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Basic facts

A partial order ≤ on a monoid M is a partial right order if
it satisfies the implication x ≤ y ⇒ xz ≤ yz .

≤ is positive if it satisfies 1 ≤ x .

Our orders will usually be total orders (otherwise we will
specify partial).

Bi-order means the conjunction of right order and left
order.

Yields the concepts of right-orderability, left-orderability,
bi-orderability (skip “bi-” in the commutative case).

For groups, right- and left-orderability are equivalent
(Proof: let x ≤′ y if y−1 ≤ x−1).

The braid group B3 is right- (and thus left-) orderable, but
it is not bi-orderable (Dehornoy, Dynnikov, Rolfsen, and
Wiest 2008).
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The monoids X (1)

{0, 1} is orderable, {0, 1}2 is not.

For any set X , define a monoid structure X (1) on X t {1}:

xy =

{
x , if y = 1 ,

y , if y 6= 1
for all x , y ∈ X t {1} .

All X (1) are quasitrivial (i.e., xy ∈ {x , y} for all x , y).

Proposition

X (1) is positively right-orderable (any total order works).

X (1) is bi-orderable iff it is left-orderable iff cardX ≤ 2.

X (1) is positively bi-orderable iff it has a positive partial
left order iff cardX ≤ 1.
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The smallest right-orderable, non left-orderable
monoid

By the above, {a, b, c}(1) is right-orderable, non
left-orderable.

Its table is

· 1 a b c

1 1 a b c
a a a b c
b b a b c
c c a b c

Table: A right-orderable, non left-orderable monoid

Any right-orderable, non left-orderable monoid is either
isomorphic to that example, or has at least 5 elements.

Bi-orderability of an idempotent semigroup can be
characterized by a finite list of forbidden subsemigoups
(Saitô 1974).
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Idempotents and orderability

In general, orderability of a monoid M reflects on the
idempotents of M.

If M is bi-orderable, then ab ∈ {a, b} for all idempotent
a, b ∈ M. Proof: WMAT 1 ≤ ab. If a ≤ b, then
b = 1b ≤ ab2 = ab ≤ b2 = b, thus b = ab. Similarly, if
b ≤ a, then a = ab.

If M is positively bi-orderable, then ab = ba ∈ {a, b} for
all idempotent a, b ∈ M. We then say that the
idempotents of M form a chain.
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The elements xω

Every element x in a finite monoid M has a unique
idempotent positive power, usually denoted xω.

Such structures (monoids with additional x 7→ xω) belong
to L. Shevrin’s epigroups (also often called completely
π-regular semigroups).

In any finite right-orderable monoid, xω = xm where
xm = xm+1 (the “period” of x is 1).
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Conicality, antisymmetry

Every finite right-orderable monoid is conical (i.e.,
xy = 1⇒ y = 1).

Proof: xy = 1 implies xnyn = 1 for
all n, thus xωyω = 1, and thus
y = 1y = xωyωy = xωyω = 1.

Every finite commutative orderable monoid is
antisymmetric (i.e., xyz = z ⇒ yz = z). Proof: xyz = z
implies (xy)ωz = z , thus, by commutativity, yωxωz = z ,
thus yz = yyωxωz = yωxωz = z .

The latter (antisymmetry) can be extended to the case
where any two idempotents commute (much harder).

It fails in the general (finite) case.
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Failure of antisymmetry in the finite,
non-commutative case

· i 1 a b c d e f g ∞
i i i a b c d e f g ∞
1 i 1 a b c d e f g ∞
a a a a b d d e f g ∞
b b b e f f g ∞ ∞ ∞ ∞
c b c e f f g ∞ ∞ ∞ ∞
d b d e f f g ∞ ∞ ∞ ∞
e e e e f g g ∞ ∞ ∞ ∞
f f f ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
g f g ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Table: A bi-orderable monoid, in which the idempotents form a chain,
with no positive partial bi-order
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Positive orderability

A monoid has unique roots if it satisfies xn = yn ⇒ x = y (all
n > 0).

Proposition

TFAE, for any cancellative commutative monoid M:

1 M is positively orderable;

2 M is conical (i.e., xy = 1⇒ y = 1) and orderable;

3 M is conical and has unique roots.

An infinite, conical, orderable, commutative monoid may
not have any positive partial order (W 2020).

What about the finite commutative case?
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Another finite counterexample

+ 1 0 1 2 3 4 5 6 ∞
1 1 1 1 2 2 4 5 5 ∞
0 1 0 1 2 3 4 5 6 ∞
1 1 1 4 5 5 5 ∞ ∞ ∞
2 2 2 5 5 5 ∞ ∞ ∞ ∞
3 2 3 5 5 6 ∞ ∞ ∞ ∞
4 4 4 5 ∞ ∞ ∞ ∞ ∞ ∞
5 5 5 ∞ ∞ ∞ ∞ ∞ ∞ ∞
6 5 6 ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Table: An orderable, but not positively orderable, commutative
monoid (with least possible cardinality)
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Two further finite examples (with “no best of two
worlds”)

· 1 a b c

1 1 a b c
a a a b c
b b b b c
c c b b c

Table: LO, positively RO, non bi-orderable, idempotent

· 1 a b c ∞
1 1 a b c ∞
a a a ∞ c ∞
b b b ∞ ∞ ∞
c c ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞

Table: Positively LO and RO, non bi-orderable
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What about the cancellative case?

Question

Let M be a monoid, embeddable into a group. If M is
right-orderable, is it also left-orderable?

Holds trivially in the commutative case.

General case: counterexample constructed in the following
slides.
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Origin of the construction

Play with non left-orderability for finite monoids. Isolate a
“good reason” for non-orderability, which would not
collide too “obviously” against cancellativity.

Such a “good reason” will take the form of a finite system
of generators and relations, which will define a
presentation of our monoid M.

In order to prove right-orderability of M, express M as the
universal monoid of a (cancellative) finite category, which
will be, in some sense, right-orderable (order constructed
directly).
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The presentation

Define M as the monoid given by the generators pi , qi , ri ,
ai (i ∈ {0, 1, 2}) and the relations

p0a0 = r0a2 ; p0a1 = q0a0 ; q0a1 = r0a0 ;

p1a1 = r1a0 ; p1a2 = q1a1 ; q1a2 = r1a1 ;

p2a2 = r2a1 ; p2a0 = q2a2 ; q2a0 = r2a2 .

Our next step is to represent M as the universal monoid of
a finite category S .

Categories understood in the source/target (as opposed to
domain/range) sense; ∂0x =source of x , ∂1x =target of x .
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The finite category S generating M

So a category is a partial semigroup with “identity elements”,
subjected to certain rules (e.g., xy ↓ iff ∂1x = ∂0y ; x(yz) ↓ iff
(xy)z ↓ and then the two are equal; ∂0x · x = x · ∂1x = x ; etc.).

Our S looks like this (u0, u1, u2, v , w are the identities of S):

w

v

u0 u2

u1

a0 a1 a2

p0
q0
r0 p2

q2

r2

p1 q1 r1

Figure: Illustrating the category S
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The universal monoid of a category

The picture above does not display the defining relations
of S (e.g., p0a0 = r0a2, etc.).

Universal monoid of S (denoted Umon(S)): universal with
respect to all homomorphisms of S to a monoid (i.e.,
xy ↓⇒ f (xy) = f (x)f (y)) sending all identities to 1.

Umon(S) consists of all finite sequences x0x1 · · · xn, where
all xi ∈ S and all ∂1xi 6= ∂0xi+1, with “contracted”
concatenation; so S \ IdtS ↪→ Umon(S) \ {1}.
Suppose that E is a left order on M. WMAT a0 E a1 and
a0 E a2. By left invariance,

p0a0 E p0a1 = q0a0 E q0a1 = r0a0 E r0a2 = p0a0 ,

so p0a0 = p0a1 in M, thus also in S , a contradiction.
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Embeddability into a group

Group-embeddability criterion for Umon(S) (W 2018)

The universal monoid Umon(S) of a category S embeds into a
group iff “it does so at arrow level”, that is, there are a
group G and a homomorphism from S to G that is one-to-one
on every hom-set of S .

(hom-sets: S(a, b)
def
= {x ∈ S | ∂0x = a and ∂1x = b}, for

a, b ∈ IdtS).

For our current problem: define G as the universal group
of S (equivalently, of M). Its defining relations are the
same as those of M:

piai = riai+2 ; piai+1 = qiai ; qiai+1 = riai , for i ∈ {0, 1, 2}

(indices modulo 3).
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Embeddability into a group (cont’d)

Play with those relations, now within the group G (we are
not yet sure whether M ↪→ G ).

piai = riai+2 ; piai+1 = qiai ; qiai+1 = riai , for i ∈ {0, 1, 2} .

Eliminating qi and ri , we obtain

qi = piai+1a
−1
i ; ri = piaia

−1
i+2 ;

ai+1a
−1
i ai+1 = aia

−1
i+2ai .
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Embeddability into a group (further cont’d)

Combining the first equation, with i = 0, to the second
equation, with i = 1, yields (a−1

0 a1)7 = 1.

In the group G , everything can be expressed in terms of p0,
p1, p2, a0 (4 free generators) and c subjected to c7 = 1.

Hence G ∼= Fgp(4) ∗ (Z/7Z), with Fgp(4) generated
by {p0, p1, p2, a0}, Z/7Z by c , a1 = a0c, a2 = a0c

5, and

q0 = p0a1a
−1
0 = p0a0ca

−1
0 ; r0 = p0a0a

−1
2 = p0a0c

2a−1
0 ;

q1 = p1a2a
−1
1 = p1a0c
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Right-orderability of universal monoids

Lemma (W 2020)

Let S be a conical, right cancellative category, and let ≤ be a
total order on S :=canonical image of S in Umon(S), with least
element 1, such that for all x , y , z ∈ S , x ≤ y and yz ∈ S
implies that xz ∈ S and xz ≤ yz .

Then ≤ extends to a right
order E of Umon(S), with respect to which S is a lower subset
of Umon(S).

The order E is constructed as the “reverse shortlex” order.

In more detail: for reduced words x = xm · · · x1 and
y = yn · · · y1 in Umon(S), consider the smallest k , if it
exists, such that xk 6= yk . Say that x C y if either m < n,
or m = n and xk < yk .



Right-
orderability
versus left-
orderability
for monoids

General

Idempotents
and the finite
case

The case of
submonoids of
groups

Right-orderability of universal monoids

Lemma (W 2020)

Let S be a conical, right cancellative category, and let ≤ be a
total order on S :=canonical image of S in Umon(S), with least
element 1, such that for all x , y , z ∈ S , x ≤ y and yz ∈ S
implies that xz ∈ S and xz ≤ yz . Then ≤ extends to a right
order E of Umon(S), with respect to which S is a lower subset
of Umon(S).

The order E is constructed as the “reverse shortlex” order.

In more detail: for reduced words x = xm · · · x1 and
y = yn · · · y1 in Umon(S), consider the smallest k , if it
exists, such that xk 6= yk . Say that x C y if either m < n,
or m = n and xk < yk .



Right-
orderability
versus left-
orderability
for monoids

General

Idempotents
and the finite
case

The case of
submonoids of
groups

Right-orderability of universal monoids

Lemma (W 2020)

Let S be a conical, right cancellative category, and let ≤ be a
total order on S :=canonical image of S in Umon(S), with least
element 1, such that for all x , y , z ∈ S , x ≤ y and yz ∈ S
implies that xz ∈ S and xz ≤ yz . Then ≤ extends to a right
order E of Umon(S), with respect to which S is a lower subset
of Umon(S).

The order E is constructed as the “reverse shortlex” order.

In more detail: for reduced words x = xm · · · x1 and
y = yn · · · y1 in Umon(S), consider the smallest k , if it
exists, such that xk 6= yk . Say that x C y if either m < n,
or m = n and xk < yk .



Right-
orderability
versus left-
orderability
for monoids

General

Idempotents
and the finite
case

The case of
submonoids of
groups

Right-orderability of universal monoids

Lemma (W 2020)

Let S be a conical, right cancellative category, and let ≤ be a
total order on S :=canonical image of S in Umon(S), with least
element 1, such that for all x , y , z ∈ S , x ≤ y and yz ∈ S
implies that xz ∈ S and xz ≤ yz . Then ≤ extends to a right
order E of Umon(S), with respect to which S is a lower subset
of Umon(S).

The order E is constructed as the “reverse shortlex” order.

In more detail: for reduced words x = xm · · · x1 and
y = yn · · · y1 in Umon(S), consider the smallest k , if it
exists, such that xk 6= yk .

Say that x C y if either m < n,
or m = n and xk < yk .



Right-
orderability
versus left-
orderability
for monoids

General

Idempotents
and the finite
case

The case of
submonoids of
groups

Right-orderability of universal monoids

Lemma (W 2020)

Let S be a conical, right cancellative category, and let ≤ be a
total order on S :=canonical image of S in Umon(S), with least
element 1, such that for all x , y , z ∈ S , x ≤ y and yz ∈ S
implies that xz ∈ S and xz ≤ yz . Then ≤ extends to a right
order E of Umon(S), with respect to which S is a lower subset
of Umon(S).

The order E is constructed as the “reverse shortlex” order.

In more detail: for reduced words x = xm · · · x1 and
y = yn · · · y1 in Umon(S), consider the smallest k , if it
exists, such that xk 6= yk . Say that x C y if either m < n,
or m = n and xk < yk .



Right-
orderability
versus left-
orderability
for monoids

General

Idempotents
and the finite
case

The case of
submonoids of
groups

Right-orderability of M

Let us go back to our original M.

Setting Σ
def
= {pi , qi , ri , ai | i ∈ {0, 1, 2}} (i.e., the 12

defining generators of M), we get

S = {1} ∪ Σ ∪ {piaj , qiaj , riaj | i , j ∈ {0, 1, 2}} .

Taking into account its defining relations, S has 35
elements, and S = (S \ IdtS) t {1} has 31 elements.

The order of S will be “initialized” by letting

1 < p0 < q0 < r0 < p1 < q1 < r1 < p2 < q2 < r2

< a0 < a1 < a2

(let this be the 0th chain).
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Right-orderability of M (cont’d)

By right invariance, there is no choice on elements of
type pia, qia, ria (i fixed): we obtain

piai+2 < qiai+2 < piai = riai+2

< piai+1 = qiai < qiai+1 = riai < riai+1

(let this be the (i + 1)th chain, for i ∈ {0, 1, 2}).

Then link those chains together, by stating

0th chain < 1st chain < 2nd chain < 3rd chain .

This yields a total order on S , which, by previous lemma,
can be extended to a right order on M with respect to
which S is a lower subset.

In particular, M is positively right-orderable.
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Conclusion

The monoid M embeds into a group, and its universal
group is Fgp(4) ∗ (Z/7Z) (it has torsion!).

The monoid M is positively right-orderable.

The monoid M is not left-orderable. In fact, there is no
partial left order E of M for which {a0, a1, a2} has a least
element.
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Thanks for your attention!
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