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Spectra of

Ao m Our (-groups will be denoted additively (even in the

i non-Abelian case).
SRR m An /-subgroup A in an f-group G is convex if Vx € A"
[0,x] C A.
s m In addition, A is an /-ideal if it is a normal subgroup.

m Denote by Cs G (resp., Id G) the lattice of all convex
{-subgroups (resp., ¢-ideals) of G.

m Then denote by Cs. G (resp., Id. G) the (distributive)
lattice (resp., (V,0)-semilattice) of all finitely generated
(equivalently, 1-generated) convex ¢-subgroups (resp.,
(-ideals) of G.

m In particular, Id G =2 Con G naturally.

m If G is Abelian, then Id. G is the Stone dual of the
spectrum of G.

m For x € G, denote by (x) (resp., (x)?) the convex
(-subgroup (resp., ¢-ideal) generated by x.
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@,g’?iﬁii”are m A distributive lattice D with 0 is completely normal if
o (Va,be D) (Ix,y e D)a<bVvx, b<aVy, and
x Ay =0. This can also be stated by saying that the

Stone dual of D is a root system (Monteiro 1954).
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m Csc G is completely normal, for every ¢-group G. (Proof.
fora,bc GT, setxdéfa\b: a—aAlb, ydéf b~ a. Then
(a) € (b) V (x), (b) € (a) V (y), and (x) N {y) = {0}.)

m If G is representable (i.e., subdirect product of chains),
then Id. G is a homomorphic image of Csc G (via
(x) = (x)?), thus it is also completely normal.

Question addressed here:

Describe the lattices Cs. G (resp., the (V,0)-semilattices
Id. G).



Some elements of positive answer

Spectra of

Abelian m An infinite lattice D is Csc G for some Abelian ¢-group G

£-groups are
ety iff there is an ¢-group structure G on D and a surjective
f: Gt — D such that f(x) <p f(y) iff x € (y)¢.

Getting
started



Some elements of positive answer

Spectra of

Abelian m An infinite lattice D is Csc G for some Abelian ¢-group G

£-groups are

ety iff there is an £-group structure G on D and a surjective
f: Gt — D such that f(x) <p f(y) iff x € (y)¢.
etz m Hence, the class of all lattices of the form Cs. G has a

started

second-order (also, projective class within .Z,,,)
characterization.



Some elements of positive answer

Spectra of

Abelian m An infinite lattice D is Csc G for some Abelian ¢-group G

£-groups are

ety iff there is an £-group structure G on D and a surjective
f: Gt — D such that f(x) <p f(y) iff x € (y)¢.
etz m Hence, the class of all lattices of the form Cs. G has a

started

second-order (also, projective class within .Z,,,)
characterization.

m Every countable distributive (\V, 0)-semilattice is Id. G for
some (-group G (Rizi¢ka, Tama, and W 2007).



Some elements of positive answer

Spectra of

Abelian m An infinite lattice D is Csc G for some Abelian ¢-group G

£-groups are

ety iff there is an £-group structure G on D and a surjective
f: Gt — D such that f(x) <p f(y) iff x € (y)¢.
etz m Hence, the class of all lattices of the form Cs. G has a

started

second-order (also, projective class within .Z,,,)
characterization.

m Every countable distributive (\V, 0)-semilattice is Id. G for
some (-group G (Rizi¢ka, Tama, and W 2007).

m A countable lattice is Csc G, for some (Abelian)
l-group G, iff it is completely normal (W 2017).



Some elements of positive answer

Spectra of

Abelian m An infinite lattice D is Csc G for some Abelian ¢-group G

£-groups are

ety iff there is an £-group structure G on D and a surjective
f: Gt — D such that f(x) <p f(y) iff x € (y)¢.
etz m Hence, the class of all lattices of the form Cs. G has a

started

second-order (also, projective class within .Z,,,)
characterization.

m Every countable distributive (\V, 0)-semilattice is Id. G for
some (-group G (Rizi¢ka, Tama, and W 2007).

m A countable lattice is Csc G, for some (Abelian)
l-group G, iff it is completely normal (W 2017). G can be
a vector lattice over any countable Archimedean totally
ordered field k; countability of k cannot be dispensed with.



Some elements of positive answer

Spectra of

Abelian m An infinite lattice D is Csc G for some Abelian ¢-group G

£-groups are

ety iff there is an £-group structure G on D and a surjective
f: Gt — D such that f(x) <p f(y) iff x € (y)¢.
etz m Hence, the class of all lattices of the form Cs. G has a

started

second-order (also, projective class within .Z,,,)
characterization.

m Every countable distributive (\V, 0)-semilattice is Id. G for
some (-group G (Rizi¢ka, Tama, and W 2007).

m A countable lattice is Csc G, for some (Abelian)
l-group G, iff it is completely normal (W 2017). G can be
a vector lattice over any countable Archimedean totally
ordered field k; countability of k cannot be dispensed with.

m The class of all lattices of the form Cs. G, for G Abelian,
has no first-order characterization (W 2017).
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if Va,b € D, 3(cp)n<w € D¥ such that Vx € D, a < bV x iff
dn < w such that ¢, < x.

Definition
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m This has been given a few other names in the literature,
such as (Idw) (spectral spaces) and ‘o-Conrad” (frames).

m In particular, countably based differences can be expressed
by an .Z,,.,, statement of lattice theory.

m Every completely normal dual Heyting algebra is Cs. G for
some Abelian ¢-group G (Cignoli, Gluschankof, and Lucas
2006, and Iberkleid, Martinez, and McGovern 2011).

m For every Abelian /-group G, Id. G has countably based

differences (refs above; Proof: given a,b € G™, set

def .
¢, = (a~ nb) Vn). Question: how about the converse?
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Spectra of
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£-groups are

anti- m We are given a totally ordered division ring k.

elementary

mSetkt ¥ {x ek | x>0} ktt ¥ {xek|x >0}, and
Ky {+oo}
Ceva in the m Denote by O(k ) the (completely normal, distributive)

jastice world lattice of all finite unions of intervals [0, x|, ]x, y[, and
]y, +oc] where x,y € kt.

m Let us be given sets Uj; € O(K+), for1 <i<j<3.
m For each of those, we set

C,'j d;f {(Xl,X2,X3) € (k+)3 ’ (X,',Xj) 7& (070) and Xi_lxj € U’J}
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Uiz Uz Uz Cis U3 Uiz Co3 U3

O O O
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Figure: The sets Cio, Ci3, and Cy3 in a Ceva configuration



The sets U and Cj;

Spectra of
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Ceroups are Ceva configuration: when C;p N Co3 € Ci3 € Cio U Go3.

elementary

Ceva in the
lattice world

Uiz Uxz Uz
Ci2

O O O
Uz Uz (%P

G U3 Uiz Co3 U3

Figure: The sets Cio, Ci3, and Cy3 in a Ceva configuration

This looks like the classical picture for Ceva’'s Theorem in affine
geometry!
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...and indeed:

Proposition

Suppose that the following statements hold:
0 € UaN U NUs;
[0, 00[ € Uiz and [0, 00[ € Uas;
CiaNC3 C Gi3 € G U Gp3.

Then there are x,y € k™" such that Uy, = [0, x],
Uz = [0, y[, and U1z = [0, xy[.

Ceva in the
lattice world
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Spectra of In all the figures involved here, open polyhedral cones of (k*)3
Abelian - . . .
t-aroups are are represented by their intersection with the 2-simplex
anti-
elementary

{(X17X2,X3) S (]k+)3 ’ X1+ Xo + X3 = 1},

and points are represented by their homogeneous coordinates.

Ceva in the
lattice world (0,0,1)

(1,0, xy) (0,1,y)
Uz Uz
(1,0,0) (0,1,0)

Y1z (1, x,0)

Figure: A Ceva configuration
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|dea of proof

é‘is;/)’;escthn:; m Assume that Cl? ﬂ Co3 C CGi3 C CGio U Gz (plus
D “boundary conditions”).
m Eliminate the holes in Us3, then Ujs, then Uss, in turn
proving that they have the form Uys = [0, y[, U2 = [0, x|,
then Uiz = [0,xy[.
Ceva in the

lattice world m Typical picture intervening in the proof (here for Up3):

(0,0,1)

(1,0,xv)
0.1,v)

(1,0, xy)

(1, u, xy)
(1,0,0) %

(1,u,0) (1,x,0)

(0,1,y)

(0,1,0)
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Introducing the diagram A

Spectra of

Abelian m Introduce Abelian /-groups A, , for
£-groups are def

i p € BB = {2,1,2,3,12,13,23,123}.
m In the figure below, each A, is written with its canonical
generating subset (e.g., A13 is generated by {a,d’, b, c}).
m The relations, defining those ¢-groups, are
0<a<ad <230<band0<c.

The

diagram A Ais(a,d, b, c)
aif? / “}23 \0533
Ara(a, b) Ass(@, ) Ans(b, c) al3(a) @
J}Q \,/ \/ 0423
| e e
Ai(a) Az(b) As(c) Each af is the zero map Ay — A,
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The diagram A (cont'd)

Spectra of =
Al m In particular, A(1,123) consists of two /-embeddings

£-groups are

anti- (resp., a— a and a — a').

elementary

m In that sense the diagram A is non-commutative. Its
arrows do not preserve units.

Proposition

The The diagram A'is |d.-commutative, in the sense that for every
diagram A set /, the diagram Id. A’ (based on the poset B[3]') is

. . 2 def =
commutative. Accordingly, we set A= ld. A.

Main idea of the proof.

From 0 < a < 4’ < 2a it follows that
alPBoal? < aiPoald® <2-(al3®0al?). Thus, for all arrows f
and g between two nodes in B[3]/, f < 2g and g < 2f. O
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HERTE from A, to A in A. For example,
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The main negative property of A

Spectra of For p < q in B3], we shall denote by a the unique arrow

HERTE from A, to A in A. For example,
SRR 12 = 1dc(al3® 0 al?) = Id (a1 0 al3). The elements

def def
a, = <a>A123 = <a/>A123’ a = <b>A123’ as = <C>A123

all belong to Ajp3.

The .
diagram A




The main negative property of A

Spectra of For p < q in B3], we shall denote by a the unique arrow

BEETEED from A, to A in A. For example,
elementary 123 |dC(a%%3 le) a]. ) = Id (a}:%g’ (o) O[%?’) The e|ementS

def def
a, = <3>A123 = <a,>A123’ a = <b>A123’ as = <C>A123

all belong to Ajp3.

The
There is no family (c¢j; | i # j in {1,2,3}) of elements of A;23
satisfying the following statements:

Each cj; belongs to the range of a123

B a; < a; Vv cjj whenever {/,j} is elther {1,2} or {2,3}.
cjj A cji = 0 whenever {i,j} is either {1,2} or {2,3}.
€12 AN €23 < €13 < €12V €23
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Spectra of
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i m Represent the elements of each A, def Idc Ap, for
slementany p € PB[3], by (relatively) open cones, using Baker-Beynon
duality.
m Don't touch A, for p # 123. Now for p = 123, we
collapse A1p3 by identifying a and a’.
The m This way, we send Ay to {0}, A; to {0, 1} for
lagram
i €{1,2,3}, and all other A, to O 4 Jattice of all
rational strict open polyhedral cones of (Q+)k, with k the
cardinality of p (either 2 or 3).

m This way, such inequalities as c12 A €23 < €13 < €12 V €3
translate to conditions like Cio N Gz € Ci3 € Cio U Gz
(Cjj arising from cj;).
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The condition ¢;; € rng ai5-23 translates to

Gy = {2 x3) € (@) | () # (0.0) and x; L € Uy}

for suitable Uj; .
m This way, the given conditions translate to the geometric
The conditions stated in “lattice Ceva".
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: m By the latter, we are lead to A\, u € Q" such that (up to
identifications) c12 = (Aa~\ b), €23 = (ub~ ¢), and
c13 = (A\ud' \¢) (recall that x Ny = x —x A y).

m c13 < €12V €3 yields (Apa’ ~ ¢) < (Aa~ b) V (ub\ c).
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The condition ¢;; € rng ai5-23 translates to

Gy = {2 x3) € (@) | (x,9) # (0.0) and x L € Uy}

for suitable Uj; .
m This way, the given conditions translate to the geometric
e conditions stated in “lattice Ceva".
diagram A
: m By the latter, we are lead to A\, u € Q" such that (up to
identifications) c12 = (Aa~\ b), €23 = (ub~ ¢), and
c13 = (A\ud' \¢) (recall that x Ny = x —x A y).
m c13 < €12V €23 yields (A\ua' \ ¢) < (Aa~ b) V (ub\ c).
m Letting x o< y hold if (3k < w)(x < ky) and applying
f: A12z — Q sending (a, 4, b, ¢) to (1,2, \, Ap), we get
A =2 p ~ Ap o< 0, a contradiction.
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Non-representability of the diagram Id. A

Spectra of
Abelian Corollary

£-groups are

S There are no B[3]-indexed commutative diagram G, of (not
necessarily Abelian) ¢-groups, and no natural transformation
7: Csc G — Idc A with surjective arrows.

Idea of proof.

The For i € {1,2,3} pick x; € G such that n({x;)g,) = a;. Then

diagram A

def . :
the elements €;; = (x; \ Xj) Gy, satisfy (1)—(4) of previous
lemma (e.g., cipNcx3 <ci13<c1oV C23). L]

Corollary

There are no B[3]-indexed commutative diagram G, of (not
necessarily Abelian) (-groups, such that Csc G = Id. A (resp.,
all G, are representable and Id. G = Id. A).
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The condensate construction (Gillibert and W
2011)

Spectra of

ug’?ﬁﬁ'p'_i”are m For a poset P, a P-scaled Boolean algebra is a structure

clementary B = (B,(B”) | p € P)) where B is a Boolean algebra and
each B(P) is an ideal of B, subjected to the conditions
1€V, B and B A B(@) =V,spq BY.

m B is finitely presented iff B is finite and for every atom a
of B, there exists a largest p € P such that a € B(P);

denote it by |al.

f()'°0"‘bjj§gfam m If B is finitely presented, then, for a P-indexed diagram S
(in any category 8 with finite products), set
g def

B®S = [Lcas Spal-

= Under suitable conditions on 8 and if S is commutative,
this construction can be extended to arbitrary B by taking
directed colimits. We say that B ® S is a condensate of S.
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¢-groups are Main principle (Gillibert and W 2011)
anti-
elementary

If a commutative diagram Sisa counterexample, at diagram
level, to a representation problem (wrt. a given functor), then a
suitable condensate F(X) ® S is a counterexample to the same
problem at object level.

m For our current purposes, P is the cube P[3] and F(X) is
o an explicitly constructed P-scaled Boolean algebra
constructed from P.
m Due to the order-dimension of the cube being 3, the
cardinality of F(X) needs to be pushed up to ;.
m Here, there is no commutative diagram G of {-groups such
that Cs. G = Id. A.
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mltis L FX) @ 1dc A,
m The cardinality of L is N, .

m By applying the “Armature Lemma” to the main negative
property of A, we obtain:

Theorem (W 2018)

From diagram
to object

The distributive lattice L it completely normal and has
countably based differences. However, there are no ¢-group G
and no surjective homomorphism Cs. G — L.
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S A binary operation ., on a distributive lattice D with zero, is

Cevianif x <y V(xNy), (x~y)A(y~x)=0, and
xNz<(x\y)V(y~z) Vx,y,ze D. Wesay that D is
Cevian if it has a Cevian operation.

m Every Cevian operation satisfies the identity

om dingram (x N y)A(y ~ z) < x~ z (Proof: write

to object xNy <(x\z)V(z\y), then meet with y \ z).

m The class of all Cevian lattices is closed under
homomorphic images, products, ideals.

m For every (not necessarily Abelian) ¢-group G, the lattice
Csc G is Cevian (Proof. for each x € Csc G pick 7(x) such

that x = (7(x)). Set x ~ y < (v(x) — 7(x) A7(¥)).)



Non-Cevian, glimpse at beyond

Spectra of
Abelian . . .

(-groups are By inspecting the non-representability proof above, we get:
anti-

elementary

Further non-
representability
results



Non-Cevian, glimpse at beyond

Spectra of
Abelian . . .

(-groups are By inspecting the non-representability proof above, we get:
anti-

elementary

Theorem (W 2018)

The lattice L is not Cevian.

Further non-
representability
results



Non-Cevian, glimpse at beyond

Spectra of
Abelian . . .

(-groups are By inspecting the non-representability proof above, we get:
anti-

elementary

Theorem (W 2018)

The lattice L is not Cevian.

m Hence the implication Cevian = completely normal cannot
be reversed, even in the presence of countably based
differences.

Further non-
representability
results



Non-Cevian, glimpse at beyond

Spectra of
Abelian . . .
(-groups are By inspecting the non-representability proof above, we get:
anti-
elementary

Theorem (W 2018)

The lattice L is not Cevian.

m Hence the implication Cevian = completely normal cannot
be reversed, even in the presence of countably based
differences.

m In particular, complete normality together with countably
based differences are not sufficient to characterize the

Further non-
representability

results class of all Id. G for Abelian ¢-groups G.



Non-Cevian, glimpse at beyond

Spectra of
Abelian . . .

(-groups are By inspecting the non-representability proof above, we get:
anti-

elementary

Theorem (W 2018)

The lattice L is not Cevian.

m Hence the implication Cevian = completely normal cannot
be reversed, even in the presence of countably based
differences.

m In particular, complete normality together with countably
ettty based differences are not sufficient to characterize the
class of all Idc G for Abelian ¢-groups G.

results

m How to extend this to arbitrary ., sentences?



Non-Cevian, glimpse at beyond
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(-groups are By inspecting the non-representability proof above, we get:
anti-
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Theorem (W 2018)

The lattice L is not Cevian.

m Hence the implication Cevian = completely normal cannot
be reversed, even in the presence of countably based
differences.

m In particular, complete normality together with countably
ettty based differences are not sufficient to characterize the
class of all Idc G for Abelian ¢-groups G.

results

m How to extend this to arbitrary ., sentences?

The real trouble begins
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The condensate construction B ® S can be, under certain
conditions, extended to the case where the diagram S is
not commutative.

In that world, we define a similar object B X S This
construction can no longer be extended by forming
directed colimits (because S is not commutative).
However, in the (-group context above (S := A), Id. A is
a commutative diagram V/.

It follows that for every infinite regular cardinal )\, we can

extend the construction B — ld.(B X A) to arbitrary B,
now by forming A-directed colimits.

A fairly large amount of machinery needs to be set up.



After the dust settles

Spectra of . . .
Abelian m We introduce a purely categorical property of a morphism,
£-groups are . .
anti- called anti-elementarity.

elementary

Further non-
representability
results



After the dust settles

Spectra of . . .
Abelian m We introduce a purely categorical property of a morphism,
£-groups are . .
anti- called anti-elementarity.

elementary

m If a category C of models is anti-elementary, then for every
infinite cardinal )\ there are models A, B such that A is an
Zsor-elementary submodel of B, A € €, and B ¢ C.

Further non-
representability
results



After the dust settles

Spectra of

Abelian m We introduce a purely categorical property of a morphism,
£-groups are

anti- called anti-elementarity.

elementary

m If a category C of models is anti-elementary, then for every
infinite cardinal )\ there are models A, B such that A is an
Zsor-elementary submodel of B, A € €, and B ¢ C.

m In particular, an anti-elementary category cannot be the
class of all models of any class of Z,.) sentences.

Further non-

representability
results



After the dust settles

Spectra of

Abelian m We introduce a purely categorical property of a morphism,

£-groups are . .
anti- called anti-elementarity.

elementary

m If a category C of models is anti-elementary, then for every
infinite cardinal )\ there are models A, B such that A is an
Zsor-elementary submodel of B, A € €, and B ¢ C.

m In particular, an anti-elementary category cannot be the
class of all models of any class of Z,.) sentences.

Theorem (W 2018)

Furth . . .
bl Lct G be a class of (not necessarily commutative) ¢-groups.

results

If G contains all Archimedean /-groups, then Cs. G is
anti-elementary.

If G is a nontrivial quasivariety of ¢-groups, then Id. G is
anti-elementary.
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Anti-elementarity unleashed

Spectra of
Abelian
£-groups are

lemmntary m In the above (case where not all members of G are

representable), the proof of the Id. part involves further
non-commutative diagrams of ¢-groups (arising from
earlier research on CLP).

m The techniques above can be used to establish
anti-elementarity of various other classes:

Semilattices of finitely generated two-sided ideals in
(von Neumann regular) rings.
Semilattices of finitely generated submodules of modules.

Further non-

representability Nonstable Ko-theory of von Neumann regular rings (resp.,

results

C*-algebras of real rank zero).
Coordinatizable lattices with a large 4-frame but without
unit (requires large cardinals so far).
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Thanks for your attention!
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