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A partially ordered group is a group G , equipped with a
partial ordering ≤, which is translation-invariant (i.e.,
x ≤ y ⇒ xz ≤ yz and x ≤ y ⇒ zx ≤ zy).

Ordering

characterized by G+ def
= {x ∈ G | 0 ≤ x}.

If ≤ is a lattice order (i.e., ∀x , y ∈ G there exist
x ∨ y = sup{x , y} and x ∧ y = inf{x , y}) we say that G is
a lattice-ordered group, in short `-group.

Examples: (C (X ,R),+, 0,≤) (where X topological
space), (AutT , ◦, id,≤) (where T is a chain). In both
cases, ≤ is the componentwise ordering (i.e., f ≤ g iff
f (x) ≤ g(x) for all x).

In all what follows, restrict attention to Abelian `-groups
with order-unit (element u ∈ G+ such that
(∀x)(∃n ∈ N)(x ≤ nu)).

2/16



The spectrum
Problem for

Abelian
`-groups: an

overview

Framework

Lattice
formulation

Negative
results

The ℵ1 case

A polarized
metric on `-
representable
lattices

`-groups

A partially ordered group is a group G , equipped with a
partial ordering ≤, which is translation-invariant (i.e.,
x ≤ y ⇒ xz ≤ yz and x ≤ y ⇒ zx ≤ zy). Ordering

characterized by G+ def
= {x ∈ G | 0 ≤ x}.

If ≤ is a lattice order (i.e., ∀x , y ∈ G there exist
x ∨ y = sup{x , y} and x ∧ y = inf{x , y}) we say that G is
a lattice-ordered group, in short `-group.

Examples: (C (X ,R),+, 0,≤) (where X topological
space), (AutT , ◦, id,≤) (where T is a chain). In both
cases, ≤ is the componentwise ordering (i.e., f ≤ g iff
f (x) ≤ g(x) for all x).

In all what follows, restrict attention to Abelian `-groups
with order-unit (element u ∈ G+ such that
(∀x)(∃n ∈ N)(x ≤ nu)).

2/16



The spectrum
Problem for

Abelian
`-groups: an

overview

Framework

Lattice
formulation

Negative
results

The ℵ1 case

A polarized
metric on `-
representable
lattices

`-groups

A partially ordered group is a group G , equipped with a
partial ordering ≤, which is translation-invariant (i.e.,
x ≤ y ⇒ xz ≤ yz and x ≤ y ⇒ zx ≤ zy). Ordering

characterized by G+ def
= {x ∈ G | 0 ≤ x}.

If ≤ is a lattice order (i.e., ∀x , y ∈ G there exist
x ∨ y = sup{x , y} and x ∧ y = inf{x , y}) we say that G is
a lattice-ordered group, in short `-group.

Examples: (C (X ,R),+, 0,≤) (where X topological
space), (AutT , ◦, id,≤) (where T is a chain). In both
cases, ≤ is the componentwise ordering (i.e., f ≤ g iff
f (x) ≤ g(x) for all x).

In all what follows, restrict attention to Abelian `-groups
with order-unit (element u ∈ G+ such that
(∀x)(∃n ∈ N)(x ≤ nu)).

2/16



The spectrum
Problem for

Abelian
`-groups: an

overview

Framework

Lattice
formulation

Negative
results

The ℵ1 case

A polarized
metric on `-
representable
lattices

`-groups

A partially ordered group is a group G , equipped with a
partial ordering ≤, which is translation-invariant (i.e.,
x ≤ y ⇒ xz ≤ yz and x ≤ y ⇒ zx ≤ zy). Ordering

characterized by G+ def
= {x ∈ G | 0 ≤ x}.

If ≤ is a lattice order (i.e., ∀x , y ∈ G there exist
x ∨ y = sup{x , y} and x ∧ y = inf{x , y}) we say that G is
a lattice-ordered group, in short `-group.

Examples: (C (X ,R),+, 0,≤) (where X topological
space), (AutT , ◦, id,≤) (where T is a chain).

In both
cases, ≤ is the componentwise ordering (i.e., f ≤ g iff
f (x) ≤ g(x) for all x).

In all what follows, restrict attention to Abelian `-groups
with order-unit (element u ∈ G+ such that
(∀x)(∃n ∈ N)(x ≤ nu)).

2/16



The spectrum
Problem for

Abelian
`-groups: an

overview

Framework

Lattice
formulation

Negative
results

The ℵ1 case

A polarized
metric on `-
representable
lattices

`-groups

A partially ordered group is a group G , equipped with a
partial ordering ≤, which is translation-invariant (i.e.,
x ≤ y ⇒ xz ≤ yz and x ≤ y ⇒ zx ≤ zy). Ordering

characterized by G+ def
= {x ∈ G | 0 ≤ x}.

If ≤ is a lattice order (i.e., ∀x , y ∈ G there exist
x ∨ y = sup{x , y} and x ∧ y = inf{x , y}) we say that G is
a lattice-ordered group, in short `-group.

Examples: (C (X ,R),+, 0,≤) (where X topological
space), (AutT , ◦, id,≤) (where T is a chain). In both
cases, ≤ is the componentwise ordering (i.e., f ≤ g iff
f (x) ≤ g(x) for all x).

In all what follows, restrict attention to Abelian `-groups
with order-unit (element u ∈ G+ such that
(∀x)(∃n ∈ N)(x ≤ nu)).

2/16



The spectrum
Problem for

Abelian
`-groups: an

overview

Framework

Lattice
formulation

Negative
results

The ℵ1 case

A polarized
metric on `-
representable
lattices

`-groups

A partially ordered group is a group G , equipped with a
partial ordering ≤, which is translation-invariant (i.e.,
x ≤ y ⇒ xz ≤ yz and x ≤ y ⇒ zx ≤ zy). Ordering

characterized by G+ def
= {x ∈ G | 0 ≤ x}.

If ≤ is a lattice order (i.e., ∀x , y ∈ G there exist
x ∨ y = sup{x , y} and x ∧ y = inf{x , y}) we say that G is
a lattice-ordered group, in short `-group.

Examples: (C (X ,R),+, 0,≤) (where X topological
space), (AutT , ◦, id,≤) (where T is a chain). In both
cases, ≤ is the componentwise ordering (i.e., f ≤ g iff
f (x) ≤ g(x) for all x).

In all what follows, restrict attention to Abelian `-groups
with order-unit (element u ∈ G+ such that
(∀x)(∃n ∈ N)(x ≤ nu)).

2/16



The spectrum
Problem for

Abelian
`-groups: an

overview

Framework

Lattice
formulation

Negative
results

The ℵ1 case

A polarized
metric on `-
representable
lattices

`-spectrum

A subset I , in an Abelian `-group G , is an `-ideal if it is an
order-convex subgroup closed under ∨ (equivalently, ∧).

It is prime if I 6= G and x ∧ y ∈ I ⇒ {x , y} ∩ I 6= ∅.

Spec` G
def
= {prime `-ideals of G}, topologized by the

closed sets the {P ∈ Spec` G | X ⊆ P} for X ⊆ G
(hull-kernel topology).

The topological space Spec` G is called the `-spectrum (or
just spectrum) of G .

Problem (Mundici 2011, but originating much earlier, e.g.
Mart́ınez 1973)

Describe the topological spaces of the form Spec` G , with G an
Abelian `-group with order-unit.
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What’s the problem?

A topological space X is an `-spectrum iff
(∃ unital `-groupG )(X ∼= Spec` G ).

Formally this counts
as a “description”; of course it is useless.

Look for some additional properties, satisfied by every
`-spectrum, that would characterize such spaces?

Every `-spectrum X is a spectral space: that is, it is T0,
every irreducible closed subset is some {x}, and
◦
K(X )

def
= {compact open subsets of X} is a basis of open

sets in X , closed under finite intersections (thus X is
compact).

Spectral spaces are exactly the Zariski spectra of
commutative unital rings (Hochster 1969). . . not
sufficient for `-spectra!
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Complete normality

Specialization preorder on a topological space X : x 6 y if
y ∈ {x}.

On Spec` G , P 6 Q ⇔ P ⊆ Q.

Hence 6 is an order (not just a preorder) iff X is T0 (so
this holds if X is spectral).

A topological space is completely normal if 6 is a root
system, that is,

(x ≤ y1 and x ≤ y2)⇒ (y1 6 y2 or y2 6 y1) .

Every `-spectrum is a completely normal spectral space
(Keimel 1971).

This is still not sufficient for characterizing `-spectra
(Delzell and Madden 1994. Their counterexample has ℵ1

compact open members).
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`-representable lattices

Recall that the closed subsets of Spec` G are the
{P ∈ Spec` G | X ⊆ P} for X ⊆ G .

Note that
⋂
{P ∈ Spec` G | X ⊆ P} = 〈X 〉, the `-ideal

generated by X .

Hence Spec` G is determined by the lattice Id`c G of all
finitely generated (equivalently, principal) `-ideals of G . . .
and conversely (can be formalized via Stone duality).

Id`c G = {〈a〉 | a ∈ G+}, where we set

〈a〉 def
= {x ∈ G | (∃n ∈ N)(|x | ≤ na)} (where

|x | def
= x ∨ (−x)).

For every unital `-group G , Id`c G is a bounded distributive
lattice (e.g., 〈a〉 ∨ 〈b〉 = 〈a + b〉 = 〈a ∨ b〉 and
〈a〉 ∧ 〈b〉 = 〈a ∧ b〉).

Let us call such lattices `-representable.
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Note that
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Recasting the `-spectrum Problem

`-spectrum Problem (lattice-theoretical formulation)

Characterize `-representable lattices

(i.e., those of the
form Id`c G ).

Complete normality translates (via Stone duality) to

(∀a, b)(∃x , y)(a ∨ b = a ∨ y = x ∨ b and x ∧ y = 0) .

(Monteiro 1954).
Every `-representable lattice satisfies the following
infinitary sentence (CBD, “countably based differences”):

(∀a, b)(∃n∈Ncn)(∀x)(
a ≤ b ∨ x ⇔ (∃n ∈ N)(cn ≤ x)

)
.

Delzell and Madden’s 1994 counterexample is a completely
normal lattice of cardinality ℵ1, without CBD.
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The countable case

The following is a full solution of the `-spectrum Problem for
countable lattices:

Theorem (W 2019)

Every countable completely normal bounded distributive lattice
is `-representable.

Extends to vector lattices over countable totally ordered
fields (or even division rings).

Fails for uncountable fields!
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No second-order existential characterization

The class of all `-representable lattices can be defined as

`-Rep = {D | (∃f ,G )(f : G+ → D

induces an isomorphism Id`c G → D)} .

Despite appearances, this is not a second-order existential
characterization of `-Rep: the condition
“f : G+ → D induces an isomorphism Id`c G → D” is
Lω1ω (not Lωω). In fact,

Theorem (Di Nola and Lenzi 2020)

The class of all `-representable lattices is not closed under
ultrapowers. In particular, it is not the class of all models of a
set of existential second-order sentences.
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Projective vs. co-projective

Recall from previous frame that

`-Rep = {D | (∃f ,G )(some Lω1ω formula)} .

Such a description is called projective:

`-Rep = {D | (second-order ∃ quantifiers)

(some L∞∞ formula)} .

A co-projective characterization would be of the form

`-Rep = {D | (second-order ∀ quantifiers)

(some L∞∞ formula)} .
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No co-projective representation

Theorem (W 2023)

The class of all `-representable lattices has no co-projective
characterization.

As seen above, the class `-Rep is projective (here,
second-order ∃ followed by Lω1ω formula).

Hence, if `-Rep were co-projective, then, by Tuuri’s
Interpolation Theorem, it would be characterized by a
sentence from some infinitely deep language M∞∞.

Those are defined via games clocked by infinite trees.

The class of all models of any M∞∞-sentence is closed
under a certain level of back-and forth.

By using the condensate construction, one then proves
that this is not the case for `-Rep. Thus: compl. normal
+ CBD not enough (starts at cardinality ℵ2)!
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Something always working at ℵ1

Recall (from W 2019) that every countable completely
normal bounded distributive lattice is `-representable, and

(from Delzell and Madden 1994) that that result does not
extend to lattices of cardinality ℵ1.
Nonetheless, something remains true at cardinality ℵ1:

Theorem (Ploščica and W 2023)

Every completely normal bounded distributive lattice, of
cardinality ≤ ℵ1, is a (∨,∧)-homomorphic image of some
`-representable lattice (converse trivial).

Method: a refinement of the countable case.
Because of Delzell and Madden’s counterexample,
“homomorphic image” cannot be replaced by “isomorphic
copy”.
Fails at cardinalities ≥ ℵ2.
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A representation result in size ℵ1

The following was considerably harder to get. It is a full
solution of the `-spectrum Problem for lattices of
cardinality ≤ ℵ1:

Theorem (Ploščica and W 2024)

Every completely normal bounded distributive lattice with
CBD, of cardinality ≤ ℵ1, is `-representable.

By the above-mentioned methods about “non
co-projective”, the representation result above does not
extend to cardinalities ≥ ℵ2.

Lots of the work above (e.g., “countable”, “non
co-projective”) extends (not always with the same proof)
to real spectra of commutative unital rings.

The ℵ1 work has no known extension to real spectra.
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An open problem (illustrating that after all, the
unit matters)

The class of all Id`c G , G Archimedean `-group (not
necessarily with unit), is not co-projective.

Not known for Archimedean `-groups with unit.

Reason for this: the arrows from the only known
{0, 1}3-indexed non-commutative diagram of `-groups,
entailing, via condensates, the “non co-projective”
statement, do not preserve order-units.
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Deviations on distributive lattices

For any Abelian `-group G and x ∈ Id`c G , pick

x = γ(x) ∈ x , and then set x r y def
= 〈x − x ∧ y〉.

The operation r is a deviation: x ≤ y ∨ (x r y);
(x r y) ∧ (y r x) = 0.

This deviation is Cevian: x r z ≤ (x r y) ∨ (y r z).

Every completely normal distributive lattice has a
deviation, but some compl. normal distr. latt. with ℵ2

elements have no Cevian deviation (W 2020). The
bound ℵ2 is sharp (Ploščica 2021).
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Monotone-Cevian lattices

A deviation (x , y) 7→ x r y (on a distributive lattice D) is
monotone if it is order-preserving in x and order-reversing
in y (e.g., x1 ≤ x2 ⇒ x1 r y ≤ x2 r y).

Every countable compl. normal distr. latt. has a
monotone Cevian deviation.

Theorem (Ploščica and W 2024)

There exists an Abelian (and even Archimedean) Q-vector
lattice G with order-unit, with ℵ1 elements, such that Id`c G has
no monotone deviation.

G has generators eα (0 ≤ α ≤ ω1), with each 0 ≤ eα ≤ eω1 ,
and 0 < γ < β ⇒ eγ ≤ 2eβ.
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