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topology whose closed sets are exactly the
Ve(X) = {P € Spec, G| X C P}, for X C G.
€

The £-spectrum

m The topological space Spec, G is called the /-spectrum of G.

Problem ("90s)

Characterize the topological spaces of the form Spec, G, for Abelian
£-groups G.

Equivalent formulation: describe the spectra of MV-algebras.
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® An ideal, in a distributive lattice D with zero, is a nonempty
lower subset closed under (x,y) — xV y.

i i m An ideal / is prime if | # D and x Ay € | implies that either
x€loryel (Vx,y € D).

m We endow the set Spec D, of all prime ideals of D, with the
topology whose closed sets are exactly the
Vp(X) = {P € SpecD | X C P}, for X C D.

m The topological space Spec D is called the spectrum of D.

Stone duality (/30s)
The assignments D — Spec D, and X — X(X) = lattice of all

def
compact open subsets of X, define a duality between distributive

lattices with zero and sober spaces in which the compact open
subsets form a basis of the topology, closed under (X,Y)+— XNY
(generalized spectral spaces).
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ideal of the lattice Id. G.
m For every ideal I of the lattice Id. G, ¥(/) = {xe G| (x)el}
€

is an f-ideal of the ¢-group G.

m @ and v are mutually inverse, and they both preserve primeness.

m Hence, Spec, G = Specld. G, so it is also a generalized spectral
space.

m Hence, Spec, G and Id. G determine each other (via Stone
duality).

m Recasts the above problem as: Describe /-representable lattices.
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m A generalized spectral space X is completely normal if its

Additional specialization order is a root system, that is, Vx,y,z € X, if

Specy ¢ /e 6 {x,y} Ccl{z}, then x € cl{y} or y € cl{x}. This holds if (not
iff) every subspace of X is normal in the usual sense.

m A distributive lattice D with zero is completely normal if
Va,be D, dx,y € D suchthat a< bV x, b<aVy, and

x Ay =0 (we say that (x,y) is a splitting of (a, b)).

Theorem (Monteiro 1956)

A generalized spectral space X is completely normal iff the
distributive lattice K(X) is completely normal.
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Complete normality of Id. G

Spectral spaces

Proposition (folklore)

gi‘ﬁéi‘i@i{ﬁg B For every Abelian ¢-group G, Idc G is a completely normal
egative resul distributive lattice (equivalently, Spec, G is a completely normal
generalized spectral space).

Proof.

Let a,b € Id. G. There are a, b € G such that a = (a) and
b = (b). Setxd:f (a—aAb) and y = (b—aAb). Then (x,y)is a

splitting of (a, b). O
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e theset a© b = {x € D | a< xV b} has a countable coinitial subset.
o

properties of

Specy G / ldc 6

(e, {cn|n<w}Caobsuchthat Vx € 2o b In<w ¢, < x)

Proposition (Cignoli, Gluschankof, and Lucas 1999)

Let G be an Abelian ¢-group. Then Id. G has countably based
differences.

Proof.

If a=(a) and b = (b) (where a,b € G"), set ¢, = (a—aAnb).
Then {c, | n < w} is coinitial in a & b. O
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Theorem (Delzell and Madden, 1994)

There exists a non-{-representable bounded distributive lattice of
cardinality N;.

Negative results

m Delzell and Madden also have a much more complicated
example of a completely normal spectral space which is not the
real spectrum of any commutative, unital ring.

m This example is not second countable either.
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(X, k), ifk=0,
(X’k)ﬁ{(XU(wl\w),k), if k#£0.

Proposition (W 2017)

D, is an Z .-elementary sublattice of D, (use back-and-forth),

with D, countable (and (-representable) and D,
non-{-representable (no countably based differences). Consequently,

(-representability is not .2 .,-definable.
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denoted by a \p b and called the pseudo-difference of a and b.
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results

Theorem (Cignoli, Gluschankof, and Lucas 1999)

Every dual generalized Heyting algebra is /-representable.

The proof extends (non-trivially) the finite case. In that case, D is
the lattice of all lower subsets of a finite root system P. So

D = 1d. Q(P), where Q(P) is the lexicographical power (Hahn
power) of Q by P.

10/25



Closed lattice homomorphisms

Spectral spaces

Definition

For distributive lattices D and E with zero, a O-lattice
homomorphism f: D — E is closed if for all a,b € D and all c € E,
f(a) <f(b)Vec=3xeD,a<bVxand f(x) <c.

Known positive
results

11/25



Closed lattice homomorphisms

Spectral spaces

Definition

For distributive lattices D and E with zero, a O-lattice
homomorphism f: D — E is closed if for all a,b € D and all c € E,
f(a) <f(b)Vec=3xeD,a<bVxand f(x) <c.

Equivalently, the dual map Specf: Spec E — Spec D sends closed
Known posiive subsets to closed subsets (resp., sends upper subsets to upper
results

subsets).

11/25



Spectral spaces

Known positive
results

Closed lattice homomorphisms

Definition

For distributive lattices D and E with zero, a O-lattice
homomorphism f: D — E is closed if for all a,b € D and all c € E,
f(a) <f(b)Vec=3xeD,a<bVxand f(x) <c.

Equivalently, the dual map Specf: Spec E — Spec D sends closed
subsets to closed subsets (resp., sends upper subsets to upper
subsets).

Proposition

Let f: G — H be a ¢-homomorphism between Abelian ¢-groups.
Then Id. f: Idc G — Id. H is a closed lattice homomorphism.

11/25



Spectral spaces

Known positive
results

Closed lattice homomorphisms

Definition
For distributive lattices D and E with zero, a O-lattice

homomorphism f: D — E is closed if for all a,b € D and all ¢ € E,
f(a) <f(b)Vec=3xeD,a<bVxand f(x) <c.

Equivalently, the dual map Specf: Spec E — Spec D sends closed
subsets to closed subsets (resp., sends upper subsets to upper
subsets).

Proposition

Let f: G — H be a ¢-homomorphism between Abelian ¢-groups.
Then Id. f: Idc G — Id. H is a closed lattice homomorphism.

Proposition

Let G be an Abelian /-group, let D be a distributive lattice with
zero. Then every surjective closed lattice homomorphism

f: Id. G — D induces an isomorphism Id. (G/I) — D, for the
(-ideal | = {x € G| f({x)) =0}.
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homomorphisms f,: E, — D, where | J,_,, E, = Idc F¢(w), with
suitably chosen finite E, and failures of closedness / surjectivity /
being defined everywhere corrected at each stage.

12/25



A positive result

S| The aim of what follows is to sketch a proof of the following result:

Theorem (W 2017)

Every countable, completely normal distributive lattice with zero is
f-representable.

. . Equivalently (using Stone duality and Monteiro's result),
e —
results

|
Every second countable, completely normal generalized spectral space
is the £-spectrum of some Abelian /-group

Strategy: starting with a countable, completely normal distributive
lattice D with zero, we construct an ascending tower of lattice
homomorphisms f,: E, — D, where | J,_,, E, = Idc F¢(w), with
suitably chosen finite E, and failures of closedness / surjectivity /
being defined everywhere corrected at each stage.

A 2004 example by Di Nola and Grigolia shows that the E,, cannot

always be taken completely normal.
12/25



Defining Op(H)

Spectral spaces o _ono
Definition

Let JH be a set of closed hyperplanes in a topological vector space E
over R.

Basic properties

13/25



Defining Op(H)

Spectral spaces o _ono
Definition

Let JH be a set of closed hyperplanes in a topological vector space E
over R. We set

Bool(HH) = Boolean subalgebra of the powerset of E

def

generated by all H* and H™, where H € 3(;
Op(f]-f)cif {open members of Bool(H)} .

o propertes (The E, will have the form Op~ (H) = Op(H) \{E}.)

13/25



Defining Op(H)

Spectral spaces o _ono
Definition

Let JH be a set of closed hyperplanes in a topological vector space E
over R. We set

Bool(HH) = Boolean subalgebra of the powerset of E

def

generated by all H* and H™, where H € 3(;
Op(f]-f);f {open members of Bool(H)} .

S propers (The E, will have the form Op™ (%) = Op(H)\{E}.)

Lemma

For every X € Bool(H), int(X) belongs to Op(J), and it is a finite
union of sets of the form (7_, H:X, where all H; € { (basic open

sets).

13/25



Defining Op(H)

Spectral spaces o _ono
Definition

Let JH be a set of closed hyperplanes in a topological vector space E
over R. We set

Bool(HH) = Boolean subalgebra of the powerset of E

def

generated by all H* and H™, where H € 3(;
Op(f]-f);f {open members of Bool(H)} .

S propers (The E, will have the form Op™ (%) = Op(H)\{E}.)

Lemma

For every X € Bool(H), int(X) belongs to Op(J), and it is a finite
union of sets of the form (7_, H:X, where all H; € { (basic open
sets). Moreover, Op(H) is a Heyting subalgebra of the algebra of all
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Let H be a nonempty finite set of closed hyperplanes in a topological
vector space [E.

Notation
For U € Op(3), we set

Hy = {HeH|HNU %2},
€
Join-irreducibles

°nd V7 V3 U=VU = intersection of all members of H .
€

Thus, VU is a closed subspace of [E, with finite codimension.
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Characterizing the join-irreducibles

Spectral spaces By the above, every join-irreducible member of Op(H) is convex.

Lemma

A convex member P of Op(H) is join-irreducible iff PN VP # &, in
which case P, = P\ VP and P! =C(cl(P)NnVP) =Cc(PNVP)
(the largest X € Op(%) such that P Z X).

m Recall that in any finite distributive lattice D, p — p' is an
order-isomorphism between Ji D = {join-irreducibles of D} and
€

e Mi D = {meet-irreducibles of D} (with induced < from D).
e

and V

m Important observation about Op(H): P\ P, = PNVPis
convex VP € Ji Op(H).

Corollary

Let P and Q be join-irreducibles in Op(%). Then P g Q implies
VQ S VP.
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consonant, in notation a ~ b, if Ix,y € D such that a < bV x,
b<aVy,and x Ay =0 (again: we say that (x, y) is a splitting of

(a, b)).

In particular, D is completely normal iff any two elements of D are
consonant (i.e., D is a consonant subset of itself).

Lemma

Ha<b=a~b;
Ha~b= b~ g
B(a~candb~c)= (aVb~cand aAb~ c).
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xN\x=0,Vxel

xNz=(x\y)V(y~\ z), whenever x > y > z in L;

xNy=xVy)Ny=x~(xAy), Vx,y € L.
It is a normal difference operation if (x \ y) A (y ~x) =0Vx,y € L.

Lemma ( Triangle Inequality)

xNz<(xNy)V(y~2z),¥x,y,ze L

Let L be finite. Thena~ b=\ (p~p.|pclJiL, p<a, p£b),
Va,b € L.

Basic properties
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Pseudo-differences again

Spectral spaces
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difference operation on D, normal on every consonant sublattice of D.

The Extension
Lemma
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Let D be a finite distributive lattice. Then the pseudo-difference,
(x,y) = x~py d:fleast z € D such that x < y V z, is a D-valued
()

difference operation on D, normal on every consonant sublattice of D.

The two following lemmas are crucial to further computations.

Lemma
Let D be a finite distributive lattice and let a1, a2, b € D. Then
(a1 V @) ~p b= (a1 ~p b) V (az ~p b);
if a3 ~ a,, then (a1 A a3) ~p b= (a1 ~p b) A (a2 ~p b);
S . the dual statements (< = >) hold.

Lemma

Lemma

If a3 ~ ap and a3 A ax < by A by, then (a1 ~p b1) A (a2 ~p bp) = 0.
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hold:
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aNb=0;
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e HVYpeliD, p<p.Vavb= (p<p.Vaorp<p.Vb);

@A Vp,geJiD, (p<p.Vaand g<g.Vb)= (pandq are
incomparable).
Then such an extension g exists, with g(a) = f.(a) and g(b) = f.(b),
where £.(t) =V (f(p) ~L f(ps) | p€JiD, p<p.Vit) VteE.
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The Extension Lemma for Op(H)

Spectral spaces

Extension Lemma for Op(3()

Let JH be a finite set of closed hyperplanes in a topological vector
space E, let H be a closed hyperplane of E, and let L be a finite
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g: Op(H U{H}) — L such that g(H*) = f,(H*), where

f(U) = \/ (F(P) L (P.) | P € JiD, PAVP C ), YU € Op(3X).

Outline of proof. Verify one by one the conditions of the Extension
Lemma for lattices, with D := Op(X), E := Op(H U {H}), a:= HT,
and b:=H".

Extending

e L m Every basic open set in Op(H U {H}) has the form U or
U N H*, where U is basic open in Op(H); whence E = DJa, b].
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Extension Lemma for Op(J() (cont'd)

Spectral spaces

m Both D = Op(H) and E = Op(H U {H}) are Heyting
subalgebras of the lattice of all open subsets of E; whence D is a
Heyting subalgebra of E.
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m Since PN VP is convex, either PONVP C H  or PNVP C H™,
that is, either PC P, UHT or PC P, UH".

m Condition (5) now. Let PN VP C HY and QNVQ C H™.
Suppose, by way of contradiction, that P C Q.

= Then Pt C Qf so cd(QNVQ) Ccl(PNVP)CH .

—+ L
m Hence QNVQ C H- NH = &, a contradiction.
Extending
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from Op(3¢)
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Where we are in the plan. ..

Spectral spaces

m Given a countable, completely normal distributive lattice D with
zero, construct inductively a closed, surjective lattice
homomorphism f =, fo: ldc Fe(w) — D, where (using
Baker-Beynon duality) all E, = op*(j{n) = Op )\ R}

and f,: E, — D.

m The Extension Lemma for Op(%) makes it possible to ensure
Ide Fe(w) = U,<,, En (ie., f defined everywhere).

m (Ensuring f surjective) If H is “independent” from J{, then
Op(H U {H}) = Op(H) * Jo (free distributive product),
where J; is

1

aVvb

Concluding the
proof
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We want to ensure f be closed! (i.e., f(a) < f(b)V c = (3x)

a<bVxandf(x)<c)

m Given f,: Op™ (H,) — D, U,V € Op™ (H,), and v € L such
that 7,(U) < (V) V~, we want to find H,1, X € Op™ (Hp11),
and fpy1 such that U C VU X and f,41(X) < 7.

m By the earlier lemmas about consonance (and some amount of

work), it is sufficient to do this in case U = At and V = BT,

where A, B € H,,.

m “Correct any instance of f(AT) < f(Bt)V~y".

Concluding the
proof
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SESiaRes Let E := R(“), with canonical inner product (x|y) = > new XnYn and
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weak topology (making all (x|_) continuous).

Lemma

Let  be a finite set of closed hyperplanes, let A = ker(a) and

B = ker(b) in H. Set Cp, = ker(a — mb) and H,, = HU{Cn},
Vm € N. Let L be a finite distributive lattice and let f: Op(3) — L
be a consonant homomorphism. Then for all large enough m
(independent of L), f extends to a homomorphism g: Op(¥,,) — L
such that g(A" ~opac,) BT) = f(AT) N f(B™).
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SESiaRes Let E := R(“), with canonical inner product (x|y) = > new XnYn and
e

weak topology (making all (x|_) continuous).

Lemma
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Bt C X.
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Conclusion

SESiaRes Putting all this together (with some work), the proof can be
concluded.

Corollary

For any countable /-group G, there exists a countable Abelian
£-group A such that the lattices of all convex ¢-subgroups of G and A
are isomorphic.

m Uncountable analogue of corollary above: fails (Kenoyer 1984,
McCleary 1986).

m About real spectra now. The real spectrum of any commutative,
unital ring is known to be a completely normal spectral space.

Corollary

For every countable commutative unital ring R, there exists a
countable Abelian ¢-group G with unit such that Spec, G is

Concluding the

proof homeomorphic to the real spectrum of R.
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