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Convex `-subgroups and `-ideals

Our `-groups will be denoted additively (even in the
non-Abelian case).

An `-subgroup A in an `-group G is convex if ∀x ∈ A+

[0, x ] ⊆ A.
In addition, A is an `-ideal if it is a normal subgroup.
Denote by CsG (resp., IdG ) the lattice of all convex
`-subgroups (resp., `-ideals) of G .
Then denote by Csc G (resp., Idc G ) the (distributive)
lattice (resp., (∨, 0)-semilattice) of all finitely generated
(equivalently, 1-generated) convex `-subgroups (resp.,
`-ideals) of G .
In particular, IdG ∼= ConG naturally.
If G is Abelian, then Idc G is the Stone dual of the
spectrum of G .
For x ∈ G , denote by 〈x〉 (resp., 〈x〉`) the convex
`-subgroup (resp., `-ideal) generated by x .
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Complete normality

A distributive lattice D with 0 is completely normal if
(∀a, b ∈ D) (∃x , y ∈ D) a ≤ b ∨ x , b ≤ a ∨ y , and
x ∧ y = 0.

This can also be stated by saying that the
Stone dual of D is a root system (Monteiro 1954).

Csc G is completely normal, for every `-group G . (Proof:

for a, b ∈ G+, set x
def
= arb = a− a∧b, y

def
= br a. Then

〈a〉 ⊆ 〈b〉 ∨ 〈x〉, 〈b〉 ⊆ 〈a〉 ∨ 〈y〉, and 〈x〉 ∩ 〈y〉 = {0}.)
If G is representable (i.e., subdirect product of chains),
then Idc G is a homomorphic image of Csc G (via
〈x〉 7→ 〈x〉`), thus it is also completely normal.

Question addressed here:

Describe the lattices Csc G (resp., the (∨, 0)-semilattices
Idc G ).
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Some elements of positive answer

An infinite lattice D is Csc G for some Abelian `-group G
iff there is an `-group structure G on D and a surjective
f : G+ � D such that f (x) ≤D f (y) iff x ∈ 〈y〉G .

Hence, the class of all lattices of the form Csc G has a
second-order (also, projective class within Lω1ω)
characterization.

Every countable distributive (∨, 0)-semilattice is Idc G for
some `-group G (Růžička, Tůma, and W 2007).

A countable lattice is Csc G , for some (Abelian)
`-group G , iff it is completely normal (W 2017). G can be
a vector lattice over any countable Archimedean totally
ordered field k; countability of k cannot be dispensed with.

The class of all lattices of the form Csc G , for G Abelian,
has no first-order characterization (W 2017).
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Countably based differences

Definition

A distributive lattice D with 0 has countably based differences
if ∀a, b ∈ D, ∃(cn)n<ω ∈ Dω such that ∀x ∈ D, a ≤ b ∨ x iff
∃n < ω such that cn ≤ x .

This has been given a few other names in the literature,
such as (Idω) (spectral spaces) and “σ-Conrad” (frames).

In particular, countably based differences can be expressed
by an Lω1ω1 statement of lattice theory.

Every completely normal dual Heyting algebra is Csc G for
some Abelian `-group G (Cignoli, Gluschankof, and Lucas
2006, and Iberkleid, Mart́ınez, and McGovern 2011).

For every Abelian `-group G , Idc G has countably based
differences (refs above; Proof: given a, b ∈ G+, set

cn
def
= 〈ar nb〉 ∀n). Question: how about the converse?
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Ceva configurations

We are given a totally ordered division ring k.

Set k+ def
= {x ∈ k | x ≥ 0}, k++ def

= {x ∈ k | x > 0}, and

k+ def
= k+ ∪ {+∞}.

Denote by O(k+
) the (completely normal, distributive)

lattice of all finite unions of intervals [0, x [, ]x , y [, and
]y ,+∞] where x , y ∈ k+.

Let us be given sets Uij ∈ O(k+
), for 1 ≤ i < j ≤ 3.

For each of those, we set

Cij
def
= {(x1, x2, x3) ∈ (k+)3 | (xi , xj) 6= (0, 0) and x−1

i xj ∈ Uij} .
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The sets Uij and Cij

Ceva configuration: when C12 ∩ C23 ⊆ C13 ⊆ C12 ∪ C23 .

U12

U23U13

U12

U23U13

U12

U23U13

C12

C13
C23

Figure: The sets C12 , C13 , and C23 in a Ceva configuration

This looks like the classical picture for Ceva’s Theorem in affine
geometry!
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An (almost) lattice-theoretical Ceva

. . . and indeed:

Proposition

Suppose that the following statements hold:

1 0 ∈ U12 ∩ U23 ∩ U13 ;

2 [0,∞[ 6⊆ U12 and [0,∞[ 6⊆ U23 ;

3 C12 ∩ C23 ⊆ C13 ⊆ C12 ∪ C23 .

Then there are x , y ∈ k++ such that U12 = [0, x [ ,
U23 = [0, y [ , and U13 = [0, xy [ .
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In all the figures involved here, open polyhedral cones of (k+)3

are represented by their intersection with the 2-simplex

{(x1, x2, x3) ∈ (k+)3 | x1 + x2 + x3 = 1} ,

and points are represented by their homogeneous coordinates.

〈1, 0, 0〉 〈0, 1, 0〉

〈0, 0, 1〉

〈1, x, 0〉U12

〈0, 1, y〉

U23

〈1, 0, xy〉

U13

Figure: A Ceva configuration



Spectra of
Abelian

`-groups are
anti-

elementary

Getting
started

Ceva in the
lattice world

The
diagram ~A

From diagram
to object

Further non-
representability
results

In all the figures involved here, open polyhedral cones of (k+)3

are represented by their intersection with the 2-simplex

{(x1, x2, x3) ∈ (k+)3 | x1 + x2 + x3 = 1} ,

and points are represented by their homogeneous coordinates.

〈1, 0, 0〉 〈0, 1, 0〉

〈0, 0, 1〉

〈1, x, 0〉U12

〈0, 1, y〉

U23

〈1, 0, xy〉

U13

Figure: A Ceva configuration



Spectra of
Abelian

`-groups are
anti-

elementary

Getting
started

Ceva in the
lattice world

The
diagram ~A

From diagram
to object

Further non-
representability
results

Idea of proof

Assume that C12 ∩ C23 ⊆ C13 ⊆ C12 ∪ C23 (plus
“boundary conditions”).

Eliminate the holes in U23 , then U12 , then U13 , in turn
proving that they have the form U23 = [0, y [, U12 = [0, x [,
then U13 = [0, xy [.

Typical picture intervening in the proof (here for U23):

〈0, 0, 1〉

〈1, 0, 0〉 〈0, 1, 0〉
〈1, u, 0〉 〈1, x, 0〉

〈0, 1, y〉

〈0, 1, v〉

〈1, 0, xy〉

〈1, 0, xv〉

〈1, u, xy〉

〈1, x, xy〉
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Introducing the diagram ~A

Introduce Abelian `-groups Ap , for

p ∈ P[3]
def
= {∅, 1, 2, 3, 12, 13, 23, 123}.

In the figure below, each Ap is written with its canonical
generating subset (e.g., A123 is generated by {a, a′, b, c}).

The relations, defining those `-groups, are
0 ≤ a ≤ a′ ≤ 2a, 0 ≤ b, and 0 ≤ c .

A123(a, a′, b, c)

A12(a, b) A13(a′, c) A23(b, c) α13
1 (a)

def
= a′

A1(a) A2(b) A3(c) Each αp
∅ is the zero map A∅ → Ap

A∅ = {0}

α123
12 α123

13 α123
23

α12
1

α13
1 α12

2 α13
3

α23
3

α23
2
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The diagram ~A (cont’d)

In particular, ~A(1, 123) consists of two `-embeddings
(resp., a 7→ a and a 7→ a′).

In that sense the diagram ~A is non-commutative. Its
arrows do not preserve units.

Proposition

The diagram ~A is Idc-commutative, in the sense that for every
set I , the diagram Idc

~AI (based on the poset P[3]I ) is

commutative.

Accordingly, we set ~A def
= Idc

~A.

Main idea of the proof.

From 0 ≤ a ≤ a′ ≤ 2a it follows that
α123

12 ◦α12
1 ≤ α123

13 ◦α13
1 ≤ 2 · (α123

12 ◦α12
1 ). Thus, for all arrows f

and g between two nodes in P[3]I , f ≤ 2g and g ≤ 2f .
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The main negative property of ~A

For p ≤ q in P[3], we shall denote by αq
p the unique arrow

from Ap to Aq in ~A. For example,
α123

1 = Idc(α123
12 ◦ α12

1 ) = Idc(α123
13 ◦ α13

1 ).

The elements

a1
def
= 〈a〉A123 = 〈a′〉A123 , a2

def
= 〈b〉A123 , a3

def
= 〈c〉A123

all belong to A123 .

Lemma

There is no family (c ij | i 6= j in {1, 2, 3}) of elements of A123

satisfying the following statements:

1 Each c ij belongs to the range of α123
ij .

2 ai ≤ aj ∨ c ij whenever {i , j} is either {1, 2} or {2, 3}.
3 c ij ∧ c ji = 0 whenever {i , j} is either {1, 2} or {2, 3}.
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Idea of proof

Represent the elements of each Ap
def
= Idc Ap , for

p ∈ P[3], by (relatively) open cones, using Baker-Beynon
duality.

Don’t touch Ap for p 6= 123. Now for p = 123, we
collapse A123 by identifying a and a′.

This way, we send A∅ to {0}, Ai to {0, 1} for

i ∈ {1, 2, 3}, and all other Ap to Ok
def
= lattice of all

rational strict open polyhedral cones of (Q+)k , with k the
cardinality of p (either 2 or 3).

This way, such inequalities as c12 ∧ c23 ≤ c13 ≤ c12 ∨ c23

translate to conditions like C12 ∩ C23 ⊆ C13 ⊆ C12 ∪ C23

(Cij arising from c ij).
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Idea of proof (cont’d)

The condition c ij ∈ rngα123
ij translates to

Cij = {(x1, x2, x3) ∈ (Q+)3 | (xi , xj) 6= (0, 0) and x−1
i xj ∈ Uij}

for suitable Uij .

This way, the given conditions translate to the geometric
conditions stated in “lattice Ceva”.

By the latter, we are lead to λ, µ ∈ Q++ such that (up to
identifications) c12 = 〈λar b〉, c23 = 〈µb r c〉, and
c13 = 〈λµa′ r c〉 (recall that x r y = x − x ∧ y).

c13 ≤ c12 ∨ c23 yields 〈λµa′ r c〉 ≤ 〈λar b〉 ∨ 〈µb r c〉.
Letting x ∝ y hold if (∃k < ω)(x ≤ ky) and applying
f : A123 → Q sending (a, a′, b, c) to (1, 2, λ, λµ), we get
λµ = 2λµr λµ ∝ 0, a contradiction.



Spectra of
Abelian

`-groups are
anti-

elementary

Getting
started

Ceva in the
lattice world

The
diagram ~A

From diagram
to object

Further non-
representability
results

Idea of proof (cont’d)

The condition c ij ∈ rngα123
ij translates to

Cij = {(x1, x2, x3) ∈ (Q+)3 | (xi , xj) 6= (0, 0) and x−1
i xj ∈ Uij}

for suitable Uij .

This way, the given conditions translate to the geometric
conditions stated in “lattice Ceva”.

By the latter, we are lead to λ, µ ∈ Q++ such that (up to
identifications) c12 = 〈λar b〉, c23 = 〈µb r c〉, and
c13 = 〈λµa′ r c〉 (recall that x r y = x − x ∧ y).

c13 ≤ c12 ∨ c23 yields 〈λµa′ r c〉 ≤ 〈λar b〉 ∨ 〈µb r c〉.
Letting x ∝ y hold if (∃k < ω)(x ≤ ky) and applying
f : A123 → Q sending (a, a′, b, c) to (1, 2, λ, λµ), we get
λµ = 2λµr λµ ∝ 0, a contradiction.



Spectra of
Abelian

`-groups are
anti-

elementary

Getting
started

Ceva in the
lattice world

The
diagram ~A

From diagram
to object

Further non-
representability
results

Idea of proof (cont’d)

The condition c ij ∈ rngα123
ij translates to

Cij = {(x1, x2, x3) ∈ (Q+)3 | (xi , xj) 6= (0, 0) and x−1
i xj ∈ Uij}

for suitable Uij .

This way, the given conditions translate to the geometric
conditions stated in “lattice Ceva”.

By the latter, we are lead to λ, µ ∈ Q++ such that (up to
identifications) c12 = 〈λar b〉, c23 = 〈µb r c〉, and
c13 = 〈λµa′ r c〉 (recall that x r y = x − x ∧ y).

c13 ≤ c12 ∨ c23 yields 〈λµa′ r c〉 ≤ 〈λar b〉 ∨ 〈µb r c〉.
Letting x ∝ y hold if (∃k < ω)(x ≤ ky) and applying
f : A123 → Q sending (a, a′, b, c) to (1, 2, λ, λµ), we get
λµ = 2λµr λµ ∝ 0, a contradiction.



Spectra of
Abelian

`-groups are
anti-

elementary

Getting
started

Ceva in the
lattice world

The
diagram ~A

From diagram
to object

Further non-
representability
results

Idea of proof (cont’d)

The condition c ij ∈ rngα123
ij translates to

Cij = {(x1, x2, x3) ∈ (Q+)3 | (xi , xj) 6= (0, 0) and x−1
i xj ∈ Uij}

for suitable Uij .

This way, the given conditions translate to the geometric
conditions stated in “lattice Ceva”.

By the latter, we are lead to λ, µ ∈ Q++ such that (up to
identifications) c12 = 〈λar b〉, c23 = 〈µb r c〉, and
c13 = 〈λµa′ r c〉 (recall that x r y = x − x ∧ y).

c13 ≤ c12 ∨ c23 yields 〈λµa′ r c〉 ≤ 〈λar b〉 ∨ 〈µb r c〉.

Letting x ∝ y hold if (∃k < ω)(x ≤ ky) and applying
f : A123 → Q sending (a, a′, b, c) to (1, 2, λ, λµ), we get
λµ = 2λµr λµ ∝ 0, a contradiction.



Spectra of
Abelian

`-groups are
anti-

elementary

Getting
started

Ceva in the
lattice world

The
diagram ~A

From diagram
to object

Further non-
representability
results

Idea of proof (cont’d)

The condition c ij ∈ rngα123
ij translates to

Cij = {(x1, x2, x3) ∈ (Q+)3 | (xi , xj) 6= (0, 0) and x−1
i xj ∈ Uij}

for suitable Uij .

This way, the given conditions translate to the geometric
conditions stated in “lattice Ceva”.

By the latter, we are lead to λ, µ ∈ Q++ such that (up to
identifications) c12 = 〈λar b〉, c23 = 〈µb r c〉, and
c13 = 〈λµa′ r c〉 (recall that x r y = x − x ∧ y).

c13 ≤ c12 ∨ c23 yields 〈λµa′ r c〉 ≤ 〈λar b〉 ∨ 〈µb r c〉.
Letting x ∝ y hold if (∃k < ω)(x ≤ ky) and applying
f : A123 → Q sending (a, a′, b, c) to (1, 2, λ, λµ), we get
λµ = 2λµr λµ ∝ 0, a contradiction.



Spectra of
Abelian

`-groups are
anti-

elementary

Getting
started

Ceva in the
lattice world

The
diagram ~A

From diagram
to object

Further non-
representability
results

Non-representability of the diagram Idc
~A

Corollary

There are no P[3]-indexed commutative diagram ~G , of (not
necessarily Abelian) `-groups, and no natural transformation
η : Csc

~G � Idc
~A with surjective arrows.

Idea of proof.

For i ∈ {1, 2, 3} pick xi ∈ G+
i such that η(〈xi 〉Gi

) = ai . Then

the elements c ij
def
= 〈xi r xj〉G123 satisfy (1)–(4) of previous

lemma (e.g., c12 ∧ c23 ≤ c13 ≤ c12 ∨ c23).

Corollary

There are no P[3]-indexed commutative diagram ~G , of (not
necessarily Abelian) `-groups, such that Csc

~G ∼= Idc
~A (resp.,

all Gp are representable and Idc
~G ∼= Idc

~A).
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Further non-
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The condensate construction (Gillibert and W
2011)

For a poset P, a P-scaled Boolean algebra is a structure
B = (B, (B(p) | p ∈ P)) where B is a Boolean algebra and
each B(p) is an ideal of B, subjected to the conditions
1 ∈

∨
p B

(p) and B(p) ∩ B(q) =
∨

r≥p,q B
(r).

B is finitely presented iff B is finite and for every atom a
of B, there exists a largest p ∈ P such that a ∈ B(p);
denote it by |a|.
If B is finitely presented, then, for a P-indexed diagram ~S
(in any category S with finite products), set

B ⊗ ~S
def
=

∏
a∈AtB S|a|.

Under suitable conditions on S and if ~S is commutative,
this construction can be extended to arbitrary B by taking
directed colimits. We say that B ⊗ ~S is a condensate of ~S .
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Towards the object counterexample

Main principle (Gillibert and W 2011)

If a commutative diagram ~S is a counterexample, at diagram
level, to a representation problem (wrt. a given functor), then a
suitable condensate F(X )⊗ ~S is a counterexample to the same
problem at object level.

For our current purposes, P is the cube P[3] and F(X ) is
an explicitly constructed P-scaled Boolean algebra
constructed from P.

Due to the order-dimension of the cube being 3, the
cardinality of F(X ) needs to be pushed up to ℵ2 .

Here, there is no commutative diagram ~G of `-groups such
that Csc

~G ∼= Idc
~A.



Spectra of
Abelian

`-groups are
anti-

elementary

Getting
started

Ceva in the
lattice world

The
diagram ~A

From diagram
to object

Further non-
representability
results

Towards the object counterexample

Main principle (Gillibert and W 2011)

If a commutative diagram ~S is a counterexample, at diagram
level, to a representation problem (wrt. a given functor), then a
suitable condensate F(X )⊗ ~S is a counterexample to the same
problem at object level.

For our current purposes, P is the cube P[3] and F(X ) is
an explicitly constructed P-scaled Boolean algebra
constructed from P.

Due to the order-dimension of the cube being 3, the
cardinality of F(X ) needs to be pushed up to ℵ2 .

Here, there is no commutative diagram ~G of `-groups such
that Csc

~G ∼= Idc
~A.



Spectra of
Abelian

`-groups are
anti-

elementary

Getting
started

Ceva in the
lattice world

The
diagram ~A

From diagram
to object

Further non-
representability
results

Towards the object counterexample

Main principle (Gillibert and W 2011)

If a commutative diagram ~S is a counterexample, at diagram
level, to a representation problem (wrt. a given functor), then a
suitable condensate F(X )⊗ ~S is a counterexample to the same
problem at object level.

For our current purposes, P is the cube P[3] and F(X ) is
an explicitly constructed P-scaled Boolean algebra
constructed from P.

Due to the order-dimension of the cube being 3, the
cardinality of F(X ) needs to be pushed up to ℵ2 .

Here, there is no commutative diagram ~G of `-groups such
that Csc

~G ∼= Idc
~A.



Spectra of
Abelian

`-groups are
anti-

elementary

Getting
started

Ceva in the
lattice world

The
diagram ~A

From diagram
to object

Further non-
representability
results

Towards the object counterexample

Main principle (Gillibert and W 2011)

If a commutative diagram ~S is a counterexample, at diagram
level, to a representation problem (wrt. a given functor), then a
suitable condensate F(X )⊗ ~S is a counterexample to the same
problem at object level.

For our current purposes, P is the cube P[3] and F(X ) is
an explicitly constructed P-scaled Boolean algebra
constructed from P.

Due to the order-dimension of the cube being 3, the
cardinality of F(X ) needs to be pushed up to ℵ2 .

Here, there is no commutative diagram ~G of `-groups such
that Csc

~G ∼= Idc
~A.



Spectra of
Abelian

`-groups are
anti-

elementary

Getting
started

Ceva in the
lattice world

The
diagram ~A

From diagram
to object

Further non-
representability
results

The object counterexample

It is L
def
= F(X )⊗ Idc

~A.

The cardinality of L is ℵ2 .

By applying the “Armature Lemma” to the main negative
property of ~A, we obtain:

Theorem (W 2018)

The distributive lattice L it completely normal and has
countably based differences. However, there are no `-group G
and no surjective homomorphism Csc G � L.
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Cevian lattices

Definition

A binary operation r, on a distributive lattice D with zero, is
Cevian if x ≤ y ∨ (x r y), (x r y) ∧ (y r x) = 0, and
x r z ≤ (x r y) ∨ (y r z) ∀x , y , z ∈ D.

We say that D is
Cevian if it has a Cevian operation.

Every Cevian operation satisfies the identity
(x r y) ∧ (y r z) ≤ x r z (Proof: write
x r y ≤ (x r z) ∨ (z r y), then meet with y r z).

The class of all Cevian lattices is closed under
homomorphic images, products, ideals.

For every (not necessarily Abelian) `-group G , the lattice
Csc G is Cevian (Proof: for each x ∈ Csc G pick γ(x) such

that x = 〈γ(x)〉. Set x r y def
= 〈γ(x)− γ(x) ∧ γ(y)〉.)
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Non-Cevian, glimpse at beyond

By inspecting the non-representability proof above, we get:

Theorem (W 2018)

The lattice L is not Cevian.

Hence the implication Cevian ⇒ completely normal cannot
be reversed, even in the presence of countably based
differences.

In particular, complete normality together with countably
based differences are not sufficient to characterize the
class of all Idc G for Abelian `-groups G .

How to extend this to arbitrary L∞λ sentences?

The real trouble begins
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Beyond

The condensate construction B ⊗ ~S can be, under certain
conditions, extended to the case where the diagram ~S is
not commutative.

In that world, we define a similar object B � ~S . This
construction can no longer be extended by forming
directed colimits (because ~S is not commutative).

However, in the `-group context above (~S := ~A), Idc
~AI is

a commutative diagram ∀I .
It follows that for every infinite regular cardinal λ, we can
extend the construction B 7→ Idc(B � ~A) to arbitrary B,
now by forming λ-directed colimits.

A fairly large amount of machinery needs to be set up.
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After the dust settles

We introduce a purely categorical property of a morphism,
called anti-elementarity.

If a category C of models is anti-elementary, then for every
infinite cardinal λ there are models A, B such that A is an
L∞λ-elementary submodel of B, A ∈ C, and B /∈ C.

In particular, an anti-elementary category cannot be the
class of all models of any class of L∞λ sentences.

Theorem (W 2018)

Let G be a class of (not necessarily commutative) `-groups.

1 If G contains all Archimedean `-groups, then Csc G is
anti-elementary.

2 If G is a nontrivial quasivariety of `-groups, then Idc G is
anti-elementary.
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Anti-elementarity unleashed

In the above (case where not all members of G are
representable), the proof of the Idc part involves further
non-commutative diagrams of `-groups (arising from
earlier research on CLP).

The techniques above can be used to establish
anti-elementarity of various other classes:

1 Semilattices of finitely generated two-sided ideals in
(von Neumann regular) rings.

2 Semilattices of finitely generated submodules of modules.
3 Nonstable K0-theory of von Neumann regular rings (resp.,

C*-algebras of real rank zero).
4 Coordinatizable lattices with a large 4-frame but without

unit (requires large cardinals so far).
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Thanks for your attention!
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