Projective classes as images of accessible functors

Friedrich Wehrung

Université de Caen
LMNO, CNRS UMR 6139
Département de Mathématiques
14032 Caen cedex

E-mail: friedrich.wehrung01@unicaen.fr
URL: http://wehrungf.users.lmno.cnrs.fr

May 2022
References

Motivation

We would like to prove that certain “naturally defined” categories \mathcal{C} of models (say of first-order theories) are “intractable”.

Examples:
- Posets of finitely generated ideals of rings,
- Ordered K_0 groups of unit-regular rings,
- Stone duals of spectra of abelian lattice-ordered groups, ...
- and many other classes.

A way to define intractability is to state that \mathcal{C} is not the class of models of any infinitary (not just first-order!) sentence (we’ll say elementary).

We will use a stronger notion of intractability.
Motivation

- We would like to prove that certain “naturally defined” categories \mathcal{C} of models (say of first-order theories) are “intractable”.

- **Examples:**

 - Posets of finitely generated ideals of rings,
 - Ordered K_0 groups of unit-regular rings,
 - Stone duals of spectra of abelian lattice-ordered groups,
 - . . . and many other classes.

A way to define intractability is to state that \mathcal{C} is not the class of models of any infinitary (not just first-order!) sentence (we'll say elementary).

We will use a stronger notion of intractability.
Motivation

- We would like to prove that certain “naturally defined” categories \mathcal{C} of models (say of first-order theories) are “intractable”.

- **Examples:** Posets of finitely generated ideals of rings,
Motivation

- We would like to prove that certain “naturally defined” categories \mathcal{C} of models (say of first-order theories) are “intractable”.

- **Examples:** Posets of finitely generated ideals of rings, Ordered K_0 groups of unit-regular rings,
We would like to prove that certain “naturally defined” categories \mathcal{C} of models (say of first-order theories) are “intractable”.

Examples: Posets of finitely generated ideals of rings, Ordered K_0 groups of unit-regular rings, Stone duals of spectra of abelian lattice-ordered groups,
We would like to prove that certain “naturally defined” categories \mathcal{C} of models (say of first-order theories) are “intractable”.

Examples: Posets of finitely generated ideals of rings, Ordered K_0 groups of unit-regular rings, Stone duals of spectra of abelian lattice-ordered groups, ... and many other classes.
Motivation

We would like to prove that certain “naturally defined” categories \mathcal{C} of models (say of first-order theories) are “intractable”.

Examples: Posets of finitely generated ideals of rings, Ordered K_0 groups of unit-regular rings, Stone duals of spectra of abelian lattice-ordered groups, ... and many other classes.

A way to define intractability is to state that \mathcal{C} is not the class of models of any infinitary (not just first-order!) sentence (we’ll say elementary).
We would like to prove that certain “naturally defined” categories \mathcal{C} of models (say of first-order theories) are “intractable”.

Examples: Posets of finitely generated ideals of rings, Ordered K_0 groups of unit-regular rings, Stone duals of spectra of abelian lattice-ordered groups, ... and many other classes.

A way to define intractability is to state that \mathcal{C} is not the class of models of any infinitary (not just first-order!) sentence (we’ll say elementary).

We will use a stronger notion of intractability.
Introducing a motivating example

■ For an Abelian \(\ell \)-group \(G \), \(\text{Id}_c \ G \stackrel{\text{def}}{=} (\text{lattice of all principal } \ell \text{-ideals of } G) = \{ \langle a \rangle \mid a \in G^+ \} \) where \(\langle a \rangle \stackrel{\text{def}}{=} \{ x \in G \mid (\exists n < \omega)(|x| \leq na) \} \). Let \(\text{Id}_c A \stackrel{\text{def}}{=} \{ D \mid (\exists G)(D \cong \text{Id}_c \ G) \} \).
Introducing a motivating example

- For an Abelian ℓ-group G, $\text{Id}_c G \overset{\text{def}}{=} \text{(lattice of all principal } \ell\text{-ideals of } G) = \{ \langle a \rangle \mid a \in G^+ \}$ where $\langle a \rangle \overset{\text{def}}{=} \{ x \in G \mid (\exists n < \omega)(|x| \leq na) \}$. Let $\text{Id}_c A \overset{\text{def}}{=} \{ D \mid (\exists G)(D \cong \text{Id}_c G) \}$.

- Every member of $\text{Id}_c A$ is a distributive 0-lattice. It is completely normal (abbrev. CN), that is, it satisfies

$$(\forall a, b)(\exists x, y)(a \lor b = a \lor y = x \lor b \& x \land y = 0).$$
Introducing a motivating example

For an Abelian ℓ-group G, $\text{Id}_c G \overset{\text{def}}{=} (\text{lattice of all principal } \ell\text{-ideals of } G) = \{\langle a \rangle \mid a \in G^{+}\}$ where

$\langle a \rangle \overset{\text{def}}{=} \{x \in G \mid (\exists n < \omega)(|x| \leq na)\}$. Let

$\text{Id}_c \mathcal{A} \overset{\text{def}}{=} \{D \mid (\exists G)(D \cong \text{Id}_c G)\}$.

Every member of $\text{Id}_c \mathcal{A}$ is a distributive 0-lattice. It is completely normal (abbrev. CN), that is, it satisfies

$$(\forall a, b)(\exists x, y)(a \lor b = a \lor y = x \lor b \& x \land y = 0).$$

Every member of $\text{Id}_c \mathcal{A}$ has countably based differences (abbrev. CBD), that is, it satisfies

$$(\forall a, b)(\exists_{n < \omega} c_n)(\forall x)(a \leq b \lor x \Leftrightarrow c_n \leq x \text{ for some } n).$$
Motivating example (cont’d): Ploščica’s Condition

- For an ideal I in a distributive lattice D, $x \equiv_I y$ if $(\exists z \in I)(x \lor z = y \lor z)$. Set $D/I \overset{\text{def}}{=} D/\equiv_I$.

Projective classes as images of accessible functors

Motivation
- Elementary, projective
- Tuuri’s Interpolation Theorem
- Karttunen’s back-and-forth systems
Motivating example (cont’d): Ploščica’s Condition

- For an ideal I in a distributive lattice D, $x \equiv_I y$ if $(\exists z \in I)(x \lor z = y \lor z)$. Set $D/I \overset{\text{def}}{=} D/\equiv_I$.

- A bounded distributive lattice D satisfies Ploščica’s Condition (abbrev. Plo) if for every $a \in D$ and every collection $(m_i \mid i \in I)$ of maximal ideals of $\downarrow a$, $\downarrow a/\bigcap_i m_i$ has cardinality $\leq 2^{\text{card } I}$.
Motivating example (cont’d): Ploščica’s Condition

- For an ideal I in a distributive lattice D, $x \equiv_I y$ if $(\exists z \in I)(x \lor z = y \lor z)$. Set $D/I \overset{\text{def}}{=} D/\equiv_I$.
- A bounded distributive lattice D satisfies Ploščica’s Condition (abbrev. Plo) if for every $a \in D$ and every collection $(m_i \mid i \in I)$ of maximal ideals of $\downarrow a$, $\downarrow a/\bigcap_i m_i$ has cardinality $\leq 2^{\text{card } I}$.

Theorem (Ploščica 2021)

Every member of $\text{Id}_c \mathcal{A}$ satisfies Plo. On the other hand, $0\text{-DLat} & \text{CN} & \text{CBD}$ does not imply Plo.
Motivating example (cont’d): Ploščica’s Condition

- For an ideal \(I \) in a distributive lattice \(D \), \(x \equiv_I y \) if
 \((\exists z \in I)(x \lor z = y \lor z)\). Set \(D/I \overset{\text{def}}{=} D/\equiv_I \).
- A bounded distributive lattice \(D \) satisfies Ploščica’s Condition (abbrev. Plo) if for every \(a \in D \) and every collection \((m_i \mid i \in I)\) of maximal ideals of \(\downarrow a, \downarrow a/\bigcap_i m_i \) has cardinality \(\leq 2^{\text{card} I} \).

Theorem (Ploščica 2021)

Every member of \(\text{Id}_c \mathcal{A} \) satisfies Plo. On the other hand, \(0\text{-DLat}\&\text{CN}\&\text{CBD} \) does not imply Plo.

Question: Does the conjunction \(0\text{-DLat}\&\text{CN}\&\text{CBD}\&\text{Plo} \) (and more...) characterize the members of \(\text{Id}_c \mathcal{A} \)?
Motivating example (cont’d): Ploščica’s Condition

- For an ideal I in a distributive lattice D, $x \equiv_I y$ if $(\exists z \in I)(x \lor z = y \lor z)$. Set $D/I \overset{\text{def}}{=} D/\equiv_I$.

- A bounded distributive lattice D satisfies Ploščica’s Condition (abbrev. Plo) if for every $a \in D$ and every collection $(m_i \mid i \in I)$ of maximal ideals of $\downarrow a$, $\downarrow a/\bigcap_i m_i$ has cardinality $\leq 2^{\text{card } I}$.

Theorem (Ploščica 2021)

Every member of $\text{Id}_c \mathcal{A}$ satisfies Plo. On the other hand, $0\text{-DLat}&\text{CN}&\text{CBD}$ does not imply Plo.

- **Question**: Does the conjunction $0\text{-DLat}&\text{CN}&\text{CBD}&\text{Plo}$ (and more...) characterize the members of $\text{Id}_c \mathcal{A}$?

- **Answer**: A strong NO under (a fragment of) GCH, with a counterexample of cardinality \aleph_4.
v-structures

- **Vocabulary:** $v = (v_{\text{ope}}, v_{\text{rel}}, \text{ar})$ with $v_{\text{ope}} \cap v_{\text{rel}} = \emptyset$ and $\text{ar} : v_{\text{ope}} \cup v_{\text{rel}} \to \text{ordinals}$ (usually) with $0 \notin \text{ar}[v_{\text{rel}}]$.

Motivation

- Elementary, projective
- Tuuri's Interpolation Theorem
- Karttunen's back-and-forth systems

Projective classes as images of accessible functors

Terms: closure of variables under all function symbols.

Atomic formulas: $s = t$, for terms s and t, or $R(t_{\xi} | \xi \in \text{ar}(R))$ where the t_{ξ} are terms and $R \in v_{\text{rel}}$.

$\text{Str}(v)$ def = category of all v-structures with v-homomorphisms (it is locally presentable).
v-structures

- **Vocabulary**: $v = (v_{\text{ope}}, v_{\text{rel}}, ar)$ with $v_{\text{ope}} \cap v_{\text{rel}} = \emptyset$ and $ar: v_{\text{ope}} \cup v_{\text{rel}} \rightarrow$ ordinals (usually) with $0 \notin ar[v_{\text{rel}}]$.

- $ar(s) = 0 \iff s$ is a “constant”.

Motivation

- Elementary, projective
- Tuuri's Interpolation Theorem
- Karttunen's back-and-forth systems
v-structures

- **Vocabulary**: $v = (v_{\text{ope}}, v_{\text{rel}}, ar)$ with $v_{\text{ope}} \cap v_{\text{rel}} = \emptyset$ and $ar: v_{\text{ope}} \cup v_{\text{rel}} \to \text{ordinals (usually)}$ with $0 \notin ar[v_{\text{rel}}]$.

- $ar(s) = 0 \iff s$ is a “constant”.

- Add to this a large enough set ("alphabet") of "variables".
v-structures

- **Vocabulary**: $v = (v_{\text{ope}}, v_{\text{rel}}, \text{ar})$ with $v_{\text{ope}} \cap v_{\text{rel}} = \emptyset$ and $\text{ar} : v_{\text{ope}} \cup v_{\text{rel}} \to \text{ordinals (usually)}$ with $0 \not\in \text{ar}[v_{\text{rel}}]$.

 - $\text{ar}(s) = 0 \overset{\text{def}}{\iff} s$ is a “constant”.

 - Add to this a large enough set ("alphabet") of “variables”.

- **model for v (or v-structure)**: $A = (A, s^A)_{s \in v_{\text{ope}} \cup v_{\text{rel}}}$, with the interpretations s^A defined the usual way.
v-structures

- **Vocabulary**: \(v = (v_{\text{ope}}, v_{\text{rel}}, ar) \) with \(v_{\text{ope}} \cap v_{\text{rel}} = \emptyset \) and \(ar : v_{\text{ope}} \cup v_{\text{rel}} \to \text{ordinals} \) (usually) with \(0 \notin ar[v_{\text{rel}}] \).

- \(ar(s) = 0 \overset{\text{def}}{\iff} s \text{ is a "constant".} \)

- Add to this a large enough set ("alphabet") of "variables".

- **model for v (or v-structure)**: \(A = (A, s^A)_{s \in v_{\text{ope}} \cup v_{\text{rel}}} \), with the interpretations \(s^A \) defined the usual way.

- **Str(v)** \(\overset{\text{def}}{=} \) category of all v-structures with v-homomorphisms (it is locally presentable).
v-structures

- **Vocabulary**: \(v = (v_{\text{ope}}, v_{\text{rel}}, \text{ar}) \) with \(v_{\text{ope}} \cap v_{\text{rel}} = \emptyset \) and \(\text{ar}: v_{\text{ope}} \cup v_{\text{rel}} \to \text{ordinals} \) (usually) with \(0 \notin \text{ar}[v_{\text{rel}}] \).
- \(\text{ar}(s) = 0 \overset{\text{def}}{\iff} s \) is a “constant”.
- Add to this a large enough set (“alphabet”) of “variables”.
- **model for v (or v-structure)**: \(A = (A, s^A)_{s \in v_{\text{ope}} \cup v_{\text{rel}}} \), with the interpretations \(s^A \) defined the usual way.
- **\(\text{Str}(v) \overset{\text{def}}{=} \)** category of all \(v \)-structures with \(v \)-homomorphisms (it is **locally presentable**).
- **Terms**: closure of variables under all functions symbols.
Motivation

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems

v-structures

- **Vocabulary**: $v = (v_{\text{ope}}, v_{\text{rel}}, ar)$ with $v_{\text{ope}} \cap v_{\text{rel}} = \emptyset$ and $ar: v_{\text{ope}} \cup v_{\text{rel}} \rightarrow \text{ordinals (usually)}$ with $0 \notin ar[v_{\text{rel}}]$.

- $ar(s) = 0 \iff s$ is a “constant”.

- Add to this a large enough set (“alphabet”) of “variables”.

- **model for v (or v-structure)**: $A = (A, s^A)_{s \in v_{\text{ope}} \cup v_{\text{rel}}}$, with the interpretations s^A defined the usual way.

- $\text{Str}(v) \overset{\text{def}}{=} \text{category of all } v\text{-structures with } v\text{-homomorphisms (it is locally presentable)}$.

- **Terms**: closure of variables under all functions symbols.

- **atomic formulas**: $s = t$, for terms s and t, or $R(t_\xi \mid \xi \in ar(R))$ where the t_ξ are terms and $R \in v_{\text{rel}}$.
The languages $\mathcal{L}_{\kappa\lambda}$

- Here κ and λ are “extended cardinals” (∞ allowed) with $\omega \leq \lambda \leq \kappa \leq \infty$.

- Projective classes as images of accessible functors
- Motivation
- Elementary, projective
- Tuuri's Interpolation Theorem
- Karttunen's back-and-forth systems
The languages $\mathcal{L}_{\kappa\lambda}$

- Here κ and λ are “extended cardinals” (∞ allowed) with $\omega \leq \lambda \leq \kappa \leq \infty$.

- For any vocabulary v, $\mathcal{L}_{\kappa\lambda}(v) \overset{\text{def}}{=} \text{closure of all atomic } v\text{-formulas under disjunctions of } < \kappa \text{ members } (\bigvee_{i \in I} E_i \text{ where card } I < \kappa), \text{ negation, and existential quantification over sets of less than } \lambda \text{ variables } ((\exists X)E \text{ with card } X < \lambda, \text{ or, in indexed form, } \exists \vec{x} E \text{ with card } I < \lambda).$
The languages $\mathcal{L}_{\kappa\lambda}$

- Here κ and λ are “extended cardinals” (∞ allowed) with $\omega \leq \lambda \leq \kappa \leq \infty$.

- For any vocabulary \mathbf{v}, $\mathcal{L}_{\kappa\lambda}(\mathbf{v}) \overset{\text{def}}{=} \text{closure of all atomic } \mathbf{v}\text{-formulas under disjunctions of } < \kappa \text{ members (} \bigvee_{i \in I} E_i \text{ where } \text{card } I < \kappa \text{), negation, and existential quantification over sets of less than } \lambda \text{ variables (}(\exists X)E \text{ with } \text{card } X < \lambda, \text{ or, in indexed form, } \exists \vec{x} \ E \text{ with } \text{card } I < \lambda).}$

- Satisfaction $A \models E(\vec{a})$ defined as usual (A is a \mathbf{v}-structure, $E \in \mathcal{L}_{\infty\infty}(\mathbf{v})$, \vec{a}: free variables ($E \to A$).
The languages $L_{\kappa \lambda}$

- Here κ and λ are “extended cardinals” (∞ allowed) with $\omega \leq \lambda \leq \kappa \leq \infty$.

- For any vocabulary v, $L_{\kappa \lambda}(v) \overset{\text{def}}{=} \text{closure of all atomic } v\text{-formulas under disjunctions of } < \kappa \text{ members (} \bigvee_{i \in I} E_i \text{ where card } I < \kappa \text{), negation, and existential quantification over sets of less than } \lambda \text{ variables (} (\exists X)E \text{ with card } X < \lambda, \text{ or, in indexed form, } (I) (\exists X)E \text{ with card } I < \lambda \text{).}$(I)

- Satisfaction $A \models E(\bar{a})$ defined as usual (A is a v-structure, $E \in L_{\infty \infty}(v)$, \bar{a}: free variables ($E \to A$).

- $L_{\kappa \lambda}$-elementary class:
 $C = \text{Mod}_v(E) \overset{\text{def}}{=} \{ A \in \text{Str}(v) \mid A \models E \}$ where E is an $L_{\kappa \lambda}(v)$-sentence.
A class \mathcal{C} of v-structures is

\[\text{(Relatively) projective classes} \]

- Projective classes as images of accessible functors
- Motivation
- Elementary, projective
- Tuuri's Interpolation Theorem
- Karttunen's back-and-forth systems

\[\text{Hence } \text{PC}(L_{\kappa\lambda}) \subseteq \text{RPC}(L_{\kappa\lambda}). \text{ Note that } \text{PC}(L_{\omega\omega}) \nsubseteq \text{RPC}(L_{\omega\omega}) \text{ (even on finite structures).} \]

\[\text{Theorem (W 2021)} \]

\[\text{Let } \lambda \text{ be an infinite cardinal. Then } \text{PC}(L_{\infty\lambda}) = \text{RPC}(L_{\infty\lambda}) \text{ (in full generality; no restrictions on vocabularies). Moreover, if } \lambda \text{ is singular, then } \text{PC}(L_{\infty\lambda}) = \text{PC}(L_{\infty\lambda^+}). \]
(Relatively) projective classes

A class \(\mathcal{C} \) of \(\nu \)-structures is

- **projective over** \(\mathcal{L}_{\kappa, \lambda} \) (abbrev. \(\text{PC}(\mathcal{L}_{\kappa, \lambda}) \)) if there are a vocabulary \(\nu \supseteq \mathcal{V} \) and a sentence \(E \in \mathcal{L}_{\kappa, \lambda}(\mathcal{W}) \) such that
 \[
 \mathcal{C} = \{ \mathcal{M} \upharpoonright \mathcal{V} \mid \mathcal{M} \in \text{Mod}_{\mathcal{W}}(E) \}.
 \]

- **relatively projective over** \(\mathcal{L}_{\kappa, \lambda} \) (abbrev. \(\text{RPC}(\mathcal{L}_{\kappa, \lambda}) \)) if there are a unary predicate symbol \(U \), a vocabulary \(\nu \supseteq \mathcal{V} \cup \{ U \} \), and a sentence \(E \in \mathcal{L}_{\kappa, \lambda}(\mathcal{W}) \) such that
 \[
 \mathcal{C} = \{ U^M \upharpoonright \mathcal{V} \mid M \in \text{Mod}_{\mathcal{W}}(E), \ U^M \text{ closed under } \nu_{\text{ope}} \}.
 \]
(Relatively) projective classes

A class \mathcal{C} of ν-structures is

- **projective over** $\mathcal{L}_{\kappa\lambda}$ (abbrev. $PC(\mathcal{L}_{\kappa\lambda})$) if there are a vocabulary $\omega \supseteq \nu$ and a sentence $E \in \mathcal{L}_{\kappa\lambda}(\omega)$ such that
 $$\mathcal{C} = \{ M \upharpoonright\nu \mid M \in \text{Mod}_\omega(E) \}.$$

- **relatively projective over** $\mathcal{L}_{\kappa\lambda}$ (abbrev. $\text{RPC}(\mathcal{L}_{\kappa\lambda})$) if there are a unary predicate symbol U, a vocabulary $\omega \supseteq \nu \cup \{U\}$, and a sentence $E \in \mathcal{L}_{\kappa\lambda}(\omega)$ such that
 $$\mathcal{C} = \{ U^M \upharpoonright\nu \mid M \in \text{Mod}_\omega(E), \ U^M \text{ closed under } \nu_{\text{ope}} \}.$$

- Hence $PC(\mathcal{L}_{\kappa\lambda}) \subseteq \text{RPC}(\mathcal{L}_{\kappa\lambda})$. Note that $PC(\mathcal{L}_{\omega\omega}) \subsetneq \text{RPC}(\mathcal{L}_{\omega\omega})$ (even on finite structures).
(Relatively) projective classes

A class \(\mathcal{C} \) of \(\mathbf{v} \)-structures is

- **projective over** \(\mathcal{L}_{\kappa\lambda} \) (abbrev. \(\text{PC}(\mathcal{L}_{\kappa\lambda}) \)) if there are a vocabulary \(\mathbf{w} \supseteq \mathbf{v} \) and a sentence \(E \in \mathcal{L}_{\kappa\lambda}(\mathbf{w}) \) such that
 \[
 \mathcal{C} = \{ M \upharpoonright \mathbf{v} \mid M \in \text{Mod}_\mathbf{w}(E) \}.
 \]
- **relatively projective over** \(\mathcal{L}_{\kappa\lambda} \) (abbrev. \(\text{RPC}(\mathcal{L}_{\kappa\lambda}) \)) if there are a unary predicate symbol \(U \), a vocabulary \(\mathbf{w} \supseteq \mathbf{v} \cup \{ U \} \), and a sentence \(E \in \mathcal{L}_{\kappa\lambda}(\mathbf{w}) \) such that
 \[
 \mathcal{C} = \{ U^M \upharpoonright \mathbf{v} \mid M \in \text{Mod}_\mathbf{w}(E), \; U^M \text{ closed under } \mathbf{v}_{\text{ope}} \}.
 \]
- Hence \(\text{PC}(\mathcal{L}_{\kappa\lambda}) \subseteq \text{RPC}(\mathcal{L}_{\kappa\lambda}) \). Note that \(\text{PC}(\mathcal{L}_{\omega\omega}) \not\subseteq \text{RPC}(\mathcal{L}_{\omega\omega}) \) (even on finite structures).

Theorem (W 2021)

Let \(\lambda \) be an infinite cardinal. Then \(\text{PC}(\mathcal{L}_{\infty\lambda}) = \text{RPC}(\mathcal{L}_{\infty\lambda}) \) (in full generality; no restrictions on vocabularies). Moreover, if \(\lambda \) is singular, then \(\text{PC}(\mathcal{L}_{\infty\lambda}) = \text{PC}(\mathcal{L}_{\infty\lambda^+}) \).
Examples of “elementary” classes

- **Finiteness** (of the amiant universe) is $L_{\omega_1 \omega}$:
 \[
 \bigwedge_{n<\omega} (\exists i<n x_i) (\forall x) \bigwedge_{i<n} (x = x_i).
 \]
Examples of "elementary" classes

- **Finiteness** (of the ambiant universe) is $\mathcal{L}_{\omega_1 \omega}$:
 \[
 \bigwedge_{n<\omega} (\exists_{i<n} x_i) (\forall x) \bigwedge_{i<n} (x = x_i).
 \]

- **Well-foundedness** (of the ambiant poset) is $\mathcal{L}_{\omega_1 \omega_1}$:
 \[
 (\forall_{n<\omega} x_n) \bigwedge_{n<\omega} (x_{n+1} \not\prec x_n).
 \]
Examples of “elementary” classes

- **Finiteness** (of the ambiant universe) is $\mathcal{L}_{\omega_1\omega}$:

 $$\forall n<\omega \left(\exists i<n x_i \right)(\forall x) \bigwedge_{i<n} (x = x_i).$$

- **Well-foundedness** (of the ambiant poset) is $\mathcal{L}_{\omega_1\omega_1}$:

 $$\left(\forall n<\omega x_n \right) \bigwedge_{n<\omega} (x_{n+1} \nless x_n).$$

- **Torsion-freeness** (of a group) is $\mathcal{L}_{\omega_1\omega}$:

 $$\forall 0<n<\omega (\forall x) (x^n = 1 \implies x = 1).$$
An example of RPC (that turns out to be PC)

\[\mathcal{C} \overset{\text{def}}{=} \{ M = (M, \cdot, 1) \text{ monoid} \mid (\exists G \text{ group})(M \hookrightarrow G) \} \]

is, by definition, RPC(\(L_{\omega\omega}\)).
An example of RPC (that turns out to be PC)

- \(C \overset{\text{def}}{=} \{ M = (M, \cdot, 1) \text{ monoid} \mid (\exists G \text{ group})(M \hookrightarrow G) \} \) is, by definition, RPC(\(L_\omega\omega \)).

- Here \(v = (\cdot, 1) \), \(w = (\cdot, 1, U) \) for a unary predicate \(U \), the required \(E \) states that the given \(w \)-structure is a group (so “\(U^G \) is \(v \)-closed in \(G \)” means that \(U \) interprets a submonoid of \(G \)).
An example of RPC (that turns out to be PC)

- \(\mathcal{C} \overset{\text{def}}{=} \{ M = (M, \cdot, 1) \text{ monoid} \mid (\exists G \text{ group})(M \hookrightarrow G) \} \) is, by definition, RPC(\(\mathcal{L}_{\omega \omega} \)).

- Here \(v = (\cdot, 1) \), \(w = (\cdot, 1, U) \) for a unary predicate \(U \), the required \(E \) states that the given \(w \)-structure is a group (so “\(U^G \) is \(v \)-closed in \(G \)” means that \(U \) interprets a submonoid of \(G \)).

- By Mal’cev’s work, \(\mathcal{C} = \{ M \mid (\forall n < \omega)(M \models E_n) \} \) for an effectively constructed sequence \((E_n \mid n < \omega)\) of quasi-identities over \(v \), not reducible to any finite subset.
An example of RPC (that turns out to be PC)

- \(\mathcal{C} \overset{\text{def}}{=} \{ M = (M, \cdot, 1) \text{ monoid} \mid (\exists G \text{ group})(M \hookrightarrow G) \} \) is, by definition, RPC(\(\mathcal{L}_{\omega\omega} \)).

- Here \(v = (\cdot, 1) \), \(w = (\cdot, 1, U) \) for a unary predicate \(U \), the required \(E \) states that the given \(w \)-structure is a group (so “\(U^G \) is \(v \)-closed in \(G \)” means that \(U \) interprets a submonoid of \(G \)).

- By Mal’cev’s work, \(\mathcal{C} = \{ M \mid (\forall n < \omega)(M \vDash E_n) \} \) for an effectively constructed sequence \((E_n \mid n < \omega) \) of quasi-identities over \(v \), not reducible to any finite subset.

- Nonetheless, \(\mathcal{C} = \{ M \mid (\exists \text{ group structure } G \text{ on } M)(\exists f : M \hookrightarrow G) \} \) is PC(\(\mathcal{L}_{\omega\omega} \)).
Other examples

- For a unital ring R, $\text{Id}_c R \overset{\text{def}}{=} (\lor, 0)$-semilattice of all finitely generated two-sided ideals of R. Let $\mathcal{C} \overset{\text{def}}{=} \{ \text{Id}_c R \mid R \text{ unital ring} \}$ (up to isomorphism).
Other examples

- For a unital ring R, $\text{Id}_c R \overset{\text{def}}{=} (\lor, 0)$-semilattice of all finitely generated two-sided ideals of R. Let $\mathcal{C} \overset{\text{def}}{=} \{\text{Id}_c R \mid R \text{ unital ring}\}$ (up to isomorphism).

- For an Abelian ℓ-group G, $\text{Id}_c G \overset{\text{def}}{=} \text{lattice of all principal } \ell\text{-ideals of } G$. Let $\mathcal{C} \overset{\text{def}}{=} \{\text{Id}_c G \mid G \text{ Abelian } \ell\text{-group}\}$.
Other examples

- For a unital ring R, $\text{Id}_c R \overset{\text{def}}{=} (\lor, 0)$-semilattice of all finitely generated two-sided ideals of R. Let $\mathcal{C} \overset{\text{def}}{=} \{ \text{Id}_c R \mid R \text{ unital ring}\}$ (up to isomorphism).
- For an Abelian ℓ-group G, $\text{Id}_c G \overset{\text{def}}{=} \text{lattice of all principal } \ell\text{-ideals of } G$. Let $\mathcal{C} \overset{\text{def}}{=} \{ \text{Id}_c G \mid G \text{ Abelian } \ell\text{-group}\}$.
- For a commutative unital ring A, $\Phi(A) \overset{\text{def}}{=} \text{Stone dual of the real spectrum of } A$ (it is a bounded distributive lattice). Let $\mathcal{C} \overset{\text{def}}{=} \{ \Phi(A) \mid A \text{ commutative unital ring}\}$.

All those classes are $\mathcal{P}(\mathcal{L}_{\omega_1 \omega})$. Observe that they are all defined as images of functors. We will see that none of those classes is $\text{co-}\mathcal{P}(\mathcal{L}_{\infty \infty})$ (i.e., complement of a $\mathcal{P}(\mathcal{L}_{\infty \infty})$).
Other examples

- For a unital ring R, $\text{Id}_c R \overset{\text{def}}{=} (\lor, 0)$-semilattice of all finitely generated two-sided ideals of R. Let $\mathcal{C} \overset{\text{def}}{=} \{\text{Id}_c R \mid R \text{ unital ring}\}$ (up to isomorphism).

- For an Abelian ℓ-group G, $\text{Id}_c G \overset{\text{def}}{=} \text{lattice of all principal } \ell\text{-ideals of } G$. Let $\mathcal{C} \overset{\text{def}}{=} \{\text{Id}_c G \mid G \text{ Abelian } \ell\text{-group}\}$.

- For a commutative unital ring A, $\Phi(A) \overset{\text{def}}{=} \text{Stone dual of the real spectrum of } A$ (it is a bounded distributive lattice). Let $\mathcal{C} \overset{\text{def}}{=} \{\Phi(A) \mid A \text{ commutative unital ring}\}$.

- All those classes are $\text{PC}(\mathcal{L}_{\omega_1 \omega})$.

Motivation
Elementary, projective
Tuuri's Interpolation Theorem
Karttunen's back-and-forth systems
Other examples

- For a unital ring R, $\text{Id}_c R \overset{\text{def}}{=} (\lor, 0)$-semilattice of all finitely generated two-sided ideals of R. Let $\mathcal{C} \overset{\text{def}}{=} \{ \text{Id}_c R \mid R \text{ unital ring} \}$ (up to isomorphism).

- For an Abelian ℓ-group G, $\text{Id}_c G \overset{\text{def}}{=} \text{lattice of all principal } \ell\text{-ideals of } G$. Let $\mathcal{C} \overset{\text{def}}{=} \{ \text{Id}_c G \mid G \text{ Abelian } \ell\text{-group} \}$.

- For a commutative unital ring A, $\Phi(A) \overset{\text{def}}{=} \text{Stone dual of the real spectrum of } A$ (it is a bounded distributive lattice). Let $\mathcal{C} \overset{\text{def}}{=} \{ \Phi(A) \mid A \text{ commutative unital ring} \}$.

- All those classes are $\text{PC}(\mathcal{L}_{\omega_1 \omega})$.

- Observe that they are all defined as images of functors.
Other examples

- For a unital ring R, $\text{Id}_c R \overset{\text{def}}{=} (\lor, 0)$-semilattice of all finitely generated two-sided ideals of R. Let $\mathcal{C} \overset{\text{def}}{=} \{ \text{Id}_c R \mid R \text{ unital ring} \}$ (up to isomorphism).

- For an Abelian ℓ-group G, $\text{Id}_c G \overset{\text{def}}{=} \text{lattice of all principal } \ell\text{-ideals of } G$. Let $\mathcal{C} \overset{\text{def}}{=} \{ \text{Id}_c G \mid G \text{ Abelian } \ell\text{-group} \}$.

- For a commutative unital ring A, $\Phi(A) \overset{\text{def}}{=} \text{Stone dual of the real spectrum of } A$ (it is a bounded distributive lattice). Let $\mathcal{C} \overset{\text{def}}{=} \{ \Phi(A) \mid A \text{ commutative unital ring} \}$.

- All those classes are $\text{PC}(\mathcal{L}_{\omega_1 \omega})$.

- Observe that they are all defined as images of functors.

- We will see that none of those classes is $\text{co-PC}(\mathcal{L}_{\omega_1 \omega})$ (i.e., complement of a $\text{PC}(\mathcal{L}_{\omega_1 \omega})$).
Let λ be a regular cardinal.
Let λ be a regular cardinal.

- A category \mathcal{S} is λ-accessible if it has all λ-directed colimits and it has a λ-directed colimit-dense subset \mathcal{S}^\dagger, consisting of λ-presentable objects.
Let \(\lambda \) be a regular cardinal.

- A category \(S \) is \(\lambda \)-accessible if it has all \(\lambda \)-directed colimits and it has a \(\lambda \)-directed colimit-dense subset \(S^\dagger \), consisting of \(\lambda \)-presentable objects.

- One can then take \(S^\dagger = \text{Pres}_\lambda S \), “the” set of all \(\lambda \)-presentable objects in \(S \) (up to isomorphism).
Let λ be a regular cardinal.

- A category \mathcal{S} is λ-accessible if it has all λ-directed colimits and it has a λ-directed colimit-dense subset \mathcal{S}^\dagger, consisting of λ-presentable objects.
- One can then take $\mathcal{S}^\dagger = \text{Pres}_\lambda \mathcal{S}$, “the” set of all λ-presentable objects in \mathcal{S} (up to isomorphism).
- A functor $\Phi: \mathcal{S} \to \mathcal{T}$ is λ-continuous if it preserves λ-directed colimits. If \mathcal{S} and \mathcal{T} are both λ-accessible categories, we say that Φ is a λ-accessible functor.
Let \(\lambda \) be a regular cardinal.

- A category \(S \) is \(\lambda \)-accessible if it has all \(\lambda \)-directed colimits and it has a \(\lambda \)-directed colimit-dense subset \(S^\dagger \), consisting of \(\lambda \)-presentable objects.

- One can then take \(S^\dagger = \text{Pres}_\lambda S \), “the” set of all \(\lambda \)-presentable objects in \(S \) (up to isomorphism).

- A functor \(\Phi : S \to T \) is \(\lambda \)-continuous if it preserves \(\lambda \)-directed colimits. If \(S \) and \(T \) are both \(\lambda \)-accessible categories, we say that \(\Phi \) is a \(\lambda \)-accessible functor.

- There are many examples: \(\text{Str}(v) \), quasivarieties. . .
Say that a vocabulary v is λ-ary if every symbol in v has arity $< \lambda$.
Say that a vocabulary v is λ-ary if every symbol in v has arity $<\lambda$.

Theorem (W 2021)

Let λ be a regular cardinal, let v be a λ-ary vocabulary, and let C be a class of v-structures. Then TFAE:

1. C is PC($L_{\infty \lambda}$)- (resp., RPC($L_{\infty \lambda}$))-definable.

2. There are a λ-accessible category S and a λ-continuous functor (that can then be taken faithful) $\Phi: S \to \text{Str}(v)$ with $\Phi(S) = C$.

Recall that $\Phi(S) \overset{\text{def}}{=} \{ M \mid (\exists S \in \text{Ob}S) (M \cong \Phi(S)) \}$.

The assumption that v be λ-ary cannot be dispensed with (counterexamples for both directions, involving idempotence and emptiness, respectively).
Say that a vocabulary v is λ-ary if every symbol in v has arity $< \lambda$.

Theorem (W 2021)

Let λ be a regular cardinal, let v be a λ-ary vocabulary, and let C be a class of v-structures. Then TFAE:

1. C is $\text{PC}(\mathcal{L}_{\infty\lambda})$- (resp., $\text{RPC}(\mathcal{L}_{\infty\lambda})$)-definable.
2. There are a λ-accessible category S and a λ-continuous functor (that can then be taken faithful) $\Phi: S \to \text{Str}(v)$ with $\Phi(S) = C$.

Recall that $\Phi(S) \overset{\text{def}}{=} \{M \mid (\exists S \in \text{Ob } S)(M \cong \Phi(S))\}$.
PC versus accessible

Say that a vocabulary v is λ-ary if every symbol in v has arity $< \lambda$.

Theorem (W 2021)

Let λ be a regular cardinal, let v be a λ-ary vocabulary, and let C be a class of v-structures. Then TFAE:

1. C is PC($L_{\infty\lambda}$)- (resp., RPC($L_{\infty\lambda}$))-definable.
2. There are a λ-accessible category S and a λ-continuous functor (that can then be taken faithful) $\Phi: S \to \text{Str}(v)$ with $\Phi(S) = C$.

- Recall that $\Phi(S) \overset{\text{def}}{=} \{ M \mid (\exists S \in \text{Ob} S)(M \cong \Phi(S))\}$.
- The assumption that v be λ-ary cannot be dispensed with (counterexamples for both directions, involving idempotence and emptiness, respectively).
Infinitely deep languages

- **Idea**: extend $L_{\kappa\lambda}$ in such a way that infinite alternations of quantifiers be enabled.
Infinitely deep languages

- **Idea:** extend $\mathcal{L}_{\kappa\lambda}$ in such a way that infinite alternations of quantifiers be enabled.

- **Game formula** (of Gale-Stewart kind): $\exists \vec{x} E(\vec{x})$ is $(\forall x_0)(\exists x_1)(\forall x_2) \cdots E(x_0, x_1, x_2, \ldots)$.
Infinitely deep languages

- **Idea**: extend $\mathcal{L}_{\kappa\lambda}$ in such a way that infinite alternations of quantifiers be enabled.
- **Game formula** (of Gale-Stewart kind): $\exists \vec{x} \, E(\vec{x})$ is $(\forall x_0)(\exists x_1)(\forall x_2) \cdots E(x_0, x_1, x_2, \ldots)$.
- Can be interpreted via a game with two players, \forall (who plays all x_{2n}) and \exists (who plays all x_{2n+1}). Hence \forall (resp., \exists) wins iff $E(x_0, x_1, x_2, \ldots)$ (resp., $\neg E(x_0, x_1, x_2, \ldots)$).
Infinitely deep languages

- **Idea**: extend $\mathcal{L}_{\kappa\lambda}$ in such a way that infinite alternations of quantifiers be enabled.
- **Game formula** (of Gale-Stewart kind): $\exists \vec{x} E(\vec{x})$ is $(\forall x_0)(\exists x_1)(\forall x_2) \cdots E(x_0, x_1, x_2, \ldots)$.
- Can be interpreted *via* a game with two players, \forall (who plays all x_{2n}) and \exists (who plays all x_{2n+1}). Hence \forall (resp., \exists) wins iff $E(x_0, x_1, x_2, \ldots)$ (resp., $\neg E(x_0, x_1, x_2, \ldots)$).
- The game above has “clock” ω.

Infinitely deep languages

- Projective classes as images of accessible functors
- Motivation
- Elementary, projective
- Tuuri's Interpolation Theorem
- Karttunen's back-and-forth systems
Infinitely deep languages

- **Idea:** extend $\mathcal{L}_{\kappa\lambda}$ in such a way that infinite alternations of quantifiers be enabled.

- **Game formula** (of Gale-Stewart kind): $\exists \vec{x} \, E(\vec{x})$ is $$(\forall x_0)(\exists x_1)(\forall x_2) \cdots E(x_0, x_1, x_2, \ldots).$$

- Can be interpreted via a game with two players, \forall (who plays all x_{2n}) and \exists (who plays all x_{2n+1}). Hence \forall (resp., \exists) wins iff $E(x_0, x_1, x_2, \ldots)$ (resp., $\neg E(x_0, x_1, x_2, \ldots)$).

- The game above has “clock” ω.

- The “infinitely deep language” $\mathcal{M}_{\kappa\lambda}(\nu)$ contains more general formulas than the $\exists \vec{x} \, E(\vec{x})$ above, now clocked by posets which are simultaneously trees and meet-semilattices, in which every node has $< \kappa$ upper covers and every branch has length a successor $< \lambda$.
Infinitely deep languages

- **Idea**: extend $\mathcal{L}_{\kappa,\lambda}$ in such a way that infinite alternations of quantifiers be enabled.
- **Game formula** (of Gale-Stewart kind): $\exists\vec{x} E(\vec{x})$ is $(\forall x_0)(\exists x_1)(\forall x_2) \cdots E(x_0, x_1, x_2, \ldots)$.
- Can be interpreted via a game with two players, \forall (who plays all x_{2n}) and \exists (who plays all x_{2n+1}). Hence \forall (resp., \exists) wins iff $E(x_0, x_1, x_2, \ldots)$ (resp., $\neg E(x_0, x_1, x_2, \ldots)$).
- The game above has “clock” ω.
- The “infinitely deep language” $\mathcal{M}_{\kappa,\lambda}(\mathbf{v})$ contains more general formulas than the $\exists\vec{x} E(\vec{x})$ above, now clocked by posets which are simultaneously trees and meet-semilattices, in which every node has $<\kappa$ upper covers and every branch has length a successor $<\lambda$.
- **Satisfaction** of an $\mathcal{M}_{\kappa,\lambda}(\mathbf{v})$-statement is expressed via the existence of a winning strategy in the associated game.
Tuuri’s Interpolation Theorem

Theorem (Tuuri 1992)

Let κ be a regular cardinal, let v be a κ-ary vocabulary, set

$$\lambda \overset{\text{def}}{=} \sup\{\kappa^\alpha \mid \alpha < \kappa\},$$

and let E and F be $L_{\kappa^+\kappa}(v)$-sentences such that the conjunction $E \land F$ has no v-model. Then there exists an $M_{\lambda^+\lambda}(v)$-sentence G, with vocabulary the intersection of the vocabularies of E and F, such that $\models (E \Rightarrow G)$ and $\models (G \Rightarrow \neg F)$.

Here, $\neg G$ denotes the sentence obtained by interchanging $\lor \lor$ and $\land \land$, \exists and \forall, A and $\neg A$ in the expression of G by a tree-clocked game; it implies the usual negation $\neg G$ (which, however, is no longer an $M_{\lambda^+\lambda}$-sentence).

By a 1971 counterexample due to Malitz, $M_{\lambda^+\lambda}$ cannot be replaced by $L_{\infty\infty}$ in the statement of Tuuri’s Theorem.
Tuuri’s Interpolation Theorem

Theorem (Tuuri 1992)

Let κ be a regular cardinal, let \mathbf{v} be a κ-ary vocabulary, set $\lambda \overset{\text{def}}{=} \sup\{\kappa^\alpha \mid \alpha < \kappa\}$, and let E and F be $L_{\kappa^+\kappa}(\mathbf{v})$-sentences such that the conjunction $E \land F$ has no \mathbf{v}-model. Then there exists an $M_{\lambda^+\lambda}(\mathbf{v})$-sentence G, with vocabulary the intersection of the vocabularies of E and F, such that $\models (E \Rightarrow G)$ and $\models (G \Rightarrow \neg F)$.

Here, $\neg G$ denotes the sentence obtained by interchanging \lor and \land, \exists and \forall, A and $\neg A$ in the expression of G by a tree-clocked game; it implies the usual negation $\neg G$ (which, however, is no longer an $M_{\lambda^+\lambda}$-sentence).
Tuuri’s Interpolation Theorem

Theorem (Tuuri 1992)

Let κ be a regular cardinal, let \mathbf{v} be a κ-ary vocabulary, set

$$\lambda \equiv \sup\{\kappa^\alpha \mid \alpha < \kappa\},$$

and let E and F be $L_{\kappa+\kappa}(\mathbf{v})$-sentences such that the conjunction $E \land F$ has no \mathbf{v}-model. Then there exists an $M_{\lambda+\lambda}(\mathbf{v})$-sentence G, with vocabulary the intersection of the vocabularies of E and F, such that $|\models (E \Rightarrow G)$ and $|\models (G \Rightarrow \neg F)$.

- Here, $\neg G$ denotes the sentence obtained by interchanging \lor and \land, \exists and \forall, A and $\neg A$ in the expression of G by a tree-clocked game; it implies the usual negation $\neg G$ (which, however, is no longer an $M_{\lambda+\lambda}$-sentence).
- By a 1971 counterexample due to Malitz, $M_{\lambda+\lambda}$ cannot be replaced by $L_{\infty\infty}$ in the statement of Tuuri’s Theorem.
Corollary

Let \(v \) be a vocabulary. Then for all classes \(\mathcal{A} \) and \(\mathcal{B} \) of \(v \)-structures, if \(\mathcal{A} \) is PC(\(L_{\infty\infty} \)), \(\mathcal{B} \) is co-PC(\(L_{\infty\infty} \)), and \(\mathcal{A} \subseteq \mathcal{B} \), then there exists an \(M_{\infty\infty}(v) \)-sentence \(G \) such that \(\mathcal{A} \subseteq \text{Mod}_v(G) \subseteq \mathcal{B} \).
Projective and co-projective

Corollary

Let \mathbf{v} be a vocabulary. Then for all classes \mathcal{A} and \mathcal{B} of \mathbf{v}-structures, if \mathcal{A} is $\text{PC}(L_{\infty\infty})$, \mathcal{B} is $\text{co-PC}(L_{\infty\infty})$, and $\mathcal{A} \subseteq \mathcal{B}$, then there exists an $M_{\infty\infty}(\mathbf{v})$-sentence G such that $\mathcal{A} \subseteq \text{Mod}_\mathbf{v}(G) \subseteq \mathcal{B}$.

Corollary

In order to prove that a $\text{PC}(L_{\infty\infty})$ class \mathcal{C} of \mathbf{v}-structures is not $\text{co-PC}(L_{\infty\infty})$, it suffices to prove that \mathcal{C} is not $M_{\infty\infty}(\mathbf{v})$-definable.
Corollary

Let \mathbf{v} be a vocabulary. Then for all classes \mathcal{A} and \mathcal{B} of \mathbf{v}-structures, if \mathcal{A} is $\text{PC}(\mathcal{L}_{\infty\infty})$, \mathcal{B} is $\text{co-PC}(\mathcal{L}_{\infty\infty})$, and $\mathcal{A} \subseteq \mathcal{B}$, then there exists an $\mathcal{M}_{\infty\infty}(\mathbf{v})$-sentence G such that $\mathcal{A} \subseteq \text{Mod}_\mathbf{v}(G) \subseteq \mathcal{B}$.

Corollary

In order to prove that a $\text{PC}(\mathcal{L}_{\infty\infty})$ class \mathcal{C} of \mathbf{v}-structures is not $\text{co-PC}(\mathcal{L}_{\infty\infty})$, it suffices to prove that \mathcal{C} is not $\mathcal{M}_{\infty\infty}(\mathbf{v})$-definable.

But then, what is the advantage of $\mathcal{M}_{\infty\infty}$-definable over $\text{PC}(\mathcal{L}_{\infty\infty})$-definable or $\text{co-PC}(\mathcal{L}_{\infty\infty})$-definable?
There are several non-equivalent definitions of back-and-forth between models (extended to categorical model theory by Beke and Rosický in 2018).
That's back-and-forth!

- There are several non-equivalent definitions of back-and-forth between models (extended to categorical model theory by Beke and Rosický in 2018).

Definition (Karttunen 1979)

For a regular cardinal λ, a λ-back-and-forth system between models M and N over a vocabulary \mathbf{v} consists of a poset $(\mathcal{F}, \trianglelefteq)$, together with a function $f \mapsto \overline{f}$ with domain \mathcal{F}, such that each $\overline{f} : d(f) \overset{\sim}{\rightarrow} r(f)$ with $d(f) \leq M$ and $r(f) \leq N$, and the following conditions hold:

1. $f \trianglelefteq g$ implies $\overline{f} \subseteq \overline{g}$;
2. $(\mathcal{F}, \trianglelefteq)$ is λ-inductive;
3. whenever $f \in \mathcal{F}$ and $x \in M$ (resp., $y \in N$), there is $g \in \mathcal{F}$ such that $f \subseteq g$ and $x \in d(g)$ (resp., $y \in r(g)$).

We then write $M \leftrightarrow_{\lambda} N$.
Theorem (Karttunen 1979)

Let λ be a regular cardinal and let M and N be structures over a vocabulary v. If $M \leftrightarrow_\lambda N$, then M and N satisfy the same $M_{\infty \lambda}(v)$-sentences.
Theorem (Karttunen 1979)

Let λ be a regular cardinal and let M and N be structures over a vocabulary v. If $M \leftrightarrow^\lambda N$, then M and N satisfy the same $M_{\infty \lambda}(v)$-sentences.

- Extended by Karttunen to the even more general languages $N_{\infty \lambda}$.
Theorem (Karttunen 1979)

Let λ be a regular cardinal and let M and N be structures over a vocabulary v. If $M \equiv^\lambda_N$, then M and N satisfy the same $M_{\infty\lambda}(v)$-sentences.

- Extended by Karttunen to the even more general languages $N_{\infty\lambda}$.
- The syntax for $N_{\infty\lambda}$ is far more complex than for $M_{\infty\lambda}$, the semantics are even trickier (not unique!).
Establishing intractability

- By the above,
Establishing intractability

- By the above,

Proposition

In order to prove that a \(\text{PC}(\mathcal{L}_{\infty\infty}) \) class \(\mathcal{C} \) of \(\mathbf{v} \)-structures is not \(\text{co-PC}(\mathcal{L}_{\infty\infty}) \), it suffices to prove that it is not closed under \(\Leftrightarrow_{\lambda} \) for a suitable regular cardinal \(\lambda \).
Establishing intractability

- By the above,

Proposition

In order to prove that a \(\text{PC}(\mathcal{L}_{\infty\infty}) \) class \(\mathcal{C} \) of \(\mathbf{v} \)-structures is not \(\text{co-PC}(\mathcal{L}_{\infty\infty}) \), it suffices to prove that it is not closed under \(\leftrightarrow_\lambda \) for a suitable regular cardinal \(\lambda \).

- Applies to earlier introduced examples \(\text{Id}_c \)(unital rings), \(\text{Id}_c \)(Abelian \(\ell \)-groups), duals of real spectra of commutative unital rings, and many others: each of those classes fails to be closed under a suitable \(\leftrightarrow_\lambda \).
Establishing intractability

By the above,

Proposition

In order to prove that a $PC(\mathcal{L}_{\infty\infty})$ class \mathcal{C} of v-structures is not co-$PC(\mathcal{L}_{\infty\infty})$, it suffices to prove that it is not closed under \leftrightarrow_λ for a suitable regular cardinal λ.

- Applies to earlier introduced examples Id_c(unital rings), Id_c(Abelian ℓ-groups), duals of real spectra of commutative unital rings, and many others: each of those classes fails to be closed under a suitable \leftrightarrow_λ.
- The real trouble is: find a back-and-forth system $\mathcal{F}: M \leftrightarrow_\lambda N$ with $M \in \mathcal{C}$ and $N \notin \mathcal{C}$ (where \mathcal{C} is the given class).
In many examples, such as $\Phi(\text{unital rings})$ and $\Phi(\text{Abelian } \ell\text{-groups})$ (where $\Phi = \text{Id}_c$), $\leftrightarrow_{\lambda}$ arises from some λ-continuous functor $\Gamma: [\kappa]^\text{inj} \to \mathcal{C}$ with $\kappa \geq \lambda$.
Back-and-forth systems from continuous functors

In many examples, such as $\Phi(\text{unital rings})$ and $\Phi(\text{Abelian } \ell\text{-groups})$ (where $\Phi = \text{Id}_c$), \leftrightarrow_λ arises from some λ-continuous functor $\Gamma : [\kappa]^{\text{inj}} \to C$ with $\kappa \geq \lambda$. Here, $[\kappa]^{\text{inj}}$ denotes the category of all subsets of κ with one-to-one functions.
In many examples, such as $\Phi(\text{unital rings})$ and $\Phi(\text{Abelian } \ell\text{-groups})$ (where $\Phi = \text{Id}_c$), \leftrightarrow_λ arises from some λ-continuous functor $\Gamma : [\kappa]^{\text{inj}} \to C$ with $\kappa \geq \lambda$. Here, $[\kappa]^{\text{inj}}$ denotes the category of all subsets of κ with one-to-one functions. In both examples above, $\kappa = \lambda^{++}$.

- Projective classes as images of accessible functors
- Motivation
- Elementary, projective
- Tuuri's Interpolation Theorem
- Karttunen's back-and-forth systems
In many examples, such as $\Phi(\text{unital rings})$ and $\Phi(\text{Abelian } \ell\text{-groups})$ (where $\Phi = \text{Id}_c$), \leftrightarrow_λ arises from some λ-continuous functor $\Gamma : [\kappa]^{\text{inj}} \to \mathcal{C}$ with $\kappa \geq \lambda$. Here, $[\kappa]^{\text{inj}}$ denotes the category of all subsets of κ with one-to-one functions. In both examples above, $\kappa = \lambda^{++}$.

It is often the case that for $X \subseteq \kappa$ with $\text{card } X < \lambda$,

$$
\Gamma(X) = \Phi(\prod (S_{|u|} \mid u \in X^{\subseteq P})) \text{ (a “condensate”), where:}
$$

1. P is a suitable finite lattice (in both examples above, $P = \{0, 1\}^3$; also, this method provably fails for arbitrary finite bounded posets!);
2. $X^{\subseteq P} \overset{\text{def}}{=} \bigcup \{X^D \mid D \subseteq P\}$;
3. $|u| \overset{\text{def}}{=} \bigvee \text{dom } u$ whenever $u \in X^{\subseteq P}$;
4. \vec{S} is a non-commutative diagram, indexed by P, such that, for the given functor Φ, the diagram $\Phi(\vec{S})$ is commutative.
Back-and-forth systems from continuous functors

- In many examples, such as Φ(unital rings) and Φ(Abelian ℓ-groups) (where $\Phi = \text{Id}_c$), \cong_λ arises from some λ-continuous functor $\Gamma: [\kappa]^{\text{inj}} \to C$ with $\kappa \geq \lambda$.

Here, $[\kappa]^{\text{inj}}$ denotes the category of all subsets of κ with one-to-one functions. In both examples above, $\kappa = \lambda^{++}$.

- It is often the case that for $X \subseteq \kappa$ with $\text{card} \ X < \lambda$, $\Gamma(X) = \Phi(\prod(S|_u | u \in X^{\subseteq P}))$ (a “condensate”), where:
 1. P is a suitable finite lattice (in both examples above, $P = \{0, 1\}^3$; also, this method provably fails for arbitrary finite bounded posets!);
 2. $X^{\subseteq P} \overset{\text{def}}{=} \bigcup\{X^D | D \subseteq P\}$;
 3. $|u| \overset{\text{def}}{=} \bigvee \text{dom } u$ whenever $u \in X^{\subseteq P}$;
 4. \vec{S} is a non-commutative diagram, indexed by P, such that, for the given functor Φ, the diagram $\Phi(\vec{S})$ is commutative.

- Finding P and \vec{S} is usually hard, very much connected to the algebraic and combinatorial data of the given problem.
The diagram \(\tilde{S} \) for \(\text{Id}_c(\text{Abelian } \ell\text{-groups}) \)

\[
\begin{align*}
A_{123}(a, a', b, c) \\
A_{12}(a, b) & \quad A_{13}(a', c) & \quad A_{23}(b, c) \\
A_1(a) & \quad A_2(b) & \quad A_3(c) \\
A_\emptyset = \{0\}
\end{align*}
\]

\[0 \leq a \leq a' \leq 2a; \ b \geq 0; \ c \geq 0.\]
\[A_1(a) \rightarrow A_{13}(a', c) \text{ via } a \mapsto a'.\]
Thanks for your attention!