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Certain posets → lattices

A partially ordered set (=poset) (L,≤) is a lattice, if

x ∨ y := sup{x , y} ,
x ∧ y := inf{x , y}

exist for all x , y ∈ L. The following are valid in all lattices:

(x ∨ y) ∨ z = x ∨ (y ∨ z) ; x ∨ y = y ∨ x ; x ∨ x = x ;

(x ∧ y) ∧ z = x ∧ (y ∧ z) ; x ∧ y = y ∧ x ; x ∧ x = x

(semilattice laws), and

x ∨ (x ∧ y) = x ∧ (x ∨ y) = x

(absorption laws). We also say that (L,∨,∧) is a lattice.
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Lattices → certain posets

Conversely, if (L,∨,∧) satisfies the axioms (semilattice,
absorption) above, define a binary relation ≤ on L by

x ≤ y ⇐⇒ x ∨ y = y ,

⇐⇒ x ∧ y = x .

Then ≤ is a partial ordering, and x ∨ y = sup{x , y},
x ∧ y = inf{x , y} with respect to that partial ordering.
Hasse diagrams of the lattices M3 and N5:
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Distributive, modular. . .

A lattice is distributive if it satisfies the identity

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) .

This identity is self-dual (not affected by ∨ � ∧).

A lattice is modular if it satisfies the quasi-identity

x ≥ z ⇒ x ∧ (y ∨ z) = (x ∧ y) ∨ z .

This is equivalent to the identity

x ∧ (y ∨ (x ∧ z)) = (x ∧ y) ∨ (x ∧ z) .

Modularity is also self-dual. It is implied by distributivity.

A lattice is modular (resp., distributive) iff it contains no
copy of N5 (resp., M3 and N5).
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Examples of lattices

The powerset P(X ) of a set X , with ⊆.

There,
x ∨ y = x ∪ y , x ∧ y = x ∩ y ; distributive. Every
distributive lattice is contained in some P(X ) (Birkhoff,
Stone).

C(X ,R), X a topological space, with f ≤ g iff
f (x) ≤ g(x) ∀x ∈ X . Then (f ∨ g)(x) = max{f (x), g(x)},
(f ∧ g)(x) = min{f (x), g(x)}. Distributive.

For a group G ,

NSub G := {X | X is a normal subgroup of G} .

Modular. If “normal” removed, then no identity.

For a module M over a ring R,

Sub M := {X | X is a submodule of M} .

Modular. Particular case: subspace lattices of vector
spaces.
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C(X ,R), X a topological space, with f ≤ g iff
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Further examples of lattices

The lattice Eq X of all equivalence relations on a set X ,
ordered by ⊆. Not modular, no identity (X infinite).

For permutations α and β on {1, . . . , n}, set

Inv(α) := {(i , j) | i < j and α(i) > α(j)} ,
α ≤ β ⇐⇒ Inv(α) ⊆ Inv(β) .

We get the permutohedron on n letters. Not modular for
n ≥ 3. Any identity for all of them? Open problem.
A subset X in a poset P is order-convex if x ≤ y ≤ z and
x , z ∈ X implies that y ∈ X .

Co(P) := {X ⊆ P | X is order-convex} , with ⊆ .

Not modular as a rule, but has other identities, such as

x ∧ (x0 ∨ x1) ∧ (x1 ∨ x2) ∧ (x0 ∨ x2)

= (x∧x0∧(x1∨x2))∨(x∧x1∧(x0∨x2))∨(x∧x2∧(x0∨x1)).
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Variety is the spice of life

A variety is the class of all structures (here, lattices) that
satisfy a given set of identities.

For example, L is the variety of
all lattices, M is the variety of all modular lattices, N5 is the
variety generated by N5,. . . Finitely generated variety of
lattices: generated by a finite lattice.
(Very) partial picture of the lattice of all varieties of lattices:
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Congruences, congruence lattices

Congruence of a lattice L: equivalence relation θ on L,
compatible with both ∨ and ∧ operations:

x ≡θ y =⇒ (x ∨ z ≡θ y ∨ z and x ∧ z ≡θ y ∧ z) .

Then set Con L := {θ | θ is a congruence of L}.
Ordered by α ≤ β ⇐⇒ α ⊆ β. Then Con L, under ⊆, is
an “algebraic” lattice (nothing special about lattices here).
It is also a distributive lattice. This is very particular to
lattices.

Finitely generated (=compact) congruence: least
congruence that identifies x1 with y1, . . . , xn with yn

(where xi , yi ∈ L given).
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Congruence classes; critical points

Congruence class of a variety V: Con V :=class of all
lattices isomorphic to some Con L, where L ∈ V. Fully
understood only for V = either T or D.

Critical point crit(A; B), for varieties A and B: least
possible number of compact elements of a member
of Con A not in Con B.

Valid for varieties of other structures than lattices.

Measures the inclusion defect of Con A into Con B. The
larger the critical point, the more Con A is contained
in Con B.

Example: crit(groups, lattices) = 5. On the other hand,
crit(lattices, groups) = ℵ2 (Růžička, Tůma, and W.).
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Congruence class of a variety V: Con V :=class of all
lattices isomorphic to some Con L, where L ∈ V. Fully
understood only for V = either T or D.

Critical point crit(A; B), for varieties A and B: least
possible number of compact elements of a member
of Con A not in Con B.

Valid for varieties of other structures than lattices.

Measures the inclusion defect of Con A into Con B. The
larger the critical point, the more Con A is contained
in Con B.

Example: crit(groups, lattices) = 5. On the other hand,
crit(lattices, groups) = ℵ2 (Růžička, Tůma, and W.).
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Critical points are difficult to calculate

Notation: Var(L) :=variety generated by L. It is the class of all
lattices satisfying all identities satisfied by L.

Theorem (Gillibert 2007)

For any finite lattices A and B with A /∈ Var(B), either
crit(Var(A); Var(B)) is finite or crit(Var(A); Var(B)) = ℵn for
some n.

Open problem:

Let γ(A,B) :=least n such that crit(Var(A); Var(B)) ≤ ℵn, for
finite lattices A and B. Is γ recursive?

Examples were known with n = 0 and n = 2 (M. Ploščica).
Later, P. Gillibert found an example with n = 1.
Recently, P. Gillibert proved that n ∈ {0, 1, 2}.
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some n.
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For any finite lattices A and B with A /∈ Var(B), either
crit(Var(A); Var(B)) is finite or crit(Var(A); Var(B)) = ℵn for
some n.

Open problem:

Let γ(A,B) :=least n such that crit(Var(A); Var(B)) ≤ ℵn, for
finite lattices A and B. Is γ recursive?

Examples were known with n = 0 and n = 2 (M. Ploščica).
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Lifting an arrow between congruence lattices

We are given finite (or, more generally, algebraic)
distributive lattices S and T , and a (∨, 0)-homomorphism
ϕ : S → T .

We want to represent ϕ : S → T as
Con f : Con A→ Con B, for lattices A and B [in a given
variety] and a lattice homomorphism f : A→ B.

Technical prerequisite: the assignment A 7→ Con A can
also be nicely extended to homomorphisms (i.e., defining
Con f ). Means that A 7→ Con A, f 7→ Con f is a functor.
Straightforward.
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Lifting an arrow between congruence lattices

We are given finite (or, more generally, algebraic)
distributive lattices S and T , and a (∨, 0)-homomorphism
ϕ : S → T .

We want to represent ϕ : S → T as
Con f : Con A→ Con B, for lattices A and B [in a given
variety] and a lattice homomorphism f : A→ B.

Technical prerequisite: the assignment A 7→ Con A can
also be nicely extended to homomorphisms (i.e., defining
Con f ).

Means that A 7→ Con A, f 7→ Con f is a functor.
Straightforward.
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We are given finite (or, more generally, algebraic)
distributive lattices S and T , and a (∨, 0)-homomorphism
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We want to represent ϕ : S → T as
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Technical prerequisite: the assignment A 7→ Con A can
also be nicely extended to homomorphisms (i.e., defining
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Straightforward.



Larders and
CLL

Lattices,
congruences,
varieties

Critical points
between
varieties

General
settings; CLL

Coordinatization
of lattices by
regular rings

Non-
coordinatizable
SCMLs

Lattices
without
CPCP-
extension

Lifting an arrow (continued)

Back to the problem with one arrow: we need lattices A
and B, a homomorphism f : A→ B, and a “commutative
diagram”

Con A
Con f //

∼=
��

Con B

∼=
��

S
ϕ // T

We say that f : A→ B lifts ϕ : S → T .

Lifting problems: can also be defined for more complex
diagrams of finite distributive lattices and
(∨, 0)-homomorphisms.
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Lifting an arrow (continued)

Back to the problem with one arrow: we need lattices A
and B, a homomorphism f : A→ B, and a “commutative
diagram”

Con A
Con f //

∼=
��

Con B

∼=
��

S
ϕ // T

We say that f : A→ B lifts ϕ : S → T .

Lifting problems: can also be defined for more complex
diagrams of finite distributive lattices and
(∨, 0)-homomorphisms.
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Lifting an arrow (continued)

Back to the problem with one arrow: we need lattices A
and B, a homomorphism f : A→ B, and a “commutative
diagram”

Con A
Con f //

∼=
��

Con B

∼=
��

S
ϕ // T

We say that f : A→ B lifts ϕ : S → T .

Lifting problems: can also be defined for more complex
diagrams of finite distributive lattices and
(∨, 0)-homomorphisms.
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Gillibert’s starting point for the critical point ℵ1

Guess the finite lattices A and B:
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Gillibert’s starting point for the critical point ℵ1

Guess the finite lattices A and B:
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How Gillibert proceeds for the critical point ℵ1

Guess a finite diagram, of finite distributive lattices and
(∨, 0)-homomorphisms:

{0, 1}

{0, 1}2

ψ
::uuuuuuuuu

{0, 1}2

ψ
ddIIIIIIIII

{0, 1}4

ϕ1

ddIIIIIIIII ϕ2

::uuuuuuuuu

where ϕ1(x , y , z , t) := (x ∨ y , z ∨ t),
ϕ2(x , y , z , t) := (x ∨ t, y ∨ z), ψ(x , y) := x ∨ y .

Prove that the diagram can be lifted in Var(A), but not
in Var(B). Purely combinatorial (computational), once A,
B, and the diagram have been guessed.
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How Gillibert concludes (critical point ℵ1)

Prove a “condensation principle”, that creates a
“condensate” of the finite diagram above, which is a big
object (algebraic distributive lattice with ℵ1 compact
elements).

Any good (lifting) property of the big object (condensate)
would be inherited by the small diagram. As the small
diagram is bad, so is the big object.

Why ℵ1? This depends of the shape of the diagram (here,
a square, {0, 1}2).

The “condensation principle” above has been subsequently
set into a more general, categorical, framework.
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How Gillibert concludes (critical point ℵ1)

Prove a “condensation principle”, that creates a
“condensate” of the finite diagram above, which is a big
object (algebraic distributive lattice with ℵ1 compact
elements).

Any good (lifting) property of the big object (condensate)
would be inherited by the small diagram. As the small
diagram is bad, so is the big object.

Why ℵ1? This depends of the shape of the diagram (here,
a square, {0, 1}2).

The “condensation principle” above has been subsequently
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General categorical settings

We are given categories A, B, S together with functors
Φ: A→ S and Ψ: B→ S.

We are trying to find a functor
Γ: A→ B such that Φ(A) ∼= ΨΓ(A), naturally in A, for
“many” (ideally, all) A ∈ A. Hence we need an assumption
of the form “for many A ∈ A, there exists B ∈ B such that
Φ(A) ∼= Ψ(B)”. Ask for Γ: A 7→ B to be a functor (at least on
a large enough subcategory of A).
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We are given categories A, B, S together with functors
Φ: A→ S and Ψ: B→ S. We are trying to find a functor
Γ: A→ B such that Φ(A) ∼= ΨΓ(A), naturally in A, for
“many” (ideally, all) A ∈ A.

Hence we need an assumption
of the form “for many A ∈ A, there exists B ∈ B such that
Φ(A) ∼= Ψ(B)”. Ask for Γ: A 7→ B to be a functor (at least on
a large enough subcategory of A).
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General categorical settings

We are given categories A, B, S together with functors
Φ: A→ S and Ψ: B→ S. We are trying to find a functor
Γ: A→ B such that Φ(A) ∼= ΨΓ(A), naturally in A, for
“many” (ideally, all) A ∈ A.

S

A

Φ
??��������

B

Ψ
__????????

Hence we need an assumption of the form “for many A ∈ A,
there exists B ∈ B such that Φ(A) ∼= Ψ(B)”. Ask for
Γ: A 7→ B to be a functor (at least on a large enough
subcategory of A).
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General categorical settings

We are given categories A, B, S together with functors
Φ: A→ S and Ψ: B→ S. We are trying to find a functor
Γ: A→ B such that Φ(A) ∼= ΨΓ(A), naturally in A, for
“many” (ideally, all) A ∈ A.

S S

A

Φ
??��������

B

Ψ
__????????

A

Φ
??�������� Γ // B

Ψ
__????????

Hence we need an assumption of the form “for many A ∈ A,
there exists B ∈ B such that Φ(A) ∼= Ψ(B)”. Ask for
Γ: A 7→ B to be a functor (at least on a large enough
subcategory of A).
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We are given categories A, B, S together with functors
Φ: A→ S and Ψ: B→ S. We are trying to find a functor
Γ: A→ B such that Φ(A) ∼= ΨΓ(A), naturally in A, for
“many” (ideally, all) A ∈ A.

S S

A

Φ
??��������

B

Ψ
__????????

A

Φ
??�������� Γ // B

Ψ
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Hence we need an assumption of the form “for many A ∈ A,
there exists B ∈ B such that Φ(A) ∼= Ψ(B)”.

Ask for
Γ: A 7→ B to be a functor (at least on a large enough
subcategory of A).
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Φ: A→ S and Ψ: B→ S. We are trying to find a functor
Γ: A→ B such that Φ(A) ∼= ΨΓ(A), naturally in A, for
“many” (ideally, all) A ∈ A.

S S

A

Φ
??��������

B

Ψ
__????????

A

Φ
??�������� Γ // B

Ψ
__????????

Hence we need an assumption of the form “for many A ∈ A,
there exists B ∈ B such that Φ(A) ∼= Ψ(B)”. Ask for
Γ: A 7→ B to be a functor (at least on a large enough
subcategory of A).



Larders and
CLL

Lattices,
congruences,
varieties

Critical points
between
varieties

General
settings; CLL

Coordinatization
of lattices by
regular rings

Non-
coordinatizable
SCMLs

Lattices
without
CPCP-
extension

Larders

For an infinite regular cardinal λ, a λ-larder consists of
categories A, B, S with functors Φ: A→ S and
Ψ: B→ S, together with a bunch of add-ons:

Full subcategories A† ⊆ A, B† ⊆ B of “small” objects,
plus a subcategory S⇒ ⊆ S (the “double arrows”). . .

. . . satisfying lots of extra properties (preservation
properties related to colimits, plus an analogue of the
Löwenheim-Skolem Theorem).
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The Condensate Lifting Lemma (CLL)

The statement of CLL is about as follows.

Theorem (Gillibert and W., 2009)

Let λ be an infinite cardinal and let P be a poset with a
“λ-lifter” (X ,X), let (A,B, S,A†,B†, S⇒,Φ,Ψ) be a λ-larder,
let ~A be a P-indexed diagram in A such that Ap ∈ A† for each
non-maximal p ∈ P, let B ∈ B a λ-continuous directed colimit
of a diagram in B†, and let χ : Ψ(B)⇒ Φ(F(X )⊗ ~A). Then
there are a P-indexed diagram ~B of subobjects of B in B† and
a double arrow ~χ : Ψ~B ⇒ Φ~A.

In short: in order to lift the diagram Φ~A with respect to Ψ, ⇒,
it is sufficient to lift the object Φ(A) with respect to Ψ, ⇒,
where A is a suitable condensate of ~A (viz. A := F(X )⊗ ~A).
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Limitations on the shape of P

The poset P in the statement of CLL needs to be an
“almost join-semilattice with zero” (or a finite disjoint
union of such guys).

In particular, CLL does not apply to diagrams indexed by
the following posets:

Too bad. . .
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Lattices of right ideals of von Neumann regular
rings

A ring (associative, not necessarily unital) R is (von
Neumann) regular, if (∀x ∈ R)(∃y ∈ R)(xyx = x).

For a ring R, set L(R) := {xR | x ∈ R}.
For R := Z[

√
−5], the poset (L(R),⊆) is not a lattice.

If R is regular, then L(R) is a sectionally complemented
sublattice of the right ideal lattice of R. In particular, it is
modular (even Arguesian).

For a homomorphism f : R → S of regular rings, the map
L(f ) : L(R)→ L(S), I 7→ f (I )S is a 0-lattice
homomorphism. The functor L thus defined preserves
directed colimits (=direct limits).

A lattice is coordinatizable, if it is isomorphic to L(R) for
some regular ring R.
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−5], the poset (L(R),⊆) is not a lattice.

If R is regular, then L(R) is a sectionally complemented
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modular (even Arguesian).

For a homomorphism f : R → S of regular rings, the map
L(f ) : L(R)→ L(S), I 7→ f (I )S is a 0-lattice
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Non-coordinatizable 2-distributive lattices

The identity of 2-distributivity:

x∧(y0∨y1∨y2) = (x∧(y0∨y1))∨(x∧(y0∨y2))∨(x∧(y1∨y2)) .

Mω := {0, 1, a0, a1, a2, . . . }, all ai atoms, is 2-distributive.
A spanning Mω in a bounded lattice L is a 0, 1-sublattice of L
isomorphic to Mω.

Theorem (W., 2006)

Every countable, 2-distributive complemented modular
lattice with a spanning Mω is coordinatizable.

The 0, 1-lattice embedding ϕ : Mω ↪→ Mω, an 7→ an+1

cannot be lifted with respect to the functor L.

There exists a non-coordinatizable 2-distributive
complemented modular lattice, of cardinality ℵ1, with a
spanning Mω. In particular, coordinatizability is not
first-order. (Established via a condensate-like construction)
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lattice with a spanning Mω is coordinatizable.
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Coordinatization of sectionally complemented
modular lattices

An element a in a 0-lattice L is large, if con(0, a) = L× L.

An
n-frame in L is a family ((ai )0≤i<n, (ci )1≤i<n) such that (ai )i<n

is independent and ci is an axis of perspectivity between a0

and ai for each i ∈ {1, . . . , n}. It is large, if a0 is large.

Theorem (Jónsson, 1962)

Let L be a sectionally complemented modular lattice with a
large 4-frame. If L has a countable cofinal sequence, then L is
coordinatizable (i.e., ∃R regular ring such that L ∼= L(R)).

Theorem (W., 2008)

There exists a non-coordinatizable sectionally complemented
modular lattice, of cardinality ℵ1, with a large 4-frame.
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Why larders there?

Larders don’t play any role in the proof of the latter result,
until we reach a ω1-tower of sectionally complemented
modular lattices that cannot be lifted by the L functor.

Then larders are used to turn the diagram counterexample
to an object counterexample.
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Lattices without congruence-permutable,
congruence-preserving extension

An extension A ≤ B of (universal) algebras is
congruence-preserving, if the canonical map Con A→ Con B is
an isomorphism.

Theorem (Gillibert and W., 2009)

Let V be a nondistributive lattice variety. Then the free lattice
(resp., the free bounded lattice) on ℵ1 generators within V has
no congruence-permutable, congruence-preserving extension.

Due to earlier results of Ploščica, Tůma, and W., the analogue
of this result at ℵ2 was already known. Furthermore, if V is
locally finite, then ℵ1 is optimal in the result above. (Open
problem in the non locally finite case. For example: does the
free lattice on ℵ0 generators have a congruence-permutable,
congruence-preserving extension?).
Unlike all previous examples, the larder data for this result are
difficult to figure out.
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of this result at ℵ2 was already known. Furthermore, if V is
locally finite, then ℵ1 is optimal in the result above. (Open
problem in the non locally finite case. For example: does the
free lattice on ℵ0 generators have a congruence-permutable,
congruence-preserving extension?).

Unlike all previous examples, the larder data for this result are
difficult to figure out.



Larders and
CLL

Lattices,
congruences,
varieties

Critical points
between
varieties

General
settings; CLL

Coordinatization
of lattices by
regular rings

Non-
coordinatizable
SCMLs

Lattices
without
CPCP-
extension

Lattices without congruence-permutable,
congruence-preserving extension

An extension A ≤ B of (universal) algebras is
congruence-preserving, if the canonical map Con A→ Con B is
an isomorphism.

Theorem (Gillibert and W., 2009)

Let V be a nondistributive lattice variety. Then the free lattice
(resp., the free bounded lattice) on ℵ1 generators within V has
no congruence-permutable, congruence-preserving extension.

Due to earlier results of Ploščica, Tůma, and W., the analogue
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