Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \bar{A}

From diagram to object

Further nonrepresentability results

Spectra of Abelian *l*-groups are anti-elementary

Friedrich Wehrung

Université de Caen LMNO, CNRS UMR 6139 Département de Mathématiques 14032 Caen cedex *E-mail:* friedrich.wehrung01@unicaen.fr *URL:* http://wehrungf.users.lmno.cnrs.fr

OAL-RAG 2019, May 2019

Working technique

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results

Convex $\ell\text{-subgroups}$ and $\ell\text{-ideals}$

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results Our *l*-groups will be denoted additively (even in the non-Abelian case).

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results

- Our *l*-groups will be denoted additively (even in the non-Abelian case).
- An ℓ -subgroup A in an ℓ -group G is *convex* if $\forall x \in A^+$ $[0, x] \subseteq A$.

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results

- Our *l*-groups will be denoted additively (even in the non-Abelian case).
- An ℓ -subgroup A in an ℓ -group G is *convex* if $\forall x \in A^+$ $[0, x] \subseteq A$.
- In addition, A is an ℓ -ideal if it is a normal subgroup.

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results

- Our *l*-groups will be denoted additively (even in the non-Abelian case).
- An ℓ -subgroup A in an ℓ -group G is *convex* if $\forall x \in A^+$ $[0, x] \subseteq A$.
- In addition, A is an ℓ -ideal if it is a normal subgroup.
- Denote by Cs G (resp., Id G) the lattice of all convex ℓ-subgroups (resp., ℓ-ideals) of G.

Convex $\ell\text{-subgroups}$ and $\ell\text{-ideals}$

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram Ā

From diagram to object

Further nonrepresentability results

- Our *l*-groups will be denoted additively (even in the non-Abelian case).
- An ℓ -subgroup A in an ℓ -group G is *convex* if $\forall x \in A^+$ $[0, x] \subseteq A$.
- In addition, A is an ℓ -ideal if it is a normal subgroup.
- Denote by Cs G (resp., Id G) the lattice of all convex ℓ-subgroups (resp., ℓ-ideals) of G.
- Then denote by Cs_c G (resp., Id_c G) the (distributive) lattice (resp., (∨, 0)-semilattice) of all finitely generated (equivalently, 1-generated) convex ℓ-subgroups (resp., ℓ-ideals) of G.

Convex $\ell\text{-subgroups}$ and $\ell\text{-ideals}$

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram Ā

From diagram to object

Further nonrepresentability results

- Our *l*-groups will be denoted additively (even in the non-Abelian case).
- An ℓ -subgroup A in an ℓ -group G is *convex* if $\forall x \in A^+$ $[0, x] \subseteq A$.
- In addition, A is an ℓ -ideal if it is a normal subgroup.
- Denote by Cs G (resp., Id G) the lattice of all convex *l*-subgroups (resp., *l*-ideals) of G.
- Then denote by Cs_c G (resp., Id_c G) the (distributive) lattice (resp., (∨, 0)-semilattice) of all finitely generated (equivalently, 1-generated) convex ℓ-subgroups (resp., ℓ-ideals) of G.

• In particular, Id $G \cong \text{Con } G$ naturally.

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram Ā

From diagram to object

Further nonrepresentability results

- Our *l*-groups will be denoted additively (even in the non-Abelian case).
- An ℓ -subgroup A in an ℓ -group G is *convex* if $\forall x \in A^+$ $[0, x] \subseteq A$.
- In addition, A is an ℓ -ideal if it is a normal subgroup.
- Denote by Cs G (resp., Id G) the lattice of all convex *l*-subgroups (resp., *l*-ideals) of G.
- Then denote by Cs_c G (resp., Id_c G) the (distributive) lattice (resp., (∨, 0)-semilattice) of all finitely generated (equivalently, 1-generated) convex ℓ-subgroups (resp., ℓ-ideals) of G.

- In particular, Id $G \cong \text{Con } G$ naturally.
- If *G* is Abelian, then Id_c *G* is the Stone dual of the spectrum of *G*.

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram *Ā*

From diagram to object

Further nonrepresentability results

- Our *l*-groups will be denoted additively (even in the non-Abelian case).
- An ℓ -subgroup A in an ℓ -group G is *convex* if $\forall x \in A^+$ $[0, x] \subseteq A$.
- In addition, A is an ℓ -ideal if it is a normal subgroup.
- Denote by Cs G (resp., Id G) the lattice of all convex ℓ-subgroups (resp., ℓ-ideals) of G.
- Then denote by Cs_c G (resp., Id_c G) the (distributive) lattice (resp., (∨, 0)-semilattice) of all finitely generated (equivalently, 1-generated) convex ℓ-subgroups (resp., ℓ-ideals) of G.
- In particular, Id $G \cong \text{Con } G$ naturally.
- If *G* is Abelian, then Id_c *G* is the Stone dual of the spectrum of *G*.
- For $x \in G$, denote by $\langle x \rangle$ (resp., $\langle x \rangle^{\ell}$) the convex ℓ -subgroup (resp., ℓ -ideal) generated, by x.

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results • A distributive lattice D with 0 is completely normal if $(\forall a, b \in D) \ (\exists x, y \in D) \ a \leq b \lor x, b \leq a \lor y$, and $x \land y = 0$.

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results A distributive lattice D with 0 is completely normal if (∀a, b ∈ D) (∃x, y ∈ D) a ≤ b ∨ x, b ≤ a ∨ y, and x ∧ y = 0. This can also be stated by saying that the Stone dual of D is a root system (Monteiro 1954).

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results • A distributive lattice D with 0 is completely normal if $(\forall a, b \in D)$ $(\exists x, y \in D)$ $a \leq b \lor x$, $b \leq a \lor y$, and $x \land y = 0$. This can also be stated by saying that the Stone dual of D is a root system (Monteiro 1954).

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• $Cs_c G$ is completely normal, for every ℓ -group G.

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results

- A distributive lattice D with 0 is completely normal if $(\forall a, b \in D)$ $(\exists x, y \in D)$ $a \leq b \lor x$, $b \leq a \lor y$, and $x \land y = 0$. This can also be stated by saying that the Stone dual of D is a root system (Monteiro 1954).
- Cs_c G is completely normal, for every ℓ -group G. (*Proof*: for $a, b \in G^+$, set $x \stackrel{\text{def}}{=} a \setminus b = a - a \wedge b$, $y \stackrel{\text{def}}{=} b \setminus a$. Then $\langle a \rangle \subseteq \langle b \rangle \lor \langle x \rangle$, $\langle b \rangle \subseteq \langle a \rangle \lor \langle y \rangle$, and $\langle x \rangle \cap \langle y \rangle = \{0\}$.)

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results

- A distributive lattice D with 0 is completely normal if $(\forall a, b \in D)$ $(\exists x, y \in D)$ $a \leq b \lor x$, $b \leq a \lor y$, and $x \land y = 0$. This can also be stated by saying that the Stone dual of D is a root system (Monteiro 1954).
- Cs_c *G* is completely normal, for every ℓ -group *G*. (*Proof*: for $a, b \in G^+$, set $x \stackrel{\text{def}}{=} a \setminus b = a - a \wedge b$, $y \stackrel{\text{def}}{=} b \setminus a$. Then $\langle a \rangle \subseteq \langle b \rangle \lor \langle x \rangle$, $\langle b \rangle \subseteq \langle a \rangle \lor \langle y \rangle$, and $\langle x \rangle \cap \langle y \rangle = \{0\}$.)

 If G is representable (i.e., subdirect product of chains), then Id_c G is a homomorphic image of Cs_c G (via ⟨x⟩ ↦ ⟨x⟩^ℓ), thus it is also completely normal.

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results

- A distributive lattice D with 0 is completely normal if $(\forall a, b \in D)$ $(\exists x, y \in D)$ $a \leq b \lor x$, $b \leq a \lor y$, and $x \land y = 0$. This can also be stated by saying that the Stone dual of D is a root system (Monteiro 1954).
- Cs_c *G* is completely normal, for every ℓ -group *G*. (*Proof*: for $a, b \in G^+$, set $x \stackrel{\text{def}}{=} a \setminus b = a - a \wedge b$, $y \stackrel{\text{def}}{=} b \setminus a$. Then $\langle a \rangle \subseteq \langle b \rangle \lor \langle x \rangle$, $\langle b \rangle \subseteq \langle a \rangle \lor \langle y \rangle$, and $\langle x \rangle \cap \langle y \rangle = \{0\}$.)
- If G is representable (i.e., subdirect product of chains), then Id_c G is a homomorphic image of Cs_c G (via ⟨x⟩ ↦ ⟨x⟩^ℓ), thus it is also completely normal.

Question addressed here:

Describe the lattices $Cs_c G$ (resp., the $(\lor, 0)$ -semilattices $Id_c G$).

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results ■ An infinite lattice *D* is Cs_c *G* for some Abelian ℓ -group *G* iff there is an ℓ -group structure *G* on *D* and a surjective $f: G^+ \rightarrow D$ such that $f(x) \leq_D f(y)$ iff $x \in \langle y \rangle_G$.

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results • An infinite lattice D is $Cs_c G$ for some Abelian ℓ -group G iff there is an ℓ -group structure G on D and a surjective $f: G^+ \rightarrow D$ such that $f(x) \leq_D f(y)$ iff $x \in \langle y \rangle_G$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Hence, the class of all lattices of the form Cs_c G has a second-order (also, projective class within ℒ_{ω1ω}) characterization.

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram *Ā*

From diagram to object

Further nonrepresentability results

- An infinite lattice D is $Cs_c G$ for some Abelian ℓ -group G iff there is an ℓ -group structure G on D and a surjective $f: G^+ \rightarrow D$ such that $f(x) \leq_D f(y)$ iff $x \in \langle y \rangle_G$.
- Hence, the class of all lattices of the form Cs_c G has a second-order (also, projective class within L_{ω1ω}) characterization.
- Every countable distributive (∨, 0)-semilattice is Id_c G for some ℓ-group G (Růžička, Tůma, and W 2007).

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram *Ā*

From diagram to object

Further nonrepresentability results

- An infinite lattice D is $Cs_c G$ for some Abelian ℓ -group G iff there is an ℓ -group structure G on D and a surjective $f: G^+ \rightarrow D$ such that $f(x) \leq_D f(y)$ iff $x \in \langle y \rangle_G$.
- Hence, the class of all lattices of the form Cs_c G has a second-order (also, projective class within L_{ω1ω}) characterization.
- Every countable distributive (∨, 0)-semilattice is Id_c G for some ℓ-group G (Růžička, Tůma, and W 2007).

■ A countable lattice is Cs_c G, for some (Abelian) ℓ-group G, iff it is completely normal (W 2017).

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram $ar{A}$

From diagram to object

Further nonrepresentability results

- An infinite lattice D is $Cs_c G$ for some Abelian ℓ -group G iff there is an ℓ -group structure G on D and a surjective $f: G^+ \rightarrow D$ such that $f(x) \leq_D f(y)$ iff $x \in \langle y \rangle_G$.
- Hence, the class of all lattices of the form Cs_c G has a second-order (also, projective class within L_{ω1ω}) characterization.
- Every countable distributive (∨, 0)-semilattice is Id_c G for some ℓ-group G (Růžička, Tůma, and W 2007).
- A countable lattice is Cs_c G, for some (Abelian)
 l-group G, iff it is completely normal (W 2017). G can be a vector lattice over any countable Archimedean totally ordered field k; countability of k cannot be dispensed with.

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram *Ā*

From diagram to object

Further nonrepresentability results

- An infinite lattice D is $Cs_c G$ for some Abelian ℓ -group G iff there is an ℓ -group structure G on D and a surjective $f: G^+ \rightarrow D$ such that $f(x) \leq_D f(y)$ iff $x \in \langle y \rangle_G$.
- Hence, the class of all lattices of the form Cs_c G has a second-order (also, projective class within ℒ_{ω1ω}) characterization.
- Every countable distributive (∨, 0)-semilattice is Id_c G for some ℓ-group G (Růžička, Tůma, and W 2007).
- A countable lattice is Cs_c G, for some (Abelian)
 l-group G, iff it is completely normal (W 2017). G can be a vector lattice over any countable Archimedean totally ordered field k; countability of k cannot be dispensed with.
- The class of all lattices of the form Cs_c G, for G Abelian, has no first-order characterization (W 2017).

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results

Definition

A distributive lattice D with 0 has countably based differences if $\forall a, b \in D$, $\exists (c_n)_{n < \omega} \in D^{\omega}$ such that $\forall x \in D$, $a \le b \lor x$ iff $\exists n < \omega$ such that $c_n \le x$.

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results

Definition

A distributive lattice D with 0 has countably based differences if $\forall a, b \in D$, $\exists (c_n)_{n < \omega} \in D^{\omega}$ such that $\forall x \in D$, $a \le b \lor x$ iff $\exists n < \omega$ such that $c_n \le x$.

 This has been given a few other names in the literature, such as (ld ω) (spectral spaces) and "σ-Conrad" (frames).

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram Ā

From diagram to object

Further nonrepresentability results

Definition

A distributive lattice D with 0 has countably based differences if $\forall a, b \in D$, $\exists (c_n)_{n < \omega} \in D^{\omega}$ such that $\forall x \in D$, $a \le b \lor x$ iff $\exists n < \omega$ such that $c_n \le x$.

- This has been given a few other names in the literature, such as (Id ω) (spectral spaces) and "σ-Conrad" (frames).
- In particular, countably based differences can be expressed by an L_{w1w1} statement of lattice theory.

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram Ā

From diagram to object

Further nonrepresentability results

Definition

A distributive lattice D with 0 has countably based differences if $\forall a, b \in D$, $\exists (c_n)_{n < \omega} \in D^{\omega}$ such that $\forall x \in D$, $a \le b \lor x$ iff $\exists n < \omega$ such that $c_n \le x$.

- This has been given a few other names in the literature, such as (Id ω) (spectral spaces) and "σ-Conrad" (frames).
- In particular, countably based differences can be expressed by an L_{ω1ω1} statement of lattice theory.
- Every completely normal dual Heyting algebra is Cs_c G for some Abelian ℓ-group G (Cignoli, Gluschankof, and Lucas 2006, and Iberkleid, Martínez, and McGovern 2011).

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram Ā

From diagram to object

Further nonrepresentability results

Definition

A distributive lattice D with 0 has countably based differences if $\forall a, b \in D$, $\exists (c_n)_{n < \omega} \in D^{\omega}$ such that $\forall x \in D$, $a \le b \lor x$ iff $\exists n < \omega$ such that $c_n \le x$.

- This has been given a few other names in the literature, such as (Id ω) (spectral spaces) and "σ-Conrad" (frames).
- In particular, countably based differences can be expressed by an L_{ω1ω1} statement of lattice theory.
- Every completely normal dual Heyting algebra is Cs_c G for some Abelian ℓ-group G (Cignoli, Gluschankof, and Lucas 2006, and Iberkleid, Martínez, and McGovern 2011).
- For every Abelian ℓ-group G, ld_c G has countably based differences (refs above; *Proof.* given a, b ∈ G⁺, set c_n def / (a < nb) ∀n).

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram Ā

From diagram to object

Further nonrepresentability results

Definition

A distributive lattice D with 0 has countably based differences if $\forall a, b \in D$, $\exists (c_n)_{n < \omega} \in D^{\omega}$ such that $\forall x \in D$, $a \le b \lor x$ iff $\exists n < \omega$ such that $c_n \le x$.

- This has been given a few other names in the literature, such as (Id ω) (spectral spaces) and "σ-Conrad" (frames).
- In particular, countably based differences can be expressed by an L_{ω1ω1} statement of lattice theory.
- Every completely normal dual Heyting algebra is Cs_c G for some Abelian ℓ-group G (Cignoli, Gluschankof, and Lucas 2006, and Iberkleid, Martínez, and McGovern 2011).
- For every Abelian ℓ-group G, Id_c G has countably based differences (refs above; *Proof*: given a, b ∈ G⁺, set
 c_n def / (a < nb) ∀n). Question: how about the converse?

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results • We are given a totally ordered division ring \Bbbk .

▲□ > ▲圖 > ▲目 > ▲目 > → 目 - のへで

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results • We are given a totally ordered division ring \Bbbk .

• Set
$$\mathbb{k}^+ \stackrel{\text{def}}{=} \{x \in \mathbb{k} \mid x \ge 0\}$$
, $\mathbb{k}^{++} \stackrel{\text{def}}{=} \{x \in \mathbb{k} \mid x > 0\}$, and $\overline{\mathbb{k}}^+ \stackrel{\text{def}}{=} \mathbb{k}^+ \cup \{+\infty\}$.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results

- We are given a totally ordered division ring \Bbbk .
- Set $\mathbb{k}^+ \stackrel{\text{def}}{=} \{x \in \mathbb{k} \mid x \ge 0\}$, $\mathbb{k}^{++} \stackrel{\text{def}}{=} \{x \in \mathbb{k} \mid x > 0\}$, and $\overline{\mathbb{k}^+} \stackrel{\text{def}}{=} \mathbb{k}^+ \cup \{+\infty\}$.
- Denote by O(k⁺) the (completely normal, distributive) lattice of all finite unions of intervals [0, x[,]x, y[, and]y, +∞] where x, y ∈ k⁺.

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results

- We are given a totally ordered division ring \Bbbk .
- Set $\mathbb{k}^+ \stackrel{\text{def}}{=} \{x \in \mathbb{k} \mid x \ge 0\}$, $\mathbb{k}^{++} \stackrel{\text{def}}{=} \{x \in \mathbb{k} \mid x > 0\}$, and $\overline{\mathbb{k}}^+ \stackrel{\text{def}}{=} \mathbb{k}^+ \cup \{+\infty\}$.
- Denote by O(k⁺) the (completely normal, distributive) lattice of all finite unions of intervals [0, x[,]x, y[, and]y, +∞] where x, y ∈ k⁺.
- Let us be given sets $U_{ij} \in \mathcal{O}(\overline{\mathbb{k}}^+)$, for $1 \le i < j \le 3$.

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results

- We are given a totally ordered division ring \Bbbk .
- Set $\mathbb{k}^+ \stackrel{\text{def}}{=} \{x \in \mathbb{k} \mid x \ge 0\}$, $\mathbb{k}^{++} \stackrel{\text{def}}{=} \{x \in \mathbb{k} \mid x > 0\}$, and $\overline{\mathbb{k}}^+ \stackrel{\text{def}}{=} \mathbb{k}^+ \cup \{+\infty\}$.
- Denote by O(k⁺) the (completely normal, distributive) lattice of all finite unions of intervals [0, x[,]x, y[, and]y, +∞] where x, y ∈ k⁺.
- Let us be given sets $U_{ij} \in \mathcal{O}(\overline{\mathbb{k}}^+)$, for $1 \le i < j \le 3$.
- For each of those, we set

 $C_{ij} \stackrel{\text{def}}{=} \{(x_1, x_2, x_3) \in (\Bbbk^+)^3 \mid (x_i, x_j) \neq (0, 0) \text{ and } x_i^{-1} x_j \in U_{ij}\}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The sets U_{ij} and C_{ij}

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results

Ceva configuration: when $C_{12} \cap C_{23} \subseteq C_{13} \subseteq C_{12} \cup C_{23}$.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

The sets U_{ij} and C_{ij}

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results

Ceva configuration: when $C_{12} \cap C_{23} \subseteq C_{13} \subseteq C_{12} \cup C_{23}$.

Figure: The sets C_{12} , C_{13} , and C_{23} in a Ceva configuration

イロト 不得 トイヨト イヨト

The sets U_{ij} and C_{ij}

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results

Ceva configuration: when $C_{12} \cap C_{23} \subseteq C_{13} \subseteq C_{12} \cup C_{23}$.

Figure: The sets C_{12} , C_{13} , and C_{23} in a Ceva configuration

This looks like the classical picture for Ceva's Theorem in affine geometry!
An (almost) lattice-theoretical Ceva

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results ... and indeed:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

An (almost) lattice-theoretical Ceva

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results ...and indeed:

Proposition

Suppose that the following statements hold:

1 $0 \in U_{12} \cap U_{23} \cap U_{13}$;

2 $[0,\infty[\not\subseteq U_{12} \text{ and } [0,\infty[\not\subseteq U_{23};$

3 $C_{12} \cap C_{23} \subseteq C_{13} \subseteq C_{12} \cup C_{23}$.

```
Then there are x, y \in \mathbb{k}^{++} such that U_{12} = [0, x[, U_{23} = [0, y[, and U_{13} = [0, xy[.
```

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results In all the figures involved here, open polyhedral cones of $(\Bbbk^+)^3$ are represented by their intersection with the 2-simplex

$$\{(x_1, x_2, x_3) \in (\mathbb{k}^+)^3 \mid x_1 + x_2 + x_3 = 1\},\$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

and points are represented by their homogeneous coordinates.

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results In all the figures involved here, open polyhedral cones of $(\mathbb{k}^+)^3$ are represented by their intersection with the 2-simplex

$$\{(x_1, x_2, x_3) \in (\mathbb{k}^+)^3 \mid x_1 + x_2 + x_3 = 1\},\$$

and points are represented by their homogeneous coordinates.

Figure: A Ceva configuration

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results

Assume that $C_{12} \cap C_{23} \subseteq C_{13} \subseteq C_{12} \cup C_{23}$ (plus "boundary conditions").

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results Assume that $C_{12} \cap C_{23} \subseteq C_{13} \subseteq C_{12} \cup C_{23}$ (plus "boundary conditions").

Eliminate the holes in U_{23} , then U_{12} , then U_{13} ,

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results

- Assume that $C_{12} \cap C_{23} \subseteq C_{13} \subseteq C_{12} \cup C_{23}$ (plus "boundary conditions").
- Eliminate the holes in U_{23} , then U_{12} , then U_{13} , in turn proving that they have the form $U_{23} = [0, y[, U_{12} = [0, x[, then U_{13} = [0, xy[.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results

- Assume that $C_{12} \cap C_{23} \subseteq C_{13} \subseteq C_{12} \cup C_{23}$ (plus "boundary conditions").
- Eliminate the holes in U_{23} , then U_{12} , then U_{13} , in turn proving that they have the form $U_{23} = [0, y[, U_{12} = [0, x[, then U_{13} = [0, xy[.$
- Typical picture intervening in the proof (here for U_{23}):

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results

■ Introduce Abelian ℓ -groups A_p , for $p \in \mathfrak{P}[3] \stackrel{\text{def}}{=} \{ \varnothing, 1, 2, 3, 12, 13, 23, 123 \}.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results

- Introduce Abelian ℓ -groups A_p , for
 - $p \in \mathfrak{P}[3] \stackrel{\text{def}}{=} \{ \varnothing, 1, 2, 3, 12, 13, 23, 123 \}.$
- In the figure below, each A_p is written with its canonical generating subset (e.g., A₁₂₃ is generated by {a, a', b, c}).

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results Introduce Abelian ℓ -groups A_p , for

$$p \in \mathfrak{P}[3] \stackrel{\text{def}}{=} \{ \varnothing, 1, 2, 3, 12, 13, 23, 123 \}.$$

In the figure below, each A_p is written with its canonical generating subset (e.g., A₁₂₃ is generated by {a, a', b, c}).

• The relations, defining those ℓ -groups, are

$$0 \le a \le a' \le 2a$$
, $0 \le b$, and $0 \le c$.

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results ■ Introduce Abelian ℓ -groups A_p , for $p \in \mathfrak{P}[3] \stackrel{\text{def}}{=} \{ \emptyset, 1, 2, 3, 12, 13, 23, 123 \}.$

In the figure below, each A_p is written with its canonical generating subset (e.g., A₁₂₃ is generated by {a, a', b, c}).

■ The relations, defining those *l*-groups, are

 $0 \le a \le a' \le 2a, 0 \le b$, and $0 \le c$.

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results

In particular, $\vec{A}(1, 123)$ consists of two ℓ -embeddings (resp., $a \mapsto a$ and $a \mapsto a'$).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results In particular, $\vec{A}(1, 123)$ consists of two ℓ -embeddings (resp., $a \mapsto a$ and $a \mapsto a'$).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

In that sense the diagram \vec{A} is non-commutative.

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results

- In particular, $\vec{A}(1, 123)$ consists of two ℓ -embeddings (resp., $a \mapsto a$ and $a \mapsto a'$).
- In that sense the diagram \vec{A} is non-commutative. Its arrows do not preserve units.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results

- In particular, $\vec{A}(1, 123)$ consists of two ℓ -embeddings (resp., $a \mapsto a$ and $a \mapsto a'$).
- In that sense the diagram \vec{A} is non-commutative. Its arrows do not preserve units.

Proposition

The diagram \vec{A} is Id_c-commutative, in the sense that for every set *I*, the diagram Id_c $\vec{A'}$ (based on the poset $\mathfrak{P}[3]'$) is commutative.

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results

- In particular, $\vec{A}(1, 123)$ consists of two ℓ -embeddings (resp., $a \mapsto a$ and $a \mapsto a'$).
- In that sense the diagram \vec{A} is non-commutative. Its arrows do not preserve units.

Proposition

The diagram \vec{A} is Id_{c} -commutative, in the sense that for every set *I*, the diagram $\mathsf{Id}_{c} \vec{A'}$ (based on the poset $\mathfrak{P}[3]^{I}$) is commutative. Accordingly, we set $\vec{A} \stackrel{\text{def}}{=} \mathsf{Id}_{c} \vec{A}$.

▲□▼▲□▼▲□▼▲□▼ □ ● ●

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results

- In particular, $\vec{A}(1, 123)$ consists of two ℓ -embeddings (resp., $a \mapsto a$ and $a \mapsto a'$).
- In that sense the diagram \vec{A} is non-commutative. Its arrows do not preserve units.

Proposition

The diagram \vec{A} is Id_{c} -commutative, in the sense that for every set *I*, the diagram $\mathsf{Id}_{c} \vec{A'}$ (based on the poset $\mathfrak{P}[3]^{I}$) is commutative. Accordingly, we set $\vec{A} \stackrel{\text{def}}{=} \mathsf{Id}_{c} \vec{A}$.

Main idea of the proof.

From $0 \leq a \leq a' \leq 2a$ it follows that $\alpha_{12}^{123} \circ \alpha_1^{12} \leq \alpha_{13}^{123} \circ \alpha_1^{13} \leq 2 \cdot (\alpha_{12}^{123} \circ \alpha_1^{12})$. Thus, for all arrows fand g between two nodes in $\mathfrak{P}[3]'$, $f \leq 2g$ and $g \leq 2f$. \Box

The main negative property of A

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results For $p \leq q$ in $\mathfrak{P}[3]$, we shall denote by α_p^q the unique arrow from \mathbf{A}_p to \mathbf{A}_q in $\mathbf{\vec{A}}$. For example, $\alpha_1^{123} = \mathsf{Id}_{\mathsf{c}}(\alpha_{12}^{123} \circ \alpha_1^{12}) = \mathsf{Id}_{\mathsf{c}}(\alpha_{13}^{123} \circ \alpha_1^{13}).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

The main negative property of A

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results For $p \leq q$ in $\mathfrak{P}[3]$, we shall denote by α_p^q the unique arrow from \mathbf{A}_p to \mathbf{A}_q in $\vec{\mathbf{A}}$. For example, $\alpha_1^{123} = \mathsf{Id}_{\mathsf{c}}(\alpha_{12}^{123} \circ \alpha_1^{12}) = \mathsf{Id}_{\mathsf{c}}(\alpha_{13}^{123} \circ \alpha_1^{13})$. The elements

$$oldsymbol{a}_1 \stackrel{ ext{def}}{=} \langle oldsymbol{a}
angle_{A_{123}} = \langle oldsymbol{a}'
angle_{A_{123}}, \quad oldsymbol{a}_2 \stackrel{ ext{def}}{=} \langle oldsymbol{b}
angle_{A_{123}}, \quad oldsymbol{a}_3 \stackrel{ ext{def}}{=} \langle oldsymbol{c}
angle_{A_{123}}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

all belong to \boldsymbol{A}_{123} .

The main negative property of A

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results For $p \leq q$ in $\mathfrak{P}[3]$, we shall denote by α_p^q the unique arrow from \mathbf{A}_p to \mathbf{A}_q in $\mathbf{\vec{A}}$. For example, $\alpha_1^{123} = \mathsf{Id}_{\mathsf{c}}(\alpha_{12}^{123} \circ \alpha_1^{12}) = \mathsf{Id}_{\mathsf{c}}(\alpha_{13}^{123} \circ \alpha_1^{13})$. The elements

$$oldsymbol{a}_1 \stackrel{ ext{def}}{=} \langle oldsymbol{a}
angle_{A_{123}} = \langle oldsymbol{a}'
angle_{A_{123}}, \quad oldsymbol{a}_2 \stackrel{ ext{def}}{=} \langle b
angle_{A_{123}}, \quad oldsymbol{a}_3 \stackrel{ ext{def}}{=} \langle c
angle_{A_{123}}$$

all belong to \boldsymbol{A}_{123} .

Lemma

There is no family ($c_{ij} | i \neq j$ in $\{1, 2, 3\}$) of elements of A_{123} satisfying the following statements:

- **1** Each c_{ij} belongs to the range of α_{ij}^{123} .
- 2 $a_i \leq a_j \lor c_{ij}$ whenever $\{i, j\}$ is either $\{1, 2\}$ or $\{2, 3\}$.
- **3** $c_{ij} \wedge c_{ji} = 0$ whenever $\{i, j\}$ is either $\{1, 2\}$ or $\{2, 3\}$.
- **4** $c_{12} \wedge c_{23} \leq c_{13} \leq c_{12} \vee c_{23}$.

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results ■ Represent the elements of each A_p ^{def} = Id_c A_p, for p ∈ 𝔅[3], by (relatively) open cones, using Baker-Beynon duality.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results ■ Represent the elements of each A_p ^{def} = Id_c A_p, for p ∈ 𝔅[3], by (relatively) open cones, using Baker-Beynon duality.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Don't touch A_p for $p \neq 123$. Now for p = 123, we collapse A_{123} by identifying a and a'.

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results

- Represent the elements of each A_p ^{def} = Id_c A_p, for p ∈ 𝔅[3], by (relatively) open cones, using Baker-Beynon duality.
- Don't touch A_p for $p \neq 123$. Now for p = 123, we collapse A_{123} by identifying a and a'.
- This way, we send \mathbf{A}_{\emptyset} to $\{0\}$, \mathbf{A}_i to $\{0,1\}$ for $i \in \{1,2,3\}$, and all other \mathbf{A}_p to $\mathcal{O}_k \stackrel{\text{def}}{=}$ lattice of all rational strict open polyhedral cones of $(\mathbb{Q}^+)^k$, with k the cardinality of p (either 2 or 3).

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results

- Represent the elements of each A_p ^{def} = Id_c A_p, for p ∈ 𝔅[3], by (relatively) open cones, using Baker-Beynon duality.
- Don't touch A_p for $p \neq 123$. Now for p = 123, we collapse A_{123} by identifying a and a'.
- This way, we send \mathbf{A}_{\emptyset} to $\{0\}$, \mathbf{A}_i to $\{0,1\}$ for $i \in \{1,2,3\}$, and all other \mathbf{A}_p to $\mathcal{O}_k \stackrel{\text{def}}{=}$ lattice of all rational strict open polyhedral cones of $(\mathbb{Q}^+)^k$, with k the cardinality of p (either 2 or 3).
- This way, such inequalities as $c_{12} \wedge c_{23} \leq c_{13} \leq c_{12} \vee c_{23}$ translate to conditions like $C_{12} \cap C_{23} \subseteq C_{13} \subseteq C_{12} \cup C_{23}$ (C_{ij} arising from c_{ij}).

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results • The condition $oldsymbol{c}_{ij}\in \operatorname{rng} lpha_{ij}^{123}$ translates to

 $C_{ij} = \{(x_1, x_2, x_3) \in (\mathbb{Q}^+)^3 \mid (x_i, x_j) \neq (0, 0) \text{ and } x_i^{-1} x_j \in U_{ij}\}$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

for suitable U_{ij} .

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results • The condition $oldsymbol{c}_{ij}\in \operatorname{rng} lpha_{ij}^{123}$ translates to

 $\mathcal{C}_{ij} = \{(x_1, x_2, x_3) \in (\mathbb{Q}^+)^3 \mid (x_i, x_j) \neq (0, 0) \text{ and } x_i^{-1} x_j \in U_{ij}\}$

for suitable U_{ij} .

 This way, the given conditions translate to the geometric conditions stated in "lattice Ceva".

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results • The condition $oldsymbol{c}_{ij}\in \operatorname{rng} lpha_{ij}^{123}$ translates to

 $\mathcal{C}_{ij} = \{(x_1, x_2, x_3) \in (\mathbb{Q}^+)^3 \mid (x_i, x_j) \neq (0, 0) \text{ and } x_i^{-1} x_j \in U_{ij}\}$

for suitable U_{ij} .

- This way, the given conditions translate to the geometric conditions stated in "lattice Ceva".
- By the latter, we are lead to λ, μ ∈ Q⁺⁺ such that (up to identifications) c₁₂ = ⟨λa < b⟩, c₂₃ = ⟨μb < c⟩, and c₁₃ = ⟨λμa' < c⟩ (recall that x < y = x x ∧ y).

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results • The condition $oldsymbol{c}_{ij}\in \operatorname{rng} lpha_{ij}^{123}$ translates to

 $C_{ij} = \{(x_1, x_2, x_3) \in (\mathbb{Q}^+)^3 \mid (x_i, x_j) \neq (0, 0) \text{ and } x_i^{-1} x_j \in U_{ij}\}$

for suitable U_{ij} .

- This way, the given conditions translate to the geometric conditions stated in "lattice Ceva".
- By the latter, we are lead to $\lambda, \mu \in \mathbb{Q}^{++}$ such that (up to identifications) $c_{12} = \langle \lambda a \smallsetminus b \rangle$, $c_{23} = \langle \mu b \smallsetminus c \rangle$, and $c_{13} = \langle \lambda \mu a' \smallsetminus c \rangle$ (recall that $x \smallsetminus y = x x \land y$).
- $c_{13} \leq c_{12} \lor c_{23}$ yields $\langle \lambda \mu a' \smallsetminus c \rangle \leq \langle \lambda a \smallsetminus b \rangle \lor \langle \mu b \smallsetminus c \rangle$.

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results • The condition $oldsymbol{c}_{ij}\in \operatorname{rng} lpha_{ij}^{123}$ translates to

 $\mathcal{C}_{ij} = \{(x_1, x_2, x_3) \in (\mathbb{Q}^+)^3 \mid (x_i, x_j) \neq (0, 0) \text{ and } x_i^{-1} x_j \in U_{ij}\}$

for suitable U_{ij} .

- This way, the given conditions translate to the geometric conditions stated in "lattice Ceva".
- By the latter, we are lead to $\lambda, \mu \in \mathbb{Q}^{++}$ such that (up to identifications) $c_{12} = \langle \lambda a \smallsetminus b \rangle$, $c_{23} = \langle \mu b \smallsetminus c \rangle$, and $c_{13} = \langle \lambda \mu a' \smallsetminus c \rangle$ (recall that $x \smallsetminus y = x x \land y$).
- $c_{13} \leq c_{12} \vee c_{23}$ yields $\langle \lambda \mu a' \smallsetminus c \rangle \leq \langle \lambda a \smallsetminus b \rangle \vee \langle \mu b \smallsetminus c \rangle$.
- Letting $x \propto y$ hold if $(\exists k < \omega)(x \le ky)$ and applying $f: A_{123} \rightarrow \mathbb{Q}$ sending (a, a', b, c) to $(1, 2, \lambda, \lambda\mu)$, we get $\lambda\mu = 2\lambda\mu \smallsetminus \lambda\mu \propto 0$, a contradiction.

Non-representability of the diagram $Id_c \vec{A}$

Spectra of Abelian ℓ-groups are antielementary

Corollary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results

There are no $\mathfrak{P}[3]$ -indexed commutative diagram \vec{G} , of (not necessarily Abelian) ℓ -groups, and no natural transformation $\eta: \operatorname{Cs}_{\mathsf{C}} \vec{G} \twoheadrightarrow \operatorname{Id}_{\mathsf{C}} \vec{A}$ with surjective arrows.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Non-representability of the diagram $Id_c \vec{A}$

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results

Corollary

There are no $\mathfrak{P}[3]$ -indexed commutative diagram \vec{G} , of (not necessarily Abelian) ℓ -groups, and no natural transformation $\eta: \operatorname{Cs}_{\mathsf{c}} \vec{G} \twoheadrightarrow \operatorname{Id}_{\mathsf{c}} \vec{A}$ with surjective arrows.

Idea of proof.

For $i \in \{1, 2, 3\}$ pick $x_i \in G_i^+$ such that $\eta(\langle x_i \rangle_{G_i}) = \mathbf{a}_i$. Then the elements $\mathbf{c}_{ij} \stackrel{\text{def}}{=} \langle x_i \smallsetminus x_j \rangle_{G_{123}}$ satisfy (1)–(4) of previous lemma (e.g., $\mathbf{c}_{12} \land \mathbf{c}_{23} \leq \mathbf{c}_{13} \leq \mathbf{c}_{12} \lor \mathbf{c}_{23}$).

Non-representability of the diagram $Id_c \vec{A}$

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results

Corollary

There are no $\mathfrak{P}[3]$ -indexed commutative diagram \vec{G} , of (not necessarily Abelian) ℓ -groups, and no natural transformation $\eta: \operatorname{Cs}_{c} \vec{G} \twoheadrightarrow \operatorname{Id}_{c} \vec{A}$ with surjective arrows.

Idea of proof.

For $i \in \{1, 2, 3\}$ pick $x_i \in G_i^+$ such that $\eta(\langle x_i \rangle_{G_i}) = \mathbf{a}_i$. Then the elements $\mathbf{c}_{ij} \stackrel{\text{def}}{=} \langle x_i \smallsetminus x_j \rangle_{G_{123}}$ satisfy (1)–(4) of previous lemma (e.g., $\mathbf{c}_{12} \land \mathbf{c}_{23} \leq \mathbf{c}_{13} \leq \mathbf{c}_{12} \lor \mathbf{c}_{23}$).

Corollary

There are no $\mathfrak{P}[3]$ -indexed commutative diagram \vec{G} , of (not necessarily Abelian) ℓ -groups, such that $\operatorname{Cs}_{c} \vec{G} \cong \operatorname{Id}_{c} \vec{A}$ (resp., all G_{p} are representable and $\operatorname{Id}_{c} \vec{G} \cong \operatorname{Id}_{c} \vec{A}$).

The condensate construction (Gillibert and W 2011)

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results ■ For a poset *P*, a *P*-scaled Boolean algebra is a structure $B = (B, (B^{(p)} | p \in P))$ where *B* is a Boolean algebra and each $B^{(p)}$ is an ideal of *B*, subjected to the conditions $1 \in \bigvee_{p} B^{(p)}$ and $B^{(p)} \cap B^{(q)} = \bigvee_{r > p, q} B^{(r)}$.

The condensate construction (Gillibert and W 2011)

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results

- For a poset *P*, a *P*-scaled Boolean algebra is a structure $B = (B, (B^{(p)} | p \in P))$ where *B* is a Boolean algebra and each $B^{(p)}$ is an ideal of *B*, subjected to the conditions $1 \in \bigvee_{p} B^{(p)}$ and $B^{(p)} \cap B^{(q)} = \bigvee_{r \ge p,q} B^{(r)}$.
- B is finitely presented iff B is finite and for every atom a of B, there exists a largest p ∈ P such that a ∈ B^(p); denote it by |a|.

The condensate construction (Gillibert and W 2011)

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results

- For a poset *P*, a *P*-scaled Boolean algebra is a structure $B = (B, (B^{(p)} | p \in P))$ where *B* is a Boolean algebra and each $B^{(p)}$ is an ideal of *B*, subjected to the conditions $1 \in \bigvee_{p} B^{(p)}$ and $B^{(p)} \cap B^{(q)} = \bigvee_{r \ge p,q} B^{(r)}$.
- B is finitely presented iff B is finite and for every atom a of B, there exists a largest p ∈ P such that a ∈ B^(p); denote it by |a|.
- If B is finitely presented, then, for a P-indexed diagram S
 (in any category S with finite products), set
 B ⊗ S ^{def} = ∏_{a∈At B} S_{|a|}.
The condensate construction (Gillibert and W 2011)

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results

- For a poset *P*, a *P*-scaled Boolean algebra is a structure $B = (B, (B^{(p)} | p \in P))$ where *B* is a Boolean algebra and each $B^{(p)}$ is an ideal of *B*, subjected to the conditions $1 \in \bigvee_{p} B^{(p)}$ and $B^{(p)} \cap B^{(q)} = \bigvee_{r \ge p,q} B^{(r)}$.
- B is finitely presented iff B is finite and for every atom a of B, there exists a largest p ∈ P such that a ∈ B^(p); denote it by |a|.
- If B is finitely presented, then, for a P-indexed diagram S

 (in any category S with finite products), set
 B ⊗ S ^{def} = ∏_{a∈At B} S_{|a|}.
- Under suitable conditions on S and if \vec{S} is commutative, this construction can be extended to arbitrary \boldsymbol{B} by taking directed colimits. We say that $\boldsymbol{B} \otimes \vec{S}$ is a condensate of \vec{S} .

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results

Main principle (Gillibert and W 2011)

If a commutative diagram \vec{S} is a counterexample, at diagram level, to a representation problem (wrt. a given functor), then a suitable condensate $\mathbf{F}(X) \otimes \vec{S}$ is a counterexample to the same problem at object level.

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \bar{A}

From diagram to object

Further nonrepresentability results

Main principle (Gillibert and W 2011)

If a commutative diagram \vec{S} is a counterexample, at diagram level, to a representation problem (wrt. a given functor), then a suitable condensate $\mathbf{F}(X) \otimes \vec{S}$ is a counterexample to the same problem at object level.

For our current purposes, P is the cube \$\Pi[3]\$ and F(X) is an explicitly constructed P-scaled Boolean algebra constructed from P.

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram *Ä*

From diagram to object

Further nonrepresentability results

Main principle (Gillibert and W 2011)

If a commutative diagram \vec{S} is a counterexample, at diagram level, to a representation problem (wrt. a given functor), then a suitable condensate $\mathbf{F}(X) \otimes \vec{S}$ is a counterexample to the same problem at object level.

For our current purposes, P is the cube \$\Pi[3]\$ and \$\mathbf{F}(X)\$ is an explicitly constructed P-scaled Boolean algebra constructed from P.

■ Due to the order-dimension of the cube being 3, the cardinality of F(X) needs to be pushed up to ℵ₂.

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results

Main principle (Gillibert and W 2011)

If a commutative diagram \vec{S} is a counterexample, at diagram level, to a representation problem (wrt. a given functor), then a suitable condensate $\mathbf{F}(X) \otimes \vec{S}$ is a counterexample to the same problem at object level.

- For our current purposes, P is the cube
 \$\varphi[3]\$ and F(X) is an explicitly constructed P-scaled Boolean algebra constructed from P.
- Due to the order-dimension of the cube being 3, the cardinality of **F**(X) needs to be pushed up to ℵ₂.
- Here, there is no commutative diagram \vec{G} of ℓ -groups such that $\operatorname{Cs}_{c} \vec{G} \cong \operatorname{Id}_{c} \vec{A}$.

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results

• It is $L \stackrel{\text{def}}{=} \mathbf{F}(X) \otimes \operatorname{Id}_{c} \vec{A}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results

- It is $L \stackrel{\text{def}}{=} \mathbf{F}(X) \otimes \operatorname{Id}_{\mathsf{c}} \vec{A}$.
- The cardinality of L is \aleph_2 .

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results

- It is $L \stackrel{\text{def}}{=} \mathbf{F}(X) \otimes \operatorname{Id}_{\operatorname{c}} \vec{A}$.
- The cardinality of L is \aleph_2 .
- By applying the "Armature Lemma" to the main negative property of \vec{A} , we obtain:

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results

- It is $L \stackrel{\text{def}}{=} \mathbf{F}(X) \otimes \operatorname{Id}_{\operatorname{c}} \vec{A}$.
- The cardinality of L is \aleph_2 .
- By applying the "Armature Lemma" to the main negative property of *A*, we obtain:

Theorem (W 2018)

The distributive lattice *L* it completely normal and has countably based differences. However, there are no ℓ -group *G* and no surjective homomorphism $Cs_c G \rightarrow L$.

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results

Definition

A binary operation $\$, on a distributive lattice D with zero, is Cevian if $x \le y \lor (x \lor y)$, $(x \lor y) \land (y \lor x) = 0$, and $x \lor z \le (x \lor y) \lor (y \lor z) \quad \forall x, y, z \in D.$

Definition

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results A binary operation \setminus , on a distributive lattice D with zero, is Cevian if $x \leq y \lor (x \smallsetminus y)$, $(x \lor y) \land (y \lor x) = 0$, and $x \lor z \leq (x \lor y) \lor (y \lor z) \quad \forall x, y, z \in D$. We say that D is Cevian if it has a Cevian operation.

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results

Definition

A binary operation $\$, on a distributive lattice D with zero, is Cevian if $x \le y \lor (x \lor y)$, $(x \lor y) \land (y \lor x) = 0$, and $x \lor z \le (x \lor y) \lor (y \lor z) \quad \forall x, y, z \in D$. We say that D is Cevian if it has a Cevian operation.

• Every Cevian operation satisfies the identity $(x \setminus y) \land (y \setminus z) \le x \setminus z$ (*Proof*: write $x \setminus y \le (x \setminus z) \lor (z \setminus y)$, then meet with $y \setminus z$).

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results

Definition

A binary operation $\$, on a distributive lattice D with zero, is Cevian if $x \le y \lor (x \lor y)$, $(x \lor y) \land (y \lor x) = 0$, and $x \lor z \le (x \lor y) \lor (y \lor z) \quad \forall x, y, z \in D$. We say that D is Cevian if it has a Cevian operation.

• Every Cevian operation satisfies the identity $(x \setminus y) \land (y \setminus z) \le x \setminus z$ (*Proof*: write $x \setminus y \le (x \setminus z) \lor (z \setminus y)$, then meet with $y \setminus z$).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The class of all Cevian lattices is closed under homomorphic images, products, ideals.

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results

Definition

A binary operation $\$, on a distributive lattice *D* with zero, is Cevian if $x \le y \lor (x \lor y)$, $(x \lor y) \land (y \lor x) = 0$, and $x \lor z \le (x \lor y) \lor (y \lor z) \quad \forall x, y, z \in D$. We say that *D* is Cevian if it has a Cevian operation.

- Every Cevian operation satisfies the identity $(x \setminus y) \land (y \setminus z) \le x \setminus z$ (*Proof*: write $x \setminus y \le (x \setminus z) \lor (z \setminus y)$, then meet with $y \setminus z$).
- The class of all Cevian lattices is closed under homomorphic images, products, ideals.
- For every (not necessarily Abelian) ℓ -group G, the lattice $\operatorname{Cs}_{c} G$ is Cevian (*Proof.* for each $\mathbf{x} \in \operatorname{Cs}_{c} G$ pick $\gamma(\mathbf{x})$ such that $\mathbf{x} = \langle \gamma(\mathbf{x}) \rangle$. Set $\mathbf{x} \setminus \mathbf{y} \stackrel{\text{def}}{=} \langle \gamma(\mathbf{x}) \gamma(\mathbf{x}) \land \gamma(\mathbf{y}) \rangle$.)

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results By inspecting the non-representability proof above, we get:

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results By inspecting the non-representability proof above, we get:

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Theorem (W 2018)

The lattice L is not Cevian.

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results By inspecting the non-representability proof above, we get:

Theorem (W 2018)

The lattice L is not Cevian.

■ Hence the implication Cevian ⇒ completely normal cannot be reversed, even in the presence of countably based differences.

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results By inspecting the non-representability proof above, we get:

Theorem (W 2018)

The lattice *L* is not Cevian.

- Hence the implication Cevian ⇒ completely normal cannot be reversed, even in the presence of countably based differences.
- In particular, complete normality together with countably based differences are not sufficient to characterize the class of all Id_c *G* for Abelian *l*-groups *G*.

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results By inspecting the non-representability proof above, we get:

Theorem (W 2018)

The lattice L is not Cevian.

- Hence the implication Cevian ⇒ completely normal cannot be reversed, even in the presence of countably based differences.
- In particular, complete normality together with countably based differences are not sufficient to characterize the class of all Id_c *G* for Abelian *ℓ*-groups *G*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• How to extend this to arbitrary $\mathscr{L}_{\infty\lambda}$ sentences?

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results By inspecting the non-representability proof above, we get:

Theorem (W 2018)

The lattice L is not Cevian.

- Hence the implication Cevian ⇒ completely normal cannot be reversed, even in the presence of countably based differences.
- In particular, complete normality together with countably based differences are not sufficient to characterize the class of all Id_c *G* for Abelian *l*-groups *G*.
- How to extend this to arbitrary $\mathscr{L}_{\infty\lambda}$ sentences? The real trouble begins

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results ■ The condensate construction B ⊗ S can be, under certain conditions, extended to the case where the diagram S is not commutative.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results ■ The condensate construction B ⊗ S can be, under certain conditions, extended to the case where the diagram S is not commutative.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

In that world, we define a similar object $\boldsymbol{B} \boxtimes \vec{S}$.

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results The condensate construction $\boldsymbol{B} \otimes \vec{S}$ can be, under certain conditions, extended to the case where the diagram \vec{S} is not commutative.

In that world, we define a similar object $\mathbf{B} \boxtimes \vec{S}$. This construction can no longer be extended by forming directed colimits (because \vec{S} is not commutative).

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results

- The condensate construction B ⊗ S can be, under certain conditions, extended to the case where the diagram S is not commutative.
- In that world, we define a similar object $\mathbf{B} \boxtimes \vec{S}$. This construction can no longer be extended by forming directed colimits (because \vec{S} is not commutative).
- However, in the *l*-group context above $(\vec{S} := \vec{A})$, $Id_c \vec{A'}$ is a commutative diagram $\forall I$.

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results

- The condensate construction $\boldsymbol{B} \otimes \vec{S}$ can be, under certain conditions, extended to the case where the diagram \vec{S} is not commutative.
- In that world, we define a similar object B ⊠ S. This construction can no longer be extended by forming directed colimits (because S is not commutative).
- However, in the ℓ -group context above $(\vec{S} := \vec{A})$, $\operatorname{Id}_{c} \vec{A}'$ is a commutative diagram $\forall I$.
- It follows that for every infinite regular cardinal λ, we can extend the construction B → Id_c(B ⊠ A) to arbitrary B, now by forming λ-directed colimits.

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results

- The condensate construction $\boldsymbol{B} \otimes \vec{S}$ can be, under certain conditions, extended to the case where the diagram \vec{S} is not commutative.
- In that world, we define a similar object B ⊠ S. This construction can no longer be extended by forming directed colimits (because S is not commutative).
- However, in the ℓ -group context above $(\vec{S} := \vec{A})$, $\operatorname{Id}_{c} \vec{A}'$ is a commutative diagram $\forall I$.
- It follows that for every infinite regular cardinal λ, we can extend the construction B → Id_c(B ⊠ A) to arbitrary B, now by forming λ-directed colimits.
- A fairly large amount of machinery needs to be set up.

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results • We introduce a purely categorical property of a morphism, called anti-elementarity.

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results

- We introduce a purely categorical property of a morphism, called anti-elementarity.
- If a category \mathcal{C} of models is anti-elementary, then for every infinite cardinal λ there are models A, B such that A is an $\mathscr{L}_{\infty\lambda}$ -elementary submodel of B, $A \in \mathcal{C}$, and $B \notin \mathcal{C}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results

- We introduce a purely categorical property of a morphism, called anti-elementarity.
- If a category C of models is anti-elementary, then for every infinite cardinal λ there are models A, B such that A is an $\mathscr{L}_{\infty\lambda}$ -elementary submodel of B, $A \in \mathbb{C}$, and $B \notin \mathbb{C}$.
- In particular, an anti-elementary category cannot be the class of all models of any class of $\mathscr{L}_{\infty\lambda}$ sentences.

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results

- We introduce a purely categorical property of a morphism, called anti-elementarity.
- If a category \mathcal{C} of models is anti-elementary, then for every infinite cardinal λ there are models A, B such that A is an $\mathscr{L}_{\infty\lambda}$ -elementary submodel of B, $A \in \mathcal{C}$, and $B \notin \mathcal{C}$.
- In particular, an anti-elementary category cannot be the class of all models of any class of $\mathscr{L}_{\infty\lambda}$ sentences.

Theorem (W 2018)

- Let ${\mathcal G}$ be a class of (not necessarily commutative) $\ell\text{-groups}.$
 - **1** If \mathcal{G} contains all Archimedean ℓ -groups, then $Cs_c \mathcal{G}$ is anti-elementary.
 - **2** If \mathcal{G} is a nontrivial quasivariety of ℓ -groups, then Id_c \mathcal{G} is anti-elementary.

Anti-elementarity unleashed

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results In the above (case where not all members of *G* are representable), the proof of the Id_c part involves further non-commutative diagrams of ℓ-groups (*arising from earlier research on CLP*).

Anti-elementarity unleashed

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results

- In the above (case where not all members of G are representable), the proof of the ld_c part involves further non-commutative diagrams of ℓ-groups (*arising from earlier research on CLP*).
- The techniques above can be used to establish anti-elementarity of various other classes:
 - Semilattices of finitely generated two-sided ideals in (von Neumann regular) rings.
 - 2 Semilattices of finitely generated submodules of modules.
 - 3 Nonstable K₀-theory of von Neumann regular rings (resp., C*-algebras of real rank zero).
 - 4 Coordinatizable lattices with a large 4-frame but without unit (*requires large cardinals so far*).

Spectra of Abelian ℓ-groups are antielementary

Getting started

Ceva in the lattice world

The diagram \vec{A}

From diagram to object

Further nonrepresentability results Thanks for your attention!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ