists an Abelian (and even Archimedean) Q-vector
s lattice G with order-unit, with X; elements, such that Idﬁ G has

no monotone deviation.

16/16



Monotone-Cevian lattices

The spectrum

Problem for
Z—g/?:j::l.::nan m A deviation (x,y) — x \ y (on a distributive lattice D) is
oree monotone if it is order-preserving in x and order-reversing
iny (eg, x1<x2=x1\y<xa\Yy).
m Every countable compl. normal distr. latt. has a
monotone Cevian deviation.
Theorem (Plos¢ica and W 2024)
CESEIEE There exists an Abelian (and even Archimedean) Q-vector
s lattice G with order-unit, with X; elements, such that Idﬁ G has

no monotone deviation.

G has generators e, (0 < a <wi), with each 0 < e, < e,,,
and 0 < v < B = ey < 2e3.
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