Approximating the finite by the infinite: Larders and CLL

Friedrich Wehrung

General
Université de Caen
LMNO, UMR 6139
Département de Mathématiques
14032 Caen cedex
E-mail: wehrung@math.unicaen.fr
URL: http://www.math.unicaen.fr/~wehrung
Most of the results discussed here obtained with Pierre Gillibert.
February 6, 2010

Certain posets \rightarrow lattices

Larders and
CLL

A partially ordered set (=poset) (L, \leq) is a lattice, if

Lattices, congruences, varieties

Critical points
between
varieties
General
settings; CLL
Coordinatizatio of lattices by regular rings

Non-
coordinatizable SCMLs

Lattices
without
CPCP-
extension

Certain posets \rightarrow lattices

Larders and
CLL

A partially ordered set (=poset) (L, \leq) is a lattice, if

Lattices, congruences, varieties

Critical points
between
varieties
General
settings; CLL
Coordinatizatio of lattices by regular rings

Non-
coordinatizable SCMLs

Lattices
without
CPCP-
extension

$$
\begin{aligned}
& x \vee y:=\sup \{x, y\}, \\
& x \wedge y:=\inf \{x, y\}
\end{aligned}
$$

Certain posets \rightarrow lattices

Larders and
CLL

A partially ordered set (=poset) (L, \leq) is a lattice, if

Lattices, congruences, varieties

Critical points
between
varieties
General
settings; CLL
Coordinatizatio of lattices by regular rings

Non
coordinatizable SCMLs

Lattices without CPCPextension

$$
\begin{aligned}
& x \vee y:=\sup \{x, y\}, \\
& x \wedge y:=\inf \{x, y\}
\end{aligned}
$$

exist for all $x, y \in L$.

Certain posets \rightarrow lattices

Larders and
CLL
A partially ordered set (=poset) (L, \leq) is a lattice, if

$$
\begin{aligned}
& x \vee y:=\sup \{x, y\}, \\
& x \wedge y:=\inf \{x, y\}
\end{aligned}
$$

exist for all $x, y \in L$. The following are valid in all lattices:

General

Certain posets \rightarrow lattices

Larders and

A partially ordered set (=poset) (L, \leq) is a lattice, if

$$
\begin{aligned}
& x \vee y:=\sup \{x, y\} \\
& x \wedge y:=\inf \{x, y\}
\end{aligned}
$$

exist for all $x, y \in L$. The following are valid in all lattices:

$$
\begin{array}{lll}
(x \vee y) \vee z=x \vee(y \vee z) ; & x \vee y=y \vee x ; & x \vee x=x ; \\
(x \wedge y) \wedge z=x \wedge(y \wedge z) ; & x \wedge y=y \wedge x ; & x \wedge x=x
\end{array}
$$

Certain posets \rightarrow lattices

Larders and

A partially ordered set (=poset) (L, \leq) is a lattice, if

$$
\begin{aligned}
& x \vee y:=\sup \{x, y\} \\
& x \wedge y:=\inf \{x, y\}
\end{aligned}
$$

exist for all $x, y \in L$. The following are valid in all lattices:

$$
\begin{array}{lll}
(x \vee y) \vee z=x \vee(y \vee z) ; & x \vee y=y \vee x ; & x \vee x=x ; \\
(x \wedge y) \wedge z=x \wedge(y \wedge z) ; & x \wedge y=y \wedge x ; & x \wedge x=x
\end{array}
$$

(semilattice laws), and

Certain posets \rightarrow lattices

Larders and
A partially ordered set $(=$ poset $)(L, \leq)$ is a lattice, if

$$
\begin{aligned}
& x \vee y:=\sup \{x, y\} \\
& x \wedge y:=\inf \{x, y\}
\end{aligned}
$$

exist for all $x, y \in L$. The following are valid in all lattices:

$$
\begin{array}{lll}
(x \vee y) \vee z=x \vee(y \vee z) ; & x \vee y=y \vee x ; & x \vee x=x ; \\
(x \wedge y) \wedge z=x \wedge(y \wedge z) ; & x \wedge y=y \wedge x ; & x \wedge x=x
\end{array}
$$

(semilattice laws), and

$$
x \vee(x \wedge y)=x \wedge(x \vee y)=x
$$

Certain posets \rightarrow lattices

A partially ordered set (=poset) (L, \leq) is a lattice, if

$$
\begin{aligned}
& x \vee y:=\sup \{x, y\} \\
& x \wedge y:=\inf \{x, y\}
\end{aligned}
$$

exist for all $x, y \in L$. The following are valid in all lattices:

$$
\begin{array}{lll}
(x \vee y) \vee z=x \vee(y \vee z) ; & x \vee y=y \vee x ; & x \vee x=x ; \\
(x \wedge y) \wedge z=x \wedge(y \wedge z) ; & x \wedge y=y \wedge x ; & x \wedge x=x
\end{array}
$$

(semilattice laws), and

$$
x \vee(x \wedge y)=x \wedge(x \vee y)=x
$$

(absorption laws).

Certain posets \rightarrow lattices

A partially ordered set $(=$ poset $)(L, \leq)$ is a lattice, if

$$
\begin{aligned}
& x \vee y:=\sup \{x, y\} \\
& x \wedge y:=\inf \{x, y\}
\end{aligned}
$$

exist for all $x, y \in L$. The following are valid in all lattices:

$$
\begin{array}{lll}
(x \vee y) \vee z=x \vee(y \vee z) ; & x \vee y=y \vee x ; & x \vee x=x ; \\
(x \wedge y) \wedge z=x \wedge(y \wedge z) ; & x \wedge y=y \wedge x ; & x \wedge x=x
\end{array}
$$

(semilattice laws), and

$$
x \vee(x \wedge y)=x \wedge(x \vee y)=x
$$

(absorption laws). We also say that (L, \vee, \wedge) is a lattice.

Lattices \rightarrow certain posets

Larders and
CLL

Conversely, if (L, \vee, \wedge) satisfies the axioms (semilattice, absorption) above, define a binary relation \leq on L by

Lattices \rightarrow certain posets

Larders and
CLL

General

Conversely, if (L, \vee, \wedge) satisfies the axioms (semilattice, absorption) above, define a binary relation \leq on L by

$$
\begin{aligned}
x \leq y & \Longleftrightarrow x \vee y=y \\
& \Longleftrightarrow x \wedge y=x .
\end{aligned}
$$

Lattices \rightarrow certain posets

Conversely, if (L, \vee, \wedge) satisfies the axioms (semilattice, absorption) above, define a binary relation \leq on L by

$$
\begin{aligned}
x \leq y & \Longleftrightarrow x \vee y=y \\
& \Longleftrightarrow x \wedge y=x .
\end{aligned}
$$

Then \leq is a partial ordering, and

Lattices \rightarrow certain posets

Lattices,

Conversely, if (L, \vee, \wedge) satisfies the axioms (semilattice, absorption) above, define a binary relation \leq on L by

$$
\begin{aligned}
x \leq y & \Longleftrightarrow x \vee y=y \\
& \Longleftrightarrow x \wedge y=x .
\end{aligned}
$$

Then \leq is a partial ordering, and $x \vee y=\sup \{x, y\}$, $x \wedge y=\inf \{x, y\}$ with respect to that partial ordering.

Lattices \rightarrow certain posets

Lattices,

Conversely, if (L, \vee, \wedge) satisfies the axioms (semilattice, absorption) above, define a binary relation \leq on L by

$$
\begin{aligned}
x \leq y & \Longleftrightarrow x \vee y=y \\
& \Longleftrightarrow x \wedge y=x .
\end{aligned}
$$

Then \leq is a partial ordering, and $x \vee y=\sup \{x, y\}$, $x \wedge y=\inf \{x, y\}$ with respect to that partial ordering. Hasse diagrams of the lattices M_{3} and N_{5} :

Lattices \rightarrow certain posets

Conversely, if (L, \vee, \wedge) satisfies the axioms (semilattice, absorption) above, define a binary relation \leq on L by

$$
\begin{aligned}
x \leq y & \Longleftrightarrow x \vee y=y \\
& \Longleftrightarrow x \wedge y=x .
\end{aligned}
$$

Then \leq is a partial ordering, and $x \vee y=\sup \{x, y\}$, $x \wedge y=\inf \{x, y\}$ with respect to that partial ordering. Hasse diagrams of the lattices M_{3} and N_{5} :

Distributive, modular. . .

Larders and
CLL

- A lattice is distributive if it satisfies the identity

Lattices,

 congruences, varietiesCritical points
between
varieties
General
settings; CLL
Coordinatizatio
of lattices by
regular rings
Non-
coordinatizable
SCMLs
Lattices
without
CPCP-
extension

Distributive, modular. .

Larders and
CLL

- A lattice is distributive if it satisfies the identity

$$
x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)
$$

Distributive, modular. . .

Larders and
CLL

- A lattice is distributive if it satisfies the identity

$$
x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)
$$

■ This identity is self-dual (not affected by $\vee \leftrightharpoons \wedge$).

Distributive, modular. . .

Larders and
CLL

- A lattice is distributive if it satisfies the identity

$$
x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)
$$

■ This identity is self-dual (not affected by $\vee \leftrightharpoons \wedge$).

- A lattice is modular if it satisfies the quasi-identity

Distributive, modular. . .

Larders and
CLL

- A lattice is distributive if it satisfies the identity

$$
x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)
$$

■ This identity is self-dual (not affected by $\vee \leftrightharpoons \wedge$).

- A lattice is modular if it satisfies the quasi-identity

$$
x \geq z \Rightarrow x \wedge(y \vee z)=(x \wedge y) \vee z
$$

Distributive, modular. . .

Larders and

- A lattice is distributive if it satisfies the identity

$$
x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)
$$

■ This identity is self-dual (not affected by $\vee \leftrightharpoons \wedge$).

- A lattice is modular if it satisfies the quasi-identity

$$
x \geq z \Rightarrow x \wedge(y \vee z)=(x \wedge y) \vee z
$$

■ This is equivalent to the identity

Distributive, modular. . .

Larders and

- A lattice is distributive if it satisfies the identity

$$
x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)
$$

■ This identity is self-dual (not affected by $\vee \leftrightharpoons \wedge$).

- A lattice is modular if it satisfies the quasi-identity

$$
x \geq z \Rightarrow x \wedge(y \vee z)=(x \wedge y) \vee z
$$

■ This is equivalent to the identity

$$
x \wedge(y \vee(x \wedge z))=(x \wedge y) \vee(x \wedge z)
$$

Distributive, modular. . .

- A lattice is distributive if it satisfies the identity

$$
x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)
$$

■ This identity is self-dual (not affected by $\vee \leftrightharpoons \wedge$).

- A lattice is modular if it satisfies the quasi-identity

$$
x \geq z \Rightarrow x \wedge(y \vee z)=(x \wedge y) \vee z
$$

■ This is equivalent to the identity

$$
x \wedge(y \vee(x \wedge z))=(x \wedge y) \vee(x \wedge z)
$$

■ Modularity is also self-dual. It is implied by distributivity.

Distributive, modular. . .

- A lattice is distributive if it satisfies the identity

$$
x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)
$$

■ This identity is self-dual (not affected by $\vee \leftrightharpoons \wedge$).

- A lattice is modular if it satisfies the quasi-identity

$$
x \geq z \Rightarrow x \wedge(y \vee z)=(x \wedge y) \vee z
$$

■ This is equivalent to the identity

$$
x \wedge(y \vee(x \wedge z))=(x \wedge y) \vee(x \wedge z)
$$

■ Modularity is also self-dual. It is implied by distributivity.

- A lattice is modular (resp., distributive) iff it contains no copy of N_{5} (resp., M_{3} and N_{5}).

Examples of lattices

Larders and
CLL

- The powerset $\mathfrak{P}(X)$ of a set X, with \subseteq.

Lattices, congruences, varieties

Critical points
between
varieties
General
settings; CLL
Coordinatizatio of lattices by regular rings

Non-
coordinatizable SCMLs

Lattices
without
CPCP-
extension

Examples of lattices

Larders and
CLL

■ The powerset $\mathfrak{P}(X)$ of a set X, with \subseteq. There, $x \vee y=x \cup y, x \wedge y=x \cap y$; distributive. Every distributive lattice is contained in some $\mathfrak{P}(X)$ (Birkhoff, Stone).

Examples of lattices

Larders and

■ The powerset $\mathfrak{P}(X)$ of a set X, with \subseteq. There, $x \vee y=x \cup y, x \wedge y=x \cap y$; distributive. Every distributive lattice is contained in some $\mathfrak{P}(X)$ (Birkhoff, Stone).
■ $\mathbf{C}(X, \mathbb{R}), X$ a topological space, with $f \leq g$ iff $f(x) \leq g(x) \forall x \in X$. Then $(f \vee g)(x)=\max \{f(x), g(x)\}$, $(f \wedge g)(x)=\min \{f(x), g(x)\}$. Distributive.

Examples of lattices

Larders and
■ The powerset $\mathfrak{P}(X)$ of a set X, with \subseteq. There, $x \vee y=x \cup y, x \wedge y=x \cap y$; distributive. Every distributive lattice is contained in some $\mathfrak{P}(X)$ (Birkhoff, Stone).
■ $\mathbf{C}(X, \mathbb{R}), X$ a topological space, with $f \leq g$ iff $f(x) \leq g(x) \forall x \in X$. Then $(f \vee g)(x)=\max \{f(x), g(x)\}$, $(f \wedge g)(x)=\min \{f(x), g(x)\}$. Distributive.

- For a group G,

Examples of lattices

Larders and

■ The powerset $\mathfrak{P}(X)$ of a set X, with \subseteq. There, $x \vee y=x \cup y, x \wedge y=x \cap y$; distributive. Every distributive lattice is contained in some $\mathfrak{P}(X)$ (Birkhoff, Stone).
$■ \mathbf{C}(X, \mathbb{R}), X$ a topological space, with $f \leq g$ iff $f(x) \leq g(x) \forall x \in X$. Then $(f \vee g)(x)=\max \{f(x), g(x)\}$, $(f \wedge g)(x)=\min \{f(x), g(x)\}$. Distributive.

- For a group G,

NSub $G:=\{X \mid X$ is a normal subgroup of $G\}$.

Examples of lattices

Larders and

■ The powerset $\mathfrak{P}(X)$ of a set X, with \subseteq. There, $x \vee y=x \cup y, x \wedge y=x \cap y$; distributive. Every distributive lattice is contained in some $\mathfrak{P}(X)$ (Birkhoff, Stone).
$■ \mathbf{C}(X, \mathbb{R}), X$ a topological space, with $f \leq g$ iff $f(x) \leq g(x) \forall x \in X$. Then $(f \vee g)(x)=\max \{f(x), g(x)\}$, $(f \wedge g)(x)=\min \{f(x), g(x)\}$. Distributive.

- For a group G,

NSub $G:=\{X \mid X$ is a normal subgroup of $G\}$.
Modular.

Examples of lattices

Larders and

■ The powerset $\mathfrak{P}(X)$ of a set X, with \subseteq. There, $x \vee y=x \cup y, x \wedge y=x \cap y$; distributive. Every distributive lattice is contained in some $\mathfrak{P}(X)$ (Birkhoff, Stone).
$■ \mathbf{C}(X, \mathbb{R}), X$ a topological space, with $f \leq g$ iff $f(x) \leq g(x) \forall x \in X$. Then $(f \vee g)(x)=\max \{f(x), g(x)\}$, $(f \wedge g)(x)=\min \{f(x), g(x)\}$. Distributive.

- For a group G,

NSub $G:=\{X \mid X$ is a normal subgroup of $G\}$.
Modular. If "normal" removed, then no identity.

Examples of lattices

Larders and

■ The powerset $\mathfrak{P}(X)$ of a set X, with \subseteq. There, $x \vee y=x \cup y, x \wedge y=x \cap y$; distributive. Every distributive lattice is contained in some $\mathfrak{P}(X)$ (Birkhoff, Stone).
$■ \mathbf{C}(X, \mathbb{R}), X$ a topological space, with $f \leq g$ iff $f(x) \leq g(x) \forall x \in X$. Then $(f \vee g)(x)=\max \{f(x), g(x)\}$, $(f \wedge g)(x)=\min \{f(x), g(x)\}$. Distributive.

- For a group G,

$$
\text { NSub } G:=\{X \mid X \text { is a normal subgroup of } G\} .
$$

Modular. If "normal" removed, then no identity.
■ For a module M over a ring R,

Examples of lattices

Larders and CLL

■ The powerset $\mathfrak{P}(X)$ of a set X, with \subseteq. There, $x \vee y=x \cup y, x \wedge y=x \cap y$; distributive. Every distributive lattice is contained in some $\mathfrak{P}(X)$ (Birkhoff, Stone).
$■ \mathbf{C}(X, \mathbb{R}), X$ a topological space, with $f \leq g$ iff $f(x) \leq g(x) \forall x \in X$. Then $(f \vee g)(x)=\max \{f(x), g(x)\}$, $(f \wedge g)(x)=\min \{f(x), g(x)\}$. Distributive.

- For a group G,

$$
\text { NSub } G:=\{X \mid X \text { is a normal subgroup of } G\} .
$$

Modular. If "normal" removed, then no identity.
■ For a module M over a ring R,

$$
\text { Sub } M:=\{X \mid X \text { is a submodule of } M\} .
$$

Examples of lattices

Larders and CLL

■ The powerset $\mathfrak{P}(X)$ of a set X, with \subseteq. There, $x \vee y=x \cup y, x \wedge y=x \cap y$; distributive. Every distributive lattice is contained in some $\mathfrak{P}(X)$ (Birkhoff, Stone).
$■ \mathbf{C}(X, \mathbb{R}), X$ a topological space, with $f \leq g$ iff $f(x) \leq g(x) \forall x \in X$. Then $(f \vee g)(x)=\max \{f(x), g(x)\}$, $(f \wedge g)(x)=\min \{f(x), g(x)\}$. Distributive.

- For a group G,

$$
\text { NSub } G:=\{X \mid X \text { is a normal subgroup of } G\} .
$$

Modular. If "normal" removed, then no identity.
■ For a module M over a ring R,

$$
\text { Sub } M:=\{X \mid X \text { is a submodule of } M\} .
$$

Modular. Particular case: subspace lattices of vector spaces.

Further examples of lattices

Larders and
CLL

- The lattice $\mathrm{Eq} X$ of all equivalence relations on a set X, ordered by \subseteq. Not modular, no identity (X infinite).

Further examples of lattices

Larders and
CLL

■ The lattice $\mathrm{Eq} X$ of all equivalence relations on a set X, ordered by \subseteq. Not modular, no identity (X infinite).
■ For permutations α and β on $\{1, \ldots, n\}$, set

$$
\begin{aligned}
\operatorname{lnv}(\alpha) & :=\{(i, j) \mid i<j \text { and } \alpha(i)>\alpha(j)\}, \\
\alpha & \leq \beta \Longleftrightarrow \operatorname{lnv}(\alpha) \subseteq \operatorname{lnv}(\beta) .
\end{aligned}
$$

Further examples of lattices

Larders and CLL

■ The lattice Eq X of all equivalence relations on a set X, ordered by \subseteq. Not modular, no identity (X infinite).
■ For permutations α and β on $\{1, \ldots, n\}$, set

$$
\begin{aligned}
\operatorname{Inv}(\alpha) & :=\{(i, j) \mid i<j \text { and } \alpha(i)>\alpha(j)\}, \\
\alpha & \leq \beta \Longleftrightarrow \operatorname{lnv}(\alpha) \subseteq \operatorname{lnv}(\beta)
\end{aligned}
$$

We get the permutohedron on n letters. Not modular for $n \geq 3$. Any identity for all of them? Open problem.

Further examples of lattices

Larders and CLL

■ The lattice $\mathrm{Eq} X$ of all equivalence relations on a set X, ordered by \subseteq. Not modular, no identity (X infinite).
■ For permutations α and β on $\{1, \ldots, n\}$, set

$$
\begin{aligned}
\operatorname{lnv}(\alpha) & :=\{(i, j) \mid i<j \text { and } \alpha(i)>\alpha(j)\}, \\
\alpha & \leq \beta \Longleftrightarrow \operatorname{lnv}(\alpha) \subseteq \operatorname{lnv}(\beta) .
\end{aligned}
$$

We get the permutohedron on n letters. Not modular for $n \geq 3$. Any identity for all of them? Open problem.

- A subset X in a poset P is order-convex if $x \leq y \leq z$ and $x, z \in X$ implies that $y \in X$.

Further examples of lattices

Larders and CLL

■ The lattice $\mathrm{Eq} X$ of all equivalence relations on a set X, ordered by \subseteq. Not modular, no identity (X infinite).
■ For permutations α and β on $\{1, \ldots, n\}$, set

$$
\begin{aligned}
\operatorname{lnv}(\alpha) & :=\{(i, j) \mid i<j \text { and } \alpha(i)>\alpha(j)\}, \\
\alpha & \leq \beta \Longleftrightarrow \operatorname{lnv}(\alpha) \subseteq \operatorname{lnv}(\beta) .
\end{aligned}
$$

We get the permutohedron on n letters. Not modular for $n \geq 3$. Any identity for all of them? Open problem.
\square A subset X in a poset P is order-convex if $x \leq y \leq z$ and $x, z \in X$ implies that $y \in X$.

$$
\mathbf{C o}(P):=\{X \subseteq P \mid X \text { is order-convex }\}, \quad \text { with } \subseteq
$$

Further examples of lattices

■ The lattice $\mathrm{Eq} X$ of all equivalence relations on a set X, ordered by \subseteq. Not modular, no identity (X infinite).
■ For permutations α and β on $\{1, \ldots, n\}$, set

$$
\begin{aligned}
\operatorname{lnv}(\alpha) & :=\{(i, j) \mid i<j \text { and } \alpha(i)>\alpha(j)\}, \\
\alpha & \leq \beta \Longleftrightarrow \operatorname{lnv}(\alpha) \subseteq \operatorname{lnv}(\beta) .
\end{aligned}
$$

We get the permutohedron on n letters. Not modular for $n \geq 3$. Any identity for all of them? Open problem.
■ A subset X in a poset P is order-convex if $x \leq y \leq z$ and $x, z \in X$ implies that $y \in X$.

$$
\mathbf{C o}(P):=\{X \subseteq P \mid X \text { is order-convex }\}, \quad \text { with } \subseteq
$$

Not modular as a rule, but has other identities, such as

Further examples of lattices

■ The lattice $\mathrm{Eq} X$ of all equivalence relations on a set X, ordered by \subseteq. Not modular, no identity (X infinite).
■ For permutations α and β on $\{1, \ldots, n\}$, set

$$
\begin{aligned}
\operatorname{lnv}(\alpha) & :=\{(i, j) \mid i<j \text { and } \alpha(i)>\alpha(j)\}, \\
\alpha & \leq \beta \Longleftrightarrow \operatorname{lnv}(\alpha) \subseteq \operatorname{lnv}(\beta) .
\end{aligned}
$$

We get the permutohedron on n letters. Not modular for $n \geq 3$. Any identity for all of them? Open problem.

- A subset X in a poset P is order-convex if $x \leq y \leq z$ and $x, z \in X$ implies that $y \in X$.

$$
\mathbf{C o}(P):=\{X \subseteq P \mid X \text { is order-convex }\}, \quad \text { with } \subseteq .
$$

Not modular as a rule, but has other identities, such as

$$
\begin{aligned}
& x \wedge\left(x_{0} \vee x_{1}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(x_{0} \vee x_{2}\right) \\
= & \left(x \wedge x_{0} \wedge\left(x_{1} \vee x_{2}\right)\right) \vee\left(x \wedge x_{1} \wedge\left(x_{0} \vee x_{2}\right)\right) \vee\left(x \wedge x_{2} \wedge\left(x_{0} \vee x_{1}\right)\right) .
\end{aligned}
$$

Variety is the spice of life

Larders and
CLL

General

A variety is the class of all structures (here, lattices) that satisfy a given set of identities.

Variety is the spice of life

A variety is the class of all structures (here, lattices) that satisfy a given set of identities. For example, \mathcal{L} is the variety of all lattices, \mathcal{M} is the variety of all modular lattices, \mathcal{N}_{5} is the variety generated by N_{5}, \ldots

Variety is the spice of life

A variety is the class of all structures (here, lattices) that satisfy a given set of identities. For example, \mathcal{L} is the variety of all lattices, \mathcal{M} is the variety of all modular lattices, \mathcal{N}_{5} is the variety generated by N_{5}, \ldots. Finitely generated variety of lattices: generated by a finite lattice.

Variety is the spice of life

Larders and CLL

A variety is the class of all structures (here, lattices) that satisfy a given set of identities. For example, \mathcal{L} is the variety of all lattices, \mathcal{M} is the variety of all modular lattices, \mathcal{N}_{5} is the variety generated by N_{5}, \ldots. Finitely generated variety of lattices: generated by a finite lattice.
(Very) partial picture of the lattice of all varieties of lattices:

Congruences, congruence lattices

■ Congruence of a lattice L : equivalence relation θ on L, compatible with both \vee and \wedge operations:

Congruences, congruence lattices

Larders and
CLL

■ Congruence of a lattice L : equivalence relation θ on L, compatible with both \vee and \wedge operations:

$$
x \equiv_{\theta} y \Longrightarrow\left(x \vee z \equiv_{\theta} y \vee z \text { and } x \wedge z \equiv_{\theta} y \wedge z\right)
$$

Congruences, congruence lattices

Larders and
CLL

■ Congruence of a lattice L : equivalence relation θ on L, compatible with both \vee and \wedge operations:

$$
x \equiv_{\theta} y \Longrightarrow\left(x \vee z \equiv_{\theta} y \vee z \text { and } x \wedge z \equiv_{\theta} y \wedge z\right)
$$

Then set Con $L:=\{\theta \mid \theta$ is a congruence of $L\}$.

Congruences, congruence lattices

Larders and
CLL

■ Congruence of a lattice L : equivalence relation θ on L, compatible with both \vee and \wedge operations:

$$
x \equiv_{\theta} y \Longrightarrow\left(x \vee z \equiv_{\theta} y \vee z \text { and } x \wedge z \equiv_{\theta} y \wedge z\right)
$$

Then set $\operatorname{Con} L:=\{\theta \mid \theta$ is a congruence of $L\}$.
■ Ordered by $\alpha \leq \beta \Longleftrightarrow \alpha \subseteq \beta$.

Congruences, congruence lattices

■ Congruence of a lattice L : equivalence relation θ on L, compatible with both \vee and \wedge operations:

$$
x \equiv_{\theta} y \Longrightarrow\left(x \vee z \equiv_{\theta} y \vee z \text { and } x \wedge z \equiv_{\theta} y \wedge z\right)
$$

Then set Con $L:=\{\theta \mid \theta$ is a congruence of $L\}$.
■ Ordered by $\alpha \leq \beta \Longleftrightarrow \alpha \subseteq \beta$. Then Con L, under \subseteq, is an "algebraic" lattice (nothing special about lattices here). It is also a distributive lattice.

Congruences, congruence lattices

- Congruence of a lattice L : equivalence relation θ on L, compatible with both \vee and \wedge operations:

$$
x \equiv_{\theta} y \Longrightarrow\left(x \vee z \equiv_{\theta} y \vee z \text { and } x \wedge z \equiv_{\theta} y \wedge z\right)
$$

Then set Con $L:=\{\theta \mid \theta$ is a congruence of $L\}$.
■ Ordered by $\alpha \leq \beta \Longleftrightarrow \alpha \subseteq \beta$. Then Con L, under \subseteq, is an "algebraic" lattice (nothing special about lattices here). It is also a distributive lattice. This is very particular to lattices.

Congruences, congruence lattices

- Congruence of a lattice L : equivalence relation θ on L,

■ Ordered by $\alpha \leq \beta \Longleftrightarrow \alpha \subseteq \beta$. Then Con L, under \subseteq, is an "algebraic" lattice (nothing special about lattices here). It is also a distributive lattice. This is very particular to lattices.

■ Finitely generated (=compact) congruence: least congruence that identifies x_{1} with y_{1}, \ldots, x_{n} with y_{n} (where $x_{i}, y_{i} \in L$ given).

Congruence classes; critical points

- Congruence class of a variety \mathcal{V} : Con $\mathcal{V}:=$ class of all lattices isomorphic to some Con L, where $L \in \mathcal{V}$. Fully understood only for $\mathcal{V}=$ either \mathcal{T} or \mathcal{D}.

Congruence classes; critical points

■ Congruence class of a variety \mathcal{V} : Con $\mathcal{V}:=c l a s s$ of all lattices isomorphic to some Con L, where $L \in \mathcal{V}$. Fully understood only for $\mathcal{V}=$ either \mathcal{T} or \mathcal{D}.
■ Critical point $\operatorname{crit}(\mathcal{A} ; \mathcal{B})$, for varieties \mathcal{A} and \mathcal{B} : least possible number of compact elements of a member of $\operatorname{Con} \mathcal{A}$ not in Con \mathcal{B}.

Congruence classes; critical points

- Congruence class of a variety \mathcal{V} : Con $\mathcal{V}:=$ class of all lattices isomorphic to some Con L, where $L \in \mathcal{V}$. Fully understood only for $\mathcal{V}=$ either \mathcal{T} or \mathcal{D}.
■ Critical point $\operatorname{crit}(\mathcal{A} ; \mathcal{B})$, for varieties \mathcal{A} and \mathcal{B} : least possible number of compact elements of a member of $\operatorname{Con} \mathcal{A}$ not in Con \mathcal{B}.

■ Valid for varieties of other structures than lattices.

Congruence classes; critical points

■ Congruence class of a variety \mathcal{V} : Con $\mathcal{V}:=$ class of all lattices isomorphic to some Con L, where $L \in \mathcal{V}$. Fully understood only for $\mathcal{V}=$ either \mathcal{T} or \mathcal{D}.
■ Critical point $\operatorname{crit}(\mathcal{A} ; \mathcal{B})$, for varieties \mathcal{A} and \mathcal{B} : least possible number of compact elements of a member of $\operatorname{Con} \mathcal{A}$ not in Con \mathcal{B}.

■ Valid for varieties of other structures than lattices.
■ Measures the inclusion defect of $\operatorname{Con} \mathcal{A}$ into $\operatorname{Con} \mathcal{B}$. The larger the critical point, the more $\operatorname{Con} \mathcal{A}$ is contained in Con \mathcal{B}.

Congruence classes; critical points

■ Congruence class of a variety \mathcal{V} : Con $\mathcal{V}:=$ class of all lattices isomorphic to some Con L, where $L \in \mathcal{V}$. Fully understood only for $\mathcal{V}=$ either \mathcal{T} or \mathcal{D}.

- Critical point $\operatorname{crit}(\mathcal{A} ; \mathcal{B})$, for varieties \mathcal{A} and \mathcal{B} : least possible number of compact elements of a member of $\operatorname{Con} \mathcal{A}$ not in $\operatorname{Con} \mathcal{B}$.

■ Valid for varieties of other structures than lattices.
■ Measures the inclusion defect of $\operatorname{Con} \mathcal{A}$ into $\operatorname{Con} \mathcal{B}$. The larger the critical point, the more $\operatorname{Con} \mathcal{A}$ is contained in Con \mathcal{B}.

- Example: $\boldsymbol{c r i t}$ (groups, lattices) $=5$. On the other hand, $\operatorname{crit}\left(\right.$ lattices, groups) $=\aleph_{2}$ (Růžička, Tůma, and W.).

Critical points are difficult to calculate

Larders and
CLL
Notation: $\operatorname{Var}(L):=$ variety generated by L. It is the class of all lattices satisfying all identities satisfied by L.

Lattices,
congruences varieties

Critical points
between
varieties
General
settings; CLL
Coordinatizatio of lattices by regular rings

Non
coordinatizable
SCMLs
Lattices
without
CPCP-
extension

Critical points are difficult to calculate

Larders and
CLL
Notation: $\operatorname{Var}(L):=$ variety generated by L. It is the class of all lattices satisfying all identities satisfied by L.

Theorem (Gillibert 2007)

Critical points are difficult to calculate

Notation: $\operatorname{Var}(L):=$ variety generated by L. It is the class of all lattices satisfying all identities satisfied by L.

Theorem (Gillibert 2007)

For any finite lattices A and B with $A \notin \operatorname{Var}(B)$, either $\operatorname{crit}(\operatorname{Var}(A) ; \operatorname{Var}(B))$ is finite or $\mathbf{c r i t}(\operatorname{Var}(A) ; \operatorname{Var}(B))=\aleph_{n}$ for some n.

Critical points are difficult to calculate

Notation: $\operatorname{Var}(L):=$ variety generated by L. It is the class of all lattices satisfying all identities satisfied by L.

Theorem (Gillibert 2007)

For any finite lattices A and B with $A \notin \operatorname{Var}(B)$, either $\operatorname{crit}(\operatorname{Var}(A) ; \operatorname{Var}(B))$ is finite or $\mathbf{c r i t}(\operatorname{Var}(A) ; \operatorname{Var}(B))=\aleph_{n}$ for some n.

Open problem:

Critical points are difficult to calculate

Notation: $\operatorname{Var}(L):=$ variety generated by L. It is the class of all lattices satisfying all identities satisfied by L.

Theorem (Gillibert 2007)

For any finite lattices A and B with $A \notin \operatorname{Var}(B)$, either $\operatorname{crit}(\operatorname{Var}(A) ; \operatorname{Var}(B))$ is finite or $\mathbf{c r i t}(\operatorname{Var}(A) ; \operatorname{Var}(B))=\aleph_{n}$ for some n.

Open problem:
Let $\gamma(A, B):=$ least n such that $\operatorname{crit}(\operatorname{Var}(A) ; \operatorname{Var}(B)) \leq \aleph_{n}$, for finite lattices A and B. Is γ recursive?

Critical points are difficult to calculate

Notation: $\operatorname{Var}(L):=$ variety generated by L. It is the class of all lattices satisfying all identities satisfied by L.

Theorem (Gillibert 2007)

For any finite lattices A and B with $A \notin \operatorname{Var}(B)$, either $\operatorname{crit}(\operatorname{Var}(A) ; \operatorname{Var}(B))$ is finite or $\operatorname{crit}(\operatorname{Var}(A) ; \operatorname{Var}(B))=\aleph_{n}$ for some n.

Open problem:
Let $\gamma(A, B):=$ least n such that $\operatorname{crit}(\operatorname{Var}(A) ; \operatorname{Var}(B)) \leq \aleph_{n}$, for finite lattices A and B. Is γ recursive?

Examples were known with $n=0$ and $n=2$ (M. Ploščica).

Critical points are difficult to calculate

Notation: $\operatorname{Var}(L):=$ variety generated by L. It is the class of all lattices satisfying all identities satisfied by L.

Theorem (Gillibert 2007)

For any finite lattices A and B with $A \notin \operatorname{Var}(B)$, either $\operatorname{crit}(\operatorname{Var}(A) ; \operatorname{Var}(B))$ is finite or $\operatorname{crit}(\operatorname{Var}(A) ; \operatorname{Var}(B))=\aleph_{n}$ for some n.

Open problem:
Let $\gamma(A, B):=$ least n such that $\operatorname{crit}(\operatorname{Var}(A) ; \operatorname{Var}(B)) \leq \aleph_{n}$, for finite lattices A and B. Is γ recursive?

Examples were known with $n=0$ and $n=2$ (M. Ploščica). Later, P. Gillibert found an example with $n=1$.

Critical points are difficult to calculate

Lattices,

Notation: $\operatorname{Var}(L):=$ variety generated by L. It is the class of all lattices satisfying all identities satisfied by L.

Theorem (Gillibert 2007)

For any finite lattices A and B with $A \notin \operatorname{Var}(B)$, either $\operatorname{crit}(\operatorname{Var}(A) ; \operatorname{Var}(B))$ is finite or $\operatorname{crit}(\operatorname{Var}(A) ; \operatorname{Var}(B))=\aleph_{n}$ for some n.

Open problem:
Let $\gamma(A, B):=$ least n such that $\operatorname{crit}(\operatorname{Var}(A) ; \operatorname{Var}(B)) \leq \aleph_{n}$, for finite lattices A and B. Is γ recursive?

Examples were known with $n=0$ and $n=2$ (M. Ploščica).
Later, P. Gillibert found an example with $n=1$. Recently, P. Gillibert proved that $n \in\{0,1,2\}$.

Lifting an arrow between congruence lattices

Larders and
CLL

Lattices,
congruences, varieties

Critical points
between
varieties
General
settings; CLL
Coordinatizatio of lattices by regular rings

Non
coordinatizable SCMLs

Lattices
without
CPCP-
extension

■ We are given finite (or, more generally, algebraic) distributive lattices S and T, and a ($\vee, 0$)-homomorphism $\varphi: S \rightarrow T$.

Lifting an arrow between congruence lattices

Lattices,
congruences, varieties

Critical points
between
varieties
General settings; CLL

Coordinatization
of lattices by
regular rings
Non-
coordinatizable SCMLs

■ We are given finite (or, more generally, algebraic) distributive lattices S and T, and a ($\vee, 0$)-homomorphism $\varphi: S \rightarrow T$.

- We want to represent $\varphi: S \rightarrow T$ as

Con f : Con $A \rightarrow$ Con B, for lattices A and B [in a given variety] and a lattice homomorphism $f: A \rightarrow B$.

Lifting an arrow between congruence lattices

■ We are given finite (or, more generally, algebraic) distributive lattices S and T, and a ($\vee, 0$)-homomorphism $\varphi: S \rightarrow T$.

- We want to represent $\varphi: S \rightarrow T$ as Con f : Con $A \rightarrow$ Con B, for lattices A and B [in a given variety] and a lattice homomorphism $f: A \rightarrow B$.
- Technical prerequisite: the assignment $A \mapsto C$ on A can also be nicely extended to homomorphisms (i.e., defining Conf).

Lifting an arrow between congruence lattices

■ We are given finite (or, more generally, algebraic) distributive lattices S and T, and a ($\vee, 0$)-homomorphism $\varphi: S \rightarrow T$.
■ We want to represent $\varphi: S \rightarrow T$ as Con f : Con $A \rightarrow$ Con B, for lattices A and B [in a given variety] and a lattice homomorphism $f: A \rightarrow B$.

- Technical prerequisite: the assignment $A \mapsto C$ on A can also be nicely extended to homomorphisms (i.e., defining $\operatorname{Con} f)$. Means that $A \mapsto \operatorname{Con} A, f \mapsto \operatorname{Con} f$ is a functor.

Lifting an arrow between congruence lattices

■ We are given finite (or, more generally, algebraic) distributive lattices S and T, and a ($\vee, 0$)-homomorphism $\varphi: S \rightarrow T$.
■ We want to represent $\varphi: S \rightarrow T$ as Con f : Con $A \rightarrow$ Con B, for lattices A and B [in a given variety] and a lattice homomorphism $f: A \rightarrow B$.

- Technical prerequisite: the assignment $A \mapsto C$ on A can also be nicely extended to homomorphisms (i.e., defining $\operatorname{Con} f$). Means that $A \mapsto \operatorname{Con} A, f \mapsto \operatorname{Con} f$ is a functor. Straightforward.

Lifting an arrow (continued)

Larders and
CLL

Lattices,
congruences, varieties

Critical points
between
varieties
General
settings; CLL
Coordinatizatio of lattices by regular rings

Non-
coordinatizable
SCMLs
Lattices
without
CPCP-
extension

■ Back to the problem with one arrow: we need lattices A and B, a homomorphism $f: A \rightarrow B$, and a "commutative diagram"

Lifting an arrow (continued)

Larders and
CLL

Lattices,

■ Back to the problem with one arrow: we need lattices A and B, a homomorphism $f: A \rightarrow B$, and a "commutative diagram"

■ We say that $f: A \rightarrow B$ lifts $\varphi: S \rightarrow T$.

Lifting an arrow (continued)

- Back to the problem with one arrow: we need lattices A and B, a homomorphism $f: A \rightarrow B$, and a "commutative diagram"

■ We say that $f: A \rightarrow B$ lifts $\varphi: S \rightarrow T$.

- Lifting problems: can also be defined for more complex diagrams of finite distributive lattices and ($\vee, 0$)-homomorphisms.

Gillibert's starting point for the critical point \aleph_{1}

Larders and
CLL

Lattices, congruences varieties

Critical points
between
varieties
General
settings; CLL
Coordinatizatio of lattices by regular rings

Non-
coordinatizable SCMLs

Lattices
without
CPCP-
extension

Guess the finite lattices A and B :

Gillibert's starting point for the critical point \aleph_{1}

Guess the finite lattices A and B :

How Gillibert proceeds for the critical point \aleph_{1}

Larders and
CLL

- Guess a finite diagram, of finite distributive lattices and $(\checkmark, 0)$-homomorphisms:

Lattices,
congruences varieties

Critical points
between
varieties
General
settings; CLL
Coordinatizatio of lattices by regular rings

Non-
coordinatizable
SCMLs
Lattices
without
CPCP-
extension

How Gillibert proceeds for the critical point \aleph_{1}

Larders and
CLL
■ Guess a finite diagram, of finite distributive lattices and ($\vee, 0$)-homomorphisms:

How Gillibert proceeds for the critical point \aleph_{1}

Larders and CLL

■ Guess a finite diagram, of finite distributive lattices and $(\vee, 0)$-homomorphisms:

where $\varphi_{1}(x, y, z, t):=(x \vee y, z \vee t)$, $\varphi_{2}(x, y, z, t):=(x \vee t, y \vee z), \psi(x, y):=x \vee y$.

How Gillibert proceeds for the critical point \aleph_{1}

Larders and CLL

■ Guess a finite diagram, of finite distributive lattices and ($\vee, 0$)-homomorphisms:

where $\varphi_{1}(x, y, z, t):=(x \vee y, z \vee t)$, $\varphi_{2}(x, y, z, t):=(x \vee t, y \vee z), \psi(x, y):=x \vee y$.

- Prove that the diagram can be lifted in $\operatorname{Var}(A)$, but not in $\operatorname{Var}(B)$. Purely combinatorial (computational), once A, B, and the diagram have been guessed.

How Gillibert concludes (critical point \aleph_{1})

■ Prove a "condensation principle", that creates a "condensate" of the finite diagram above, which is a big object (algebraic distributive lattice with \aleph_{1} compact elements).

How Gillibert concludes (critical point \aleph_{1})

■ Prove a "condensation principle", that creates a "condensate" of the finite diagram above, which is a big object (algebraic distributive lattice with \aleph_{1} compact elements).
■ Any good (lifting) property of the big object (condensate) would be inherited by the small diagram. As the small diagram is bad, so is the big object.

How Gillibert concludes (critical point \aleph_{1})

■ Prove a "condensation principle", that creates a "condensate" of the finite diagram above, which is a big object (algebraic distributive lattice with \aleph_{1} compact elements).
■ Any good (lifting) property of the big object (condensate) would be inherited by the small diagram. As the small diagram is bad, so is the big object.

- Why \aleph_{1} ? This depends of the shape of the diagram (here, a square, $\{0,1\}^{2}$).

How Gillibert concludes (critical point \aleph_{1})

■ Prove a "condensation principle", that creates a "condensate" of the finite diagram above, which is a big object (algebraic distributive lattice with \aleph_{1} compact elements).
■ Any good (lifting) property of the big object (condensate) would be inherited by the small diagram. As the small diagram is bad, so is the big object.
■ Why \aleph_{1} ? This depends of the shape of the diagram (here, a square, $\{0,1\}^{2}$).
■ The "condensation principle" above has been subsequently set into a more general, categorical, framework.

General categorical settings

Larders and
CLL

Lattices,

congruences, varieties

Critical points
between
varieties
General
settings; CLL
Coordinatizatio
of lattices by
regular rings
Non-
coordinatizable
SCMLs
Lattices
without
CPCP-
extension

We are given categories $\mathcal{A}, \mathcal{B}, \mathcal{S}$ together with functors $\Phi: \mathcal{A} \rightarrow \mathcal{S}$ and $\Psi: \mathcal{B} \rightarrow \mathcal{S}$.

General categorical settings

Larders and
CLL

Lattices

General settings; CLL

Coordinatizatio of lattices by regular rings

Non-
coordinatizable SCMLs

Lattices
without
CPCP-
extension

We are given categories $\mathcal{A}, \mathcal{B}, \mathcal{S}$ together with functors $\Phi: \mathcal{A} \rightarrow \mathcal{S}$ and $\Psi: \mathcal{B} \rightarrow \mathcal{S}$. We are trying to find a functor $\Gamma: \mathcal{A} \rightarrow \mathcal{B}$ such that $\Phi(A) \cong \Psi \Gamma(A)$, naturally in \mathcal{A}, for "many" (ideally, all) $A \in \mathcal{A}$.

General categorical settings

Larders and
CLL

Lattices,

We are given categories $\mathcal{A}, \mathcal{B}, \mathcal{S}$ together with functors $\Phi: \mathcal{A} \rightarrow \mathcal{S}$ and $\Psi: \mathcal{B} \rightarrow \mathcal{S}$. We are trying to find a functor $\Gamma: \mathcal{A} \rightarrow \mathcal{B}$ such that $\Phi(A) \cong \Psi \Gamma(A)$, naturally in \mathcal{A}, for "many" (ideally, all) $A \in \mathcal{A}$.

General categorical settings

Larders and
CLL

Lattices,

We are given categories $\mathcal{A}, \mathcal{B}, \mathcal{S}$ together with functors $\Phi: \mathcal{A} \rightarrow \mathcal{S}$ and $\Psi: \mathcal{B} \rightarrow \mathcal{S}$. We are trying to find a functor $\Gamma: \mathcal{A} \rightarrow \mathcal{B}$ such that $\Phi(A) \cong \Psi \Gamma(A)$, naturally in \mathcal{A}, for "many" (ideally, all) $A \in \mathcal{A}$.

General categorical settings

We are given categories $\mathcal{A}, \mathcal{B}, \mathcal{S}$ together with functors $\Phi: \mathcal{A} \rightarrow \mathcal{S}$ and $\Psi: \mathcal{B} \rightarrow \mathcal{S}$. We are trying to find a functor $\Gamma: \mathcal{A} \rightarrow \mathcal{B}$ such that $\Phi(A) \cong \Psi \Gamma(A)$, naturally in \mathcal{A}, for "many" (ideally, all) $A \in \mathcal{A}$.

Hence we need an assumption of the form "for many $A \in \mathcal{A}$, there exists $B \in \mathcal{B}$ such that $\Phi(A) \cong \Psi(B)$ ".

General categorical settings

We are given categories $\mathcal{A}, \mathcal{B}, \mathcal{S}$ together with functors $\Phi: \mathcal{A} \rightarrow \mathcal{S}$ and $\Psi: \mathcal{B} \rightarrow \mathcal{S}$. We are trying to find a functor $\Gamma: \mathcal{A} \rightarrow \mathcal{B}$ such that $\Phi(A) \cong \Psi \Gamma(A)$, naturally in \mathcal{A}, for "many" (ideally, all) $A \in \mathcal{A}$.

Hence we need an assumption of the form "for many $A \in \mathcal{A}$, there exists $B \in \mathcal{B}$ such that $\Phi(A) \cong \Psi(B)$ ". Ask for $\Gamma: A \mapsto B$ to be a functor (at least on a large enough subcategory of \mathcal{A}).

Larders

Larders and
CLL

Lattices,

congruences,
varieties
Critical points
between
varieties
General settings; CLL

Coordinatizatio of lattices by regular rings

Non-
coordinatizable
SCMLs
Lattices
without
CPCP-
extension

■ For an infinite regular cardinal λ, a λ-larder consists of categories $\mathcal{A}, \mathcal{B}, \mathcal{S}$ with functors $\Phi: \mathcal{A} \rightarrow \mathcal{S}$ and $\Psi: \mathcal{B} \rightarrow \mathcal{S}$, together with a bunch of add-ons:

Larders

■ For an infinite regular cardinal λ, a λ-larder consists of categories $\mathcal{A}, \mathcal{B}, \mathcal{S}$ with functors $\Phi: \mathcal{A} \rightarrow \mathcal{S}$ and $\Psi: \mathcal{B} \rightarrow \mathcal{S}$, together with a bunch of add-ons:

- Full subcategories $\mathcal{A}^{\dagger} \subseteq \mathcal{A}, \mathcal{B}^{\dagger} \subseteq \mathcal{B}$ of "small" objects, plus a subcategory $\mathcal{S} \Rightarrow \subseteq \mathcal{S}$ (the "double arrows")...

Larders

■ For an infinite regular cardinal λ, a λ-larder consists of categories $\mathcal{A}, \mathcal{B}, \mathcal{S}$ with functors $\Phi: \mathcal{A} \rightarrow \mathcal{S}$ and $\Psi: \mathcal{B} \rightarrow \mathcal{S}$, together with a bunch of add-ons:

- Full subcategories $\mathcal{A}^{\dagger} \subseteq \mathcal{A}, \mathcal{B}^{\dagger} \subseteq \mathcal{B}$ of "small" objects, plus a subcategory $\mathcal{S} \Rightarrow \subseteq \mathcal{S}$ (the "double arrows")...
■ ...satisfying lots of extra properties (preservation properties related to colimits, plus an analogue of the Löwenheim-Skolem Theorem).

The Condensate Lifting Lemma (CLL)

Larders and
CLL
The statement of CLL is about as follows.
congruences, varieties

Critical points
between
varieties
General
settings; CLL
Coordinatizatio
of lattices by
regular rings
Non-
coordinatizable
SCMLs
Lattices
without
CPCP-
extension

The Condensate Lifting Lemma (CLL)

Larders and
CLL

Lattices,

congruences varieties

Critical points
between
varieties
General
settings; CLL
Coordinatizatio
of lattices by
regular rings
Non-
coordinatizable
SCMLs
Lattices
without
CPCP-
extension

The statement of CLL is about as follows.
Theorem (Gillibert and W., 2009)

The Condensate Lifting Lemma (CLL)

The statement of CLL is about as follows.

Theorem (Gillibert and W., 2009)

Let λ be an infinite cardinal and let P be a poset with a " λ-lifter" (X, \mathbf{X}), let $\left(\mathcal{A}, \mathcal{B}, \mathcal{S}, \mathcal{A}^{\dagger}, \mathcal{B}^{\dagger}, \mathcal{S} \Rightarrow, \Phi, \Psi\right)$ be a λ-larder, let \vec{A} be a P-indexed diagram in \mathcal{A} such that $A_{p} \in \mathcal{A}^{\dagger}$ for each non-maximal $p \in P$, let $B \in \mathcal{B}$ a λ-continuous directed colimit of a diagram in \mathcal{B}^{\dagger}, and let $\chi: \Psi(B) \Rightarrow \Phi(\mathbf{F}(X) \otimes \vec{A})$. Then there are a P-indexed diagram \vec{B} of subobjects of B in \mathcal{B}^{\dagger} and a double arrow $\vec{\chi}: \Psi \vec{B} \Rightarrow \Phi \vec{A}$.

The Condensate Lifting Lemma (CLL)

The statement of CLL is about as follows.

Theorem (Gillibert and W., 2009)

Let λ be an infinite cardinal and let P be a poset with a " λ-lifter" (X, \mathbf{X}), let $\left(\mathcal{A}, \mathcal{B}, \mathcal{S}, \mathcal{A}^{\dagger}, \mathcal{B}^{\dagger}, \mathcal{S} \Rightarrow, \Phi, \Psi\right)$ be a λ-larder, let \vec{A} be a P-indexed diagram in \mathcal{A} such that $A_{p} \in \mathcal{A}^{\dagger}$ for each non-maximal $p \in P$, let $B \in \mathcal{B}$ a λ-continuous directed colimit of a diagram in \mathcal{B}^{\dagger}, and let $\chi: \Psi(B) \Rightarrow \Phi(\mathbf{F}(X) \otimes \vec{A})$. Then there are a P-indexed diagram \vec{B} of subobjects of B in \mathcal{B}^{\dagger} and a double arrow $\vec{\chi}: \Psi \vec{B} \Rightarrow \Phi \vec{A}$.
In short: in order to lift the diagram $\Phi \vec{A}$ with respect to Ψ, \Rightarrow, it is sufficient to lift the object $\Phi(A)$ with respect to Ψ, \Rightarrow, where A is a suitable condensate of \vec{A} (viz. $A:=\mathbf{F}(X) \otimes \vec{A})$.

Limitations on the shape of P

Larders and
CLL

Lattices,
congruences, varieties

Critical points
between
varieties
General settings; CLL

Coordinatizatio of lattices by regular rings

Non-
coordinatizable SCMLs

Lattices
without
CPCP-
extension

- The poset P in the statement of CLL needs to be an "almost join-semilattice with zero" (or a finite disjoint union of such guys).

Limitations on the shape of P

■ The poset P in the statement of CLL needs to be an "almost join-semilattice with zero" (or a finite disjoint union of such guys).

- In particular, CLL does not apply to diagrams indexed by the following posets:

Limitations on the shape of P

- The poset P in the statement of CLL needs to be an "almost join-semilattice with zero" (or a finite disjoint union of such guys).
- In particular, CLL does not apply to diagrams indexed by the following posets:

- Too bad...

Lattices of right ideals of von Neumann regular rings

Larders and
CLL

Lattices, congruences, varieties

Critical points
between
varieties
General
settings; CLL
Coordinatizatior of lattices by regular rings

Non-
coordinatizable
SCMLs
Lattices
without
CPCP-
extension

- A ring (associative, not necessarily unital) R is (von Neumann) regular, if $(\forall x \in R)(\exists y \in R)(x y x=x)$.

Lattices of right ideals of von Neumann regular rings

Larders and
CLL

Lattices,
congruences, varieties

Critical points
between
varieties
General
settings; CLL
Coordinatizatior of lattices by regular rings

Non-
coordinatizable
SCMLs
Lattices
without
CPCP-
extension

- A ring (associative, not necessarily unital) R is (von Neumann) regular, if $(\forall x \in R)(\exists y \in R)(x y x=x)$.
- For a ring R, set $\mathbb{L}(R):=\{x R \mid x \in R\}$.

Lattices of right ideals of von Neumann regular rings

Larders and
CLL

Lattices,

General

settings; CLL

Coordinatizatior of lattices by regular rings

Non-
SCMLs

- A ring (associative, not necessarily unital) R is (von Neumann) regular, if $(\forall x \in R)(\exists y \in R)(x y x=x)$.
- For a ring R, set $\mathbb{L}(R):=\{x R \mid x \in R\}$.
- For $R:=\mathbb{Z}[\sqrt{-5}]$, the poset $(\mathbb{L}(R), \subseteq)$ is not a lattice.

Lattices of right ideals of von Neumann regular rings

- A ring (associative, not necessarily unital) R is (von Neumann) regular, if $(\forall x \in R)(\exists y \in R)(x y x=x)$.
- For a ring R, set $\mathbb{L}(R):=\{x R \mid x \in R\}$.
- For $R:=\mathbb{Z}[\sqrt{-5}]$, the poset $(\mathbb{L}(R), \subseteq)$ is not a lattice.
- If R is regular, then $\mathbb{L}(R)$ is a sectionally complemented sublattice of the right ideal lattice of R. In particular, it is modular (even Arguesian).

Lattices of right ideals of von Neumann regular rings

- A ring (associative, not necessarily unital) R is (von Neumann) regular, if $(\forall x \in R)(\exists y \in R)(x y x=x)$.
■ For a ring R, set $\mathbb{L}(R):=\{x R \mid x \in R\}$.
■ For $R:=\mathbb{Z}[\sqrt{-5}]$, the poset $(\mathbb{L}(R), \subseteq)$ is not a lattice.
- If R is regular, then $\mathbb{L}(R)$ is a sectionally complemented sublattice of the right ideal lattice of R. In particular, it is modular (even Arguesian).
■ For a homomorphism $f: R \rightarrow S$ of regular rings, the map $\mathbb{L}(f): \mathbb{L}(R) \rightarrow \mathbb{L}(S), I \mapsto f(I) S$ is a 0 -lattice homomorphism. The functor \mathbb{L} thus defined preserves directed colimits (=direct limits).

Lattices of right ideals of von Neumann regular rings

- A ring (associative, not necessarily unital) R is (von Neumann) regular, if $(\forall x \in R)(\exists y \in R)(x y x=x)$.
■ For a ring R, set $\mathbb{L}(R):=\{x R \mid x \in R\}$.
$■$ For $R:=\mathbb{Z}[\sqrt{-5}]$, the poset $(\mathbb{L}(R), \subseteq)$ is not a lattice.
■ If R is regular, then $\mathbb{L}(R)$ is a sectionally complemented sublattice of the right ideal lattice of R. In particular, it is modular (even Arguesian).
■ For a homomorphism $f: R \rightarrow S$ of regular rings, the map $\mathbb{L}(f): \mathbb{L}(R) \rightarrow \mathbb{L}(S), I \mapsto f(I) S$ is a 0 -lattice homomorphism. The functor \mathbb{L} thus defined preserves directed colimits (=direct limits).
- A lattice is coordinatizable, if it is isomorphic to $\mathbb{L}(R)$ for some regular ring R.

Non-coordinatizable 2-distributive lattices

Larders and
CLL
The identity of 2-distributivity:

$$
x \wedge\left(y_{0} \vee y_{1} \vee y_{2}\right)=\left(x \wedge\left(y_{0} \vee y_{1}\right)\right) \vee\left(x \wedge\left(y_{0} \vee y_{2}\right)\right) \vee\left(x \wedge\left(y_{1} \vee y_{2}\right)\right)
$$

Non-coordinatizable 2-distributive lattices

Larders and
CLL
The identity of 2-distributivity:
$x \wedge\left(y_{0} \vee y_{1} \vee y_{2}\right)=\left(x \wedge\left(y_{0} \vee y_{1}\right)\right) \vee\left(x \wedge\left(y_{0} \vee y_{2}\right)\right) \vee\left(x \wedge\left(y_{1} \vee y_{2}\right)\right)$. $M_{\omega}:=\left\{0,1, a_{0}, a_{1}, a_{2}, \ldots\right\}$, all a_{i} atoms, is 2-distributive.

Non-coordinatizable 2-distributive lattices

Larders and
CLL
The identity of 2-distributivity:

$$
x \wedge\left(y_{0} \vee y_{1} \vee y_{2}\right)=\left(x \wedge\left(y_{0} \vee y_{1}\right)\right) \vee\left(x \wedge\left(y_{0} \vee y_{2}\right)\right) \vee\left(x \wedge\left(y_{1} \vee y_{2}\right)\right)
$$

$$
M_{\omega}:=\left\{0,1, a_{0}, a_{1}, a_{2}, \ldots\right\}, \text { all } a_{i} \text { atoms, is 2-distributive. }
$$

A spanning M_{ω} in a bounded lattice L is a 0,1 -sublattice of L isomorphic to M_{ω}.

Non-coordinatizable 2-distributive lattices

Larders and
CLL
The identity of 2-distributivity:
$x \wedge\left(y_{0} \vee y_{1} \vee y_{2}\right)=\left(x \wedge\left(y_{0} \vee y_{1}\right)\right) \vee\left(x \wedge\left(y_{0} \vee y_{2}\right)\right) \vee\left(x \wedge\left(y_{1} \vee y_{2}\right)\right)$. $M_{\omega}:=\left\{0,1, a_{0}, a_{1}, a_{2}, \ldots\right\}$, all a_{i} atoms, is 2-distributive. A spanning M_{ω} in a bounded lattice L is a 0,1 -sublattice of L isomorphic to M_{ω}.

Theorem (W., 2006)

Non-coordinatizable 2-distributive lattices

The identity of 2-distributivity:
$x \wedge\left(y_{0} \vee y_{1} \vee y_{2}\right)=\left(x \wedge\left(y_{0} \vee y_{1}\right)\right) \vee\left(x \wedge\left(y_{0} \vee y_{2}\right)\right) \vee\left(x \wedge\left(y_{1} \vee y_{2}\right)\right)$. $M_{\omega}:=\left\{0,1, a_{0}, a_{1}, a_{2}, \ldots\right\}$, all a_{i} atoms, is 2-distributive. A spanning M_{ω} in a bounded lattice L is a 0,1 -sublattice of L isomorphic to M_{ω}.

Theorem (W., 2006)

- Every countable, 2-distributive complemented modular lattice with a spanning M_{ω} is coordinatizable.

Non-coordinatizable 2-distributive lattices

The identity of 2-distributivity:
$x \wedge\left(y_{0} \vee y_{1} \vee y_{2}\right)=\left(x \wedge\left(y_{0} \vee y_{1}\right)\right) \vee\left(x \wedge\left(y_{0} \vee y_{2}\right)\right) \vee\left(x \wedge\left(y_{1} \vee y_{2}\right)\right)$. $M_{\omega}:=\left\{0,1, a_{0}, a_{1}, a_{2}, \ldots\right\}$, all a_{i} atoms, is 2 -distributive. A spanning M_{ω} in a bounded lattice L is a 0,1 -sublattice of L isomorphic to M_{ω}.
Theorem (W., 2006)
■ Every countable, 2-distributive complemented modular lattice with a spanning M_{ω} is coordinatizable.

- The 0,1 -lattice embedding $\varphi: M_{\omega} \hookrightarrow M_{\omega}, a_{n} \mapsto a_{n+1}$ cannot be lifted with respect to the functor \mathbb{L}.

Non-coordinatizable 2-distributive lattices

The identity of 2-distributivity:

$$
x \wedge\left(y_{0} \vee y_{1} \vee y_{2}\right)=\left(x \wedge\left(y_{0} \vee y_{1}\right)\right) \vee\left(x \wedge\left(y_{0} \vee y_{2}\right)\right) \vee\left(x \wedge\left(y_{1} \vee y_{2}\right)\right)
$$

$$
M_{\omega}:=\left\{0,1, a_{0}, a_{1}, a_{2}, \ldots\right\}, \text { all } a_{i} \text { atoms, is 2-distributive. }
$$ A spanning M_{ω} in a bounded lattice L is a 0,1 -sublattice of L isomorphic to M_{ω}.

Theorem (W., 2006)

■ Every countable, 2-distributive complemented modular lattice with a spanning M_{ω} is coordinatizable.

- The 0,1 -lattice embedding $\varphi: M_{\omega} \hookrightarrow M_{\omega}, a_{n} \mapsto a_{n+1}$ cannot be lifted with respect to the functor \mathbb{L}.
- There exists a non-coordinatizable 2-distributive complemented modular lattice, of cardinality \aleph_{1}, with a spanning M_{ω}.

Non-coordinatizable 2-distributive lattices

The identity of 2-distributivity:

$$
x \wedge\left(y_{0} \vee y_{1} \vee y_{2}\right)=\left(x \wedge\left(y_{0} \vee y_{1}\right)\right) \vee\left(x \wedge\left(y_{0} \vee y_{2}\right)\right) \vee\left(x \wedge\left(y_{1} \vee y_{2}\right)\right)
$$

$$
M_{\omega}:=\left\{0,1, a_{0}, a_{1}, a_{2}, \ldots\right\}, \text { all } a_{i} \text { atoms, is 2-distributive. }
$$ A spanning M_{ω} in a bounded lattice L is a 0,1 -sublattice of L isomorphic to M_{ω}.

Theorem (W., 2006)

- Every countable, 2-distributive complemented modular lattice with a spanning M_{ω} is coordinatizable.
- The 0,1 -lattice embedding $\varphi: M_{\omega} \hookrightarrow M_{\omega}, a_{n} \mapsto a_{n+1}$ cannot be lifted with respect to the functor \mathbb{L}.
- There exists a non-coordinatizable 2-distributive complemented modular lattice, of cardinality \aleph_{1}, with a spanning M_{ω}. In particular, coordinatizability is not first-order. (Established via a condensate-like construction)

Coordinatization of sectionally complemented modular lattices

Larders and
CLL

An element a in a 0 -lattice L is large, if $\operatorname{con}(0, a)=L \times L$.

Coordinatization of sectionally complemented modular lattices

An element a in a 0 -lattice L is large, if $\operatorname{con}(0, a)=L \times L$. An n-frame in L is a family $\left(\left(a_{i}\right)_{0 \leq i<n},\left(c_{i}\right)_{1 \leq i<n}\right)$ such that $\left(a_{i}\right)_{i<n}$ is independent and c_{i} is an axis of perspectivity between a_{0} and a_{i} for each $i \in\{1, \ldots, n\}$.

Coordinatization of sectionally complemented modular lattices

An element a in a 0 -lattice L is large, if $\operatorname{con}(0, a)=L \times L$. An n-frame in L is a family $\left(\left(a_{i}\right)_{0 \leq i<n},\left(c_{i}\right)_{1 \leq i<n}\right)$ such that $\left(a_{i}\right)_{i<n}$ is independent and c_{i} is an axis of perspectivity between a_{0} and a_{i} for each $i \in\{1, \ldots, n\}$. It is large, if a_{0} is large.

Coordinatization of sectionally complemented modular lattices

An element a in a 0 -lattice L is large, if $\operatorname{con}(0, a)=L \times L$. An n-frame in L is a family $\left(\left(a_{i}\right)_{0 \leq i<n},\left(c_{i}\right)_{1 \leq i<n}\right)$ such that $\left(a_{i}\right)_{i<n}$ is independent and c_{i} is an axis of perspectivity between a_{0} and a_{i} for each $i \in\{1, \ldots, n\}$. It is large, if a_{0} is large.

Theorem (Jónsson, 1962)

Coordinatization of sectionally complemented modular lattices

An element a in a 0-lattice L is large, if $\operatorname{con}(0, a)=L \times L$. An n-frame in L is a family $\left(\left(a_{i}\right)_{0 \leq i<n},\left(c_{i}\right)_{1 \leq i<n}\right)$ such that $\left(a_{i}\right)_{i<n}$ is independent and c_{i} is an axis of perspectivity between a_{0} and a_{i} for each $i \in\{1, \ldots, n\}$. It is large, if a_{0} is large.

Theorem (Jónsson, 1962)

Let L be a sectionally complemented modular lattice with a large 4-frame.

Coordinatization of sectionally complemented modular lattices

An element a in a 0-lattice L is large, if $\operatorname{con}(0, a)=L \times L$. An n-frame in L is a family $\left(\left(a_{i}\right)_{0 \leq i<n},\left(c_{i}\right)_{1 \leq i<n}\right)$ such that $\left(a_{i}\right)_{i<n}$ is independent and c_{i} is an axis of perspectivity between a_{0} and a_{i} for each $i \in\{1, \ldots, n\}$. It is large, if a_{0} is large.

Theorem (Jónsson, 1962)

Let L be a sectionally complemented modular lattice with a large 4 -frame. If L has a countable cofinal sequence, then L is coordinatizable (i.e., $\exists R$ regular ring such that $L \cong \mathbb{L}(R)$).

Coordinatization of sectionally complemented modular lattices

An element a in a 0 -lattice L is large, if $\operatorname{con}(0, a)=L \times L$. An n-frame in L is a family $\left(\left(a_{i}\right)_{0 \leq i<n},\left(c_{i}\right)_{1 \leq i<n}\right)$ such that $\left(a_{i}\right)_{i<n}$ is independent and c_{i} is an axis of perspectivity between a_{0} and a_{i} for each $i \in\{1, \ldots, n\}$. It is large, if a_{0} is large.

Theorem (Jónsson, 1962)

Let L be a sectionally complemented modular lattice with a large 4 -frame. If L has a countable cofinal sequence, then L is coordinatizable (i.e., $\exists R$ regular ring such that $L \cong \mathbb{L}(R)$).

Theorem (W., 2008)

Coordinatization of sectionally complemented modular lattices

An element a in a 0-lattice L is large, if $\operatorname{con}(0, a)=L \times L$. An n-frame in L is a family $\left(\left(a_{i}\right)_{0 \leq i<n},\left(c_{i}\right)_{1 \leq i<n}\right)$ such that $\left(a_{i}\right)_{i<n}$ is independent and c_{i} is an axis of perspectivity between a_{0} and a_{i} for each $i \in\{1, \ldots, n\}$. It is large, if a_{0} is large.

Theorem (Jónsson, 1962)

Let L be a sectionally complemented modular lattice with a large 4 -frame. If L has a countable cofinal sequence, then L is coordinatizable (i.e., $\exists R$ regular ring such that $L \cong \mathbb{L}(R)$).

Theorem (W., 2008)

There exists a non-coordinatizable sectionally complemented modular lattice, of cardinality \aleph_{1}, with a large 4 -frame.

Why larders there?

■ Larders don't play any role in the proof of the latter result, until we reach a ω_{1}-tower of sectionally complemented modular lattices that cannot be lifted by the \mathbb{L} functor.

Why larders there?

■ Larders don't play any role in the proof of the latter result, until we reach a ω_{1}-tower of sectionally complemented modular lattices that cannot be lifted by the \mathbb{L} functor.
■ Then larders are used to turn the diagram counterexample to an object counterexample.

Lattices without congruence-permutable, congruence-preserving extension

Larders and
CLL

Lattices,
congruences, varieties

Critical points
between
varieties
General settings; CLL

Coordinatizatio of lattices by regular rings

Non-
coordinatizable
SCMLs
Lattices without CPCPextension

An extension $\mathbf{A} \leq \mathbf{B}$ of (universal) algebras is congruence-preserving, if the canonical map $\operatorname{Con} \mathbf{A} \rightarrow \mathbf{C o n} \mathbf{B}$ is an isomorphism.

Lattices without congruence-permutable, congruence-preserving extension

Larders and
CLL

Lattices,
congruences, varieties

Critical points
between
varieties
General

settings; CLL

Coordinatizatior of lattices by regular rings

Non-
coordinatizable SCMLs

Lattices without CPCPextension

An extension $\mathbf{A} \leq \mathbf{B}$ of (universal) algebras is congruence-preserving, if the canonical map $\operatorname{Con} \mathbf{A} \rightarrow \mathbf{C o n} \mathbf{B}$ is an isomorphism.
Theorem (Gillibert and W., 2009)

Lattices without congruence-permutable, congruence-preserving extension

An extension $\mathbf{A} \leq \mathbf{B}$ of (universal) algebras is congruence-preserving, if the canonical map $\operatorname{Con} \mathbf{A} \rightarrow$ Con \mathbf{B} is an isomorphism.

Theorem (Gillibert and W., 2009)

Let \mathcal{V} be a nondistributive lattice variety. Then the free lattice (resp., the free bounded lattice) on \aleph_{1} generators within \mathcal{V} has no congruence-permutable, congruence-preserving extension.

Lattices without congruence-permutable, congruence-preserving extension

Lattices, congruences, varieties

Critical points between varieties

General settings; CLL

Coordinatizatio of lattices by regular rings

Non-
coordinatizable SCMLs

Lattices without CPCPextension

An extension $\mathbf{A} \leq \mathbf{B}$ of (universal) algebras is congruence-preserving, if the canonical map $\operatorname{Con} \mathbf{A} \rightarrow \mathbf{C o n} \mathbf{B}$ is an isomorphism.

Theorem (Gillibert and W., 2009)

Let \mathcal{V} be a nondistributive lattice variety. Then the free lattice (resp., the free bounded lattice) on \aleph_{1} generators within \mathcal{V} has no congruence-permutable, congruence-preserving extension.

Due to earlier results of Ploščica, Tůma, and W., the analogue of this result at \aleph_{2} was already known.

Lattices without congruence-permutable, congruence-preserving extension

An extension $\mathbf{A} \leq \mathbf{B}$ of (universal) algebras is congruence-preserving, if the canonical map $\operatorname{Con} \mathbf{A} \rightarrow \mathbf{C o n} \mathbf{B}$ is an isomorphism.

Theorem (Gillibert and W., 2009)

Let \mathcal{V} be a nondistributive lattice variety. Then the free lattice (resp., the free bounded lattice) on \aleph_{1} generators within \mathcal{V} has no congruence-permutable, congruence-preserving extension.

Due to earlier results of Ploščica, Tůma, and W., the analogue of this result at \aleph_{2} was already known. Furthermore, if \mathcal{V} is locally finite, then \aleph_{1} is optimal in the result above. (Open problem in the non locally finite case. For example: does the free lattice on \aleph_{0} generators have a congruence-permutable, congruence-preserving extension?).

Lattices without congruence-permutable, congruence-preserving extension

An extension $\mathbf{A} \leq \mathbf{B}$ of (universal) algebras is congruence-preserving, if the canonical map $\operatorname{Con} \mathbf{A} \rightarrow \mathbf{C o n} \mathbf{B}$ is an isomorphism.

Theorem (Gillibert and W., 2009)

Let \mathcal{V} be a nondistributive lattice variety. Then the free lattice (resp., the free bounded lattice) on \aleph_{1} generators within \mathcal{V} has no congruence-permutable, congruence-preserving extension.

Due to earlier results of Ploščica, Tůma, and W., the analogue of this result at \aleph_{2} was already known. Furthermore, if \mathcal{V} is locally finite, then \aleph_{1} is optimal in the result above. (Open problem in the non locally finite case. For example: does the free lattice on \aleph_{0} generators have a congruence-permutable, congruence-preserving extension?).
Unlike all previous examples, the larder data for this result are difficult to figure out.

