Rightorderability versus leftorderability for monoids

General
Idempotents and the finite case

The case of submonoids of groups

Right-orderability versus left-orderability for monoids

Friedrich Wehrung

Université de Caen
LMNO, CNRS UMR 6139
Département de Mathématiques
14032 Caen cedex
E-mail: friedrich.wehrung01@unicaen.fr
URL: http://wehrungf.users.Imno.cnrs.fr

December 2020

Basic facts

Rightorderability versus leftorderability for monoids

■ A partial order \leq on a monoid M is a partial right order if it satisfies the implication $x \leq y \Rightarrow x z \leq y z$.

Basic facts

Rightorderability versus leftorderability for monoids

- A partial order \leq on a monoid M is a partial right order if it satisfies the implication $x \leq y \Rightarrow x z \leq y z$.
■ \leq is positive if it satisfies $1 \leq x$.

General
Idempotents and the finite case

The case of submonoids of groups

Basic facts

Rightorderability versus leftorderability for monoids

■ A partial order \leq on a monoid M is a partial right order if it satisfies the implication $x \leq y \Rightarrow x z \leq y z$.
■ \leq is positive if it satisfies $1 \leq x$.

- Our orders will usually be total orders (otherwise we will specify partial).

Basic facts

Rightorderability versus leftorderability for monoids

■ A partial order \leq on a monoid M is a partial right order if it satisfies the implication $x \leq y \Rightarrow x z \leq y z$.
■ \leq is positive if it satisfies $1 \leq x$.

- Our orders will usually be total orders (otherwise we will specify partial).
- Bi-order means the conjunction of right order and left order.

Basic facts

Rightorderability versus leftorderability for monoids

■ A partial order \leq on a monoid M is a partial right order if it satisfies the implication $x \leq y \Rightarrow x z \leq y z$.
■ \leq is positive if it satisfies $1 \leq x$.
■ Our orders will usually be total orders (otherwise we will specify partial).

- Bi-order means the conjunction of right order and left order.

■ Yields the concepts of right-orderability, left-orderability, bi-orderability (skip "bi-" in the commutative case).

Basic facts

Rightorderability versus leftorderability for monoids

General

Idempotents and the finite case

The case of submonoids of groups

■ A partial order \leq on a monoid M is a partial right order if it satisfies the implication $x \leq y \Rightarrow x z \leq y z$.
■ \leq is positive if it satisfies $1 \leq x$.
■ Our orders will usually be total orders (otherwise we will specify partial).

- Bi-order means the conjunction of right order and left order.
■ Yields the concepts of right-orderability, left-orderability, bi-orderability (skip "bi-" in the commutative case).
■ For groups, right- and left-orderability are equivalent (Proof: let $x \leq^{\prime} y$ if $y^{-1} \leq x^{-1}$).

Basic facts

Rightorderability versus leftorderability for monoids

General

Idempotents and the finite case

The case of submonoids of groups

- A partial order \leq on a monoid M is a partial right order if it satisfies the implication $x \leq y \Rightarrow x z \leq y z$.
■ \leq is positive if it satisfies $1 \leq x$.
■ Our orders will usually be total orders (otherwise we will specify partial).
- Bi-order means the conjunction of right order and left order.
■ Yields the concepts of right-orderability, left-orderability, bi-orderability (skip "bi-" in the commutative case).
■ For groups, right- and left-orderability are equivalent (Proof: let $x \leq^{\prime} y$ if $y^{-1} \leq x^{-1}$).
- The braid group B_{3} is right- (and thus left-) orderable, but it is not bi-orderable (Dehornoy, Dynnikov, Rolfsen, and Wiest 2008).

The monoids $X^{(1)}$

Rightorderability versus leftorderability for monoids

General
Idempotents and the finite case

The case of submonoids of groups

- $\{0,1\}$ is orderable, $\{0,1\}^{2}$ is not.

The monoids $X^{(1)}$

Rightorderability versus leftorderability for monoids

- $\{0,1\}$ is orderable, $\{0,1\}^{2}$ is not.

■ For any set X, define a monoid structure $X^{(1)}$ on $X \sqcup\{1\}$:

$$
x y=\left\{\begin{array}{ll}
x, & \text { if } y=1, \\
y, & \text { if } y \neq 1
\end{array} \quad \text { for all } x, y \in X \sqcup\{1\}\right.
$$

The monoids $X^{(1)}$

Rightorderability versus leftorderability for monoids

General
Idempotents and the finite case

The case of submonoids of groups

- $\{0,1\}$ is orderable, $\{0,1\}^{2}$ is not.

■ For any set X, define a monoid structure $X^{(1)}$ on $X \sqcup\{1\}$:

$$
x y=\left\{\begin{array}{ll}
x, & \text { if } y=1, \\
y, & \text { if } y \neq 1
\end{array} \quad \text { for all } x, y \in X \sqcup\{1\}\right.
$$

- All $X^{(1)}$ are quasitrivial (i.e., $x y \in\{x, y\}$ for all x, y).

The monoids $X^{(1)}$

Rightorderability versus leftorderability for monoids

- $\{0,1\}$ is orderable, $\{0,1\}^{2}$ is not.
- For any set X, define a monoid structure $X^{(1)}$ on $X \sqcup\{1\}$:

$$
x y=\left\{\begin{array}{ll}
x, & \text { if } y=1, \\
y, & \text { if } y \neq 1
\end{array} \quad \text { for all } x, y \in X \sqcup\{1\}\right.
$$

- All $X^{(1)}$ are quasitrivial (i.e., $x y \in\{x, y\}$ for all x, y).

Proposition

- $X^{(1)}$ is positively right-orderable (any total order works).
- $X^{(1)}$ is bi-orderable iff it is left-orderable iff card $X \leq 2$.

■ $X^{(1)}$ is positively bi-orderable iff it has a positive partial left order iff card $X \leq 1$.

The smallest right-orderable, non left-orderable monoid

Rightorderability versus leftorderability for monoids

■ By the above, $\{a, b, c\}^{(1)}$ is right-orderable, non left-orderable.

The smallest right-orderable, non left-orderable monoid

Rightorderability versus leftorderability for monoids

General
Idempotents and the finite case

■ By the above, $\{a, b, c\}^{(1)}$ is right-orderable, non left-orderable.

- Its table is

\cdot	1	a	b	c
1	1	a	b	c
a	a	a	b	c
b	b	a	b	c
c	c	a	b	c

Table: A right-orderable, non left-orderable monoid

The smallest right-orderable, non left-orderable monoid

Rightorderability versus leftorderability for monoids

Genera

Idempotents

 and the finite case- By the above, $\{a, b, c\}^{(1)}$ is right-orderable, non left-orderable.
- Its table is

\cdot	1	a	b	c
1	1	a	b	c
a	a	a	b	c
b	b	a	b	c
c	c	a	b	c

Table: A right-orderable, non left-orderable monoid

- Any right-orderable, non left-orderable monoid is either isomorphic to that example, or has at least 5 elements.

The smallest right-orderable, non left-orderable monoid

Rightorderability versus leftorderability for monoids

General
Idempotents and the finite case

- By the above, $\{a, b, c\}^{(1)}$ is right-orderable, non left-orderable.
- Its table is

\cdot	1	a	b	c
1	1	a	b	c
a	a	a	b	c
b	b	a	b	c
c	c	a	b	c

Table: A right-orderable, non left-orderable monoid

- Any right-orderable, non left-orderable monoid is either isomorphic to that example, or has at least 5 elements.
■ Bi-orderability of an idempotent semigroup can be characterized by a finite list of forbidden subsemigoups (Saitô 1974).

Idempotents and orderability

Rightorderability versus leftorderability for monoids

Genera

Idempotents and the finite case

The case of submonoids of groups

■ In general, orderability of a monoid M reflects on the idempotents of M.

Idempotents and orderability

Rightorderability versus leftorderability for monoids

Genera

Idempotents and the finite case

The case of submonoids of groups

■ In general, orderability of a monoid M reflects on the idempotents of M.
■ If M is bi-orderable, then $a b \in\{a, b\}$ for all idempotent $a, b \in M$.

Idempotents and orderability

Rightorderability versus leftorderability for monoids

Genera

Idempotents and the finite case

The case of submonoids of groups

■ In general, orderability of a monoid M reflects on the idempotents of M.

- If M is bi-orderable, then $a b \in\{a, b\}$ for all idempotent $a, b \in M$. Proof: WMAT $1 \leq a b$.

Idempotents and orderability

Rightorderability versus leftorderability for monoids

Genera

Idempotents and the finite case

■ In general, orderability of a monoid M reflects on the idempotents of M.

- If M is bi-orderable, then $a b \in\{a, b\}$ for all idempotent $a, b \in M$. Proof: WMAT $1 \leq a b$. If $a \leq b$, then $b=1 b \leq a b^{2}=a b \leq b^{2}=b$, thus $b=a b$.

Idempotents and orderability

Rightorderability versus leftorderability for monoids

General

Idempotents and the finite case

The case of submonoids of groups

■ In general, orderability of a monoid M reflects on the idempotents of M.
■ If M is bi-orderable, then $a b \in\{a, b\}$ for all idempotent $a, b \in M$. Proof: WMAT $1 \leq a b$. If $a \leq b$, then $b=1 b \leq a b^{2}=a b \leq b^{2}=b$, thus $b=a b$. Similarly, if $b \leq a$, then $a=a b$.

Idempotents and orderability

Rightorderability versus leftorderability for monoids

General

Idempotents and the finite case

The case of submonoids of groups

■ In general, orderability of a monoid M reflects on the idempotents of M.
■ If M is bi-orderable, then $a b \in\{a, b\}$ for all idempotent $a, b \in M$. Proof: WMAT $1 \leq a b$. If $a \leq b$, then $b=1 b \leq a b^{2}=a b \leq b^{2}=b$, thus $b=a b$. Similarly, if $b \leq a$, then $a=a b$.

■ If M is positively bi-orderable, then $a b=b a \in\{a, b\}$ for all idempotent $a, b \in M$.

Idempotents and orderability

Rightorderability versus leftorderability for monoids

General

Idempotents and the finite case

The case of submonoids of groups

■ In general, orderability of a monoid M reflects on the idempotents of M.
■ If M is bi-orderable, then $a b \in\{a, b\}$ for all idempotent $a, b \in M$. Proof: WMAT $1 \leq a b$. If $a \leq b$, then $b=1 b \leq a b^{2}=a b \leq b^{2}=b$, thus $b=a b$. Similarly, if $b \leq a$, then $a=a b$.

- If M is positively bi-orderable, then $a b=b a \in\{a, b\}$ for all idempotent $a, b \in M$. We then say that the idempotents of M form a chain.

The elements x^{ω}

Rightorderability versus leftorderability for monoids

General

Idempotents and the finite case

The case of submonoids of groups

■ Every element x in a finite monoid M has a unique idempotent positive power, usually denoted x^{ω}.

The elements x^{ω}

Rightorderability versus leftorderability for monoids

Genera

Idempotents and the finite case

The case of submonoids of groups

■ Every element x in a finite monoid M has a unique idempotent positive power, usually denoted x^{ω}.
$■$ Such structures (monoids with additional $x \mapsto x^{\omega}$) belong to L. Shevrin's epigroups (also often called completely π-regular semigroups).

The elements x^{ω}

Rightorderability versus leftorderability for monoids

General

■ Every element x in a finite monoid M has a unique idempotent positive power, usually denoted x^{ω}.
$■$ Such structures (monoids with additional $x \mapsto x^{\omega}$) belong to L. Shevrin's epigroups (also often called completely π-regular semigroups).
■ In any finite right-orderable monoid, $x^{\omega}=x^{m}$ where $x^{m}=x^{m+1}$ (the "period" of x is 1).

Conicality, antisymmetry

Rightorderability versus leftorderability for monoids

Genera

Idempotents and the finite case

The case of submonoids of groups

■ Every finite right-orderable monoid is conical (i.e., $x y=1 \Rightarrow y=1$).

Conicality, antisymmetry

Rightorderability versus leftorderability for monoids

Genera

Idempotents and the finite case

The case of submonoids of groups

■ Every finite right-orderable monoid is conical (i.e., $x y=1 \Rightarrow y=1$). Proof: $x y=1$ implies $x^{n} y^{n}=1$ for all n, thus $x^{\omega} y^{\omega}=1$,

Conicality, antisymmetry

Rightorderability versus leftorderability for monoids

General

Idempotents and the finite case

The case of submonoids of groups

■ Every finite right-orderable monoid is conical (i.e., $x y=1 \Rightarrow y=1$). Proof: $x y=1$ implies $x^{n} y^{n}=1$ for all n, thus $x^{\omega} y^{\omega}=1$, and thus

$$
y=1 y=x^{\omega} y^{\omega} y=x^{\omega} y^{\omega}=1
$$

Conicality, antisymmetry

Rightorderability versus leftorderability for monoids

General

Idempotents and the finite case

The case of submonoids of groups

- Every finite right-orderable monoid is conical (i.e., $x y=1 \Rightarrow y=1$). Proof: $x y=1$ implies $x^{n} y^{n}=1$ for all n, thus $x^{\omega} y^{\omega}=1$, and thus

$$
y=1 y=x^{\omega} y^{\omega} y=x^{\omega} y^{\omega}=1
$$

■ Every finite commutative orderable monoid is antisymmetric (i.e., $x y z=z \Rightarrow y z=z$).

Conicality, antisymmetry

Rightorderability versus leftorderability for monoids

General

Idempotents and the finite case

The case of submonoids of groups

- Every finite right-orderable monoid is conical (i.e., $x y=1 \Rightarrow y=1$). Proof: $x y=1$ implies $x^{n} y^{n}=1$ for all n, thus $x^{\omega} y^{\omega}=1$, and thus $y=1 y=x^{\omega} y^{\omega} y=x^{\omega} y^{\omega}=1$.
■ Every finite commutative orderable monoid is antisymmetric (i.e., $x y z=z \Rightarrow y z=z$). Proof: $x y z=z$ implies $(x y)^{\omega} z=z$,

Conicality, antisymmetry

Rightorderability versus leftorderability for monoids

General

Idempotents and the finite case

The case of submonoids of groups

- Every finite right-orderable monoid is conical (i.e., $x y=1 \Rightarrow y=1$). Proof: $x y=1$ implies $x^{n} y^{n}=1$ for all n, thus $x^{\omega} y^{\omega}=1$, and thus $y=1 y=x^{\omega} y^{\omega} y=x^{\omega} y^{\omega}=1$.
■ Every finite commutative orderable monoid is antisymmetric (i.e., $x y z=z \Rightarrow y z=z$). Proof: $x y z=z$ implies $(x y)^{\omega} z=z$, thus, by commutativity, $y^{\omega} x^{\omega} z=z$, thus

Conicality, antisymmetry

Rightorderability versus leftorderability for monoids

General

Idempotents and the finite case

The case of submonoids of groups

■ Every finite right-orderable monoid is conical (i.e., $x y=1 \Rightarrow y=1$). Proof: $x y=1$ implies $x^{n} y^{n}=1$ for all n, thus $x^{\omega} y^{\omega}=1$, and thus $y=1 y=x^{\omega} y^{\omega} y=x^{\omega} y^{\omega}=1$.
■ Every finite commutative orderable monoid is antisymmetric (i.e., $x y z=z \Rightarrow y z=z$). Proof: $x y z=z$ implies $(x y)^{\omega} z=z$, thus, by commutativity, $y^{\omega} x^{\omega} z=z$, thus $y z=y y^{\omega} x^{\omega} z=y^{\omega} x^{\omega} z=z$.

Conicality, antisymmetry

Rightorderability versus leftorderability for monoids

General

Idempotents and the finite case

The case of submonoids of groups

- Every finite right-orderable monoid is conical (i.e., $x y=1 \Rightarrow y=1$). Proof: $x y=1$ implies $x^{n} y^{n}=1$ for all n, thus $x^{\omega} y^{\omega}=1$, and thus

$$
y=1 y=x^{\omega} y^{\omega} y=x^{\omega} y^{\omega}=1
$$

■ Every finite commutative orderable monoid is antisymmetric (i.e., $x y z=z \Rightarrow y z=z$). Proof: $x y z=z$ implies $(x y)^{\omega} z=z$, thus, by commutativity, $y^{\omega} x^{\omega} z=z$, thus $y z=y y^{\omega} x^{\omega} z=y^{\omega} x^{\omega} z=z$.

- The latter (antisymmetry) can be extended to the case where any two idempotents commute (much harder).

Conicality, antisymmetry

Rightorderability versus leftorderability for monoids

General

Idempotents and the finite case

The case of submonoids of groups

- Every finite right-orderable monoid is conical (i.e., $x y=1 \Rightarrow y=1$). Proof: $x y=1$ implies $x^{n} y^{n}=1$ for all n, thus $x^{\omega} y^{\omega}=1$, and thus

$$
y=1 y=x^{\omega} y^{\omega} y=x^{\omega} y^{\omega}=1
$$

■ Every finite commutative orderable monoid is antisymmetric (i.e., $x y z=z \Rightarrow y z=z$). Proof: $x y z=z$ implies $(x y)^{\omega} z=z$, thus, by commutativity, $y^{\omega} x^{\omega} z=z$, thus $y z=y y^{\omega} x^{\omega} z=y^{\omega} x^{\omega} z=z$.

- The latter (antisymmetry) can be extended to the case where any two idempotents commute (much harder).
- It fails in the general (finite) case.

Failure of antisymmetry in the finite, non-commutative case

Rightorderability versus leftorderability for monoids

General

Idempotents and the finite case

The case of submonoids of groups

\cdot	i	1	a	b	c	d	e	f	g	∞
i	i	i	a	b	c	d	e	f	g	∞
1	i	1	a	b	c	d	e	f	g	∞
a	a	a	a	b	d	d	e	f	g	∞
b	b	b	e	f	f	g	∞	∞	∞	∞
c	b	c	e	f	f	g	∞	∞	∞	∞
d	b	d	e	f	f	g	∞	∞	∞	∞
e	e	e	e	f	g	g	∞	∞	∞	∞
f	f	f	∞							
g	f	g	∞							
∞										

Table: A bi-orderable monoid, in which the idempotents form a chain, with no positive partial bi-order

Positive orderability

Rightorderability versus leftorderability for monoids

General

Idempotents and the finite case

The case of submonoids of groups

A monoid has unique roots if it satisfies $x^{n}=y^{n} \Rightarrow x=y$ (all $n>0$).

Positive orderability

Rightorderability versus leftorderability for monoids

General

Idempotents and the finite case

The case of submonoids of groups

A monoid has unique roots if it satisfies $x^{n}=y^{n} \Rightarrow x=y$ (all $n>0$).

Proposition

TFAE, for any cancellative commutative monoid M :

Positive orderability

Rightorderability versus leftorderability for monoids

General

Idempotents and the finite case

The case of submonoids of groups

A monoid has unique roots if it satisfies $x^{n}=y^{n} \Rightarrow x=y$ (all $n>0$).

Proposition

TFAE, for any cancellative commutative monoid M :
$1 M$ is positively orderable;
$2 M$ is conical (i.e., $x y=1 \Rightarrow y=1$) and orderable;
$3 M$ is conical and has unique roots.

Positive orderability

Rightorderability versus leftorderability for monoids

General
Idempotents and the finite case

The case of submonoids of groups

A monoid has unique roots if it satisfies $x^{n}=y^{n} \Rightarrow x=y$ (all $n>0$).

Proposition

TFAE, for any cancellative commutative monoid M :
$1 M$ is positively orderable;
$2 M$ is conical (i.e., $x y=1 \Rightarrow y=1$) and orderable;
$3 M$ is conical and has unique roots.

■ An infinite, conical, orderable, commutative monoid may not have any positive partial order (W 2020).

Positive orderability

Rightorderability versus leftorderability for monoids

Idempotents and the finite case

The case of submonoids of groups

A monoid has unique roots if it satisfies $x^{n}=y^{n} \Rightarrow x=y$ (all $n>0$).

Proposition

TFAE, for any cancellative commutative monoid M :
$1 M$ is positively orderable;
$2 M$ is conical (i.e., $x y=1 \Rightarrow y=1$) and orderable;
$3 M$ is conical and has unique roots.

■ An infinite, conical, orderable, commutative monoid may not have any positive partial order (W 2020).
■ What about the finite commutative case?

Another finite counterexample

Rightorderability versus leftorderability for monoids

General
Idempotents and the finite case

The case of submonoids of groups

+	$\overline{1}$	0	1	2	3	4	5	6	∞
$\overline{1}$	$\overline{1}$	$\overline{1}$	1	2	2	4	5	5	∞
0	$\overline{1}$	0	1	2	3	4	5	6	∞
1	1	1	4	5	5	5	∞	∞	∞
2	2	2	5	5	5	∞	∞	∞	∞
3	2	3	5	5	6	∞	∞	∞	∞
4	4	4	5	∞	∞	∞	∞	∞	∞
5	5	5	∞						
6	5	6	∞						
∞									

Table: An orderable, but not positively orderable, commutative monoid (with least possible cardinality)

Two further finite examples (with "no best of two worlds")

Rightorderability versus leftorderability for monoids

General

Table: LO, positively RO, non bi-orderable, idempotent

Two further finite examples (with "no best of two worlds")

Rightorderability versus leftorderability for monoids

General
Idempotents and the finite case

The case of submonoids of groups

\cdot	1	a	b	c
1	1	a	b	c
a	a	a	b	c
b	b	b	b	c
c	c	b	b	c

Table: LO, positively RO, non bi-orderable, idempotent

\cdot	1	a	b	c	∞
1	1	a	b	c	∞
a	a	a	∞	c	∞
b	b	b	∞	∞	∞
c	c	∞	∞	∞	∞
∞	∞	∞	∞	∞	∞

Table: Positively LO and RO, non bi-orderable

What about the cancellative case?

Rightorderability versus leftorderability for monoids

General

Idempotents and the finite case

The case of submonoids of groups

Question

Let M be a monoid, embeddable into a group. If M is right-orderable, is it also left-orderable?

What about the cancellative case?

Rightorderability versus leftorderability for monoids

General

Idempotents and the finite case

The case of submonoids of groups

Question

Let M be a monoid, embeddable into a group. If M is right-orderable, is it also left-orderable?

■ Holds trivially in the commutative case.

What about the cancellative case?

Rightorderability versus leftorderability for monoids

Genera

Idempotents and the finite case

The case of submonoids of groups

Question

Let M be a monoid, embeddable into a group. If M is right-orderable, is it also left-orderable?

- Holds trivially in the commutative case.
- General case: counterexample constructed in the following slides.

Origin of the construction

Rightorderability versus leftorderability for monoids

General

Idempotents and the finite case

The case of submonoids of groups

- Play with non left-orderability for finite monoids. Isolate a "good reason" for non-orderability, which would not collide too "obviously" against cancellativity.

Origin of the construction

Rightorderability versus leftorderability for monoids

General

Idempotents
and the finite case

The case of submonoids of groups

■ Play with non left-orderability for finite monoids. Isolate a "good reason" for non-orderability, which would not collide too "obviously" against cancellativity.
■ Such a "good reason" will take the form of a finite system of generators and relations, which will define a presentation of our monoid M.

Origin of the construction

Right-

■ Play with non left-orderability for finite monoids. Isolate a "good reason" for non-orderability, which would not collide too "obviously" against cancellativity.
■ Such a "good reason" will take the form of a finite system of generators and relations, which will define a presentation of our monoid M.

- In order to prove right-orderability of M, express M as the universal monoid of a (cancellative) finite category, which will be, in some sense, right-orderable (order constructed directly).

The presentation

Rightorderability versus leftorderability for monoids

Genera

Idempotents and the finite case

The case of submonoids of groups

■ Define M as the monoid given by the generators p_{i}, q_{i}, r_{i}, $a_{i}(i \in\{0,1,2\})$ and the relations

The presentation

Rightorderability versus leftorderability for monoids

General
Idempotents and the finite case

The case of submonoids of groups

■ Define M as the monoid given by the generators p_{i}, q_{i}, r_{i}, $a_{i}(i \in\{0,1,2\})$ and the relations

$$
\begin{array}{lll}
p_{0} a_{0}=r_{0} a_{2} ; & p_{0} a_{1}=q_{0} a_{0} ; & q_{0} a_{1}=r_{0} a_{0} ; \\
p_{1} a_{1}=r_{1} a_{0} ; & p_{1} a_{2}=q_{1} a_{1} ; & q_{1} a_{2}=r_{1} a_{1} ; \\
p_{2} a_{2}=r_{2} a_{1} ; & p_{2} a_{0}=q_{2} a_{2} ; & q_{2} a_{0}=r_{2} a_{2} .
\end{array}
$$

The presentation

Rightorderability versus leftorderability for monoids

General
Idempotents and the finite case

The case of submonoids of groups

■ Define M as the monoid given by the generators p_{i}, q_{i}, r_{i}, $a_{i}(i \in\{0,1,2\})$ and the relations

$$
\begin{array}{lll}
p_{0} a_{0}=r_{0} a_{2} ; & p_{0} a_{1}=q_{0} a_{0} ; & q_{0} a_{1}=r_{0} a_{0} ; \\
p_{1} a_{1}=r_{1} a_{0} ; & p_{1} a_{2}=q_{1} a_{1} ; & q_{1} a_{2}=r_{1} a_{1} ; \\
p_{2} a_{2}=r_{2} a_{1} ; & p_{2} a_{0}=q_{2} a_{2} ; & q_{2} a_{0}=r_{2} a_{2} .
\end{array}
$$

■ Our next step is to represent M as the universal monoid of a finite category S.

The presentation

Rightorderability versus leftorderability for monoids

General

Idempotents and the finite case

The case of submonoids of groups

■ Define M as the monoid given by the generators p_{i}, q_{i}, r_{i}, $a_{i}(i \in\{0,1,2\})$ and the relations

$$
\begin{array}{lll}
p_{0} a_{0}=r_{0} a_{2} ; & p_{0} a_{1}=q_{0} a_{0} ; & q_{0} a_{1}=r_{0} a_{0} ; \\
p_{1} a_{1}=r_{1} a_{0} ; & p_{1} a_{2}=q_{1} a_{1} ; & q_{1} a_{2}=r_{1} a_{1} ; \\
p_{2} a_{2}=r_{2} a_{1} ; & p_{2} a_{0}=q_{2} a_{2} ; & q_{2} a_{0}=r_{2} a_{2} .
\end{array}
$$

■ Our next step is to represent M as the universal monoid of a finite category S.
■ Categories understood in the source/target (as opposed to domain/range) sense; $\partial_{0} x=$ source of $x, \partial_{1} x=$ target of x.

The finite category S generating M

Rightorderability versus leftorderability for monoids

So a category is a partial semigroup with "identity elements", subjected to certain rules (e.g., $x y \downarrow$ iff $\partial_{1} x=\partial_{0} y ; x(y z) \downarrow$ iff $(x y) z \downarrow$ and then the two are equal; $\partial_{0} x \cdot x=x \cdot \partial_{1} x=x$; etc.).

The finite category S generating M

Rightorderability versus leftorderability for monoids

So a category is a partial semigroup with "identity elements", subjected to certain rules (e.g., $x y \downarrow$ iff $\partial_{1} x=\partial_{0} y ; x(y z) \downarrow$ iff $(x y) z \downarrow$ and then the two are equal; $\partial_{0} x \cdot x=x \cdot \partial_{1} x=x$; etc.). Our S looks like this $\left(u_{0}, u_{1}, u_{2}, v, w\right.$ are the identities of $\left.S\right)$:

Idempotents and the finite case

The case of submonoids of groups

The finite category S generating M

Rightorderability versus leftorderability for monoids

So a category is a partial semigroup with "identity elements", subjected to certain rules (e.g., $x y \downarrow$ iff $\partial_{1} x=\partial_{0} y ; x(y z) \downarrow$ iff $(x y) z \downarrow$ and then the two are equal; $\partial_{0} x \cdot x=x \cdot \partial_{1} x=x$; etc.).
Our S looks like this $\left(u_{0}, u_{1}, u_{2}, v, w\right.$ are the identities of $\left.S\right)$:

General
Idempotents and the finite case

The case of submonoids of groups

The universal monoid of a category

Rightorderability versus leftorderability for monoids

Genera

Idempotents and the finite case

The case of submonoids of groups

- The picture above does not display the defining relations of S (e.g., $p_{0} a_{0}=r_{0} a_{2}$, etc.).

The universal monoid of a category

Rightorderability versus leftorderability for monoids

General

Idempotents and the finite case

The case of submonoids of groups

- The picture above does not display the defining relations of S (e.g., $p_{0} a_{0}=r_{0} a_{2}$, etc.).
- Universal monoid of S (denoted $U_{\text {mon }}(S)$): universal with respect to all homomorphisms of S to a monoid (i.e., $x y \downarrow \Rightarrow f(x y)=f(x) f(y))$ sending all identities to 1 .

The universal monoid of a category

Rightorderability versus leftorderability for monoids

Genera

Idempotents and the finite case

The case of submonoids of groups

- The picture above does not display the defining relations of S (e.g., $p_{0} a_{0}=r_{0} a_{2}$, etc.).
- Universal monoid of S (denoted $U_{\text {mon }}(S)$): universal with respect to all homomorphisms of S to a monoid (i.e., $x y \downarrow \Rightarrow f(x y)=f(x) f(y))$ sending all identities to 1 .
■ $\mathrm{U}_{\text {mon }}(S)$ consists of all finite sequences $x_{0} x_{1} \cdots x_{n}$, where all $x_{i} \in S$ and all $\partial_{1} x_{i} \neq \partial_{0} x_{i+1}$, with "contracted" concatenation;

The universal monoid of a category

Rightorderability versus leftorderability for monoids

Genera

Idempotents and the finite case

The case of submonoids of groups

- The picture above does not display the defining relations of S (e.g., $p_{0} a_{0}=r_{0} a_{2}$, etc.).
- Universal monoid of S (denoted $U_{\text {mon }}(S)$): universal with respect to all homomorphisms of S to a monoid (i.e., $x y \downarrow \Rightarrow f(x y)=f(x) f(y))$ sending all identities to 1 .
■ $\mathrm{U}_{\text {mon }}(S)$ consists of all finite sequences $x_{0} x_{1} \cdots x_{n}$, where all $x_{i} \in S$ and all $\partial_{1} x_{i} \neq \partial_{0} x_{i+1}$, with "contracted" concatenation; so $S \backslash \operatorname{Idt} S \hookrightarrow \mathrm{U}_{\text {mon }}(S) \backslash\{1\}$.

The universal monoid of a category

Rightorderability versus leftorderability for monoids

- The picture above does not display the defining relations of S (e.g., $p_{0} a_{0}=r_{0} a_{2}$, etc.).
■ Universal monoid of S (denoted $U_{\text {mon }}(S)$): universal with respect to all homomorphisms of S to a monoid (i.e., $x y \downarrow \Rightarrow f(x y)=f(x) f(y))$ sending all identities to 1 .
■ $\mathrm{U}_{\text {mon }}(S)$ consists of all finite sequences $x_{0} x_{1} \cdots x_{n}$, where all $x_{i} \in S$ and all $\partial_{1} x_{i} \neq \partial_{0} x_{i+1}$, with "contracted" concatenation; so $S \backslash \operatorname{ldt} S \hookrightarrow \mathrm{U}_{\text {mon }}(S) \backslash\{1\}$.
■ Suppose that \unlhd is a left order on M. WMAT $a_{0} \unlhd a_{1}$ and $a_{0} \unlhd a_{2}$.

The universal monoid of a category

Rightorderability versus leftorderability for monoids

- The picture above does not display the defining relations of S (e.g., $p_{0} a_{0}=r_{0} a_{2}$, etc.).
■ Universal monoid of S (denoted $U_{\text {mon }}(S)$): universal with respect to all homomorphisms of S to a monoid (i.e., $x y \downarrow \Rightarrow f(x y)=f(x) f(y))$ sending all identities to 1 .
■ $\mathrm{U}_{\text {mon }}(S)$ consists of all finite sequences $x_{0} x_{1} \cdots x_{n}$, where all $x_{i} \in S$ and all $\partial_{1} x_{i} \neq \partial_{0} x_{i+1}$, with "contracted" concatenation; so $S \backslash \operatorname{ldt} S \hookrightarrow \mathrm{U}_{\text {mon }}(S) \backslash\{1\}$.
■ Suppose that \unlhd is a left order on M. WMAT $a_{0} \unlhd a_{1}$ and $a_{0} \unlhd a_{2}$. By left invariance,

$$
p_{0} a_{0} \unlhd p_{0} a_{1}=q_{0} a_{0} \unlhd q_{0} a_{1}=r_{0} a_{0} \unlhd r_{0} a_{2}=p_{0} a_{0},
$$

so $p_{0} a_{0}=p_{0} a_{1}$ in M, thus also in S, a contradiction.

Embeddability into a group

Rightorderability versus leftorderability for monoids

General
Idempotents and the finite case

The case of submonoids of groups

Group-embeddability criterion for $U_{\text {mon }}(S)$ (W 2018)

The universal monoid $U_{\text {mon }}(S)$ of a category S embeds into a group iff "it does so at arrow level", that is, there are a group G and a homomorphism from S to G that is one-to-one on every hom-set of S.

Embeddability into a group

Rightorderability versus leftorderability for monoids

General
Idempotents and the finite case

The case of submonoids of groups

Group-embeddability criterion for $\mathrm{U}_{\text {mon }}(S)$ (W 2018)

The universal monoid $U_{\text {mon }}(S)$ of a category S embeds into a group iff "it does so at arrow level", that is, there are a group G and a homomorphism from S to G that is one-to-one on every hom-set of S.
(hom-sets: $S(a, b) \stackrel{\text { def }}{=}\left\{x \in S \mid \partial_{0} x=a\right.$ and $\left.\partial_{1} x=b\right\}$, for $a, b \in \operatorname{ldt} S)$.

Embeddability into a group

Rightorderability versus leftorderability for monoids

General
Idempotents and the finite case

The case of submonoids of groups

Group-embeddability criterion for $U_{\text {mon }}(S)(W$ 2018)

The universal monoid $U_{\text {mon }}(S)$ of a category S embeds into a group iff "it does so at arrow level", that is, there are a group G and a homomorphism from S to G that is one-to-one on every hom-set of S.
(hom-sets: $S(a, b) \stackrel{\text { def }}{=}\left\{x \in S \mid \partial_{0} x=a\right.$ and $\left.\partial_{1} x=b\right\}$, for $a, b \in \operatorname{ldt} S)$.

■ For our current problem: define G as the universal group of S (equivalently, of M). Its defining relations are the same as those of M :

Embeddability into a group

Rightorderability versus leftorderability for monoids

General
Idempotents and the finite case

The case of submonoids of groups

Group-embeddability criterion for $U_{\text {mon }}(S)(W 2018)$

The universal monoid $U_{\text {mon }}(S)$ of a category S embeds into a group iff "it does so at arrow level", that is, there are a group G and a homomorphism from S to G that is one-to-one on every hom-set of S.
(hom-sets: $S(a, b) \stackrel{\text { def }}{=}\left\{x \in S \mid \partial_{0} x=a\right.$ and $\left.\partial_{1} x=b\right\}$, for $a, b \in \operatorname{ldt} S)$.

■ For our current problem: define G as the universal group of S (equivalently, of M). Its defining relations are the same as those of M :

$$
p_{i} a_{i}=r_{i} a_{i+2} ; p_{i} a_{i+1}=q_{i} a_{i} ; q_{i} a_{i+1}=r_{i} a_{i}, \text { for } i \in\{0,1,2\}
$$

(indices modulo 3).

Embeddability into a group (cont'd)

Rightorderability versus leftorderability for monoids

General

Idempotents and the finite case

The case of submonoids of groups

- Play with those relations, now within the group G (we are not yet sure whether $M \hookrightarrow G$).

Embeddability into a group (cont'd)

Rightorderability versus leftorderability for monoids

General

Idempotents

 and the finite caseThe case of submonoids of groups

- Play with those relations, now within the group G (we are not yet sure whether $M \hookrightarrow G$).

$$
p_{i} a_{i}=r_{i} a_{i+2} ; p_{i} a_{i+1}=q_{i} a_{i} ; q_{i} a_{i+1}=r_{i} a_{i}, \text { for } i \in\{0,1,2\} .
$$

Embeddability into a group (cont'd)

Rightorderability versus leftorderability for monoids

General

Idempotents and the finite case

The case of submonoids of groups

- Play with those relations, now within the group G (we are not yet sure whether $M \hookrightarrow G$).

$$
p_{i} a_{i}=r_{i} a_{i+2} ; p_{i} a_{i+1}=q_{i} a_{i} ; q_{i} a_{i+1}=r_{i} a_{i}, \text { for } i \in\{0,1,2\} .
$$

■ Eliminating q_{i} and r_{i}, we obtain

Embeddability into a group (cont'd)

Rightorderability versus leftorderability for monoids

General

Idempotents and the finite case

The case of submonoids of groups

- Play with those relations, now within the group G (we are not yet sure whether $M \hookrightarrow G$).

$$
p_{i} a_{i}=r_{i} a_{i+2} ; p_{i} a_{i+1}=q_{i} a_{i} ; q_{i} a_{i+1}=r_{i} a_{i}, \text { for } i \in\{0,1,2\} .
$$

■ Eliminating q_{i} and r_{i}, we obtain

$$
\begin{gathered}
q_{i}=p_{i} a_{i+1} a_{i}^{-1} ; r_{i}=p_{i} a_{i} a_{i+2}^{-1} \\
\quad a_{i+1} a_{i}^{-1} a_{i+1}=a_{i} a_{i+2}^{-1} a_{i} .
\end{gathered}
$$

Embeddability into a group (further cont'd)

Rightorderability versus leftorderability for monoids

Genera

Idempotents and the finite case

The case of submonoids of groups

■ Combining the first equation, with $i=0$, to the second equation, with $i=1$, yields $\left(a_{0}^{-1} a_{1}\right)^{7}=1$.

Embeddability into a group (further cont'd)

Rightorderability versus leftorderability for monoids

General

Idempotents and the finite case

The case of submonoids of groups

- Combining the first equation, with $i=0$, to the second equation, with $i=1$, yields $\left(a_{0}^{-1} a_{1}\right)^{7}=1$.
■ In the group G, everything can be expressed in terms of p_{0}, p_{1}, p_{2}, a_{0} (4 free generators) and c subjected to $c^{7}=1$.

Embeddability into a group (further cont'd)

Rightorderability versus leftorderability for monoids

General

Idempotents and the finite case

The case of submonoids of groups

- Combining the first equation, with $i=0$, to the second equation, with $i=1$, yields $\left(a_{0}^{-1} a_{1}\right)^{7}=1$.
■ In the group G, everything can be expressed in terms of p_{0}, p_{1}, p_{2}, a_{0} (4 free generators) and c subjected to $c^{7}=1$.
■ Hence $G \cong \mathrm{~F}_{\mathrm{gp}}(4) *(\mathbb{Z} / 7 \mathbb{Z})$, with $\mathrm{F}_{\mathrm{gp}}(4)$ generated by $\left\{p_{0}, p_{1}, p_{2}, a_{0}\right\}, \mathbb{Z} / 7 \mathbb{Z}$ by $c, a_{1}=a_{0} c, a_{2}=a_{0} c^{5}$, and

Embeddability into a group (further cont'd)

Rightorderability versus leftorderability for monoids

General

Idempotents and the finite case

The case of submonoids of groups

- Combining the first equation, with $i=0$, to the second equation, with $i=1$, yields $\left(a_{0}^{-1} a_{1}\right)^{7}=1$.
■ In the group G, everything can be expressed in terms of p_{0}, p_{1}, p_{2}, a_{0} (4 free generators) and c subjected to $c^{7}=1$.
■ Hence $G \cong \mathrm{~F}_{\mathrm{gp}}(4) *(\mathbb{Z} / 7 \mathbb{Z})$, with $\mathrm{F}_{\mathrm{gp}}(4)$ generated by $\left\{p_{0}, p_{1}, p_{2}, a_{0}\right\}, \mathbb{Z} / 7 \mathbb{Z}$ by $c, a_{1}=a_{0} c, a_{2}=a_{0} c^{5}$, and

$$
\begin{array}{ll}
q_{0}=p_{0} a_{1} a_{0}^{-1}=p_{0} a_{0} c a_{0}^{-1} ; & r_{0}=p_{0} a_{0} a_{2}^{-1}=p_{0} a_{0} c^{2} a_{0}^{-1} ; \\
q_{1}=p_{1} a_{2} a_{1}^{-1}=p_{1} a_{0} c^{4} a_{0}^{-1} ; & r_{1}=p_{1} a_{1} a_{0}^{-1}=p_{1} a_{0} c a_{0}^{-1} ; \\
q_{2}=p_{2} a_{0} a_{2}^{-1}=p_{2} a_{0} c^{2} a_{0}^{-1} ; & r_{2}=p_{2} a_{2} a_{1}^{-1}=p_{2} a_{0} c^{4} a_{0}^{-1} .
\end{array}
$$

Embeddability into a group (further cont'd)

Rightorderability versus leftorderability for monoids

- Combining the first equation, with $i=0$, to the second equation, with $i=1$, yields $\left(a_{0}^{-1} a_{1}\right)^{7}=1$.
■ In the group G, everything can be expressed in terms of p_{0}, p_{1}, p_{2}, a_{0} (4 free generators) and c subjected to $c^{7}=1$.
■ Hence $G \cong \mathrm{~F}_{\mathrm{gp}}(4) *(\mathbb{Z} / 7 \mathbb{Z})$, with $\mathrm{F}_{\mathrm{gp}}(4)$ generated by $\left\{p_{0}, p_{1}, p_{2}, a_{0}\right\}, \mathbb{Z} / 7 \mathbb{Z}$ by $c, a_{1}=a_{0} c, a_{2}=a_{0} c^{5}$, and

$$
\begin{array}{ll}
q_{0}=p_{0} a_{1} a_{0}^{-1}=p_{0} a_{0} c a_{0}^{-1} ; & r_{0}=p_{0} a_{0} a_{2}^{-1}=p_{0} a_{0} c^{2} a_{0}^{-1} ; \\
q_{1}=p_{1} a_{2} a_{1}^{-1}=p_{1} a_{0} c^{4} a_{0}^{-1} ; & r_{1}=p_{1} a_{1} a_{0}^{-1}=p_{1} a_{0} c a_{0}^{-1} ; \\
q_{2}=p_{2} a_{0} a_{2}^{-1}=p_{2} a_{0} c^{2} a_{0}^{-1} ; & r_{2}=p_{2} a_{2} a_{1}^{-1}=p_{2} a_{0} c^{4} a_{0}^{-1} .
\end{array}
$$

- This representation is one-to-one on each hom-set of the category S.

Embeddability into a group (further cont'd)

Rightorderability versus leftorderability for monoids

- Combining the first equation, with $i=0$, to the second equation, with $i=1$, yields $\left(a_{0}^{-1} a_{1}\right)^{7}=1$.
- In the group G, everything can be expressed in terms of p_{0}, p_{1}, p_{2}, a_{0} (4 free generators) and c subjected to $c^{7}=1$.
■ Hence $G \cong \mathrm{~F}_{\mathrm{gp}}(4) *(\mathbb{Z} / 7 \mathbb{Z})$, with $\mathrm{F}_{\mathrm{gp}}(4)$ generated by $\left\{p_{0}, p_{1}, p_{2}, a_{0}\right\}, \mathbb{Z} / 7 \mathbb{Z}$ by $c, a_{1}=a_{0} c, a_{2}=a_{0} c^{5}$, and

$$
\begin{array}{ll}
q_{0}=p_{0} a_{1} a_{0}^{-1}=p_{0} a_{0} c a_{0}^{-1} ; & r_{0}=p_{0} a_{0} a_{2}^{-1}=p_{0} a_{0} c^{2} a_{0}^{-1} ; \\
q_{1}=p_{1} a_{2} a_{1}^{-1}=p_{1} a_{0} c^{4} a_{0}^{-1} ; & r_{1}=p_{1} a_{1} a_{0}^{-1}=p_{1} a_{0} c a_{0}^{-1} ; \\
q_{2}=p_{2} a_{0} a_{2}^{-1}=p_{2} a_{0} c^{2} a_{0}^{-1} ; & r_{2}=p_{2} a_{2} a_{1}^{-1}=p_{2} a_{0} c^{4} a_{0}^{-1} .
\end{array}
$$

- This representation is one-to-one on each hom-set of the category S.
- Therefore, M embeds into G.

Right-orderability of universal monoids

Rightorderability versus leftorderability for monoids

General
Idempotents and the finite case

The case of submonoids of groups

Lemma (W 2020)
Let S be a conical, right cancellative category, and let \leq be a total order on $\bar{S}:=$ canonical image of S in $U_{\text {mon }}(S)$, with least element 1 , such that for all $x, y, z \in \bar{S}, x \leq y$ and $y z \in \bar{S}$ implies that $x z \in \bar{S}$ and $x z \leq y z$.

Right-orderability of universal monoids

Rightorderability versus leftorderability for monoids

General
Idempotents and the finite case

The case of submonoids of groups

Lemma (W 2020)
Let S be a conical, right cancellative category, and let \leq be a total order on $\bar{S}:=$ canonical image of S in $U_{\text {mon }}(S)$, with least element 1 , such that for all $x, y, z \in \bar{S}, x \leq y$ and $y z \in \bar{S}$ implies that $x z \in \bar{S}$ and $x z \leq y z$. Then \leq extends to a right order \unlhd of $U_{\text {mon }}(S)$, with respect to which \bar{S} is a lower subset of $U_{\text {mon }}(S)$.

Right-orderability of universal monoids

Rightorderability versus leftorderability for monoids

General
Idempotents and the finite case

The case of submonoids of groups

Lemma (W 2020)
Let S be a conical, right cancellative category, and let \leq be a total order on $\bar{S}:=$ canonical image of S in $U_{\text {mon }}(S)$, with least element 1 , such that for all $x, y, z \in \bar{S}, x \leq y$ and $y z \in \bar{S}$ implies that $x z \in \bar{S}$ and $x z \leq y z$. Then \leq extends to a right order \unlhd of $U_{\text {mon }}(S)$, with respect to which \bar{S} is a lower subset of $U_{\text {mon }}(S)$.

■ The order \unlhd is constructed as the "reverse shortlex" order.

Right-orderability of universal monoids

Rightorderability versus leftorderability for monoids

General
Idempotents and the finite case

The case of submonoids of groups

Lemma (W 2020)

Let S be a conical, right cancellative category, and let \leq be a total order on $\bar{S}:=$ canonical image of S in $U_{\text {mon }}(S)$, with least element 1 , such that for all $x, y, z \in \bar{S}, x \leq y$ and $y z \in \bar{S}$ implies that $x z \in \bar{S}$ and $x z \leq y z$. Then \leq extends to a right order \unlhd of $U_{\text {mon }}(S)$, with respect to which \bar{S} is a lower subset of $U_{\text {mon }}(S)$.

■ The order \unlhd is constructed as the "reverse shortlex" order.
■ In more detail: for reduced words $x=x_{m} \cdots x_{1}$ and $y=y_{n} \cdots y_{1}$ in $U_{\text {mon }}(S)$, consider the smallest k, if it exists, such that $x_{k} \neq y_{k}$.

Right-orderability of universal monoids

Rightorderability versus leftorderability for monoids

Lemma (W 2020)

Let S be a conical, right cancellative category, and let \leq be a total order on $\bar{S}:=$ canonical image of S in $U_{\text {mon }}(S)$, with least element 1 , such that for all $x, y, z \in \bar{S}, x \leq y$ and $y z \in \bar{S}$ implies that $x z \in \bar{S}$ and $x z \leq y z$. Then \leq extends to a right order \unlhd of $U_{\text {mon }}(S)$, with respect to which \bar{S} is a lower subset of $U_{\text {mon }}(S)$.

■ The order \unlhd is constructed as the "reverse shortlex" order.
■ In more detail: for reduced words $x=x_{m} \cdots x_{1}$ and $y=y_{n} \cdots y_{1}$ in $U_{\text {mon }}(S)$, consider the smallest k, if it exists, such that $x_{k} \neq y_{k}$. Say that $x \triangleleft y$ if either $m<n$, or $m=n$ and $x_{k}<y_{k}$.

Right-orderability of M

Rightorderability versus leftorderability for monoids

Genera

Idempotents and the finite case

The case of submonoids of groups

■ Let us go back to our original M.

Right-orderability of M

Rightorderability versus leftorderability for monoids

Genera

Idempotents and the finite case

The case of submonoids of groups

■ Let us go back to our original M.
■ Setting $\Sigma \stackrel{\text { def }}{=}\left\{p_{i}, q_{i}, r_{i}, a_{i} \mid i \in\{0,1,2\}\right\}$ (i.e., the 12 defining generators of M), we get

Right-orderability of M

Rightorderability versus leftorderability for monoids

General
Idempotents and the finite case

The case of submonoids of groups

■ Let us go back to our original M.
■ Setting $\Sigma \stackrel{\text { def }}{=}\left\{p_{i}, q_{i}, r_{i}, a_{i} \mid i \in\{0,1,2\}\right\}$ (i.e., the 12 defining generators of M), we get

$$
\bar{S}=\{1\} \cup \Sigma \cup\left\{p_{i} a_{j}, q_{i} a_{j}, r_{i} a_{j} \mid i, j \in\{0,1,2\}\right\} .
$$

Right-orderability of M

Rightorderability versus leftorderability for monoids

General

Idempotents and the finite case

The case of submonoids of groups

- Let us go back to our original M.
\square Setting $\Sigma \stackrel{\text { def }}{=}\left\{p_{i}, q_{i}, r_{i}, a_{i} \mid i \in\{0,1,2\}\right\}$ (i.e., the 12 defining generators of M), we get

$$
\bar{S}=\{1\} \cup \Sigma \cup\left\{p_{i} a_{j}, q_{i} a_{j}, r_{i} a_{j} \mid i, j \in\{0,1,2\}\right\} .
$$

- Taking into account its defining relations, S has 35 elements, and $\bar{S}=(S \backslash \operatorname{Idt} S) \sqcup\{1\}$ has 31 elements.

Right-orderability of M

Rightorderability versus leftorderability for monoids

General

Idempotents and the finite case

The case of submonoids of groups

- Let us go back to our original M.

■ Setting $\Sigma \stackrel{\text { def }}{=}\left\{p_{i}, q_{i}, r_{i}, a_{i} \mid i \in\{0,1,2\}\right\}$ (i.e., the 12 defining generators of M), we get

$$
\bar{S}=\{1\} \cup \Sigma \cup\left\{p_{i} a_{j}, q_{i} a_{j}, r_{i} a_{j} \mid i, j \in\{0,1,2\}\right\}
$$

■ Taking into account its defining relations, S has 35 elements, and $\bar{S}=(S \backslash \mathrm{Idt} S) \sqcup\{1\}$ has 31 elements.
■ The order of \bar{S} will be "initialized" by letting

Right-orderability of M

Rightorderability versus leftorderability for monoids

General

Idempotents and the finite case

The case of submonoids of groups

- Let us go back to our original M.

■ Setting $\Sigma \stackrel{\text { def }}{=}\left\{p_{i}, q_{i}, r_{i}, a_{i} \mid i \in\{0,1,2\}\right\}$ (i.e., the 12 defining generators of M), we get

$$
\bar{S}=\{1\} \cup \Sigma \cup\left\{p_{i} a_{j}, q_{i} a_{j}, r_{i} a_{j} \mid i, j \in\{0,1,2\}\right\}
$$

- Taking into account its defining relations, S has 35 elements, and $\bar{S}=(S \backslash I d t S) \sqcup\{1\}$ has 31 elements.
- The order of \bar{S} will be "initialized" by letting

$$
\begin{aligned}
1<p_{0}<q_{0}<r_{0}<p_{1}<q_{1}<r_{1}<p_{2} & <q_{2}<r_{2} \\
& <a_{0}<a_{1}<a_{2}
\end{aligned}
$$

(let this be the 0th chain).

Right-orderability of M (cont'd)

Rightorderability versus leftorderability for monoids

Genera

Idempotents and the finite case

The case of submonoids of groups

■ By right invariance, there is no choice on elements of type $p_{i} a, q_{i} a, r_{i}$ (i fixed): we obtain

Right-orderability of M (cont'd)

Rightorderability versus leftorderability for monoids

General

Idempotents and the finite case

The case of submonoids of groups

- By right invariance, there is no choice on elements of type $p_{i} a, q_{i} a, r_{i}$ (i fixed): we obtain

$$
\begin{aligned}
p_{i} a_{i+2}<q_{i} a_{i+2}<p_{i} a_{i} & =r_{i} a_{i+2} \\
<p_{i} a_{i+1} & =q_{i} a_{i}<q_{i} a_{i+1}=r_{i} a_{i}<r_{i} a_{i+1}
\end{aligned}
$$

(let this be the $(i+1)$ th chain, for $i \in\{0,1,2\}$).

Right-orderability of M (cont'd)

Rightorderability versus leftorderability for monoids

General

Idempotents and the finite case

The case of submonoids of groups

- By right invariance, there is no choice on elements of type $p_{i} a, q_{i} a, r_{i}$ (i fixed): we obtain

$$
\begin{aligned}
p_{i} a_{i+2}<q_{i} a_{i+2} & <p_{i} a_{i}
\end{aligned}=r_{i} a_{i+2}, ~<p_{i} a_{i+1}=q_{i} a_{i}<q_{i} a_{i+1}=r_{i} a_{i}<r_{i} a_{i+1}
$$

(let this be the $(i+1)$ th chain, for $i \in\{0,1,2\}$).

- Then link those chains together, by stating

Right-orderability of M (cont'd)

Rightorderability versus leftorderability for monoids

General
Idempotents and the finite case

The case of submonoids of groups

- By right invariance, there is no choice on elements of type $p_{i} a, q_{i} a, r_{i} a(i$ fixed): we obtain

$$
\begin{aligned}
p_{i} a_{i+2}<q_{i} a_{i+2}<p_{i} a_{i} & =r_{i} a_{i+2} \\
<p_{i} a_{i+1} & =q_{i} a_{i}<q_{i} a_{i+1}=r_{i} a_{i}<r_{i} a_{i+1}
\end{aligned}
$$

(let this be the $(i+1)$ th chain, for $i \in\{0,1,2\}$).

- Then link those chains together, by stating

0th chain <1 st chain <2 nd chain <3 rd chain .

- This yields a total order on \bar{S},

Right-orderability of M (cont'd)

Rightorderability versus leftorderability for monoids

General
Idempotents and the finite case

The case of submonoids of groups

- By right invariance, there is no choice on elements of type $p_{i} a, q_{i} a, r_{i} a(i$ fixed): we obtain

$$
\begin{aligned}
p_{i} a_{i+2}<q_{i} a_{i+2}<p_{i} a_{i} & =r_{i} a_{i+2} \\
<p_{i} a_{i+1} & =q_{i} a_{i}<q_{i} a_{i+1}=r_{i} a_{i}<r_{i} a_{i+1}
\end{aligned}
$$

(let this be the $(i+1)$ th chain, for $i \in\{0,1,2\}$).

- Then link those chains together, by stating

0th chain <1 st chain <2 nd chain <3 rd chain .

- This yields a total order on \bar{S}, which, by previous lemma, can be extended to a right order on M with respect to which \bar{S} is a lower subset.

Right-orderability of M (cont'd)

Rightorderability versus leftorderability for monoids

General
Idempotents and the finite case

The case of submonoids of groups

- By right invariance, there is no choice on elements of type $p_{i} a, q_{i} a, r_{i}$ (i fixed): we obtain

$$
\begin{aligned}
p_{i} a_{i+2}<q_{i} a_{i+2}<p_{i} a_{i} & =r_{i} a_{i+2} \\
<p_{i} a_{i+1} & =q_{i} a_{i}<q_{i} a_{i+1}=r_{i} a_{i}<r_{i} a_{i+1}
\end{aligned}
$$

(let this be the $(i+1)$ th chain, for $i \in\{0,1,2\}$).

- Then link those chains together, by stating

0th chain <1 st chain <2 nd chain <3 rd chain .

- This yields a total order on \bar{S}, which, by previous lemma, can be extended to a right order on M with respect to which \bar{S} is a lower subset.
■ In particular, M is positively right-orderable.

Conclusion

Rightorderability versus leftorderability for monoids

General

Idempotents

 and the finite caseThe case of submonoids of groups

■ The monoid M embeds into a group, and its universal group is $\mathrm{F}_{\mathrm{gp}}(4) *(\mathbb{Z} / 7 \mathbb{Z})$ (it has torsion!).

Conclusion

Rightorderability versus leftorderability for monoids

General

Idempotents

 and the finite caseThe case of submonoids of groups

■ The monoid M embeds into a group, and its universal group is $\mathrm{F}_{\mathrm{gp}}(4) *(\mathbb{Z} / 7 \mathbb{Z})$ (it has torsion!).
■ The monoid M is positively right-orderable.

Conclusion

Rightorderability versus leftorderability for monoids

General

Idempotents and the finite case

The case of submonoids of groups

■ The monoid M embeds into a group, and its universal group is $\mathrm{F}_{\mathrm{gp}}(4) *(\mathbb{Z} / 7 \mathbb{Z})$ (it has torsion!).

- The monoid M is positively right-orderable.
- The monoid M is not left-orderable. In fact, there is no partial left order \unlhd of M for which $\left\{a_{0}, a_{1}, a_{2}\right\}$ has a least element.

Rightorderability versus leftorderability for monoids

Genera

Idempotents and the finite case

The case of submonoids of groups

Thanks for your attention!

