
Projective
classes as
images of
accessible
functors

Motivation

Elementary,
projective

Tuuri’s
Interpolation
Theorem

Karttunen’s
back-and-forth
systems

Projective classes as images of accessible
functors

Friedrich Wehrung

Université de Caen
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Motivation

We would like to prove that certain “naturally defined”
categories C of models (say of first-order theories) are
“intractable”.

Examples: Posets of finitely generated ideals of rings,
Ordered K0 groups of unit-regular rings, Stone duals of
spectra of abelian lattice-ordered groups, . . . and many
other classes.

A way to define intractability is to state that C is not the
class of models of any infinitary (not just first-order!)
sentence (we’ll say elementary).

We will use a stronger notion of intractability.
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Introducing a motivating example

For an Abelian `-group G , Idc G
def
= (lattice of all principal

`-ideals of G ) = {〈a〉 | a ∈ G+} where

〈a〉 def= {x ∈ G | (∃n < ω)(|x | ≤ na)}. Let

Idc A
def
= {D | (∃G )(D ∼= Idc G )}.

Every member of Idc A is a distributive 0-lattice. It is
completely normal (abbrev. CN), that is, it satisfies

(∀a, b)(∃x , y)(a ∨ b = a ∨ y = x ∨ b & x ∧ y = 0) .

Every member of Idc A has countably based differences
(abbrev. CBD), that is, it satisfies

(∀a, b)(∃n<ωcn)(∀x)(a ≤ b ∨ x ⇔ cn ≤ x for some n) .

4/22



Projective
classes as
images of
accessible
functors

Motivation

Elementary,
projective

Tuuri’s
Interpolation
Theorem

Karttunen’s
back-and-forth
systems

Introducing a motivating example

For an Abelian `-group G , Idc G
def
= (lattice of all principal

`-ideals of G ) = {〈a〉 | a ∈ G+} where

〈a〉 def= {x ∈ G | (∃n < ω)(|x | ≤ na)}. Let

Idc A
def
= {D | (∃G )(D ∼= Idc G )}.

Every member of Idc A is a distributive 0-lattice. It is
completely normal (abbrev. CN), that is, it satisfies

(∀a, b)(∃x , y)(a ∨ b = a ∨ y = x ∨ b & x ∧ y = 0) .

Every member of Idc A has countably based differences
(abbrev. CBD), that is, it satisfies

(∀a, b)(∃n<ωcn)(∀x)(a ≤ b ∨ x ⇔ cn ≤ x for some n) .

4/22



Projective
classes as
images of
accessible
functors

Motivation

Elementary,
projective

Tuuri’s
Interpolation
Theorem

Karttunen’s
back-and-forth
systems

Introducing a motivating example

For an Abelian `-group G , Idc G
def
= (lattice of all principal

`-ideals of G ) = {〈a〉 | a ∈ G+} where

〈a〉 def= {x ∈ G | (∃n < ω)(|x | ≤ na)}. Let

Idc A
def
= {D | (∃G )(D ∼= Idc G )}.

Every member of Idc A is a distributive 0-lattice. It is
completely normal (abbrev. CN), that is, it satisfies

(∀a, b)(∃x , y)(a ∨ b = a ∨ y = x ∨ b & x ∧ y = 0) .

Every member of Idc A has countably based differences
(abbrev. CBD), that is, it satisfies

(∀a, b)(∃n<ωcn)(∀x)(a ≤ b ∨ x ⇔ cn ≤ x for some n) .

4/22



Projective
classes as
images of
accessible
functors

Motivation

Elementary,
projective

Tuuri’s
Interpolation
Theorem

Karttunen’s
back-and-forth
systems

Motivating example (cont’d): Ploščica’s Condition

For an ideal I in a distributive lattice D, x ≡I y if

(∃z ∈ I )(x ∨ z = y ∨ z). Set D/I
def
= D/≡I .

A bounded distributive lattice D satisfies Ploščica’s
Condition (abbrev. Plo) if for every a ∈ D and every
collection (mi | i ∈ I ) of maximal ideals of ↓a, ↓a/

⋂
i mi

has cardinality ≤ 2card I .

Theorem (Ploščica 2021)

Every member of Idc A satisfies Plo. On the other hand,
0-DLat&CN&CBD does not imply Plo.

Question: Does the conjunction 0-DLat&CN&CBD&Plo
(and more. . . ) characterize the members of Idc A?

Answer: A strong NO under (a fragment of) GCH, with a
counterexample of cardinality ℵ4.
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Every member of Idc A satisfies Plo. On the other hand,
0-DLat&CN&CBD does not imply Plo.

Question: Does the conjunction 0-DLat&CN&CBD&Plo
(and more. . . ) characterize the members of Idc A?

Answer: A strong NO under (a fragment of) GCH, with a
counterexample of cardinality ℵ4.

5/22



Projective
classes as
images of
accessible
functors

Motivation

Elementary,
projective

Tuuri’s
Interpolation
Theorem

Karttunen’s
back-and-forth
systems

Motivating example (cont’d): Ploščica’s Condition
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v-structures

Vocabulary: v = (vope, vrel, ar) with vope ∩ vrel = ∅ and
ar : vope ∪ vrel → ordinals (usually) with 0 /∈ ar[vrel].

ar(s) = 0
def⇐⇒ s is a “constant”.

Add to this a large enough set (“alphabet”) of “variables”.

model for v (or v-structure): A = (A, sA)s∈vope∪vrel , with
the interpretations sA defined the usual way.

Str(v)
def
= category of all v-structures with

v-homomorphisms (it is locally presentable).

Terms: closure of variables under all functions symbols.

atomic formulas: s = t, for terms s and t, or
R(tξ | ξ ∈ ar(R)) where the tξ are terms and R ∈ vrel.

6/22



Projective
classes as
images of
accessible
functors

Motivation

Elementary,
projective

Tuuri’s
Interpolation
Theorem

Karttunen’s
back-and-forth
systems

v-structures

Vocabulary: v = (vope, vrel, ar) with vope ∩ vrel = ∅ and
ar : vope ∪ vrel → ordinals (usually) with 0 /∈ ar[vrel].

ar(s) = 0
def⇐⇒ s is a “constant”.

Add to this a large enough set (“alphabet”) of “variables”.

model for v (or v-structure): A = (A, sA)s∈vope∪vrel , with
the interpretations sA defined the usual way.

Str(v)
def
= category of all v-structures with

v-homomorphisms (it is locally presentable).

Terms: closure of variables under all functions symbols.

atomic formulas: s = t, for terms s and t, or
R(tξ | ξ ∈ ar(R)) where the tξ are terms and R ∈ vrel.

6/22



Projective
classes as
images of
accessible
functors

Motivation

Elementary,
projective

Tuuri’s
Interpolation
Theorem

Karttunen’s
back-and-forth
systems

v-structures

Vocabulary: v = (vope, vrel, ar) with vope ∩ vrel = ∅ and
ar : vope ∪ vrel → ordinals (usually) with 0 /∈ ar[vrel].

ar(s) = 0
def⇐⇒ s is a “constant”.

Add to this a large enough set (“alphabet”) of “variables”.

model for v (or v-structure): A = (A, sA)s∈vope∪vrel , with
the interpretations sA defined the usual way.

Str(v)
def
= category of all v-structures with

v-homomorphisms (it is locally presentable).

Terms: closure of variables under all functions symbols.

atomic formulas: s = t, for terms s and t, or
R(tξ | ξ ∈ ar(R)) where the tξ are terms and R ∈ vrel.

6/22



Projective
classes as
images of
accessible
functors

Motivation

Elementary,
projective

Tuuri’s
Interpolation
Theorem

Karttunen’s
back-and-forth
systems

v-structures

Vocabulary: v = (vope, vrel, ar) with vope ∩ vrel = ∅ and
ar : vope ∪ vrel → ordinals (usually) with 0 /∈ ar[vrel].

ar(s) = 0
def⇐⇒ s is a “constant”.

Add to this a large enough set (“alphabet”) of “variables”.

model for v (or v-structure): A = (A, sA)s∈vope∪vrel , with
the interpretations sA defined the usual way.

Str(v)
def
= category of all v-structures with

v-homomorphisms (it is locally presentable).

Terms: closure of variables under all functions symbols.

atomic formulas: s = t, for terms s and t, or
R(tξ | ξ ∈ ar(R)) where the tξ are terms and R ∈ vrel.

6/22



Projective
classes as
images of
accessible
functors

Motivation

Elementary,
projective

Tuuri’s
Interpolation
Theorem

Karttunen’s
back-and-forth
systems

v-structures

Vocabulary: v = (vope, vrel, ar) with vope ∩ vrel = ∅ and
ar : vope ∪ vrel → ordinals (usually) with 0 /∈ ar[vrel].

ar(s) = 0
def⇐⇒ s is a “constant”.

Add to this a large enough set (“alphabet”) of “variables”.

model for v (or v-structure): A = (A, sA)s∈vope∪vrel , with
the interpretations sA defined the usual way.

Str(v)
def
= category of all v-structures with

v-homomorphisms (it is locally presentable).

Terms: closure of variables under all functions symbols.

atomic formulas: s = t, for terms s and t, or
R(tξ | ξ ∈ ar(R)) where the tξ are terms and R ∈ vrel.

6/22



Projective
classes as
images of
accessible
functors

Motivation

Elementary,
projective

Tuuri’s
Interpolation
Theorem

Karttunen’s
back-and-forth
systems

v-structures

Vocabulary: v = (vope, vrel, ar) with vope ∩ vrel = ∅ and
ar : vope ∪ vrel → ordinals (usually) with 0 /∈ ar[vrel].

ar(s) = 0
def⇐⇒ s is a “constant”.

Add to this a large enough set (“alphabet”) of “variables”.

model for v (or v-structure): A = (A, sA)s∈vope∪vrel , with
the interpretations sA defined the usual way.

Str(v)
def
= category of all v-structures with

v-homomorphisms (it is locally presentable).

Terms: closure of variables under all functions symbols.

atomic formulas: s = t, for terms s and t, or
R(tξ | ξ ∈ ar(R)) where the tξ are terms and R ∈ vrel.

6/22



Projective
classes as
images of
accessible
functors

Motivation

Elementary,
projective

Tuuri’s
Interpolation
Theorem

Karttunen’s
back-and-forth
systems

v-structures

Vocabulary: v = (vope, vrel, ar) with vope ∩ vrel = ∅ and
ar : vope ∪ vrel → ordinals (usually) with 0 /∈ ar[vrel].

ar(s) = 0
def⇐⇒ s is a “constant”.

Add to this a large enough set (“alphabet”) of “variables”.

model for v (or v-structure): A = (A, sA)s∈vope∪vrel , with
the interpretations sA defined the usual way.

Str(v)
def
= category of all v-structures with

v-homomorphisms (it is locally presentable).

Terms: closure of variables under all functions symbols.

atomic formulas: s = t, for terms s and t, or
R(tξ | ξ ∈ ar(R)) where the tξ are terms and R ∈ vrel.

6/22



Projective
classes as
images of
accessible
functors

Motivation

Elementary,
projective

Tuuri’s
Interpolation
Theorem

Karttunen’s
back-and-forth
systems

The languages Lκλ

Here κ and λ are “extended cardinals” (∞ allowed) with
ω ≤ λ ≤ κ ≤ ∞.

For any vocabulary v, Lκλ(v)
def
= closure of all atomic

v-formulas under disjunctions of < κ members (
∨∨

i∈IEi

where card I < κ), negation, and existential quantification
over sets of less than λ variables ((∃X)E with card X < λ,
or, in indexed form, ∃~x

(I )
E with card I < λ).

Satisfaction A |= E(~a) defined as usual (A is a v-structure,
E ∈ L∞∞(v), ~a : free variables (E)→ A).

Lκλ-elementary class:

C = Modv(E)
def
= {A ∈ Str(v) | A |= E} where E is an

Lκλ(v)-sentence.
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(Relatively) projective classes

A class C of v-structures is

projective over Lκλ (abbrev. PC(Lκλ)) if there are a
vocabulary w ⊇ v and a sentence E ∈ Lκλ(w) such that
C = {M�v |M ∈Modw(E)}.
relatively projective over Lκλ (abbrev. RPC(Lκλ)) if
there are a unary predicate symbol U, a vocabulary
w ⊇ v ∪ {U}, and a sentence E ∈ Lκλ(w) such that
C = {UM�v |M ∈Modw(E) , UM closed under vope}.
Hence PC(Lκλ) ⊆ RPC(Lκλ). Note that
PC(Lωω) $ RPC(Lωω) (even on finite structures).

Theorem (W 2021)

Let λ be an infinite cardinal. Then PC(L∞λ) = RPC(L∞λ)
(in full generality; no restrictions on vocabularies). Moreover,
if λ is singular, then PC(L∞λ) = PC(L∞λ+).

8/22
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Examples of “elementary” classes

Finiteness (of the ambiant universe) is Lω1ω:∨∨
n<ω

(∃i<nxi )(∀x)
∨∨

i<n
(x = xi ) .

Well-foundedness (of the ambiant poset) is Lω1ω1 :

(∀n<ωxn)
∨∨

n<ω
(xn+1 6< xn) .

Torsion-freeness (of a group) is Lω1ω:∧∧
0<n<ω

(∀x)(xn = 1⇒ x = 1) .
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An example of RPC (that turns out to be PC)

C
def
= {M = (M, ·, 1) monoid | (∃G group)(M ↪→ G )} is,

by definition, RPC(Lωω).

Here v = ( ·
(2)
, 1

(0)
), w = (·, 1,U) for a unary predicate U,

the required E states that the given w-structure is a group
(so “UG is v-closed in G” means that U interprets a
submonoid of G ).

By Mal′cev’s work, C = {M | (∀n < ω)(M |= En)} for an
effectively constructed sequence (En | n < ω) of
quasi-identities over v, not reducible to any finite subset.

Nonetheless,
C = {M | (∃ group structure G on M)(∃f : M ↪→ G )} is
PC(Lωω).
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Other examples

For a unital ring R, Idc R
def
= (∨, 0)-semilattice of all

finitely generated two-sided ideals of R. Let

C
def
= {Idc R | R unital ring} (up to isomorphism).

For an Abelian `-group G , Idc G
def
= lattice of all principal

`-ideals of G . Let C
def
= {Idc G | G Abelian `-group}.

For a commutative unital ring A, Φ(A)
def
= Stone dual of

the real spectrum of A (it is a bounded distributive

lattice). Let C
def
= {Φ(A) | A commutative unital ring}.

All those classes are PC(Lω1ω).

Observe that they are all defined as images of functors.

We will see that none of those classes is co-PC(L∞∞)
(i.e., complement of a PC(L∞∞)).
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Accessible categories and functors

Let λ be a regular cardinal.

A category S is λ-accessible if it has all λ-directed colimits
and it has a λ-directed colimit-dense subset S†, consisting
of λ-presentable objects.

One can then take S† = Presλ S, “the” set of all
λ-presentable objects in S (up to isomorphism).

A functor Φ: S→ T is λ-continuous if it preserves
λ-directed colimits. If S and T are both λ-accessible
categories, we say that Φ is a λ-accessible functor.

There are many examples: Str(v), quasivarieties. . .
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PC versus accessible

Say that a vocabulary v is λ-ary if every symbol in v has
arity < λ.

Theorem (W 2021)

Let λ be a regular cardinal, let v be a λ-ary vocabulary, and
let C be a class of v-structures. Then TFAE:

1 C is PC(L∞λ)- (resp., RPC(L∞λ))-definable.

2 There are a λ-accessible category S and a λ-continuous
functor (that can then be taken faithful) Φ: S→ Str(v)
with Φ(S) = C.

Recall that Φ(S)
def
= {M | (∃S ∈ Ob S)(M ∼= Φ(S))}.

The assumption that v be λ-ary cannot be dispensed with
(counterexamples for both directions, involving
idempotence and emptiness, respectively).
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Infinitely deep languages

Idea: extend Lκλ in such a way that infinite alternations
of quantifiers be enabled.

Game formula (of Gale-Stewart kind): a~x E(~x) is
(∀x0)(∃x1)(∀x2) · · ·E(x0, x1, x2, . . . ).

Can be interpreted via a game with two players, ∀ (who
plays all x2n) and ∃ (who plays all x2n+1). Hence ∀ (resp.,
∃) wins iff E(x0, x1, x2, . . . ) (resp., ¬E(x0, x1, x2, . . . )).

The game above has “clock” ω.

The “infinitely deep language” Mκλ(v) contains more
general formulas than the a~x E(~x) above, now clocked by
posets which are simultaneously trees and
meet-semilattices, in which every node has < κ upper
covers and every branch has length a successor < λ.

Satisfaction of an Mκλ(v)-statement is expressed via the
existence of a winning strategy in the associated game.
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Tuuri’s Interpolation Theorem

Theorem (Tuuri 1992)

Let κ be a regular cardinal, let v be a κ-ary vocabulary, set

λ
def
= sup{κα | α < κ}, and let E and F be Lκ+κ(v)-sentences

such that the conjunction E ∧ F has no v-model. Then there
exists an Mλ+λ(v)-sentence G, with vocabulary the intersection
of the vocabularies of E and F, such that |= (E⇒ G) and
|= (F⇒ ∼G).

Here, ∼G denotes the sentence obtained by
interchanging

∨∨
and

∧∧
, ∃ and ∀, A and ¬A in the

expression of G by a tree-clocked game; it implies the
usual negation ¬G (which, however, is no longer an
Mλ+λ-sentence).
By a 1971 counterexample due to Malitz, Mλ+λ cannot be
replaced by L∞∞ in the statement of Tuuri’s Theorem.
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Projective and co-projective

Corollary

Let v be a vocabulary. Then for all classes A and B of
v-structures, if A is PC(L∞∞), B is co-PC(L∞∞), and
A ⊆ B, then there exists an M∞∞(v)-sentence G such that
A ⊆Modv(G) ⊆ B.

Corollary

In order to prove that a PC(L∞∞) class C of v-structures is
not co-PC(L∞∞), it suffices to prove that C is not
M∞∞(v)-definable.

But then, what is the advantage of M∞∞-definable over
PC(L∞∞)-definable or co-PC(L∞∞)-definable?
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That’s back-and-forth!

There are several non-equivalent definitions of
back-and-forth between models (extended to categorical
model theory by Beke and Rosický in 2018).

Definition (Karttunen 1979)

For a regular cardinal λ, a λ-back-and-forth system between
models M and N over a vocabulary v consists of a poset
(F,E), together with a function f 7→ f with domain F, such

that each f : d(f )
∼=→ r(f ) with d(f ) 6M and r(f ) 6 N , and

the following conditions hold:

1 f E g implies f ⊆ g ;
2 (F,E) is λ-inductive;
3 whenever f ∈ F and x ∈ M (resp., y ∈ N), there is g ∈ F

such that f ⊆ g and x ∈ d(g) (resp., y ∈ r(g)).

We then write M �λ N .
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M∞λ versus back-and-forth

Theorem (Karttunen 1979)

Let λ be a regular cardinal and let M and N be structures over
a vocabulary v. If M �λ N , then M and N satisfy the same
M∞λ(v)-sentences.

Extended by Karttunen to the even more general
languages N∞λ.

The syntax for N∞λ is far more complex than for M∞λ,
the semantics are even trickier (not unique!).

18/22
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Establishing intractability

By the above,

Proposition

In order to prove that a PC(L∞∞) class C of v-structures is
not co-PC(L∞∞), it suffices to prove that it is not closed
under �λ for a suitable regular cardinal λ.

Applies to earlier introduced examples Idc(unital rings),
Idc(Abelian `-groups), duals of real spectra of
commutative unital rings, and many others: each of those
classes fails to be closed under a suitable �λ.

The real trouble is: find a back-and-forth system
F : M �λ N with M ∈ C and N /∈ C (where C is the
given class).
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Back-and-forth systems from continuous functors

In many examples, such as Φ(unital rings) and
Φ(Abelian `-groups) (where Φ = Idc), �λ arises from
some λ-continuous functor Γ: [κ]inj → C with κ ≥ λ.

Here, [κ]inj denotes the category of all subsets of κ with
one-to-one functions. In both examples above, κ = λ++.
It is often the case that for X ⊆ κ with cardX < λ,
Γ(X ) = Φ

(∏
(S|u| | u ∈ X⊆P)

)
(a “condensate”), where:

1 P is a suitable finite lattice (in both examples above,
P = {0, 1}3; also, this method provably fails for arbitrary
finite bounded posets!);

2 X⊆P def
=
⋃
{XD | D ⊆ P};

3 |u| def=
∨

dom u whenever u ∈ X⊆P ;

4 ~S is a non-commutative diagram, indexed by P, such that,
for the given functor Φ, the diagram Φ(~S) is commutative.

Finding P and ~S is usually hard, very much connected to
the algebraic and combinatorial data of the given problem.
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The diagram ~S for Idc(Abelian `-groups)

A123(a, a′, b, c)

A12(a, b) A13(a′, c) A23(b, c)

A1(a) A2(b) A3(c)

A∅ = {0}

0 ≤ a ≤ a′ ≤ 2a; b ≥ 0; c ≥ 0.
A1(a)→ A13(a′, c) via a 7→ a′.
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Thanks for your attention!
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