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The `-spectrum of an Abelian `-group

An `-subgroup I , in an Abelian `-group G , is an `-ideal if it is
order-convex.

An `-ideal I is prime if I 6= G and x ∧ y ∈ I implies that either
x ∈ I or y ∈ I (∀x , y ∈ G ).

We endow the set Spec` G , of all prime `-ideals of G , with the
topology whose closed sets are exactly the
VG (X ) =

def
{P ∈ Spec` G | X ⊆ P}, for X ⊆ G .

The topological space Spec` G is called the `-spectrum of G .

Problem (′90s)

Characterize the topological spaces of the form Spec` G , for Abelian
`-groups G .

Equivalent formulation: describe the spectra of MV-algebras.
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Spectrum of a distributive lattice with zero

An ideal, in a distributive lattice D with zero, is a nonempty
lower subset closed under (x , y) 7→ x ∨ y .

An ideal I is prime if I 6= D and x ∧ y ∈ I implies that either
x ∈ I or y ∈ I (∀x , y ∈ D).

We endow the set SpecD, of all prime ideals of D, with the
topology whose closed sets are exactly the
VD(X ) =

def
{P ∈ SpecD | X ⊆ P}, for X ⊆ D.

The topological space SpecD is called the spectrum of D.

Stone duality (′30s)

The assignments D 7→ SpecD, and X 7→ K(X ) =
def

lattice of all

compact open subsets of X , define a duality between distributive
lattices with zero and sober spaces in which the compact open
subsets form a basis of the topology, closed under (X ,Y ) 7→ X ∩ Y
(generalized spectral spaces).
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The lattice Idc G

Every finitely generated `-ideal, in an Abelian `-group G , is
generated by a single element of G+ (for
〈a1, . . . , an〉 = 〈|a1| ∨ · · · ∨ |an|〉 ∀a1, . . . , an ∈ G ).

〈a〉 ∨ 〈b〉 = 〈a ∨ b〉 = 〈a + b〉 and 〈a〉 ∩ 〈b〉 = 〈a ∧ b〉, for all
a, b ∈ G+.
Hence, Idc G =

def
{〈a〉 | a ∈ G+} is a distributive lattice with

zero. Call such lattices `-representable.
For every `-ideal I of the `-group G , ϕ(I ) =

def
{〈x〉 | x ∈ I} is an

ideal of the lattice Idc G .
For every ideal I of the lattice Idc G , ψ(I ) =

def
{x ∈ G | 〈x〉 ∈ I}

is an `-ideal of the `-group G .
ϕ and ψ are mutually inverse, and they both preserve primeness.
Hence, Spec` G

∼= Spec Idc G , so it is also a generalized spectral
space.
Hence, Spec` G and Idc G determine each other (via Stone
duality).
Recasts the above problem as: Describe `-representable lattices.
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Recasts the above problem as: Describe `-representable lattices.

4/25



Spectral spaces

Generalities

The `-spectrum

`-representable
lattices

Additional
properties of
Spec` G / Idc G

Negative results

Known positive
results

The lattices
Op(H)

Basic properties

Join-irreducibles
and ∇

Consonance and
difference
operations

Basic properties

The Extension
Lemma

Back to Op(H)

Extending
homomorphisms
from Op(H)

Concluding the
proof

The lattice Idc G

Every finitely generated `-ideal, in an Abelian `-group G , is
generated by a single element of G+ (for
〈a1, . . . , an〉 = 〈|a1| ∨ · · · ∨ |an|〉 ∀a1, . . . , an ∈ G ).
〈a〉 ∨ 〈b〉 = 〈a ∨ b〉 = 〈a + b〉 and 〈a〉 ∩ 〈b〉 = 〈a ∧ b〉, for all
a, b ∈ G+.
Hence, Idc G =

def
{〈a〉 | a ∈ G+} is a distributive lattice with

zero. Call such lattices `-representable.
For every `-ideal I of the `-group G , ϕ(I ) =

def
{〈x〉 | x ∈ I} is an

ideal of the lattice Idc G .
For every ideal I of the lattice Idc G , ψ(I ) =

def
{x ∈ G | 〈x〉 ∈ I}

is an `-ideal of the `-group G .
ϕ and ψ are mutually inverse, and they both preserve primeness.
Hence, Spec` G

∼= Spec Idc G , so it is also a generalized spectral
space.
Hence, Spec` G and Idc G determine each other (via Stone
duality).
Recasts the above problem as: Describe `-representable lattices.

4/25



Spectral spaces

Generalities

The `-spectrum

`-representable
lattices

Additional
properties of
Spec` G / Idc G

Negative results

Known positive
results

The lattices
Op(H)

Basic properties

Join-irreducibles
and ∇

Consonance and
difference
operations

Basic properties

The Extension
Lemma

Back to Op(H)

Extending
homomorphisms
from Op(H)

Concluding the
proof

Complete normality

Specialization order on a T0 space: x 6 y if y ∈ cl {x}.

A generalized spectral space X is completely normal if its
specialization order is a root system, that is, ∀x , y , z ∈ X , if
{x , y} ⊆ cl {z}, then x ∈ cl {y} or y ∈ cl {x}. This holds if (not
iff) every subspace of X is normal in the usual sense.

A distributive lattice D with zero is completely normal if
∀a, b ∈ D, ∃x , y ∈ D such that a ≤ b ∨ x , b ≤ a ∨ y , and
x ∧ y = 0

(we say that (x , y) is a splitting of (a, b))

.

Theorem (Monteiro 1956)

A generalized spectral space X is completely normal iff the
distributive lattice K(X ) is completely normal.
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Complete normality of Idc G

Proposition (folklore)

For every Abelian `-group G , Idc G is a completely normal
distributive lattice (equivalently, Spec` G is a completely normal
generalized spectral space).

Proof.

Let a,b ∈ Idc G . There are a, b ∈ G+ such that a = 〈a〉 and
b = 〈b〉. Set x =

def
〈a− a ∧ b〉 and y =

def
〈b − a ∧ b〉. Then (x , y) is a

splitting of (a,b).
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Countably based differences

Definition

A distributive lattice D has countably based differences if ∀a, b ∈ D,
the set a	 b =

def
{x ∈ D | a ≤ x ∨ b} has a countable coinitial subset.

(i.e., {cn | n < ω} ⊆ a	 b such that ∀x ∈ a	 b ∃n < ω cn ≤ x)

Proposition (Cignoli, Gluschankof, and Lucas 1999)

Let G be an Abelian `-group. Then Idc G has countably based
differences.

Proof.

If a = 〈a〉 and b = 〈b〉 (where a, b ∈ G+), set cn =
def
〈a− a ∧ nb〉.

Then {cn | n < ω} is coinitial in a 	 b.
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Non-`-representable lattices

Theorem (Delzell and Madden, 1994)

There exists a non-`-representable bounded distributive lattice of
cardinality ℵ1.

Delzell and Madden also have a much more complicated
example of a completely normal spectral space which is not the
real spectrum of any commutative, unital ring.

This example is not second countable either.
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No L∞,ω characterization of `-representability

Set B I =
def
{X ⊆ I | X or I \ X is finite} and

D I =
def
{(X , k) ∈ B I × {0, 1, 2} |

(k = 0⇒ X finite) and (k 6= 0⇒ I \ X finite)} ,
for any set I .

Dω ↪→ Dω1 , via

(X , k) 7→
{

(X , k) , if k = 0 ,

(X ∪ (ω1 \ ω), k) , if k 6= 0 .

Proposition (W 2017)

Dω is an L∞,ω-elementary sublattice of Dω1 (use back-and-forth),
with Dω countable (and `-representable) and Dω1

non-`-representable (no countably based differences).

Consequently,
`-representability is not L∞,ω-definable.
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Generalized dual Heyting algebras

Definition

A distributive lattice D with zero is a generalized dual Heyting
algebra if ∀a, b ∈ D, ∃ smallest x ∈ D such that a ≤ b ∨ x ;

then
denoted by arD b and called the pseudo-difference of a and b.

Theorem (Cignoli, Gluschankof, and Lucas 1999)

Every dual generalized Heyting algebra is `-representable.

The proof extends (non-trivially) the finite case. In that case, D is
the lattice of all lower subsets of a finite root system P. So
D ∼= IdcQ〈P〉, where Q〈P〉 is the lexicographical power (Hahn
power) of Q by P.
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A distributive lattice D with zero is a generalized dual Heyting
algebra if ∀a, b ∈ D, ∃ smallest x ∈ D such that a ≤ b ∨ x ; then
denoted by arD b and called the pseudo-difference of a and b.

Theorem (Cignoli, Gluschankof, and Lucas 1999)

Every dual generalized Heyting algebra is `-representable.

The proof extends (non-trivially) the finite case. In that case, D is
the lattice of all lower subsets of a finite root system P. So
D ∼= IdcQ〈P〉, where Q〈P〉 is the lexicographical power (Hahn
power) of Q by P.
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Closed lattice homomorphisms

Definition

For distributive lattices D and E with zero, a 0-lattice
homomorphism f : D → E is closed if for all a, b ∈ D and all c ∈ E ,
f (a) ≤ f (b) ∨ c ⇒ ∃x ∈ D, a ≤ b ∨ x and f (x) ≤ c .

Equivalently, the dual map Spec f : SpecE → SpecD sends closed
subsets to closed subsets (resp., sends upper subsets to upper
subsets).

Proposition

Let f : G → H be a `-homomorphism between Abelian `-groups.
Then Idc f : Idc G → Idc H is a closed lattice homomorphism.

Proposition

Let G be an Abelian `-group, let D be a distributive lattice with
zero. Then every surjective closed lattice homomorphism
f : Idc G � D induces an isomorphism Idc (G/I )→ D, for the
`-ideal I =

def
{x ∈ G | f (〈x〉) = 0}.
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A positive result

The aim of what follows is to sketch a proof of the following result:

Theorem (W 2017)

Every countable, completely normal distributive lattice with zero is
`-representable.

Equivalently (using Stone duality and Monteiro’s result),

Every second countable, completely normal generalized spectral space
is the `-spectrum of some Abelian `-group

Strategy: starting with a countable, completely normal distributive
lattice D with zero, we construct an ascending tower of lattice
homomorphisms fn : En → D, where

⋃
n<ω En = Idc F`(ω), with

suitably chosen finite En and failures of closedness / surjectivity /
being defined everywhere corrected at each stage.
A 2004 example by Di Nola and Grigolia shows that the En cannot
always be taken completely normal.
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Defining Op(H)

Definition

Let H be a set of closed hyperplanes in a topological vector space E
over R.

We set

Bool(H) =
def

Boolean subalgebra of the powerset of E

generated by all H+ and H− , where H ∈ H ;

Op(H) =
def
{open members of Bool(H)} .

(The En will have the form Op−(H) =
def

Op(H) \ {E} .)

Lemma

For every X ∈ Bool(H), int(X ) belongs to Op(H), and it is a finite
union of sets of the form

⋂n
i=1 H

±
i , where all Hi ∈ H (basic open

sets).

Moreover, Op(H) is a Heyting subalgebra of the algebra of all
open subsets of E.
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The join-irreducibles of Op(H)

Let H be a nonempty finite set of closed hyperplanes in a topological
vector space E.

Notation

For U ∈ Op(H), we set

HU =
def
{H ∈ H | H ∩ U 6= ∅} ,

∇HU = ∇U =
def

intersection of all members of HU .

Thus, ∇U is a closed subspace of E, with finite codimension.
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Characterizing the join-irreducibles

By the above, every join-irreducible member of Op(H) is convex.

Lemma

A convex member P of Op(H) is join-irreducible iff P ∩∇P 6= ∅, in
which case P∗ = P \ ∇P and P† = {

(
cl(P) ∩∇P

)
= { cl(P ∩∇P)

(the largest X ∈ Op(H) such that P 6⊆ X ).

Recall that in any finite distributive lattice D, p 7→ p† is an
order-isomorphism between JiD =

def
{join-irreducibles of D} and

MiD =
def
{meet-irreducibles of D} (with induced ≤ from D).

Important observation about Op(H): P \ P∗ = P ∩∇P is
convex ∀P ∈ Ji Op(H).

Corollary

Let P and Q be join-irreducibles in Op(H). Then P $ Q implies
∇Q $ ∇P.
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Consonance

Definition

Let D be a distributive lattice with zero. Elements a, b ∈ D are
consonant, in notation a ∼ b, if ∃x , y ∈ D such that a ≤ b ∨ x ,
b ≤ a ∨ y , and x ∧ y = 0 (again: we say that (x , y) is a splitting of
(a, b)).

In particular, D is completely normal iff any two elements of D are
consonant (i.e., D is a consonant subset of itself).

Lemma

1 a ≤ b ⇒ a ∼ b;

2 a ∼ b ⇒ b ∼ a;

3 (a ∼ c and b ∼ c) ⇒ (a ∨ b ∼ c and a ∧ b ∼ c).
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Difference operations

Definition

Let L be a lattice and let S be a lattice with zero. A map L× L→ S ,
(x , y) 7→ x r y is a difference operation if

1 x r x = 0, ∀x ∈ L;

2 x r z = (x r y) ∨ (y r z), whenever x ≥ y ≥ z in L;

3 x r y = (x ∨ y)r y = x r (x ∧ y), ∀x , y ∈ L.

It is a normal difference operation if (x r y) ∧ (y r x) = 0 ∀x , y ∈ L.

Lemma (Triangle Inequality)

x r z ≤ (x r y) ∨ (y r z), ∀x , y , z ∈ L.

Lemma

Let L be finite. Then ar b =
∨

(p r p∗ | p ∈ Ji L , p ≤ a , p � b),
∀a, b ∈ L.
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Pseudo-differences again

Lemma

Let D be a finite distributive lattice. Then the pseudo-difference,
(x , y) 7→ x rD y =

def
least z ∈ D such that x ≤ y ∨ z , is a D-valued

difference operation on D, normal on every consonant sublattice of D.

The two following lemmas are crucial to further computations.

Lemma

Let D be a finite distributive lattice and let a1, a2, b ∈ D. Then

1 (a1 ∨ a2)rD b = (a1 rD b) ∨ (a2 rD b);

2 if a1 ∼ a2, then (a1 ∧ a2)rD b = (a1 rD b) ∧ (a2 rD b);

3 the dual statements (≤ � ≥) hold.

Lemma

If a1 ∼ a2 and a1 ∧ a2 ≤ b1 ∧ b2, then (a1 rD b1) ∧ (a2 rD b2) = 0.
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The Extension Lemma

Problem: we are given finite distributive lattices E and L, a
0, 1-sublattice D of E , and a 0-lattice homomorphism f : D → L.

Find a sufficient condition for f to have an extension to a lattice
homomorphism g : E → L.

Extension Lemma for lattices

Suppose that there are a, b ∈ E such that the following statements
hold:

1 (The range of) f is consonant in L;

2 E = D[a, b];

3 D is a Heyting subalgebra of E ;

4 a ∧ b = 0;

5 ∀p ∈ JiD, p ≤ p∗ ∨ a ∨ b ⇒ (p ≤ p∗ ∨ a or p ≤ p∗ ∨ b);

6 ∀p, q ∈ JiD, (p ≤ p∗ ∨ a and q ≤ q∗ ∨ b) ⇒ (p and q are
incomparable).

Then such an extension g exists, with g(a) = f∗(a) and g(b) = f∗(b),
where f∗(t) =

∨
(f (p)rL f (p∗) | p ∈ JiD , p ≤ p∗ ∨ t), ∀t ∈ E .
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The Extension Lemma for Op(H)

Extension Lemma for Op(H)

Let H be a finite set of closed hyperplanes in a topological vector
space E, let H be a closed hyperplane of E, and let L be a finite
distributive lattice.

Then every consonant 0-lattice homomorphism
f : Op(H)→ L can be extended to a unique lattice homomorphism
g : Op(H ∪ {H})→ L such that g(H±) = f∗(H

±), where

f∗(U) =
def

∨
(f (P)rL f (P∗) | P ∈ JiD , P ∩∇P ⊆ U) , ∀U ∈ Op(H) .

Outline of proof. Verify one by one the conditions of the Extension
Lemma for lattices, with D := Op(H), E := Op(H ∪ {H}), a := H+,
and b := H−.

Every basic open set in Op(H ∪ {H}) has the form U or
U ∩ H±, where U is basic open in Op(H); whence E = D[a, b].
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Extension Lemma for Op(H) (cont’d)

Both D = Op(H) and E = Op(H ∪ {H}) are Heyting
subalgebras of the lattice of all open subsets of E; whence D is a
Heyting subalgebra of E .

Condition (4) now. Let P ⊆ P∗ ∪ H+ ∪ H−, that is,
P ∩∇P ⊆ H+ ∪ H−.

Since P ∩∇P is convex, either P ∩∇P ⊆ H+ or P ∩∇P ⊆ H−,
that is, either P ⊆ P∗ ∪ H+ or P ⊆ P∗ ∪ H−.

Condition (5) now. Let P ∩∇P ⊆ H+ and Q ∩∇Q ⊆ H−.
Suppose, by way of contradiction, that P ⊆ Q.

Then P† ⊆ Q†, so cl(Q ∩∇Q) ⊆ cl(P ∩∇P) ⊆ H
+

.

Hence Q ∩∇Q ⊆ H− ∩ H
+

= ∅, a contradiction.
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Where we are in the plan. . .

Given a countable, completely normal distributive lattice D with
zero, construct inductively a closed, surjective lattice
homomorphism f =

⋃
n<ω fn : Idc F`(ω)� D, where (using

Baker-Beynon duality) all En = Op−(Hn) =
def

Op(Hn) \
{
R(ω)

}
and fn : En → D.

The Extension Lemma for Op(H) makes it possible to ensure
Idc F`(ω) =

⋃
n<ω En (i.e., f defined everywhere).

(Ensuring f surjective) If H is “independent” from H, then
Op(H ∪ {H}) ∼= Op(H) ∗ J2 (free distributive product),
where J2 is

0

1

a b

a ∨ b
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. . . and what remains to be done

We want to ensure f be closed!

(i.e., f (a) ≤ f (b) ∨ c ⇒ (∃x)
a ≤ b ∨ x and f (x) ≤ c)

Given fn : Op−(Hn)→ D, U,V ∈ Op−(Hn), and γ ∈ L such
that fn(U) ≤ fn(V )∨ γ, we want to find Hn+1, X ∈ Op−(Hn+1),
and fn+1 such that U ⊆ V ∪ X and fn+1(X ) ≤ γ.

By the earlier lemmas about consonance (and some amount of
work), it is sufficient to do this in case U = A+ and V = B+,
where A,B ∈ Hn.

“Correct any instance of f (A+) ≤ f (B+) ∨ γ”.
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Forcing closedness of a consonant homomorphism

Let E := R(ω), with canonical inner product (x |y) =
def

∑
n<ω xnyn and

weak topology (making all (x |−) continuous).

Lemma

Let H be a finite set of closed hyperplanes, let A = ker(a) and
B = ker(b) in H. Set Cm =

def
ker(a−mb) and Hm =

def
H ∪ {Cm},

∀m ∈ N.

Let L be a finite distributive lattice and let f : Op(H)→ L
be a consonant homomorphism. Then for all large enough m
(independent of L), f extends to a homomorphism g : Op(Hm)→ L
such that g(A+ rOp(Hm) B

+) = f (A+)rL f (B+).

“Large enough”: setting C−m =
def
{x | a(x) < mb(x)} and

B+ =
def
{x | b(x) > 0}, we need ∀X ∈ Op(H), C−m ⊆ X ⇒

B+ ⊆ X .

Existence of m ensured by Farkas’ Lemma (Hahn-Banach
Theorem).
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Forcing closedness of a consonant homomorphism

Let E := R(ω), with canonical inner product (x |y) =
def

∑
n<ω xnyn and

weak topology (making all (x |−) continuous).

Lemma

Let H be a finite set of closed hyperplanes, let A = ker(a) and
B = ker(b) in H. Set Cm =

def
ker(a−mb) and Hm =

def
H ∪ {Cm},

∀m ∈ N. Let L be a finite distributive lattice and let f : Op(H)→ L
be a consonant homomorphism. Then for all large enough m
(independent of L), f extends to a homomorphism g : Op(Hm)→ L
such that g(A+ rOp(Hm) B

+) = f (A+)rL f (B+).

“Large enough”: setting C−m =
def
{x | a(x) < mb(x)} and

B+ =
def
{x | b(x) > 0}, we need ∀X ∈ Op(H), C−m ⊆ X ⇒

B+ ⊆ X .

Existence of m ensured by Farkas’ Lemma (Hahn-Banach
Theorem).
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Conclusion

Putting all this together (with some work), the proof can be
concluded.

Corollary

For any countable `-group G , there exists a countable Abelian
`-group A such that the lattices of all convex `-subgroups of G and A
are isomorphic.

Uncountable analogue of corollary above: fails (Kenoyer 1984,
McCleary 1986).

About real spectra now. The real spectrum of any commutative,
unital ring is known to be a completely normal spectral space.

Corollary

For every countable commutative unital ring R, there exists a
countable Abelian `-group G with unit such that Spec` G is
homeomorphic to the real spectrum of R.

25/25



Spectral spaces

Generalities

The `-spectrum

`-representable
lattices

Additional
properties of
Spec` G / Idc G

Negative results

Known positive
results

The lattices
Op(H)

Basic properties

Join-irreducibles
and ∇

Consonance and
difference
operations

Basic properties

The Extension
Lemma

Back to Op(H)

Extending
homomorphisms
from Op(H)

Concluding the
proof

Conclusion

Putting all this together (with some work), the proof can be
concluded.

Corollary

For any countable `-group G , there exists a countable Abelian
`-group A such that the lattices of all convex `-subgroups of G and A
are isomorphic.

Uncountable analogue of corollary above: fails (Kenoyer 1984,
McCleary 1986).

About real spectra now. The real spectrum of any commutative,
unital ring is known to be a completely normal spectral space.

Corollary

For every countable commutative unital ring R, there exists a
countable Abelian `-group G with unit such that Spec` G is
homeomorphic to the real spectrum of R.

25/25



Spectral spaces

Generalities

The `-spectrum

`-representable
lattices

Additional
properties of
Spec` G / Idc G

Negative results

Known positive
results

The lattices
Op(H)

Basic properties

Join-irreducibles
and ∇

Consonance and
difference
operations

Basic properties

The Extension
Lemma

Back to Op(H)

Extending
homomorphisms
from Op(H)

Concluding the
proof

Conclusion

Putting all this together (with some work), the proof can be
concluded.

Corollary

For any countable `-group G , there exists a countable Abelian
`-group A such that the lattices of all convex `-subgroups of G and A
are isomorphic.

Uncountable analogue of corollary above: fails (Kenoyer 1984,
McCleary 1986).

About real spectra now. The real spectrum of any commutative,
unital ring is known to be a completely normal spectral space.

Corollary

For every countable commutative unital ring R, there exists a
countable Abelian `-group G with unit such that Spec` G is
homeomorphic to the real spectrum of R.

25/25



Spectral spaces

Generalities

The `-spectrum

`-representable
lattices

Additional
properties of
Spec` G / Idc G

Negative results

Known positive
results

The lattices
Op(H)

Basic properties

Join-irreducibles
and ∇

Consonance and
difference
operations

Basic properties

The Extension
Lemma

Back to Op(H)

Extending
homomorphisms
from Op(H)

Concluding the
proof

Conclusion

Putting all this together (with some work), the proof can be
concluded.

Corollary

For any countable `-group G , there exists a countable Abelian
`-group A such that the lattices of all convex `-subgroups of G and A
are isomorphic.

Uncountable analogue of corollary above: fails (Kenoyer 1984,
McCleary 1986).

About real spectra now.

The real spectrum of any commutative,
unital ring is known to be a completely normal spectral space.

Corollary

For every countable commutative unital ring R, there exists a
countable Abelian `-group G with unit such that Spec` G is
homeomorphic to the real spectrum of R.

25/25



Spectral spaces

Generalities

The `-spectrum

`-representable
lattices

Additional
properties of
Spec` G / Idc G

Negative results

Known positive
results

The lattices
Op(H)

Basic properties

Join-irreducibles
and ∇

Consonance and
difference
operations

Basic properties

The Extension
Lemma

Back to Op(H)

Extending
homomorphisms
from Op(H)

Concluding the
proof

Conclusion

Putting all this together (with some work), the proof can be
concluded.

Corollary

For any countable `-group G , there exists a countable Abelian
`-group A such that the lattices of all convex `-subgroups of G and A
are isomorphic.

Uncountable analogue of corollary above: fails (Kenoyer 1984,
McCleary 1986).

About real spectra now. The real spectrum of any commutative,
unital ring is known to be a completely normal spectral space.

Corollary

For every countable commutative unital ring R, there exists a
countable Abelian `-group G with unit such that Spec` G is
homeomorphic to the real spectrum of R.

25/25



Spectral spaces

Generalities

The `-spectrum

`-representable
lattices

Additional
properties of
Spec` G / Idc G

Negative results

Known positive
results

The lattices
Op(H)

Basic properties

Join-irreducibles
and ∇

Consonance and
difference
operations

Basic properties

The Extension
Lemma

Back to Op(H)

Extending
homomorphisms
from Op(H)

Concluding the
proof

Conclusion

Putting all this together (with some work), the proof can be
concluded.

Corollary

For any countable `-group G , there exists a countable Abelian
`-group A such that the lattices of all convex `-subgroups of G and A
are isomorphic.

Uncountable analogue of corollary above: fails (Kenoyer 1984,
McCleary 1986).

About real spectra now. The real spectrum of any commutative,
unital ring is known to be a completely normal spectral space.

Corollary

For every countable commutative unital ring R, there exists a
countable Abelian `-group G with unit such that Spec` G is
homeomorphic to the real spectrum of R.

25/25


	Generalities
	The -spectrum
	-representable lattices
	Additional properties of `39`42`"613A``45`47`"603ASpecG / `39`42`"613A``45`47`"603AIdcG
	Negative results
	Known positive results

	The lattices `39`42`"613A``45`47`"603AOp(H)
	Basic properties
	Join-irreducibles and 

	Consonance and difference operations
	Basic properties
	The Extension Lemma

	Back to `39`42`"613A``45`47`"603AOp(H)
	Extending homomorphisms from `39`42`"613A``45`47`"603AOp(H)
	Concluding the proof


