Projective
classes as images of accessible functors

Projective classes as images of accessible functors

Friedrich Wehrung

Université de Caen
LMNO, CNRS UMR 6139
Département de Mathématiques
14032 Caen cedex
E-mail: friedrich.wehrung01@unicaen.fr URL: http://wehrungf.users.Imno.cnrs.fr

May 2022

References

Projective classes as images of accessible functors

Motivation
Elementary, projective

Tuuri's
Interpolation Theorem

Karttunen's back-and-forth systems

1 J. Adámek and J. Rosický, Locally Presentable and Accessible Categories, London Mathematical Society Lecture Notes Series 189, Cambridge University Press, Cambridge, 1994.
12 P. Gillibert and F. Wehrung, From Objects to Diagrams for Ranges of Functors, Springer Lecture Notes 2029, Springer, Heidelberg, 2011.
3 F. Wehrung, From non-commutative diagrams to anti-elementary classes, J. Math. Logic 21, no. 2 (2021), 2150011.

4 F. Wehrung, Projective classes as images of accessible functors, HAL-03580184.
5 References [2,3,4] above can be downloaded from https://wehrungf.users.Imno.cnrs.fr/pubs.html.

General type of problem

Projective
classes as images of accessible functors

Motivation
Elementary, projective

Tuuri's

■ We are given a class \mathcal{C} of structures $M=\left(M, \ldots, R_{1}, R_{2}, R_{3}, \ldots, f_{1}, f_{2}, f_{3}, \ldots\right)$, in a given vocabulary $\mathbf{v}=\left(R_{1}, R_{2}, R_{3}, \ldots, f_{1}, f_{2}, f_{3}, \ldots\right)$ (the R_{i} are relation symbols, the f_{i} are operation symbols), usually "nicely defined".

General type of problem

Projective
classes as images of accessible functors

- We are given a class \mathcal{C} of structures $\boldsymbol{M}=\left(M, \ldots, R_{1}, R_{2}, R_{3}, \ldots, f_{1}, f_{2}, f_{3}, \ldots\right)$, in a given vocabulary $\mathbf{v}=\left(R_{1}, R_{2}, R_{3}, \ldots, f_{1}, f_{2}, f_{3}, \ldots\right)$ (the R_{i} are relation symbols, the f_{i} are operation symbols), usually "nicely defined".
■ We are asking whether there is a "nice" description for the class $\mathcal{C} \upharpoonright_{\mathbf{u}}$ of all reducts $\boldsymbol{M} \upharpoonright_{\mathbf{u}}=\left(M, \ldots, R_{1}, \ldots, f_{1}, \ldots\right)$ to a given subvocabulary $\mathbf{u}=\left(R_{1}, \ldots, f_{1}, \ldots\right)$, for $\boldsymbol{M} \in \mathcal{C}$.

General type of problem

Projective
classes as images of accessible functors

Motivation
Elementary, projective

Tuuri's

Interpolation Theorem

- We are given a class \mathcal{C} of structures $\mathbf{M}=\left(M, \ldots, R_{1}, R_{2}, R_{3}, \ldots, f_{1}, f_{2}, f_{3}, \ldots\right)$, in a given vocabulary $\mathbf{v}=\left(R_{1}, R_{2}, R_{3}, \ldots, f_{1}, f_{2}, f_{3}, \ldots\right)$ (the R_{i} are relation symbols, the f_{i} are operation symbols), usually "nicely defined".
■ We are asking whether there is a "nice" description for the class $\mathcal{C} \upharpoonright_{\mathbf{u}}$ of all reducts $\mathbf{M} \upharpoonright_{\mathbf{u}}=\left(M, \ldots, R_{1}, \ldots, f_{1}, \ldots\right)$ to a given subvocabulary $\mathbf{u}=\left(R_{1}, \ldots, f_{1}, \ldots\right)$, for $\boldsymbol{M} \in \mathcal{C}$.
- Usually the class \mathcal{C} is definable in (some extension of) first-order logic.

General type of problem

Projective
classes as images of accessible functors

Motivation
Elementary, projective

Tuuri's
Interpolation Theorem

Karttunen's

- We are given a class \mathcal{C} of structures $\mathbf{M}=\left(M, \ldots, R_{1}, R_{2}, R_{3}, \ldots, f_{1}, f_{2}, f_{3}, \ldots\right)$, in a given vocabulary $\mathbf{v}=\left(R_{1}, R_{2}, R_{3}, \ldots, f_{1}, f_{2}, f_{3}, \ldots\right)$ (the R_{i} are relation symbols, the f_{i} are operation symbols), usually "nicely defined".
■ We are asking whether there is a "nice" description for the class $\mathcal{C} \upharpoonright_{\mathbf{u}}$ of all reducts $\boldsymbol{M} \upharpoonright_{\mathbf{u}}=\left(M, \ldots, R_{1}, \ldots, f_{1}, \ldots\right)$ to a given subvocabulary $\mathbf{u}=\left(R_{1}, \ldots, f_{1}, \ldots\right)$, for $\boldsymbol{M} \in \mathcal{C}$.
- Usually the class \mathcal{C} is definable in (some extension of) first-order logic.
■ More generally, given a "nice" class \mathcal{C} of structures, we form a class \mathfrak{C}^{\prime} by "forgetting some structure". Is \mathfrak{C}^{\prime} "nice"?

Examples

Projective
classes as images of accessible functors
$1 \mathcal{C}$ is the class of all totally ordered Abelian groups $(A,+, \leq)$ (i.e., $(A,+)$ is an Abelian group, \leq is a total order on A, and $x \leq y \Rightarrow x+z \leq y+z), \mathbf{v}=(+, \leq)$.

Motivation
Elementary, projective

Tuuri's
Interpolation Theorem

Examples

Projective
classes as images of accessible functors

Motivation
Elementary, projective

Tuuri's
$1 \mathcal{C}$ is the class of all totally ordered Abelian groups $(A,+, \leq)$ (i.e., $(A,+)$ is an Abelian group, \leq is a total order on A, and $x \leq y \Rightarrow x+z \leq y+z), \mathbf{v}=(+, \leq)$. Letting $\mathbf{u} \stackrel{\text { def }}{=}(+), \mathcal{C} \upharpoonright_{\mathbf{u}}$ is the class of all totally orderable Abelian groups.

Examples

Projective
classes as images of accessible functors

Motivation
Elementary, projective

Tuuri's
$1 \mathcal{C}$ is the class of all totally ordered Abelian groups $(A,+, \leq)$ (i.e., $(A,+)$ is an Abelian group, \leq is a total order on A, and $x \leq y \Rightarrow x+z \leq y+z), \mathbf{v}=(+, \leq)$. Letting $\mathbf{u} \stackrel{\text { def }}{=}(+), \mathcal{C} \upharpoonright_{\mathbf{u}}$ is the class of all totally orderable Abelian groups.
$2 \mathcal{C}$ is the class of all fields, $\mathbf{v}=(+, \cdot), \mathbf{u}=(\cdot)$.

Examples

Projective classes as images of accessible functors

Motivation
Elementary, projective

Tuuri's
$1 \mathcal{C}$ is the class of all totally ordered Abelian groups $(A,+, \leq)$ (i.e., $(A,+)$ is an Abelian group, \leq is a total order on A, and $x \leq y \Rightarrow x+z \leq y+z), \mathbf{v}=(+, \leq)$. Letting $\mathbf{u} \stackrel{\text { def }}{=}(+), \mathcal{C} \upharpoonright_{\mathbf{u}}$ is the class of all totally orderable Abelian groups.
$2 \mathcal{C}$ is the class of all fields, $\mathbf{v}=(+, \cdot), \mathbf{u}=(\cdot)$. Then $\mathcal{C} \upharpoonright_{\mathbf{u}}$ is the class of all multiplicative groups of fields.

Examples

Projective classes as images of accessible functors

Motivation
Elementary, projective

Tuuri's
$1 \mathcal{C}$ is the class of all totally ordered Abelian groups $(A,+, \leq)$ (i.e., $(A,+)$ is an Abelian group, \leq is a total order on A, and $x \leq y \Rightarrow x+z \leq y+z), \mathbf{v}=(+, \leq)$. Letting $\mathbf{u} \stackrel{\text { def }}{=}(+), \mathcal{C} \upharpoonright_{\mathbf{u}}$ is the class of all totally orderable Abelian groups.
$2 \mathcal{C}$ is the class of all fields, $\mathbf{v}=(+, \cdot), \mathbf{u}=(\cdot)$. Then $\mathcal{C} \upharpoonright_{\mathbf{u}}$ is the class of all multiplicative groups of fields.
$3 \mathcal{C}$ is the class of all unital rings.

Examples

Projective classes as images of accessible functors

Motivation
Elementary, projective

Tuuri's
$1 \mathcal{C}$ is the class of all totally ordered Abelian groups $(A,+, \leq)$ (i.e., $(A,+)$ is an Abelian group, \leq is a total order on A, and $x \leq y \Rightarrow x+z \leq y+z), \mathbf{v}=(+, \leq)$. Letting $\mathbf{u} \stackrel{\text { def }}{=}(+), \mathcal{C} \upharpoonright_{\mathbf{u}}$ is the class of all totally orderable Abelian groups.
$2 \mathcal{C}$ is the class of all fields, $\mathbf{v}=(+, \cdot), \mathbf{u}=(\cdot)$. Then $\mathcal{C} \upharpoonright_{\mathbf{u}}$ is the class of all multiplicative groups of fields.
$3 \mathcal{C}$ is the class of all unital rings. Define \mathcal{C}^{\prime} as the class of all partially ordered sets (= posets) of finitely generated two-sided ideals of rings.

Examples

Projective classes as images of accessible functors

Motivation
Elementary, projective

Tuuri's
$1 \mathcal{C}$ is the class of all totally ordered Abelian groups $(A,+, \leq)$ (i.e., $(A,+)$ is an Abelian group, \leq is a total order on A, and $x \leq y \Rightarrow x+z \leq y+z), \mathbf{v}=(+, \leq)$. Letting $\mathbf{u} \stackrel{\text { def }}{=}(+), \mathcal{C} \upharpoonright_{\mathbf{u}}$ is the class of all totally orderable Abelian groups.
$2 \mathcal{C}$ is the class of all fields, $\mathbf{v}=(+, \cdot), \mathbf{u}=(\cdot)$. Then $\mathcal{C} \upharpoonright_{\mathbf{u}}$ is the class of all multiplicative groups of fields.
$3 \mathcal{C}$ is the class of all unital rings. Define \mathcal{C}^{\prime} as the class of all partially ordered sets (= posets) of finitely generated two-sided ideals of rings.
$4 \mathcal{C}$ is the class of all Abelian lattice-ordered groups (" ℓ-groups").

Examples

Projective classes as images of accessible functors

Motivation
Elementary, projective

Tuuri's
Interpolation Theorem

Karttunen's back-and-forth systems
$1 \mathcal{C}$ is the class of all totally ordered Abelian groups $(A,+, \leq)$ (i.e., $(A,+)$ is an Abelian group, \leq is a total order on A, and $x \leq y \Rightarrow x+z \leq y+z), \mathbf{v}=(+, \leq)$. Letting $\mathbf{u} \stackrel{\text { def }}{=}(+), \mathcal{C} \upharpoonright_{\mathbf{u}}$ is the class of all totally orderable Abelian groups.
$\sqrt{2} \mathcal{C}$ is the class of all fields, $\mathbf{v}=(+, \cdot), \mathbf{u}=(\cdot)$. Then $\mathcal{C} \upharpoonright_{\mathbf{u}}$ is the class of all multiplicative groups of fields.
$3 \mathcal{C}$ is the class of all unital rings. Define \mathcal{C}^{\prime} as the class of all partially ordered sets (= posets) of finitely generated two-sided ideals of rings.
$4 \mathcal{C}$ is the class of all Abelian lattice-ordered groups (" ℓ-groups"). C^{\prime} is the class of all lattices of principal ℓ-ideals of Abelian ℓ-groups (i.e., Stone duals of spectra of Abelian ℓ-groups).

Discussion of those examples

Projective
classes as images of accessible functors

- The solution for (1) (totally orderable Abelian groups) is well known:

Motivation
Elementary, projective

Discussion of those examples

Projective
classes as images of accessible functors

- The solution for (1) (totally orderable Abelian groups) is well known: An Abelian group is totally orderable iff it is torsion-free.

Motivation
Elementary, projective

Tuuri's
Interpolation
Theorem
Karttunen's

Discussion of those examples

Projective classes as images of accessible functors

- The solution for (1) (totally orderable Abelian groups) is well known: An Abelian group is totally orderable iff it is torsion-free.
■ About Example (2) (multiplicative groups of fields): various sufficient conditions are known, such as "every finite group of the multiplicative group of a field is cyclic".

Discussion of those examples

Projective classes as images of accessible functors

- The solution for (1) (totally orderable Abelian groups) is well known: An Abelian group is totally orderable iff it is torsion-free.
- About Example (2) (multiplicative groups of fields): various sufficient conditions are known, such as "every finite group of the multiplicative group of a field is cyclic". However, as far as I know, no "nice" description, of multiplicative groups of fields, is known.

Discussion of those examples

Projective classes as images of accessible functors

Motivation
Elementary, projective

Tuturi's

- The solution for (1) (totally orderable Abelian groups) is well known: An Abelian group is totally orderable iff it is torsion-free.
- About Example (2) (multiplicative groups of fields): various sufficient conditions are known, such as "every finite group of the multiplicative group of a field is cyclic". However, as far as I know, no "nice" description, of multiplicative groups of fields, is known.
■ Examples (3) and (4), obtained by "forgetting structure", do not seem to fit the "from \mathcal{C} to $\mathcal{C}^{\prime} \stackrel{\text { def }}{=} \mathcal{C} \upharpoonright_{\mathbf{u}}$ " scheme a priori.

Discussion of those examples

Projective classes as images of accessible functors

Motivation
Elementary, projective

Tuturi's

- The solution for (1) (totally orderable Abelian groups) is well known: An Abelian group is totally orderable iff it is torsion-free.
- About Example (2) (multiplicative groups of fields): various sufficient conditions are known, such as "every finite group of the multiplicative group of a field is cyclic". However, as far as I know, no "nice" description, of multiplicative groups of fields, is known.
■ Examples (3) and (4), obtained by "forgetting structure", do not seem to fit the "from \mathcal{C} to $\mathcal{C}^{\prime} \stackrel{\text { def }}{=} \mathcal{C} \upharpoonright_{\mathbf{u}}$ " scheme a priori. However, they do!

Discussion of those examples

Projective classes as images of accessible functors

Motivation
Elementary, projective

Tuuri's
Interpolation Theorem

Karttunen's back-and-forth systems

- The solution for (1) (totally orderable Abelian groups) is well known: An Abelian group is totally orderable iff it is torsion-free.
- About Example (2) (multiplicative groups of fields): various sufficient conditions are known, such as "every finite group of the multiplicative group of a field is cyclic". However, as far as I know, no "nice" description, of multiplicative groups of fields, is known.
■ Examples (3) and (4), obtained by "forgetting structure", do not seem to fit the "from \mathcal{C} to $\mathcal{C}^{\prime} \stackrel{\text { def }}{=} \mathcal{C} \upharpoonright_{\mathbf{u}}$ " scheme a priori. However, they do! The classes \mathfrak{C}^{\prime} thus obtained (by "forgetting structure") are called (relatively) projective classes.

Discussion of those examples

Projective classes as images of accessible functors

Motivation
Elementary, projective

Tuuri's
Interpolation Theorem

Karttunen's back-and-forth systems

- The solution for (1) (totally orderable Abelian groups) is well known: An Abelian group is totally orderable iff it is torsion-free.
- About Example (2) (multiplicative groups of fields): various sufficient conditions are known, such as "every finite group of the multiplicative group of a field is cyclic". However, as far as I know, no "nice" description, of multiplicative groups of fields, is known.
■ Examples (3) and (4), obtained by "forgetting structure", do not seem to fit the "from \mathcal{C} to $\mathcal{C}^{\prime} \stackrel{\text { def }}{=} \mathcal{C} \upharpoonright_{\mathbf{u}}$ " scheme a priori. However, they do! The classes \mathfrak{C}^{\prime} thus obtained (by "forgetting structure") are called (relatively) projective classes. It turns out (difficult!) that the classes \mathcal{C}^{\prime} thus obtained are "intractable": for example, they are not co-projective (i.e., complement of projective).

A closer look at Example (4)

Projective
classes as images of accessible functors

Motivation
Elementary, projective

- For an Abelian ℓ-group $G, \operatorname{Id}_{\mathrm{c}} G \stackrel{\text { def }}{=}$ (lattice of all principal ℓ-ideals of $G)=\left\{\langle a\rangle \mid a \in G^{+}\right\}$where

$$
\begin{aligned}
& \langle a\rangle \stackrel{\text { def }}{=}\{x \in G \mid(\exists n \in \mathbb{N})(|x| \leq n a)\} \text {. Let } \\
& \operatorname{Id}_{\mathrm{c}} \mathcal{A} \stackrel{\text { def }}{=}\left\{D \mid(\exists G)\left(D \cong \operatorname{Id}_{\mathrm{c}} G\right)\right\} .
\end{aligned}
$$

A closer look at Example (4)

Projective
classes as images of accessible functors

Motivation
Elementary, projective

Tuuri's

- For an Abelian ℓ-group $G, \mathrm{Id}_{\mathrm{c}} G \stackrel{\text { def }}{=}$ (lattice of all principal ℓ-ideals of $G)=\left\{\langle a\rangle \mid a \in G^{+}\right\}$where

$$
\begin{aligned}
& \langle a\rangle \stackrel{\text { def }}{=}\{x \in G \mid(\exists n \in \mathbb{N})(|x| \leq n a)\} . \text { Let } \\
& \operatorname{Id}_{\mathrm{c}} \mathcal{A} \stackrel{\text { def }}{=}\left\{D \mid(\exists G)\left(D \cong \operatorname{ld}_{\mathrm{c}} G\right)\right\} .
\end{aligned}
$$

■ Every member of $\operatorname{Id}_{\mathrm{c}} \mathcal{A}$ is a distributive 0 -lattice. It is completely normal (abbrev. CN), that is, it satisfies

$$
(\forall a, b)(\exists x, y)(a \vee b=a \vee y=x \vee b \& x \wedge y=0)
$$

A closer look at Example (4)

Projective classes as images of accessible functors

Motivation
Elementary, projective

Tumri's

- For an Abelian ℓ-group $G, \operatorname{Id}_{\mathrm{c}} G \stackrel{\text { def }}{=}$ (lattice of all principal ℓ-ideals of $G)=\left\{\langle a\rangle \mid a \in G^{+}\right\}$where

$$
\begin{aligned}
& \langle a\rangle \stackrel{\text { def }}{=}\{x \in G \mid(\exists n \in \mathbb{N})(|x| \leq n a)\} \text {. Let } \\
& \operatorname{Id}_{\mathrm{c}} \mathcal{A} \stackrel{\text { def }}{=}\left\{D \mid(\exists G)\left(D \cong \operatorname{ld}_{\mathrm{c}} G\right)\right\} .
\end{aligned}
$$

■ Every member of $\operatorname{Id}_{\mathrm{c}} \mathcal{A}$ is a distributive 0 -lattice. It is completely normal (abbrev. CN), that is, it satisfies

$$
(\forall a, b)(\exists x, y)(a \vee b=a \vee y=x \vee b \& x \wedge y=0)
$$

- Every member of $\operatorname{Id}_{c} \mathcal{A}$ has countably based differences (abbrev. CBD), that is, it satisfies

$$
(\forall a, b)\left(\exists_{n<\omega} c_{n}\right)(\forall x)\left(a \leq b \vee x \Leftrightarrow c_{n} \leq x \text { for some } n\right) .
$$

Ploščica's Condition

Projective classes as images of accessible functors

Motivation
Elementary, projective

Tuuri's
Interpolation
Theorem
■ For an ideal I in a distributive lattice $D, x \equiv \jmath y$ if $(\exists z \in I)(x \vee z=y \vee z)$. Set $D / I \stackrel{\text { def }}{=} D / \equiv I$.

Ploščica's Condition

Projective
classes as images of accessible functors

Motivation
Elementary, projective

Tuuri's

■ For an ideal $/$ in a distributive lattice $D, x \equiv \rho y$ if $(\exists z \in I)(x \vee z=y \vee z)$. Set $D / I \stackrel{\text { def }}{=} D / \equiv I$.
■ A bounded distributive lattice D satisfies Ploščica's Condition (abbrev. Plo) if for every $a \in D$ and every collection ($\mathfrak{m}_{i} \mid i \in I$) of maximal ideals of $\downarrow a, \downarrow a / \bigcap_{i} \mathfrak{m}_{i}$ has cardinality $\leq 2^{\text {card } I}$.

Ploščica's Condition

Projective classes as images of accessible functors

Motivation
Elementary, projective

Tuturi's

■ For an ideal I in a distributive lattice $D, x \equiv \jmath y$ if $(\exists z \in I)(x \vee z=y \vee z)$. Set $D / I \stackrel{\text { def }}{=} D / \equiv I$.
■ A bounded distributive lattice D satisfies Ploščica's Condition (abbrev. Plo) if for every $a \in D$ and every collection ($\mathfrak{m}_{i} \mid i \in I$) of maximal ideals of $\downarrow a, \downarrow a / \bigcap_{i} \mathfrak{m}_{i}$ has cardinality $\leq 2^{\text {card } I}$.

Theorem (Ploščica 2021)

Every member of $\mathrm{Id}_{\mathrm{c}} \mathcal{A}$ satisfies Plo. On the other hand, 0 -DLat\&CN\&CBD does not imply Plo.

Ploščica's Condition

Projective classes as images of accessible functors

Motivation
Elementary, projective

Tuuri's
Interpolation
Theorem
Karttunen's back-and-forth systems

■ For an ideal I in a distributive lattice $D, x \equiv \jmath y$ if $(\exists z \in I)(x \vee z=y \vee z)$. Set $D / I \stackrel{\text { def }}{=} D / \equiv I$.

- A bounded distributive lattice D satisfies Ploščica's Condition (abbrev. Plo) if for every $a \in D$ and every collection ($\mathfrak{m}_{i} \mid i \in I$) of maximal ideals of $\downarrow a, \downarrow a / \bigcap_{i} \mathfrak{m}_{i}$ has cardinality $\leq 2^{\text {card } I}$.

Theorem (Ploščica 2021)

Every member of $\mathrm{Id}_{\mathrm{c}} \mathcal{A}$ satisfies Plo. On the other hand, 0 -DLat\&CN\&CBD does not imply Plo.

- Question: Does the conjunction 0-DLat\&CN\&CBD\&Plo (and more...) characterize the members of $\operatorname{Id}_{c} \mathcal{A}$?

Ploščica's Condition

Projective classes as images of accessible functors

Motivation
Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems

■ For an ideal I in a distributive lattice $D, x \equiv \jmath y$ if $(\exists z \in I)(x \vee z=y \vee z)$. Set $D / I \stackrel{\text { def }}{=} D / \equiv I$.
■ A bounded distributive lattice D satisfies Ploščica's Condition (abbrev. Plo) if for every $a \in D$ and every collection ($\mathfrak{m}_{i} \mid i \in I$) of maximal ideals of $\downarrow a, \downarrow a / \bigcap_{i} \mathfrak{m}_{i}$ has cardinality $\leq 2^{\text {card } I}$.

Theorem (Ploščica 2021)

Every member of $\mathrm{Id}_{\mathrm{c}} \mathcal{A}$ satisfies Plo. On the other hand, 0 -DLat\&CN\&CBD does not imply Plo.

■ Question: Does the conjunction 0-DLat\&CN\&CBD\&Plo (and more...) characterize the members of $\operatorname{Id}_{c} \mathcal{A}$?

- Answer: A strong NO under (a fragment of) GCH, with a counterexample of cardinality \aleph_{4}.

v-structures

Projective classes as images of accessible functors

■ Vocabulary: $\mathbf{v}=\left(\mathbf{v}_{\text {ope }}, \mathbf{v}_{\text {rel }}\right.$, ar $)$ with $\mathbf{v}_{\text {ope }} \cap \mathbf{v}_{\text {rel }}=\varnothing$ and ar: $\mathbf{v}_{\text {ope }} \cup \mathbf{v}_{\text {rel }} \rightarrow$ ordinals (usually) with $0 \notin \operatorname{ar}\left[\mathbf{v}_{\text {rel }}\right]$.

Elementary, projective

v-structures

Projective classes as images of accessible functors

Motivation
Elementary, projective

■ Vocabulary: $\mathbf{v}=\left(\mathbf{v}_{\text {ope }}, \mathbf{v}_{\text {rel }}\right.$, ar) with $\mathbf{v}_{\text {ope }} \cap \mathbf{v}_{\text {rel }}=\varnothing$ and ar: $\mathbf{v}_{\text {ope }} \cup \mathbf{v}_{\text {rel }} \rightarrow$ ordinals (usually) with $0 \notin \operatorname{ar}\left[\mathbf{v}_{\text {rel }}\right]$.

- $\operatorname{ar}(s)=0 \stackrel{\text { def }}{\Longleftrightarrow} s$ is a "constant".

v-structures

Projective
classes as images of accessible functors

Motivation
Elementary, projective

■ Vocabulary: $\mathbf{v}=\left(\mathbf{v}_{\text {ope }}, \mathbf{v}_{\text {rel }}\right.$, ar $)$ with $\mathbf{v}_{\text {ope }} \cap \mathbf{v}_{\text {rel }}=\varnothing$ and ar: $\mathbf{v}_{\text {ope }} \cup \mathbf{v}_{\text {rel }} \rightarrow$ ordinals (usually) with $0 \notin \operatorname{ar}\left[\mathbf{v}_{\text {rel }}\right]$.

- $\operatorname{ar}(s)=0 \stackrel{\text { def }}{\Longleftrightarrow} s$ is a "constant".

■ Add to this a large enough set ("alphabet") of "variables".

v-structures

Projective
classes as images of accessible functors

- Vocabulary: $\mathbf{v}=\left(\mathbf{v}_{\text {ope }}, \mathbf{v}_{\text {rel }}\right.$, ar) with $\mathbf{v}_{\text {ope }} \cap \mathbf{v}_{\text {rel }}=\varnothing$ and ar: $\mathbf{v}_{\text {ope }} \cup \mathbf{v}_{\text {rel }} \rightarrow$ ordinals (usually) with $0 \notin \operatorname{ar}\left[\mathbf{v}_{\text {rel }}\right]$.
- $\operatorname{ar}(s)=0 \stackrel{\text { def }}{\Longleftrightarrow} s$ is a "constant".

■ Add to this a large enough set ("alphabet") of "variables".

- model for \mathbf{v} (or \mathbf{v}-structure): $\boldsymbol{A}=\left(A, s^{\boldsymbol{A}}\right)_{s \in \mathbf{v}_{\text {ope }} \cup \mathbf{v}_{\text {rel }}}$, with the interpretations $s^{\boldsymbol{A}}$ defined the usual way.

v-structures

Projective
classes as images of accessible functors

- Vocabulary: $\mathbf{v}=\left(\mathbf{v}_{\text {ope }}, \mathbf{v}_{\text {rel }}\right.$, ar) with $\mathbf{v}_{\text {ope }} \cap \mathbf{v}_{\text {rel }}=\varnothing$ and ar: $\mathbf{v}_{\text {ope }} \cup \mathbf{v}_{\text {rel }} \rightarrow$ ordinals (usually) with $0 \notin \operatorname{ar}\left[\mathbf{v}_{\text {rel }}\right]$.
■ $\operatorname{ar}(s)=0 \stackrel{\text { def }}{\Longleftrightarrow} s$ is a "constant".
■ Add to this a large enough set ("alphabet") of "variables".
- model for \mathbf{v} (or \mathbf{v}-structure): $\boldsymbol{A}=\left(A, s^{\boldsymbol{A}}\right)_{s \in \mathbf{v}_{\text {ope }} \cup \mathbf{v}_{\text {rel }}}$, with the interpretations $s^{\boldsymbol{A}}$ defined the usual way.
- $\operatorname{Str}(\mathbf{v}) \stackrel{\text { def }}{=}$ category of all \mathbf{v}-structures with v-homomorphisms (it is locally presentable).

v-structures

Projective
classes as images of accessible functors

- Vocabulary: $\mathbf{v}=\left(\mathbf{v}_{\text {ope }}, \mathbf{v}_{\text {rel }}\right.$, ar) with $\mathbf{v}_{\text {ope }} \cap \mathbf{v}_{\text {rel }}=\varnothing$ and ar: $\mathbf{v}_{\text {ope }} \cup \mathbf{v}_{\text {rel }} \rightarrow$ ordinals (usually) with $0 \notin \operatorname{ar}\left[\mathbf{v}_{\text {rel }}\right]$.
■ $\operatorname{ar}(s)=0 \stackrel{\text { def }}{\Longleftrightarrow} s$ is a "constant".
■ Add to this a large enough set ("alphabet") of "variables".
- model for \mathbf{v} (or \mathbf{v}-structure): $\boldsymbol{A}=\left(A, s^{\boldsymbol{A}}\right)_{s \in \mathbf{v}_{\text {ope }} \cup \mathbf{v}_{\text {rel }}}$, with the interpretations $s^{\boldsymbol{A}}$ defined the usual way.
- $\operatorname{Str}(\mathbf{v}) \stackrel{\text { def }}{=}$ category of all \mathbf{v}-structures with \mathbf{v}-homomorphisms (it is locally presentable).
■ Terms: closure of variables under all functions symbols.

v-structures

Projective classes as images of accessible functors

Motivation
Elementary, projective

Tuuri's
Interpolation Theorem

Karttunen's

- Vocabulary: $\mathbf{v}=\left(\mathbf{v}_{\text {ope }}, \mathbf{v}_{\text {rel }}\right.$, ar) with $\mathbf{v}_{\text {ope }} \cap \mathbf{v}_{\text {rel }}=\varnothing$ and ar: $\mathbf{v}_{\text {ope }} \cup \mathbf{v}_{\text {rel }} \rightarrow$ ordinals (usually) with $0 \notin \operatorname{ar}\left[\mathbf{v}_{\text {rel }}\right]$.
■ $\operatorname{ar}(s)=0 \stackrel{\text { def }}{\Longleftrightarrow} s$ is a "constant".
■ Add to this a large enough set ("alphabet") of "variables".
- model for \mathbf{v} (or v-structure): $\boldsymbol{A}=\left(A, s^{\boldsymbol{A}}\right)_{s \in \mathbf{v}_{\text {ope }} \cup \mathbf{v}_{\text {rel }}}$, with the interpretations $s^{\boldsymbol{A}}$ defined the usual way.
- $\operatorname{Str}(\mathbf{v}) \stackrel{\text { def }}{=}$ category of all \mathbf{v}-structures with \mathbf{v}-homomorphisms (it is locally presentable).
- Terms: closure of variables under all functions symbols.

■ atomic formulas: $s=t$, for terms s and t, or $R\left(t_{\xi} \mid \xi \in \operatorname{ar}(R)\right)$ where the t_{ξ} are terms and $R \in \mathbf{v}_{\mathrm{rel}}$.

The languages $\mathscr{L}_{k \lambda}$

Projective classes as images of accessible functors

- Here κ and λ are "extended cardinals" (∞ allowed) with $\omega \leq \lambda \leq \kappa \leq \infty$.

Motivation
Elementary, projective

Tuuri's
Interpolation
Theorem
Karttunen's
back-and-forth
systems

The languages $\mathscr{L}_{k \lambda}$

Projective
classes as images of accessible functors

- Here κ and λ are "extended cardinals" (∞ allowed) with $\omega \leq \lambda \leq \kappa \leq \infty$.
- For any vocabulary $\mathbf{v}, \mathscr{L}_{\kappa \lambda}(\mathbf{v}) \stackrel{\text { def }}{=}$ closure of all atomic \mathbf{v}-formulas under disjunctions of $<\kappa$ members $\left(\mathbb{W}_{i \in 1} \mathrm{E}_{i}\right.$ where card $I<\kappa$), negation, and existential quantification over sets of less than λ variables $((\exists \mathrm{X}) \mathrm{E}$ with card $\mathrm{X}<\lambda$, or, in indexed form, $\exists \vec{x} E$ with card $I<\lambda)$.
(I)

The languages $\mathscr{L}_{k \lambda}$

Projective
classes as images of accessible functors

Motivation
Elementary, projective

Tuuri's
Interpolation
Theorem

- Here κ and λ are "extended cardinals" (∞ allowed) with $\omega \leq \lambda \leq \kappa \leq \infty$.
- For any vocabulary $\mathbf{v}, \mathscr{L}_{\kappa \lambda}(\mathbf{v}) \stackrel{\text { def }}{=}$ closure of all atomic \mathbf{v}-formulas under disjunctions of $<\kappa$ members $\left(\mathbb{W}_{i \in I} \mathrm{E}_{i}\right.$ where card $I<\kappa$), negation, and existential quantification over sets of less than λ variables $((\exists \mathrm{X}) \mathrm{E}$ with card $\mathrm{X}<\lambda$, or, in indexed form, $\exists \vec{x} E$ with card $I<\lambda)$. (I)
- Satisfaction $\boldsymbol{A} \models \mathrm{E}(\vec{a})$ defined as usual (\boldsymbol{A} is a \mathbf{v}-structure, $\mathrm{E} \in \mathscr{L}_{\infty \infty}(\mathbf{v})$, $\vec{a}:$ free variables $\left.(\mathrm{E}) \rightarrow A\right)$.

The languages $\mathscr{L}_{k \lambda}$

Projective classes as images of accessible functors

Motivation
Elementary, projective

Tuuri's
Interpolation
Theorem

- Here κ and λ are "extended cardinals" (∞ allowed) with $\omega \leq \lambda \leq \kappa \leq \infty$.
- For any vocabulary $\mathbf{v}, \mathscr{L}_{\kappa \lambda}(\mathbf{v}) \stackrel{\text { def }}{=}$ closure of all atomic \mathbf{v}-formulas under disjunctions of $<\kappa$ members $\left(\mathbb{W}_{i \in I} \mathrm{E}_{i}\right.$ where card $I<\kappa$), negation, and existential quantification over sets of less than λ variables $((\exists \mathrm{X}) \mathrm{E}$ with card $\mathrm{X}<\lambda$, or, in indexed form, $\exists \vec{x} E$ with card $I<\lambda)$. (I)
- Satisfaction $\boldsymbol{A} \models \mathrm{E}(\vec{a})$ defined as usual (\boldsymbol{A} is a \mathbf{v}-structure, $\mathrm{E} \in \mathscr{L}_{\infty \infty}(\mathbf{v})$, $\vec{a}:$ free variables $\left.(\mathrm{E}) \rightarrow A\right)$.
- $\mathscr{L}_{\kappa \lambda}$-elementary class:
$\mathcal{C}=\operatorname{Mod}_{\mathbf{v}}(\mathrm{E}) \stackrel{\text { def }}{=}\{\boldsymbol{A} \in \operatorname{Str}(\mathbf{v})|\boldsymbol{A}|=E\}$ where E is an $\mathscr{L}_{\kappa \lambda}(\mathbf{v})$-sentence.

(Relatively) projective classes

Projective
classes as images of accessible
functors

Motivation
Elementary, projective

Tuuri's
Interpolation
Theorem
Karttunen's
back-and-forth
systems

A class \mathcal{C} of \mathbf{v}-structures is

(Relatively) projective classes

Projective classes as images of accessible functors

Motivation
Elementary, projective

Tuuri's
Interpolation Theorem

A class \mathcal{C} of \mathbf{v}-structures is
■ projective over $\mathscr{L}_{\kappa \lambda}\left(\right.$ abbrev. $\left.\mathrm{PC}\left(\mathscr{L}_{\kappa \lambda}\right)\right)$ if there are a vocabulary $\mathbf{w} \supseteq \mathbf{v}$ and a sentence $\mathrm{E} \in \mathscr{L}_{\kappa \lambda}(\mathbf{w})$ such that $\mathcal{C}=\left\{\boldsymbol{M} \upharpoonright_{\mathbf{v}} \mid \boldsymbol{M} \in \operatorname{Mod}_{\mathbf{w}}(\mathrm{E})\right\}$.

- relatively projective over $\mathscr{L}_{\kappa \lambda}$ (abbrev. $\left.\operatorname{RPC}\left(\mathscr{L}_{\kappa \lambda}\right)\right)$ if there are a unary predicate symbol U , a vocabulary $\mathbf{w} \supseteq \mathbf{v} \cup\{\mathrm{U}\}$, and a sentence $\mathrm{E} \in \mathscr{L}_{\kappa \lambda}(\mathbf{w})$ such that $\mathcal{C}=\left\{\mathrm{U}^{\boldsymbol{M}} \upharpoonright_{\mathbf{v}} \mid \boldsymbol{M} \in \operatorname{Mod}_{\mathbf{w}}(\mathrm{E}), \mathrm{U}^{\boldsymbol{M}}\right.$ closed under $\left.\mathbf{v}_{\text {ope }}\right\}$.

(Relatively) projective classes

Projective classes as images of accessible functors

Motivation
Elementary, projective

Tuuri's
Interpolation Theorem

Karttunen's back-and-forth systems

A class \mathcal{C} of \mathbf{v}-structures is

- projective over $\mathscr{L}_{\kappa \lambda}\left(\right.$ abbrev. $\left.\mathrm{PC}\left(\mathscr{L}_{\kappa \lambda}\right)\right)$ if there are a vocabulary $\mathbf{w} \supseteq \mathbf{v}$ and a sentence $\mathrm{E} \in \mathscr{L}_{\kappa \lambda}(\mathbf{w})$ such that $\mathcal{C}=\left\{\boldsymbol{M} \upharpoonright_{\mathbf{v}} \mid \boldsymbol{M} \in \mathbf{M o d}_{\mathbf{w}}(\mathrm{E})\right\}$.
■ relatively projective over $\mathscr{L}_{\kappa \lambda}$ (abbrev. $\left.\operatorname{RPC}\left(\mathscr{L}_{\kappa \lambda}\right)\right)$ if there are a unary predicate symbol U , a vocabulary $\mathbf{w} \supseteq \mathbf{v} \cup\{\mathrm{U}\}$, and a sentence $\mathrm{E} \in \mathscr{L}_{\kappa \lambda}(\mathbf{w})$ such that $\mathcal{C}=\left\{\mathrm{U}^{\boldsymbol{M}} \upharpoonright_{\mathbf{v}} \mid \boldsymbol{M} \in \operatorname{Mod}_{\mathbf{w}}(\mathrm{E}), \mathrm{U}^{\boldsymbol{M}}\right.$ closed under $\left.\mathbf{v}_{\text {ope }}\right\}$.
- Hence $\mathrm{PC}\left(\mathscr{L}_{\kappa \lambda}\right) \subseteq \operatorname{RPC}\left(\mathscr{L}_{\kappa \lambda}\right)$. Note that $\mathrm{PC}\left(\mathscr{L}_{\omega \omega}\right) \varsubsetneqq \mathrm{RPC}\left(\mathscr{L}_{\omega \omega}\right)$ (even on finite structures).

(Relatively) projective classes

Projective classes as images of accessible functors

Motivation
Elementary, projective

Tuuri's
Interpolation Theorem

Karttunen's back-and-forth systems

A class \mathcal{C} of \mathbf{v}-structures is

- projective over $\mathscr{L}_{\kappa \lambda}\left(\right.$ abbrev. $\left.\mathrm{PC}\left(\mathscr{L}_{\kappa \lambda}\right)\right)$ if there are a vocabulary $\mathbf{w} \supseteq \mathbf{v}$ and a sentence $\mathrm{E} \in \mathscr{L}_{\kappa \lambda}(\mathbf{w})$ such that $\mathcal{C}=\left\{\boldsymbol{M} \upharpoonright_{\mathbf{v}} \mid \boldsymbol{M} \in \operatorname{Mod}_{\mathbf{w}}(\mathrm{E})\right\}$.
■ relatively projective over $\mathscr{L}_{\kappa \lambda}\left(\right.$ abbrev. $\left.\operatorname{RPC}\left(\mathscr{L}_{\kappa \lambda}\right)\right)$ if there are a unary predicate symbol U , a vocabulary $\mathbf{w} \supseteq \mathbf{v} \cup\{U\}$, and a sentence $\mathrm{E} \in \mathscr{L}_{\kappa \lambda}(\mathbf{w})$ such that $\mathcal{C}=\left\{\mathrm{U}^{\boldsymbol{M}} \upharpoonright_{\mathbf{v}} \mid \boldsymbol{M} \in \operatorname{Mod}_{\mathbf{w}}(\mathrm{E}), \mathrm{U}^{\boldsymbol{M}}\right.$ closed under $\left.\mathbf{v}_{\text {ope }}\right\}$.
- Hence $\operatorname{PC}\left(\mathscr{L}_{\kappa \lambda}\right) \subseteq \operatorname{RPC}\left(\mathscr{L}_{\kappa \lambda}\right)$. Note that $\mathrm{PC}\left(\mathscr{L}_{\omega \omega}\right) \varsubsetneqq \operatorname{RPC}\left(\mathscr{L}_{\omega \omega}\right)$ (even on finite structures).

Theorem (W 2021)

Let λ be an infinite cardinal. Then $\mathrm{PC}\left(\mathscr{L}_{\infty \lambda}\right)=\operatorname{RPC}\left(\mathscr{L}_{\infty \lambda}\right)$ (in full generality; no restrictions on vocabularies). Moreover, if λ is singular, then $\mathrm{PC}\left(\mathscr{L}_{\infty \lambda}\right)=\mathrm{PC}\left(\mathscr{L}_{\infty \lambda^{+}}\right)$.

Examples of "elementary" classes

Projective
classes as images of accessible
functors
■ Finiteness (of the ambiant universe) is $\mathscr{L}_{\omega_{1} \omega}$:

$$
W_{n<\omega}\left(\exists_{i<n} x_{i}\right)(\forall x) W_{i<n}\left(x=x_{i}\right)
$$

Examples of "elementary" classes

Projective
classes as images of accessible functors

Motivation
Elementary, projective

■ Finiteness (of the ambiant universe) is $\mathscr{L}_{\omega_{1} \omega}$:

$$
W_{n<\omega}\left(\exists_{i<n} x_{i}\right)(\forall x) W_{i<n}\left(x=x_{i}\right)
$$

■ Well-foundedness (of the ambiant poset) is $\mathscr{L}_{\omega_{1} \omega_{1}}$:

$$
\left(\forall_{n<\omega} x_{n}\right) W_{n<\omega}\left(x_{n+1} \nless x_{n}\right) .
$$

Examples of "elementary" classes

Projective
classes as images of accessible functors

Motivation
Elementary, projective

Tuuri's
Interpolation

Theorem

■ Finiteness (of the ambiant universe) is $\mathscr{L}_{\omega_{1} \omega}$:

$$
W_{n<\omega}\left(\exists_{i<n} x_{i}\right)(\forall x) W_{i<n}\left(x=x_{i}\right)
$$

■ Well-foundedness (of the ambiant poset) is $\mathscr{L}_{\omega_{1} \omega_{1}}$:

$$
\left(\forall_{n<\omega} x_{n}\right) W_{n<\omega}\left(x_{n+1} \nless x_{n}\right) .
$$

■ Torsion-freeness (of a group) is $\mathscr{L}_{\omega_{1} \omega}$:

$$
M_{0<n<\omega}(\forall x)\left(x^{n}=1 \Rightarrow x=1\right)
$$

An example of RPC (that turns out to be PC)

Projective
classes as images of accessible functors

■ $\mathcal{C} \stackrel{\text { def }}{=}\{\boldsymbol{M}=(M, \cdot, 1)$ monoid $\mid(\exists \boldsymbol{G}$ group $)(\boldsymbol{M} \hookrightarrow \boldsymbol{G})\}$ is, by definition, $\operatorname{RPC}\left(\mathscr{L}_{\omega \omega}\right)$.

Motivation
Elementary, projective

An example of RPC (that turns out to be PC)

Projective
classes as images of accessible functors

■ $\mathcal{C} \stackrel{\text { def }}{=}\{\boldsymbol{M}=(M, \cdot, 1)$ monoid $\mid(\exists \boldsymbol{G}$ group $)(\boldsymbol{M} \hookrightarrow \boldsymbol{G})\}$ is, by definition, $\operatorname{RPC}\left(\mathscr{L}_{\omega \omega}\right)$.
■ Here $\mathbf{v}=(\underset{(2)}{\cdot}, 1(0), \mathbf{w}=(\cdot, 1, \mathrm{U})$ for a unary predicate U , the required E states that the given \mathbf{w}-structure is a group (so "U ${ }^{G}$ is \mathbf{v}-closed in \boldsymbol{G} " means that U interprets a submonoid of $\boldsymbol{G})$.

An example of RPC (that turns out to be PC)

Projective classes as images of accessible functors

Motivation
Elementary, projective

Tuuri's

- $\mathcal{C} \stackrel{\text { def }}{=}\{\boldsymbol{M}=(M, \cdot, 1)$ monoid $\mid(\exists \boldsymbol{G}$ group $)(\boldsymbol{M} \hookrightarrow \boldsymbol{G})\}$ is, by definition, $\operatorname{RPC}\left(\mathscr{L}_{\omega \omega}\right)$.
■ Here $\mathbf{v}=(\underset{(2)}{(2)}(0), \mathbf{w}=(\cdot, 1, \mathrm{U})$ for a unary predicate U , the required E states that the given \mathbf{w}-structure is a group (so "U ${ }^{G}$ is \mathbf{v}-closed in \boldsymbol{G} " means that U interprets a submonoid of \boldsymbol{G}).
- By Mal'cev's work, $\mathcal{C}=\left\{\boldsymbol{M} \mid(\forall n<\omega)\left(\boldsymbol{M} \models \mathrm{E}_{n}\right)\right\}$ for an effectively constructed sequence $\left(\mathrm{E}_{n} \mid n<\omega\right)$ of quasi-identities over \mathbf{v}, not reducible to any finite subset.

An example of RPC (that turns out to be PC)

Projective classes as images of accessible functors

Motivation
Elementary, projective

Tuuri's
Interpolation Theorem

- $\mathcal{C} \stackrel{\text { def }}{=}\{\boldsymbol{M}=(M, \cdot, 1)$ monoid $\mid(\exists \boldsymbol{G}$ group $)(\boldsymbol{M} \hookrightarrow \boldsymbol{G})\}$ is, by definition, $\operatorname{RPC}\left(\mathscr{L}_{\omega \omega}\right)$.
■ Here $\mathbf{v}=\left(\underset{(2)}{\cdot}, \frac{1}{(0)}\right), \mathbf{w}=(\cdot, 1, \mathrm{U})$ for a unary predicate U , the required E states that the given \mathbf{w}-structure is a group (so "U ${ }^{\boldsymbol{G}}$ is \mathbf{v}-closed in \boldsymbol{G} " means that U interprets a submonoid of \boldsymbol{G}).
- By Mal'cev's work, $\mathcal{C}=\left\{\boldsymbol{M} \mid(\forall n<\omega)\left(\boldsymbol{M} \mid=\mathrm{E}_{n}\right)\right\}$ for an effectively constructed sequence $\left(\mathrm{E}_{n} \mid n<\omega\right)$ of quasi-identities over \mathbf{v}, not reducible to any finite subset.
- Nonetheless,
$\mathcal{C}=\{\boldsymbol{M} \mid(\exists$ group structure \boldsymbol{G} on $\boldsymbol{M})(\exists f: \boldsymbol{M} \hookrightarrow \boldsymbol{G})\}$ is PC($\left.\mathscr{L}_{\omega \omega}\right)$.

Other examples

Projective
classes as images of accessible functors

- For a unital ring $R, \operatorname{Id}_{\mathrm{c}} R \stackrel{\text { def }}{=}(\vee, 0)$-semilattice of all finitely generated two-sided ideals of R. Let $\mathcal{C} \stackrel{\text { def }}{=}\left\{\operatorname{ld}_{\mathrm{c}} R \mid R\right.$ unital ring $\}$ (up to isomorphism).

Other examples

Projective
classes as images of accessible functors

- For a unital ring $R, \operatorname{Id}_{\mathrm{c}} R \stackrel{\text { def }}{=}(\vee, 0)$-semilattice of all finitely generated two-sided ideals of R. Let $\mathcal{C} \stackrel{\text { def }}{=}\left\{\operatorname{ld}_{\mathrm{c}} R \mid R\right.$ unital ring $\}$ (up to isomorphism).
- For an Abelian ℓ-group $G, \operatorname{Id}_{c} G \stackrel{\text { def }}{=}$ lattice of all principal ℓ-ideals of G. Let $\mathcal{C} \stackrel{\text { def }}{=}\left\{\operatorname{Id}_{c} G \mid G\right.$ Abelian ℓ-group $\}$.

Other examples

Projective classes as images of accessible functors

- For a unital ring $R, \operatorname{Id}_{\mathrm{c}} R \stackrel{\text { def }}{=}(V, 0)$-semilattice of all finitely generated two-sided ideals of R. Let $\mathcal{C} \stackrel{\text { def }}{=}\left\{\operatorname{ld}_{\mathrm{c}} R \mid R\right.$ unital ring $\}$ (up to isomorphism).
- For an Abelian ℓ-group $G, \operatorname{Id}_{c} G \stackrel{\text { def }}{=}$ lattice of all principal ℓ-ideals of G. Let $\mathcal{C} \stackrel{\text { def }}{=}\left\{\operatorname{ld}_{\mathrm{c}} G \mid G\right.$ Abelian ℓ-group $\}$.
- For a commutative unital ring $A, \Phi(A) \stackrel{\text { def }}{=}$ Stone dual of the real spectrum of A (it is a bounded distributive lattice). Let $\mathcal{C} \stackrel{\text { def }}{=}\{\Phi(A) \mid A$ commutative unital ring $\}$.

Other examples

Projective classes as images of accessible functors

Motivation
Elementary, projective

Tuuri's
Interpolation Theorem

Karttunen's

- For a unital ring $R, \operatorname{Id}_{\mathrm{c}} R \stackrel{\text { def }}{=}(\vee, 0)$-semilattice of all finitely generated two-sided ideals of R. Let $\mathcal{C} \stackrel{\text { def }}{=}\left\{\operatorname{ld}_{\mathrm{c}} R \mid R\right.$ unital ring $\}$ (up to isomorphism).
- For an Abelian ℓ-group $G, \operatorname{Id}_{c} G \stackrel{\text { def }}{=}$ lattice of all principal ℓ-ideals of G. Let $\mathcal{C} \stackrel{\text { def }}{=}\left\{\operatorname{Id}_{c} G \mid G\right.$ Abelian ℓ-group $\}$.
- For a commutative unital ring $A, \Phi(A) \stackrel{\text { def }}{=}$ Stone dual of the real spectrum of A (it is a bounded distributive lattice). Let $\mathcal{C} \stackrel{\text { def }}{=}\{\Phi(A) \mid A$ commutative unital ring $\}$.
- All those classes are $\operatorname{PC}\left(\mathscr{L}_{\omega_{1} \omega}\right)$ (remember the "from \mathcal{C} to $\mathcal{C} \Gamma_{\mathbf{u}}{ }^{\prime \prime}$ scheme).

Other examples

Projective classes as images of accessible functors

Motivation
Elementary, projective

Tuuri's
Interpolation Theorem

Karttunen's back-and-forth systems

- For a unital ring $R, \operatorname{Id}_{\mathrm{c}} R \stackrel{\text { def }}{=}(\vee, 0)$-semilattice of all finitely generated two-sided ideals of R. Let $\mathcal{C} \stackrel{\text { def }}{=}\left\{\operatorname{ld}_{\mathrm{c}} R \mid R\right.$ unital ring $\}$ (up to isomorphism).
- For an Abelian ℓ-group $G, \operatorname{Id}_{c} G \stackrel{\text { def }}{=}$ lattice of all principal ℓ-ideals of G. Let $\mathcal{C} \stackrel{\text { def }}{=}\left\{\operatorname{Id}_{c} G \mid G\right.$ Abelian ℓ-group $\}$.
- For a commutative unital ring $A, \Phi(A) \stackrel{\text { def }}{=}$ Stone dual of the real spectrum of A (it is a bounded distributive lattice). Let $\mathcal{C} \stackrel{\text { def }}{=}\{\Phi(A) \mid A$ commutative unital ring $\}$.
- All those classes are $\operatorname{PC}\left(\mathscr{L}_{\omega_{1} \omega}\right)$ (remember the "from \mathcal{C} to $\mathcal{C} \upharpoonright_{u}{ }^{\prime \prime}$ scheme).
- Observe that they are all defined as images of functors.

Other examples

Projective classes as images of accessible functors

Motivation
Elementary, projective

Tuuri's
Interpolation Theorem

Karttunen's back-and-forth systems

- For a unital ring $R, \operatorname{Id}_{\mathrm{c}} R \stackrel{\text { def }}{=}(\vee, 0)$-semilattice of all finitely generated two-sided ideals of R. Let $\mathcal{C} \stackrel{\text { def }}{=}\left\{\operatorname{ld}_{\mathrm{c}} R \mid R\right.$ unital ring $\}$ (up to isomorphism).
- For an Abelian ℓ-group $G, \operatorname{Id}_{c} G \stackrel{\text { def }}{=}$ lattice of all principal ℓ-ideals of G. Let $\mathcal{C} \stackrel{\text { def }}{=}\left\{\operatorname{Id}_{c} G \mid G\right.$ Abelian ℓ-group $\}$.
- For a commutative unital ring $A, \Phi(A) \stackrel{\text { def }}{=}$ Stone dual of the real spectrum of A (it is a bounded distributive lattice). Let $\mathcal{C} \stackrel{\text { def }}{=}\{\Phi(A) \mid A$ commutative unital ring $\}$.
- All those classes are $\operatorname{PC}\left(\mathscr{L}_{\omega_{1} \omega}\right)$ (remember the "from \mathcal{C} to $\mathcal{C} \upharpoonright_{u}{ }^{\prime \prime}$ scheme).
- Observe that they are all defined as images of functors.
- We will see that none of those classes is co-PC($\left.\mathscr{L}_{\infty \infty}\right)$ (i.e., complement of a $\mathrm{PC}\left(\mathscr{L}_{\infty \infty}\right)$).

Accessible categories and functors

Projective
classes as
images of accessible
functors
Let λ be a regular cardinal.

Motivation
Elementary, projective

Tuuri's
Interpolation
Theorem
Karttunen's
back-and-forth
systems

Accessible categories and functors

Projective
classes as images of accessible functors

Let λ be a regular cardinal.

- A category \mathcal{S} is λ-accessible if it has all λ-directed colimits and it has a λ-directed colimit-dense subset \mathcal{S}^{\dagger}, consisting of λ-presentable objects.

Accessible categories and functors

Projective
classes as images of accessible functors

Let λ be a regular cardinal.

- A category \mathcal{S} is λ-accessible if it has all λ-directed colimits and it has a λ-directed colimit-dense subset \mathcal{S}^{\dagger}, consisting of λ-presentable objects.
■ One can then take $\mathcal{S}^{\dagger}=\operatorname{Pres}_{\lambda} \mathcal{S}$, "the" set of all λ-presentable objects in \mathcal{S} (up to isomorphism).

Accessible categories and functors

Projective classes as images of accessible functors

Let λ be a regular cardinal.

- A category \mathcal{S} is λ-accessible if it has all λ-directed colimits and it has a λ-directed colimit-dense subset \mathcal{S}^{\dagger}, consisting of λ-presentable objects.
■ One can then take $\mathcal{S}^{\dagger}=\operatorname{Pres}_{\lambda} \mathcal{S}$, "the" set of all λ-presentable objects in \mathcal{S} (up to isomorphism).
■ A functor $\Phi: \mathcal{S} \rightarrow \mathcal{T}$ is λ-continuous if it preserves λ-directed colimits. If \mathcal{S} and \mathcal{T} are both λ-accessible categories, we say that Φ is a λ-accessible functor.

Accessible categories and functors

Projective classes as images of accessible functors

Motivation

Let λ be a regular cardinal.

- A category \mathcal{S} is λ-accessible if it has all λ-directed colimits and it has a λ-directed colimit-dense subset \mathcal{S}^{\dagger}, consisting of λ-presentable objects.
■ One can then take $\mathcal{S}^{\dagger}=\operatorname{Pres}_{\lambda} \mathcal{S}$, "the" set of all λ-presentable objects in \mathcal{S} (up to isomorphism).
■ A functor $\Phi: \mathcal{S} \rightarrow \mathcal{T}$ is λ-continuous if it preserves λ-directed colimits. If \mathcal{S} and \mathcal{T} are both λ-accessible categories, we say that Φ is a λ-accessible functor.
■ There are many examples: $\operatorname{Str}(\mathbf{v})$, quasivarieties...

PC versus accessible

Projective classes as images of accessible functors

Say that a vocabulary \mathbf{v} is λ-ary if every symbol in \mathbf{v} has arity $<\lambda$.

Motivation
Elementary, projective

Tuuri's
Interpolation
Theorem
Karttunen's

PC versus accessible

Projective classes as images of accessible functors

Motivation
Elementary, projective

Tuuri's
Interpolation

Theorem

Say that a vocabulary \mathbf{v} is λ-ary if every symbol in \mathbf{v} has arity $<\lambda$.

Theorem (W 2021)

Let λ be a regular cardinal, let \mathbf{v} be a λ-ary vocabulary, and let \mathcal{C} be a class of v-structures. Then TFAE:
$1 \mathcal{C}$ is $\mathrm{PC}\left(\mathscr{L}_{\infty \lambda}\right)$ - (resp., $\left.\operatorname{RPC}\left(\mathscr{L}_{\infty \lambda}\right)\right)$-definable.
2 There are a λ-accessible category \mathcal{S} and a λ-continuous functor (that can then be taken faithful) $\Phi: \mathcal{S} \rightarrow \mathbf{S t r}(\mathbf{v})$ with $\Phi(\delta)=C$.

PC versus accessible

Projective classes as images of accessible functors

Motivation
Elementary, projective

Tuuri's
Interpolation
Theorem
Karttunen's

Say that a vocabulary \mathbf{v} is λ-ary if every symbol in \mathbf{v} has arity $<\lambda$.

Theorem (W 2021)

Let λ be a regular cardinal, let \mathbf{v} be a λ-ary vocabulary, and let \mathcal{C} be a class of \mathbf{v}-structures. Then TFAE:
$1 \mathcal{C}$ is $\operatorname{PC}\left(\mathscr{L}_{\infty \lambda}\right)$ - (resp., $\left.\operatorname{RPC}\left(\mathscr{L}_{\infty \lambda}\right)\right)$-definable.
2 There are a λ-accessible category \mathcal{S} and a λ-continuous functor (that can then be taken faithful) $\Phi: \mathcal{S} \rightarrow \boldsymbol{\operatorname { S t r }}(\mathbf{v})$ with $\Phi(\delta)=C$.

- Recall that $\Phi(\mathcal{S}) \stackrel{\text { def }}{=}\{\boldsymbol{M} \mid(\exists S \in O b \mathcal{S})(\boldsymbol{M} \cong \Phi(S))\}$.

PC versus accessible

Projective classes as images of accessible functors

Motivation
Elementary, projective

Tuuri's
Interpolation Theorem

Karttunen's back-and-forth systems

Say that a vocabulary \mathbf{v} is λ-ary if every symbol in \mathbf{v} has arity $<\lambda$.

Theorem (W 2021)

Let λ be a regular cardinal, let \mathbf{v} be a λ-ary vocabulary, and let \mathcal{C} be a class of \mathbf{v}-structures. Then TFAE:
$1 \mathcal{C}$ is $\operatorname{PC}\left(\mathscr{L}_{\infty \lambda}\right)$ - (resp., $\left.\operatorname{RPC}\left(\mathscr{L}_{\infty \lambda}\right)\right)$-definable.
2 There are a λ-accessible category \mathcal{S} and a λ-continuous functor (that can then be taken faithful) $\Phi: \mathcal{S} \rightarrow \mathbf{S t r}(\mathbf{v})$ with $\Phi(\mathcal{S})=\mathcal{C}$.

- Recall that $\Phi(\mathcal{S}) \stackrel{\text { def }}{=}\{\boldsymbol{M} \mid(\exists S \in O b S)(\boldsymbol{M} \cong \Phi(S))\}$.
- The assumption that \mathbf{v} be λ-ary cannot be dispensed with (counterexamples for both directions, involving idempotence and emptiness, respectively).

Infinitely deep languages

Projective classes as images of accessible functors

Motivation

Elementary, projective

Tuuri's
Interpolation Theorem

■ Idea: extend $\mathscr{L}_{\kappa \lambda}$ in such a way that infinite alternations of quantifiers be enabled.

Infinitely deep languages

Projective classes as images of accessible functors

Motivation
Elementary, projective

■ Idea: extend $\mathscr{L}_{\kappa \lambda}$ in such a way that infinite alternations of quantifiers be enabled.

- Game formula (of Gale-Stewart kind): $\operatorname{\partial \vec {x}} \mathrm{E}(\overrightarrow{\mathrm{x}})$ is $\left(\forall x_{0}\right)\left(\exists x_{1}\right)\left(\forall x_{2}\right) \cdots \mathrm{E}\left(x_{0}, x_{1}, x_{2}, \ldots\right)$.

Infinitely deep languages

Projective classes as images of accessible functors

■ Idea: extend $\mathscr{L}_{\kappa \lambda}$ in such a way that infinite alternations of quantifiers be enabled.

- Game formula (of Gale-Stewart kind): $\operatorname{\partial \vec {x}} \mathrm{E}(\overrightarrow{\mathrm{x}})$ is $\left(\forall x_{0}\right)\left(\exists x_{1}\right)\left(\forall x_{2}\right) \cdots \mathrm{E}\left(x_{0}, x_{1}, x_{2}, \ldots\right)$.
- Can be interpreted via a game with two players, \forall (who plays all $x_{2 n}$) and \exists (who plays all $x_{2 n+1}$). Hence \forall (resp., \exists) wins iff $\mathrm{E}\left(x_{0}, x_{1}, x_{2}, \ldots\right)$ (resp., $\neg \mathrm{E}\left(x_{0}, x_{1}, x_{2}, \ldots\right)$).

Infinitely deep languages

Projective classes as images of accessible functors

■ Idea: extend $\mathscr{L}_{\kappa \lambda}$ in such a way that infinite alternations of quantifiers be enabled.

- Game formula (of Gale-Stewart kind): $\partial \vec{x} \mathrm{E}(\overrightarrow{\mathrm{x}})$ is $\left(\forall x_{0}\right)\left(\exists x_{1}\right)\left(\forall x_{2}\right) \cdots \mathrm{E}\left(x_{0}, x_{1}, x_{2}, \ldots\right)$.
- Can be interpreted via a game with two players, \forall (who plays all $x_{2 n}$) and \exists (who plays all $x_{2 n+1}$). Hence \forall (resp., \exists) wins iff $\mathrm{E}\left(x_{0}, x_{1}, x_{2}, \ldots\right)$ (resp., $\neg \mathrm{E}\left(x_{0}, x_{1}, x_{2}, \ldots\right)$).
■ The game above has "clock" ω.

Infinitely deep languages

Projective classes as images of accessible functors

Motivation
Elementary, projective

Tuuri's
Interpolation Theorem

Karttunen's back-and-forth systems

■ Idea: extend $\mathscr{L}_{\kappa \lambda}$ in such a way that infinite alternations of quantifiers be enabled.

- Game formula (of Gale-Stewart kind): $\partial \vec{x} \mathrm{E}(\overrightarrow{\mathrm{x}})$ is $\left(\forall x_{0}\right)\left(\exists x_{1}\right)\left(\forall x_{2}\right) \cdots \mathrm{E}\left(x_{0}, x_{1}, x_{2}, \ldots\right)$.
- Can be interpreted via a game with two players, \forall (who plays all $x_{2 n}$) and \exists (who plays all $x_{2 n+1}$). Hence \forall (resp., \exists) wins iff $\mathrm{E}\left(x_{0}, x_{1}, x_{2}, \ldots\right)$ (resp., $\left.\neg \mathrm{E}\left(x_{0}, x_{1}, x_{2}, \ldots\right)\right)$.
■ The game above has "clock" ω.
- The "infinitely deep language" $\mathscr{M}_{\kappa \lambda}(\mathbf{v})$ contains more general formulas than the $\partial \vec{x} \mathrm{E}(\overrightarrow{\mathrm{x}})$ above, now clocked by posets which are simultaneously trees and meet-semilattices, in which every node has $<\kappa$ upper covers and every branch has length a successor $<\lambda$.

Infinitely deep languages

Projective classes as images of accessible functors

Motivation
Elementary, projective

Tuuri's
Interpolation Theorem

Karttunen's back-and-forth systems

■ Idea: extend $\mathscr{L}_{\kappa \lambda}$ in such a way that infinite alternations of quantifiers be enabled.

- Game formula (of Gale-Stewart kind): $\partial \vec{x} \mathrm{E}(\overrightarrow{\mathrm{x}})$ is $\left(\forall x_{0}\right)\left(\exists x_{1}\right)\left(\forall x_{2}\right) \cdots \mathrm{E}\left(x_{0}, x_{1}, x_{2}, \ldots\right)$.
■ Can be interpreted via a game with two players, \forall (who plays all $x_{2 n}$) and \exists (who plays all $x_{2 n+1}$). Hence \forall (resp., \exists) wins iff $\mathrm{E}\left(x_{0}, x_{1}, x_{2}, \ldots\right)$ (resp., $\left.\neg \mathrm{E}\left(x_{0}, x_{1}, x_{2}, \ldots\right)\right)$.
■ The game above has "clock" ω.
■ The "infinitely deep language" $\mathscr{M}_{\kappa \lambda}(\mathbf{v})$ contains more general formulas than the $\partial \vec{x} \mathrm{E}(\overrightarrow{\mathrm{x}})$ above, now clocked by posets which are simultaneously trees and meet-semilattices, in which every node has $<\kappa$ upper covers and every branch has length a successor $<\lambda$.
- Satisfaction of an $\mathscr{M}_{\kappa \lambda}(\mathbf{v})$-statement is expressed via the existence of a winning strategy in the associated game.

Tuuri's Interpolation Theorem

Projective
classes as images of accessible functors

Motivation
Elementary, projective

Tuuri's
Interpolation Theorem

Karttunen's back-and-forth systems

Theorem (Tuuri 1992)

Let κ be a regular cardinal, let \mathbf{v} be a κ-ary vocabulary, set $\lambda \stackrel{\text { def }}{=} \sup \left\{\kappa^{\alpha} \mid \alpha<\kappa\right\}$, and let E and F be $\mathscr{L}_{\kappa^{+}}(\mathbf{v})$-sentences such that the conjunction $\mathrm{E} \wedge \mathrm{F}$ has no v -model. Then there exists an $\mathscr{M}_{\lambda^{+}}(\mathbf{v})$-sentence G, with vocabulary the intersection of the vocabularies of E and F, such that $\models(E \Rightarrow G)$ and $\vDash(F \Rightarrow \sim G)$.

Tuuri's Interpolation Theorem

Projective classes as images of accessible functors

Motivation
Elementary, projective

Tuuri's
Interpolation Theorem

Karttunen's
back-and-forth systems

Theorem (Tuuri 1992)

Let κ be a regular cardinal, let \mathbf{v} be a κ-ary vocabulary, set $\lambda \stackrel{\text { def }}{=} \sup \left\{\kappa^{\alpha} \mid \alpha<\kappa\right\}$, and let E and F be $\mathscr{L}_{\kappa^{+} \kappa}(\mathbf{v})$-sentences such that the conjunction $\mathrm{E} \wedge \mathrm{F}$ has no \mathbf{v}-model. Then there exists an $\mathscr{M}_{\lambda^{+}}(\mathbf{v})$-sentence G, with vocabulary the intersection of the vocabularies of E and F, such that $\models(E \Rightarrow G)$ and $\vDash(F \Rightarrow \sim G)$.

- Here, $\sim G$ denotes the sentence obtained by interchanging \mathbb{V} and \mathbb{M}, \exists and \forall, A and $\neg \mathrm{A}$ in the expression of G by a tree-clocked game; it implies the usual negation $\neg \mathrm{G}$ (which, however, is no longer an $\mathscr{M}_{\lambda^{+} \lambda^{-}}$-sentence).

Tuuri's Interpolation Theorem

Projective
classes as
images of accessible functors

Motivation
Elementary, projective

Tuuri's
Interpolation Theorem

Karttunen's back-and-forth systems

Theorem (Tuuri 1992)

Let κ be a regular cardinal, let \mathbf{v} be a κ-ary vocabulary, set $\lambda \stackrel{\text { def }}{=} \sup \left\{\kappa^{\alpha} \mid \alpha<\kappa\right\}$, and let E and F be $\mathscr{L}_{\kappa^{+} \kappa}(\mathbf{v})$-sentences such that the conjunction $\mathrm{E} \wedge \mathrm{F}$ has no \mathbf{v}-model. Then there exists an $\mathscr{M}_{\lambda^{+}}(\mathbf{v})$-sentence G, with vocabulary the intersection of the vocabularies of E and F, such that $\models(E \Rightarrow G)$ and $\vDash(F \Rightarrow \sim G)$.

■ Here, $\sim G$ denotes the sentence obtained by interchanging \mathbb{V} and \mathbb{A}, \exists and \forall, A and $\neg \mathrm{A}$ in the expression of G by a tree-clocked game; it implies the usual negation $\neg G$ (which, however, is no longer an $\mathscr{M}_{\lambda^{+} \lambda^{-}}$-sentence).
■ By a 1971 counterexample due to Malitz, $\mathscr{M}_{\lambda^{+} \lambda}$ cannot be replaced by $\mathscr{L}_{\infty \infty}$ in the statement of Guuri's, Theorem.

Projective and co-projective

Projective classes as images of accessible functors

Motivation
Elementary, projective

Tuuri's
Interpolation Theorem

Corollary

Let \mathbf{v} be a vocabulary. Then for all classes \mathcal{A} and \mathcal{B} of v-structures, if \mathcal{A} is $\operatorname{PC}\left(\mathscr{L}_{\infty \infty}\right), \mathcal{B}$ is co- $\mathrm{PC}\left(\mathscr{L}_{\infty \infty}\right)$, and $\mathcal{A} \subseteq \mathcal{B}$, then there exists an $\mathscr{M}_{\infty \infty}(\mathrm{V})$-sentence G such that $\mathcal{A} \subseteq \operatorname{Mod}_{\mathrm{v}}(\mathrm{G}) \subseteq \mathcal{B}$.

Projective and co-projective

Projective
classes as images of accessible functors

Motivation
Elementary, projective

Tuuri's
Interpolation Theorem

Karttunen's back-and-forth systems

Corollary

Let \mathbf{v} be a vocabulary. Then for all classes \mathcal{A} and \mathcal{B} of v-structures, if \mathcal{A} is $\operatorname{PC}\left(\mathscr{L}_{\infty \infty}\right), \mathcal{B}$ is co- $\mathrm{PC}\left(\mathscr{L}_{\infty \infty}\right)$, and $\mathcal{A} \subseteq \mathcal{B}$, then there exists an $\mathscr{M}_{\infty \infty}(\mathrm{V})$-sentence G such that $\mathcal{A} \subseteq \operatorname{Mod}_{\mathrm{v}}(\mathrm{G}) \subseteq \mathcal{B}$.

Corollary

In order to prove that a $\mathrm{PC}\left(\mathscr{L}_{\infty \infty}\right)$ class \mathcal{C} of \boldsymbol{v}-structures is not $\operatorname{co}-\mathrm{PC}\left(\mathscr{L}_{\infty \infty}\right)$, it suffices to prove that \mathcal{C} is not $\mathscr{M}_{\infty \infty}(\mathrm{v})$-definable.

Projective and co-projective

Projective classes as images of accessible functors

Motivation
Elementary, projective

Tuuri's
Interpolation Theorem

Karttunen's back-and-forth systems

Corollary

Let \mathbf{v} be a vocabulary. Then for all classes \mathcal{A} and \mathcal{B} of v-structures, if \mathcal{A} is $\mathrm{PC}\left(\mathscr{L}_{\infty \infty}\right), \mathcal{B}$ is $\operatorname{co-} \mathrm{PC}\left(\mathscr{L}_{\infty \infty}\right)$, and $\mathcal{A} \subseteq \mathcal{B}$, then there exists an $\mathscr{M}_{\infty \infty}(\mathbf{v})$-sentence G such that $\mathcal{A} \subseteq \operatorname{Mod}_{\mathrm{v}}(\mathrm{G}) \subseteq \mathcal{B}$.

Corollary

In order to prove that a $\mathrm{PC}\left(\mathscr{L}_{\infty \infty}\right)$ class \mathcal{C} of \boldsymbol{v}-structures is not $\operatorname{co}-\mathrm{PC}\left(\mathscr{L}_{\infty \infty}\right)$, it suffices to prove that \mathcal{C} is not $\mathscr{M}_{\infty \infty}(\mathrm{v})$-definable.

But then, what is the advantage of $\mathscr{M}_{\infty \infty}$-definable over $\mathrm{PC}\left(\mathscr{L}_{\infty \infty}\right)$-definable or co-PC($\left.\mathscr{L}_{\infty \infty}\right)$-definable?

That's back-and-forth!

Projective
classes as images of accessible functors

■ There are several non-equivalent definitions of back-and-forth between models (extended to categorical model theory by Beke and Rosický in 2018).

That's back-and-forth!

Projective classes as images of accessible functors

■ There are several non-equivalent definitions of back-and-forth between models (extended to categorical model theory by Beke and Rosický in 2018).

Definition (Karttunen 1979)

For a regular cardinal λ, a λ-back-and-forth system between models \boldsymbol{M} and \boldsymbol{N} over a vocabulary \mathbf{v} consists of a poset (\mathcal{F}, \unlhd), together with a function $f \mapsto \bar{f}$ with domain \mathcal{F}, such that each $\bar{f}: \mathbf{d}(f) \xlongequal{\rightrightarrows} \mathbf{r}(f)$ with $\mathbf{d}(f) \leqslant \boldsymbol{M}$ and $\mathbf{r}(f) \leqslant \boldsymbol{N}$, and the following conditions hold:
$1 f \unlhd g$ implies $\bar{f} \subseteq \bar{g}$;
$2(\mathcal{F}, \unlhd)$ is λ-inductive;
3 whenever $f \in \mathcal{F}$ and $x \in M$ (resp., $y \in N$), there is $g \in \mathcal{F}$ such that $f \subseteq g$ and $x \in \mathbf{d}(g)$ (resp., $y \in \mathbf{r}(g)$).
We then write $\boldsymbol{M} \leftrightarrows{ }_{\lambda} \boldsymbol{N}$.

$\mathscr{M}_{\infty \lambda}$ versus back-and-forth

Projective
classes as images of accessible functors

Motivation
Elementary, projective

Tuuri's
Interpolation
Theorem

Theorem (Karttunen 1979)

Let λ be a regular cardinal and let \mathbf{M} and \boldsymbol{N} be structures over a vocabulary \mathbf{v}. If $\boldsymbol{M} \leftrightarrows{ }_{\lambda} \boldsymbol{N}$, then \boldsymbol{M} and \boldsymbol{N} satisfy the same $\mathscr{M}_{\infty \lambda}(\mathbf{v})$-sentences.

$\mathscr{M}_{\infty \lambda}$ versus back-and-forth

Projective
classes as images of accessible functors

Motivation
Elementary, projective

Tuuri's
Interpolation
Theorem
Karttunen's back-and-forth systems

Theorem (Karttunen 1979)

Let λ be a regular cardinal and let \mathbf{M} and \boldsymbol{N} be structures over a vocabulary \mathbf{v}. If $\boldsymbol{M} \leftrightarrows{ }_{\lambda} \boldsymbol{N}$, then \boldsymbol{M} and \boldsymbol{N} satisfy the same $\mathscr{M}_{\infty \lambda}(\mathbf{v})$-sentences.

- Extended by Karttunen to the even more general languages $\mathscr{N}_{\infty \lambda}$.

$\mathscr{M}_{\infty \lambda}$ versus back-and-forth

Projective
classes as images of accessible functors

Motivation
Elementary, projective

Tuuri's
Interpolation
Theorem
Karttunen's back-and-forth systems

Theorem (Karttunen 1979)

Let λ be a regular cardinal and let \mathbf{M} and \boldsymbol{N} be structures over a vocabulary v. If $\boldsymbol{M} \leftrightarrows{ }_{\lambda} \boldsymbol{N}$, then \boldsymbol{M} and \boldsymbol{N} satisfy the same $\mathscr{M}_{\infty \lambda}(\mathbf{v})$-sentences.

■ Extended by Karttunen to the even more general languages $\mathscr{N}_{\infty \lambda}$.
■ The syntax for $\mathscr{N}_{\infty \lambda}$ is far more complex than for $\mathscr{M}_{\infty \lambda}$, the semantics are even trickier (not unique!).

Establishing intractability

Projective

Motivation
Elementary,
projective
Tuuri's
Interpolation
Theorem
Karttunen's back-and-forth systems
classes as images of accessible functors

- By the above,

Establishing intractability

Projective
classes as
images of accessible functors

Motivation
Elementary, projective

Tuuri's
Interpolation
Theorem
Karttunen's

- By the above,

Proposition

In order to prove that a $\mathrm{PC}\left(\mathscr{L}_{\infty \infty}\right)$ class \mathcal{C} of \mathbf{v}-structures is not $\operatorname{co-} \mathrm{PC}\left(\mathscr{L}_{\infty \infty}\right)$, it suffices to prove that it is not closed under $\leftrightarrows{ }_{\lambda}$ for a suitable regular cardinal λ.

Establishing intractability

Projective
classes as images of accessible functors

Motivation
Elementary, projective

Tuuri's Interpolation Theorem

- By the above,

Proposition

In order to prove that a $\mathrm{PC}\left(\mathscr{L}_{\infty \infty}\right)$ class \mathcal{C} of \mathbf{v}-structures is not $\operatorname{co-}-\mathrm{PC}\left(\mathscr{L}_{\infty \infty}\right)$, it suffices to prove that it is not closed under $\leftrightarrows_{\lambda}$ for a suitable regular cardinal λ.

- Applies to earlier introduced examples Id_{c} (unital rings), Id_{c} (Abelian ℓ-groups), duals of real spectra of commutative unital rings, and many others: each of those classes fails to be closed under a suitable $\leftrightarrows \lambda$.

Establishing intractability

Projective classes as images of accessible functors

Motivation
Elementary, projective

Tuuri's
Interpolation Theorem

Karttunen's back-and-forth systems

- By the above,

Proposition

In order to prove that a $\mathrm{PC}\left(\mathscr{L}_{\infty \infty}\right)$ class \mathcal{C} of \mathbf{v}-structures is not $\operatorname{co-}-\mathrm{PC}\left(\mathscr{L}_{\infty \infty}\right)$, it suffices to prove that it is not closed under $\leftrightarrows_{\lambda}$ for a suitable regular cardinal λ.

■ Applies to earlier introduced examples Id_{c} (unital rings), Id_{c} (Abelian ℓ-groups), duals of real spectra of commutative unital rings, and many others: each of those classes fails to be closed under a suitable $\leftrightarrows \lambda$.

- The real trouble is: find a back-and-forth system $\mathcal{F}: M \leftrightarrows{ }_{\lambda} \boldsymbol{N}$ with $\boldsymbol{M} \in \mathcal{C}$ and $\boldsymbol{N} \notin \mathcal{C}$ (where \mathcal{C} is the given class).

Back-and-forth systems from continuous functors

Projective
classes as images of accessible functors

- In many examples, such as Φ (unital rings) and Φ (Abelian ℓ-groups) (where $\Phi=\mathrm{Id}_{c}$), $\leftrightarrows_{\lambda}$ arises from some λ-continuous functor $\Gamma:[\kappa]^{\operatorname{inj}} \rightarrow \mathcal{C}$ with $\kappa \geq \lambda$.

Back-and-forth systems from continuous functors

Projective
classes as images of accessible functors

■ In many examples, such as Φ (unital rings) and Φ (Abelian ℓ-groups) (where $\Phi=\mathrm{Id}_{c}$), $\leftrightarrows_{\lambda}$ arises from some λ-continuous functor $\Gamma:[\kappa]^{\text {inj }} \rightarrow \mathcal{C}$ with $\kappa \geq \lambda$. Here, $[\kappa]^{\text {inj }}$ denotes the category of all subsets of κ with one-to-one functions.

Back-and-forth systems from continuous functors

Projective
classes as images of accessible functors

- In many examples, such as Φ (unital rings) and $\Phi\left(\right.$ Abelian ℓ-groups) (where $\Phi=\mathrm{Id}_{\mathrm{c}}$), $\leftrightarrows_{\lambda}$ arises from some λ-continuous functor $\Gamma:[\kappa]^{\text {inj }} \rightarrow \mathcal{C}$ with $\kappa \geq \lambda$. Here, $[\kappa]^{\text {inj }}$ denotes the category of all subsets of κ with one-to-one functions. In both examples above, $\kappa=\lambda^{++}$.

Back-and-forth systems from continuous functors

Projective classes as images of accessible functors

Motivation
Elementary, projective

Tuuri's
Interpolation Theorem

■ In many examples, such as Φ (unital rings) and Φ (Abelian ℓ-groups) (where $\Phi=\mathrm{Id}_{c}$), $\leftrightarrows_{\lambda}$ arises from some λ-continuous functor $\Gamma:[\kappa]^{\text {inj }} \rightarrow \mathcal{C}$ with $\kappa \geq \lambda$. Here, $[\kappa]^{\text {inj }}$ denotes the category of all subsets of κ with one-to-one functions. In both examples above, $\kappa=\lambda^{++}$.
■ It is often the case that for $X \subseteq \kappa$ with $\operatorname{card} X<\lambda$, $\Gamma(X)=\Phi\left(\Pi\left(S_{|u|} \mid u \in X \subseteq P\right)\right)$ (a "condensate" $)$, where:
$1 P$ is a suitable finite lattice (in both examples above, $P=\{0,1\}^{3}$; also, this method provably fails for arbitrary finite bounded posets!);
$2 X \subseteq P \stackrel{\text { def }}{=} \bigcup\left\{X^{D} \mid D \subseteq P\right\}$;
3 $|u| \stackrel{\text { def }}{=} \bigvee$ dom u whenever $u \in X \subseteq P$;
$4 \vec{S}$ is a non-commutative diagram, indexed by P, such that, for the given functor Φ, the diagram $\Phi(\vec{S})$ is commutative.

Back-and-forth systems from continuous functors

Projective classes as images of accessible functors

Motivation
Elementary, projective

Tuuri's
Interpolation Theorem

- In many examples, such as Φ (unital rings) and Φ (Abelian ℓ-groups) (where $\Phi=\mathrm{Id}_{\mathrm{c}}$), $\leftrightarrows_{\lambda}$ arises from some λ-continuous functor $\Gamma:[\kappa]^{\text {inj }} \rightarrow \mathcal{C}$ with $\kappa \geq \lambda$. Here, $[\kappa]^{\text {inj }}$ denotes the category of all subsets of κ with one-to-one functions. In both examples above, $\kappa=\lambda^{++}$.
■ It is often the case that for $X \subseteq \kappa$ with $\operatorname{card} X<\lambda$, $\Gamma(X)=\Phi\left(\Pi\left(S_{|u|} \mid u \in X \subseteq P\right)\right)$ (a "condensate"), where:
$1 P$ is a suitable finite lattice (in both examples above, $P=\{0,1\}^{3}$; also, this method provably fails for arbitrary finite bounded posets!);
$2 X \subseteq P \stackrel{\text { def }}{=} \bigcup\left\{X^{D} \mid D \subseteq P\right\}$;
$3|u| \stackrel{\text { def }}{=} \bigvee$ dom u whenever $u \in X \subseteq P$;
$4 \vec{S}$ is a non-commutative diagram, indexed by P, such that, for the given functor Φ, the diagram $\Phi(\vec{S})$ is commutative.
- Finding P and \vec{S} is usually hard, very much connected to the algebraic and combinatorial data of the given_problem,

The diagram \vec{S} for $\operatorname{ld}_{c}($ Abelian ℓ-groups)

Projective classes as images of accessible functors

Motivation
Elementary, projective

Tuuri's
Interpolation Theorem

Karttunen's back-and-forth systems

$$
\begin{aligned}
& 0 \leq a \leq a^{\prime} \leq 2 a ; b \geq 0 ; c \geq 0 \text {. } \\
& A_{1}(a) \rightarrow A_{13}\left(a^{\prime}, c\right) \text { via } a \mapsto a^{\prime} .
\end{aligned}
$$

Projective classes as images of accessible functors

Motivation
Elementary, projective

Thanks for your attention!

