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Basic facts

Right- . . . . . .
orderability m A partial order < on a monoid M is a partial right order if

versus left-

orderability it satisfies the implication x < y = xz < yz.

e m < is positive if it satisfies 1 < x.

General m Our orders will usually be total orders (otherwise we will
specify partial).

m Bi-order means the conjunction of right order and left
order.

m Yields the concepts of right-orderability, left-orderability,
bi-orderability (skip “bi-" in the commutative case).

m For groups, right- and left-orderability are equivalent
(Proof: let x <" y if y=1 < x71).

m The braid group Bs is right- (and thus left-) orderable, but

it is not bi-orderable (Dehornoy, Dynnikov, Rolfsen, and
Wiest 2008).
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The monoids X

Right-

orderability m {0,1} is orderable, {0,1}? is not.

versus left-

orderability m For any set X, define a monoid structure X on X U {1}:
ify=1
Genera =147 YT forall x,y € XU{1}.
y, ify#1

m All X are quasitrivial (i.e., xy € {x,y} for all x, y).

m X is positively right-orderable (any total order works).
m X1 is bi-orderable iff it is left-orderable iff card X < 2.

m XD is positively bi-orderable iff it has a positive partial
left order iff card X < 1.
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for monoids

m Its table is

General ‘

O o ou =
0O O v i
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o o TUT|T
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Table: A right-orderable, non left-orderable monoid

m Any right-orderable, non left-orderable monoid is either
isomorphic to that example, or has at least 5 elements.

m Bi-orderability of an idempotent semigroup can be
characterized by a finite list of forbidden subsemigoups
(Saitd 1974).
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Right-
orderability
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for monoids

m In general, orderability of a monoid M reflects on the
idempotents of M.

et m If M is bi-orderable, then ab € {a, b} for all idempotent
case a,be M. Proof.: WMAT 1 < ab. If a < b, then
b=1b < ab? = ab < b?> = b, thus b = ab. Similarly, if

b < a, then a = ab.
m If M is positively bi-orderable, then ab = ba € {a, b} for

all idempotent a, b € M. We then say that the
idempotents of M form a chain.
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Right-
orderability
versus left-
orderability
for monoids

Every element x in a finite monoid M has a unique
idempotent positive power, usually denoted x“.

Idempotents
and the finite . . ..
e m Such structures (monoids with additional x — x“) belong
to L. Shevrin's epigroups (also often called completely
m-regular semigroups).
m In any finite right-orderable monoid, x¥ = x™ where
xM = xM™*1 (the “period” of x is 1).
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Right-
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for monoids Every finite right-orderable monoid is conical (i.e.,
xy = 1=y =1). Proof. xy =1 implies x"y" =1 for
all n, thus x*y* =1, and thus
Iadnedmtioetiir:iie -y = 1-y = wawy = waw = 1

m Every finite commutative orderable monoid is
antisymmetric (i.e., xyz = z = yz = z). Proof. xyz = z
implies (xy)“z = z, thus, by commutativity, y“x“z = z,
thus yz = yy“x¥z = y“x¥z = z.

m The latter (antisymmetry) can be extended to the case
where any two idempotents commute (much harder).

m It fails in the general (finite) case.
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Table: A bi-orderable monoid, in which the idempotents form a chain,
with no positive partial bi-order
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M is conical (i.e., xy =1 =y = 1) and orderable;
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Positive orderability

A monoid has unique roots if it satisfies x" = y" = x = y (all
n>0).

Proposition

TFAE, for any cancellative commutative monoid M:
M is positively orderable;
M is conical (i.e., xy =1 =y = 1) and orderable;
M is conical and has unique roots.

m An infinite, conical, orderable, commutative monoid may
not have any positive partial order (W 2020).

m What about the finite commutative case?
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for monoids I I I 1 2 2 4 5 5 ~
0/ T 0 1 2 3 4 5 6 oo

and e finite 111 1 4 5 5 5 oo oo o0
e 2l 2 53 5 B B o oo oo oo
312 3 5 5 6 o o0 o© o©

4|1 4 4 5 00 00 00 00O 0O 00

5/ 5 5 o0 00 00 00 o0 00 00

6 5 6 o0 o0 0O 0O o0 0O 00

0c0Olo0 0O 00O 00 00 00 00 00 OO

Table: An orderable, but not positively orderable, commutative
monoid (with least possible cardinality)
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worlds")
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Idempotents
and the finite

et Table: LO, positively RO, non bi-orderable, idempotent

. 1 a b ¢ o
1 1 a b ¢ o
al a a oo ¢ ©
b| b b o~ oo o0
c| ¢ o0 00 o o
0|00 00 00 00 00

Table: Positively LO and RO, non bi-orderable
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Let M be a monoid, embeddable into a group. If M is
right-orderable, is it also left-orderable?

The case of
submonoids of

groups m Holds trivially in the commutative case.

m General case: counterexample constructed in the following
slides.
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Origin of the construction

Right-
orderability
versus left-
orderability
for monoids

m Play with non left-orderability for finite monoids. Isolate a
“good reason” for non-orderability, which would not
collide too “obviously” against cancellativity.

m Such a “good reason” will take the form of a finite system
TBEEIE of generators and relations, which will define a
Submoneids of presentation of our monoid M.

groups

m In order to prove right-orderability of M, express M as the
universal monoid of a (cancellative) finite category, which
will be, in some sense, right-orderable (order constructed
directly).
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Right-
orderability
versus left-

orderablity m Define M as the monoid given by the generators p;, q;, ri,
a; (i € {0,1,2}) and the relations

Poaop = rpaz, Pod1 = qoao ; doai = rodo;
pi1ai1 = nao; piaz2 = qi1a1; giaz = nai;
it @28 p2a2 = nax; p23p = g2a2; g2ap = naz.

submonoids of
groups

m Our next step is to represent M as the universal monoid of
a finite category S.

m Categories understood in the source/target (as opposed to
domain/range) sense; dpx =source of x, J1x =target of x.
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m Universal monoid of S (denoted Umon(S)): universal with
respect to all homomorphisms of S to a monoid (i.e.,
xy = f(xy) = f(x)f(y)) sending all identities to 1.

e o of m Umon(S) consists of all finite sequences xpxi - - - X, where

submonoids of all x; € S and all 01x; # Jpxj1, with “contracted”
groups .
concatenation; so S\ IdtS < Umon(S) \ {1}.

m Suppose that < is a left order on M. WMAT 3¢ < a; and
ap < ap. By left invariance,

poao < poar = goao < goay = rpap < rpax = podo ,

S0 ppag = poai in M, thus also in S, a contradiction.
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Right-

orderability Group-embeddability criterion for Umon(S) (W 2018)

versus left-
orderabili 5 5 -
for monoids The universal monoid Unon(S) of a category S embeds into a
group iff “it does so at arrow level”, that is, there are a
group G and a homomorphism from S to G that is one-to-one

on every hom-set of S.

- (hom-sets: S(a. b) def {x € S| dox = a and O1x = b}, for
submonoids of a, b - Idt 5)

groups

m For our current problem: define G as the universal group
of S (equivalently, of M). Its defining relations are the
same as those of M:

piai = ridit2; pidi+1 = Giaj; Giai+1 = ria;, for i € {0,1,2}

(indices modulo 3).
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Embeddability into a group (cont’d)

Right-
orderability
versus left-
orderability
for monoids

m Play with those relations, now within the group G (we are
not yet sure whether M — G).

piaj = ridi+2; Pidi+1 = gjai; gjaj+1 = ra;, for i € {0,1,2}.

The case of
submonoids of
groups

m Eliminating g; and r;, we obtain

1., _ -1 .
qi = pidi+1d; i fi = piaia; 5

-1 -1
dj+14d; "adi+1 = djd;}Ha; .
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m In the group G, everything can be expressed in terms of py,
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Embeddability into a group (further cont'd)

Right- .. . . . .
orderability m Combining the first equation, with / = 0, to the second
versus left- . . . . —1 7
orderability equation, with i =1, yields (a; "a1)’ = 1.
for monoids

m In the group G, everything can be expressed in terms of py,

p1, P2, ao (4 free generators) and c subjected to ¢’ = 1.
m Hence G = F,,(4) * (Z/7Z), with Fyp(4) generated

by {po, p1,p2,a0}, Z/7Z by ¢, a1 = agc, a» = apc’, and
The case of
::E::;mids of qo = poalaal = poaocaal ; rn = p03032_1 = poagczagl ;
q1 = praza; b = praoctagt; n = pra1ay’ = praocay '

—1 2.-1. _ -1 _ 4.1
Q2 = ppapga, = PpaoC-ag ; = Ppaxa; = PpaoC ag -

m This representation is one-to-one on each hom-set of the
category S.

m Therefore, M embeds into G.
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Right-orderability of universal monoids

Right-
orderability
versus I_eft— Lemma (W 2020)
orderability
for monoids

Let S be a conical, right cancellative category, and let < be a
total order on S :=canonical image of S in Umon(S), with least
element 1, such that for all x,y,z€ S, x<yandyze S
implies that xz € S and xz < yz. Then < extends to a right
The case of order < of Umon(S), with respect to which S is a lower subset
submonoids of of Umon(s)_

groups

m The order < is constructed as the “reverse shortlex” order.

m In more detail: for reduced words x = x,, - - - x; and
Y =Yn-¥1in Unon(S), consider the smallest k, if it
exists, such that xx # yx. Say that x < y if either m < n,
or m=nand xx < Y.
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Right-orderability of M

Right- ..
orderability m Let us go back to our original M.

versus left-
ot m Setting & def {pi,qi,ri,ai | i €{0,1,2}} (i.e., the 12
defining generators of M), we get

S= {1} Uuxzu {p,-aj, qiaj, riaj ’ i,j € {0, 1,2}} .

The case of
submonoids of
groups

m Taking into account its defining relations, S has 35
elements, and S = (S \ Idt S) LI {1} has 31 elements.

m The order of S will be “initialized” by letting

I<pp<qgp<n<p<qa<n<p<gp<n
<g<a<a

(let this be the Oth chain).
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Right-orderability of M (cont'd)

Right- . . . . .
orderability m By right invariance, there is no choice on elements of
versus left- . .
orderability type p;a, g;a, r;a (i fixed): we obtain
for monoids

pidi+2 < gidit2 < pjaj = ridjy2
< pidi+1 = qja; < Qjaj+1 = ria; < rjaj41

(let this be the (i + 1)th chain, for i € {0,1,2}).
i of m Then link those chains together, by stating

groups

Oth chain < 1st chain < 2nd chain < 3rd chain.
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Right-orderability of M (cont'd)

Right- . . . . .
orderability m By right invariance, there is no choice on elements of
versus left- . .
orderability type p;a, g;a, r;a (i fixed): we obtain
for monoids

pidi+2 < gidit2 < pjaj = ridjy2
< pidi+1 = qja; < Qjaj+1 = ria; < rjaj41

(let this be the (i + 1)th chain, for i € {0,1,2}).
i of m Then link those chains together, by stating

groups

Oth chain < 1st chain < 2nd chain < 3rd chain.

m This yields a total order on S, which, by previous lemma,
can be extended to a right order on M with respect to
which S is a lower subset.

m In particular, M is positively right-orderable.
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Conclusion

Right-
orderability
versus left-
orderability
for monoids

m The monoid M embeds into a group, and its universal
group is Fyp,(4) * (Z/7Z) (it has torsion!).
m The monoid M is positively right-orderable.

The case of
submonoids of
groups

m The monoid M is not left-orderable. In fact, there is no
partial left order < of M for which {ag, a1, a2} has a least
element.
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Thanks for your attention!
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