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General categorical settings

We are given categories A, B, S together with functors
Φ: A→ S and Ψ: B→ S.

We are trying to find a functor
Γ: A→ B such that Φ(A) ∼= ΨΓ(A), naturally in A, for
“many” (ideally, all) A ∈ A. Hence we need an assumption
of the form “for many A ∈ A, there exists B ∈ B such that
Φ(A) ∼= Ψ(B)”. Ask for Γ: A 7→ B to be a functor (at least on
a large enough subcategory of A).

Let’s see some examples.
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Distributive 0-lattices as compact congruence
semilattices of lattices (at object level)

Theorem (Schmidt 1981)

For each distributive 0-lattice D, there exists a lattice L such
that Conc L, the (∨, 0)-semilattice of all compact (=finitely
generated) congruences of L, is isomorphic to D.

Question: Can the assignment D 7→ L be made functorial?
Hence, in the above discussed functor-lifting settings,

S is the category of all (∨, 0)-semilattices with
(∨, 0)-homomorphisms,
A is the category of all distributive 0-lattices with 0-lattice
embeddings,
Φ is the inclusion functor A ↪→ B,
B is the category of all lattices with lattice
homomorphisms,
Ψ: B→ S, L 7→ Conc L (naturally extended to
homomorphisms).
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Distributive 0-lattices as compact congruence
semilattices of lattices (somewhat functorially. . . )

Answer to the above question (Pudlák 1985)

Yes. Namely, there exists a functor

Γ: (distr. 0-latt., 0-latt. emb.)→ (latt., latt. emb.)

such that Conc Γ(D) ∼= D naturally for each distributive
0-lattice D.

In fact, the functor Γ constructed in Pudlák’s proof sends finite
distributive lattices to finite atomistic lattices, and preserves
directed colimits (=direct limits).
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Answer to the above question (Pudlák 1985)

Yes.

Namely, there exists a functor

Γ: (distr. 0-latt., 0-latt. emb.)→ (latt., latt. emb.)

such that Conc Γ(D) ∼= D naturally for each distributive
0-lattice D.

In fact, the functor Γ constructed in Pudlák’s proof sends finite
distributive lattices to finite atomistic lattices, and preserves
directed colimits (=direct limits).
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Distributive 0-lattices as compact congruence
semilattices of lattices (. . . but not too functorially)

Question (Pudlák 1985)

Can this be done with

Γ: (distr. 0-semilatt., (∨, 0)-embeddings)→ (latt., latt. emb.)

?

(Note: there is no hope with
Γ: (distr. 0-semilatt., (∨, 0)-homomorphisms)→
(latt., latt. hom.),
for “trivial” reasons.)

Answer (Tůma and W., 2006)

No, it cannot. (For nontrivial reasons, that can be extended to
any variety with a nontrivial congruence (∨,∧)-identity.)



Larders and
CLL

General
settings

P-scaled
algebras

Lifters,
larders, and
CLL

Diagram form
of GS

Relative
critical points

Non-
coordinatizable
SCMLs

Lattices
without
CPCP-
extension

Distributive 0-lattices as compact congruence
semilattices of lattices (. . . but not too functorially)

Question (Pudlák 1985)

Can this be done with

Γ: (distr. 0-semilatt., (∨, 0)-embeddings)→ (latt., latt. emb.)

?

(Note: there is no hope with
Γ: (distr. 0-semilatt., (∨, 0)-homomorphisms)→
(latt., latt. hom.),
for “trivial” reasons.)
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Distributive 0-lattices as compact ideal semilattices
of locally matricial algebras (at object level)

An algebra R over a field F is

matricial, if R ∼=
∏m

i=1 F ni×ni (direct product of matrix
rings), for positive integers n1, . . . , nm.

locally matricial, if R is a directed colimit (=direct limit)
of matricial algebras.

Theorem (Růžička 2004)

For each field F and each distributive 0-lattice D, there exists a
locally matricial F -algebra R such that Idc R, the
(∨, 0)-semilattice of all compact (=finitely generated)
two-sided ideals of R, is isomorphic to D.
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For each field F and each distributive 0-lattice D, there exists a
locally matricial F -algebra R such that Idc R, the
(∨, 0)-semilattice of all compact (=finitely generated)
two-sided ideals of R, is isomorphic to D.



Larders and
CLL

General
settings

P-scaled
algebras

Lifters,
larders, and
CLL

Diagram form
of GS

Relative
critical points

Non-
coordinatizable
SCMLs

Lattices
without
CPCP-
extension

Distributive 0-lattices as compact ideal semilattices
of locally matricial algebras (at object level)

An algebra R over a field F is

matricial, if R ∼=
∏m

i=1 F ni×ni (direct product of matrix
rings), for positive integers n1, . . . , nm.

locally matricial, if R is a directed colimit (=direct limit)
of matricial algebras.

Theorem (Růžička 2004)
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Distributive 0-lattices as compact ideal semilattices
of locally matricial algebras (somewhat functorially)

Question: Can the assignment D 7→ R be made functorial?

It cannot be (distr. 0-latt.,0-latt. hom.) → (F -alg.,F -alg.
hom.) (easy to see). However,

Theorem (Růžička 2006)

The assignment D 7→ R can be made functorial (distr.
0-latt.,0-latt. emb.) → (F -alg.,F -alg. hom.).

Due to the link between K-theory of regular rings and
congruence lattices of lattices, Růžička’s result extends
Schmidt’s result.
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Critical points between varieties of algebras

For varieties A and B of algebras (not necessarily over the
same similarity type), we set

Conc A := {S | (∃A ∈ A)(S ∼= Conc A)};
crit(A; B) :=least cardinality of a member of
(Conc A) \ (Conc B) if it exists, ∞ otherwise.

Theorem (Gillibert 2008)

Let A be a locally finite variety and let B be a finitely
generated congruence-distributive variety. Then
Conc A 6⊆ Conc B implies that crit(A; B) < ℵω.

Whether all ℵn can be thus reached (for finite similarity types)
is a difficult open problem. (However, some partial results are
known.)
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Lattices of right ideals of von Neumann regular
rings

A ring (associative, not necessarily unital) R is (von
Neumann) regular, if (∀x ∈ R)(∃y ∈ R)(xyx = x).

For a ring R, set L(R) := {xR | x ∈ R}.
For R := Z[

√
−5], the poset (L(R),⊆) is not a lattice.

If R is regular, then L(R) is a sectionally complemented
sublattice of the right ideal lattice of R. In particular, it is
modular (even Arguesian).

For a homomorphism f : R → S of regular rings, the map
L(f ) : L(R)→ L(S), I 7→ f (I )S is a 0-lattice
homomorphism. The functor L thus defined preserves
directed colimits (=direct limits).

A lattice is coordinatizable, if it is isomorphic to L(R) for
some regular ring R.
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Neumann) regular, if (∀x ∈ R)(∃y ∈ R)(xyx = x).

For a ring R, set L(R) := {xR | x ∈ R}.
For R := Z[
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−5], the poset (L(R),⊆) is not a lattice.

If R is regular, then L(R) is a sectionally complemented
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modular (even Arguesian).
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Non-coordinatizable 2-distributive lattices

The identity of 2-distributivity:

x∧(y0∨y1∨y2) = (x∧(y0∨y1))∨(x∧(y0∨y2))∨(x∧(y1∨y2)) .

Mω := {0, 1, a0, a1, a2, . . . }, all ai atoms, is 2-distributive.
A spanning Mω in a bounded lattice L is a 0, 1-sublattice of L
isomorphic to Mω.

Theorem (W., 2006)

Every countable, 2-distributive complemented modular
lattice with a spanning Mω is coordinatizable.

The 0, 1-lattice embedding ϕ : Mω ↪→ Mω, an 7→ an+1

cannot be lifted with respect to the functor L.

There exists a non-coordinatizable 2-distributive
complemented modular lattice, of cardinality ℵ1, with a
spanning Mω. In particular, coordinatizability is not
first-order.
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Non-coordinatizable 2-distributive lattices

The identity of 2-distributivity:

x∧(y0∨y1∨y2) = (x∧(y0∨y1))∨(x∧(y0∨y2))∨(x∧(y1∨y2)) .

Mω := {0, 1, a0, a1, a2, . . . }, all ai atoms, is 2-distributive.
A spanning Mω in a bounded lattice L is a 0, 1-sublattice of L
isomorphic to Mω.

Theorem (W., 2006)

Every countable, 2-distributive complemented modular
lattice with a spanning Mω is coordinatizable.

The 0, 1-lattice embedding ϕ : Mω ↪→ Mω, an 7→ an+1

cannot be lifted with respect to the functor L.

There exists a non-coordinatizable 2-distributive
complemented modular lattice, of cardinality ℵ1, with a
spanning Mω. In particular, coordinatizability is not
first-order.
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isomorphic to Mω.

Theorem (W., 2006)

Every countable, 2-distributive complemented modular
lattice with a spanning Mω is coordinatizable.

The 0, 1-lattice embedding ϕ : Mω ↪→ Mω, an 7→ an+1

cannot be lifted with respect to the functor L.
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P-normed topological spaces

An ideal of a poset P is a nonempty, upward directed lower
subset of P. Denote by Id P the set of all ideals of P, ordered
by containment.

Definition (Gillibert and W., 2009)

A P-normed (topological) space is a pair X = (X , ν), where X
is a topological space, ν : X → Id P, and the subset
{x ∈ X | p ∈ ν(x)} is open in X , for each p ∈ P.

Write ‖x‖, or ‖x‖X, instead of ν(x).

For P-normed spaces X and Y, a morphism X→ Y is a
continuous map f : X → Y such that ‖f (x)‖Y ⊆ ‖x‖X for
each x ∈ X .

BTopP :=category of all P-normed Boolean spaces with
morphisms as above.
A description of the dual category follows.
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is a topological space, ν : X → Id P, and the subset
{x ∈ X | p ∈ ν(x)} is open in X , for each p ∈ P.

Write ‖x‖, or ‖x‖X, instead of ν(x).
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continuous map f : X → Y such that ‖f (x)‖Y ⊆ ‖x‖X for
each x ∈ X .
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P-scaled Boolean algebras

Fix a poset P.

Definition (Gillibert and W., 2009)

A P-scaled Boolean algebra is a structure

A =
(
A, (A(p) | p ∈ P)

)
,

where A is a Boolean algebra, each A(p) is an ideal of A,
and

1 A =
∨

(A(p) | p ∈ P) in Id A;
2 A(p) ∩ A(q) =

∨
(A(r) | r ≥ p, q) for all p, q ∈ P.

For P-scaled Boolean algebras A and B, a morphism
from A to B is a homomorphism f : A→ B of Boolean
algebras such that f (A(p)) ⊆ B(p) for each p ∈ P.

Denote by BoolP the category of all P-scaled Boolean
algebras with above described morphisms.
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P-scaled Boolean algebras

Fix a poset P.

Definition (Gillibert and W., 2009)

A P-scaled Boolean algebra is a structure

A =
(
A, (A(p) | p ∈ P)
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,

where A is a Boolean algebra, each A(p) is an ideal of A,
and

1 A =
∨

(A(p) | p ∈ P) in Id A;
2 A(p) ∩ A(q) =

∨
(A(r) | r ≥ p, q) for all p, q ∈ P.

For P-scaled Boolean algebras A and B, a morphism
from A to B is a homomorphism f : A→ B of Boolean
algebras such that f (A(p)) ⊆ B(p) for each p ∈ P.

Denote by BoolP the category of all P-scaled Boolean
algebras with above described morphisms.
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Definition (Gillibert and W., 2009)

A P-scaled Boolean algebra is a structure

A =
(
A, (A(p) | p ∈ P)
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,

where A is a Boolean algebra, each A(p) is an ideal of A,
and

1 A =
∨

(A(p) | p ∈ P) in Id A;
2 A(p) ∩ A(q) =

∨
(A(r) | r ≥ p, q) for all p, q ∈ P.
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from A to B is a homomorphism f : A→ B of Boolean
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Fix a poset P.

Definition (Gillibert and W., 2009)

A P-scaled Boolean algebra is a structure

A =
(
A, (A(p) | p ∈ P)

)
,

where A is a Boolean algebra, each A(p) is an ideal of A,
and

1 A =
∨

(A(p) | p ∈ P) in Id A;
2 A(p) ∩ A(q) =

∨
(A(r) | r ≥ p, q) for all p, q ∈ P.

For P-scaled Boolean algebras A and B, a morphism
from A to B is a homomorphism f : A→ B of Boolean
algebras such that f (A(p)) ⊆ B(p) for each p ∈ P.

Denote by BoolP the category of all P-scaled Boolean
algebras with above described morphisms.
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P-scaled Boolean algebras

Fix a poset P.

Definition (Gillibert and W., 2009)

A P-scaled Boolean algebra is a structure

A =
(
A, (A(p) | p ∈ P)

)
,

where A is a Boolean algebra, each A(p) is an ideal of A,
and

1 A =
∨

(A(p) | p ∈ P) in Id A;
2 A(p) ∩ A(q) =

∨
(A(r) | r ≥ p, q) for all p, q ∈ P.

For P-scaled Boolean algebras A and B, a morphism
from A to B is a homomorphism f : A→ B of Boolean
algebras such that f (A(p)) ⊆ B(p) for each p ∈ P.

Denote by BoolP the category of all P-scaled Boolean
algebras with above described morphisms.
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Duality between BTopP and BoolP

For a P-scaled Boolean algebra A, we set

‖a‖ := {p ∈ P | a ∩ A(p) 6= ∅} , for each a ∈ Ult A .

‖a‖ is an ideal of P, and a 7→ ‖a‖ is a P-norm on Ult A.

Denote by Ult A the P-normed Boolean space thus
constructed.

For a P-normed space X and A := Clop X , we set

A(p) := {U ∈ Clop X | (∀x ∈ U)(p ∈ ‖x‖)} , for each p ∈ P .

The structure Clop X :=
(
A, (A(p) | p ∈ P)

)
is a P-scaled

Boolean algebra.
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‖a‖ is an ideal of P, and a 7→ ‖a‖ is a P-norm on Ult A.
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Duality between BTopP and BoolP

For a P-scaled Boolean algebra A, we set

‖a‖ := {p ∈ P | a ∩ A(p) 6= ∅} , for each a ∈ Ult A .

‖a‖ is an ideal of P, and a 7→ ‖a‖ is a P-norm on Ult A.

Denote by Ult A the P-normed Boolean space thus
constructed.

For a P-normed space X and A := Clop X , we set

A(p) := {U ∈ Clop X | (∀x ∈ U)(p ∈ ‖x‖)} , for each p ∈ P .

The structure Clop X :=
(
A, (A(p) | p ∈ P)

)
is a P-scaled
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Basic categorical properties of BTopP and BoolP

Let P be a poset.

Proposition (Gillibert and W., 2009)

The pair (Ult,Clop) defines a duality between the category
BTopP of all P-normed Boolean spaces and the category
BoolP of all P-scaled Boolean algebras.

Proposition (Gillibert and W., 2009)

The category BoolP has all nonempty small directed
colimits.

The category BoolP has all nonempty finite products.
Furthermore, if P is finite, then BoolP has all nonempty
small products.
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Basic categorical properties of BTopP and BoolP

Let P be a poset.

Proposition (Gillibert and W., 2009)

The pair (Ult,Clop) defines a duality between the category
BTopP of all P-normed Boolean spaces and the category
BoolP of all P-scaled Boolean algebras.

Proposition (Gillibert and W., 2009)

The category BoolP has all nonempty small directed
colimits.

The category BoolP has all nonempty finite products.
Furthermore, if P is finite, then BoolP has all nonempty
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Finitely presented objects in a category

Definition (Gabriel and Ulmer 1971)

An object A in a category C is finitely presented, if for every
directed colimit representation

(X , xi | i ∈ I ) = lim−→(Xi , x
j
i | i ≤ j in I ) in C ,

1 ∀f : A→ X , ∃i ∈ I such that f factors through Xi ;

2 ∀i ∈ I and ∀f , g : A→ Xi , xi ◦ f = xi ◦ g ⇒
(∃j ≥ i)(x j

i ◦ f = x j
i ◦ g).

For example, an element in a poset is finitely presented iff it is
compact.
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Finitely presented objects in a category

Definition (Gabriel and Ulmer 1971)

An object A in a category C is finitely presented, if for every
directed colimit representation

(X , xi | i ∈ I ) = lim−→(Xi , x
j
i | i ≤ j in I ) in C ,

1 ∀f : A→ X , ∃i ∈ I such that f factors through Xi ;

2 ∀i ∈ I and ∀f , g : A→ Xi , xi ◦ f = xi ◦ g ⇒
(∃j ≥ i)(x j

i ◦ f = x j
i ◦ g).

For example, an element in a poset is finitely presented iff it is
compact.
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Finitely presented objects in BoolP

Proposition (Gillibert and W., 2009)

A P-scaled Boolean algebra A is finitely presented in BoolP
iff A is finite and ‖a‖ is a principal ideal for each ultrafilter a

of A.

Proposition (Gillibert and W., 2009)

Every P-scaled Boolean algebra is a monomorphic directed
colimit of finitely presented P-scaled Boolean algebras.
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iff A is finite and ‖a‖ is a principal ideal for each ultrafilter a

of A.

Proposition (Gillibert and W., 2009)

Every P-scaled Boolean algebra is a monomorphic directed
colimit of finitely presented P-scaled Boolean algebras.



Larders and
CLL

General
settings

P-scaled
algebras

Lifters,
larders, and
CLL

Diagram form
of GS

Relative
critical points

Non-
coordinatizable
SCMLs

Lattices
without
CPCP-
extension

Finitely presented objects in BoolP

Proposition (Gillibert and W., 2009)

A P-scaled Boolean algebra A is finitely presented in BoolP
iff A is finite and ‖a‖ is a principal ideal for each ultrafilter a

of A.

Proposition (Gillibert and W., 2009)

Every P-scaled Boolean algebra is a monomorphic directed
colimit of finitely presented P-scaled Boolean algebras.
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Normal morphisms of P-scaled Boolean algebras

Definition (Gillibert and W., 2009)

A morphism f : A→ B of P-scaled Boolean algebras is normal,
if it is surjective and f (A(p)) = B(p) for each p ∈ P. It is
compact, if both A and B are finitely presented.

For an ideal I of A, one can define a P-scaled Boolean algebra
A/I of underlying algebra A/I , with (A/I )(p) = A(p)/I for each
p ∈ P. The projection map A→ A/I is a normal morphism,
and every normal morphism has this form (up to isomorphism).
The normal morphisms of BoolP are exactly its regular
epimorphisms (i.e., coequalizers of two morphisms).

Proposition (Gillibert and W., 2009)

Every normal morphism in BoolP is a directed colimit of
compact normal morphisms.
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Definition (Gillibert and W., 2009)

A morphism f : A→ B of P-scaled Boolean algebras is normal,
if it is surjective and f (A(p)) = B(p) for each p ∈ P. It is
compact, if both A and B are finitely presented.

For an ideal I of A, one can define a P-scaled Boolean algebra
A/I of underlying algebra A/I , with (A/I )(p) = A(p)/I for each
p ∈ P. The projection map A→ A/I is a normal morphism,
and every normal morphism has this form (up to isomorphism).
The normal morphisms of BoolP are exactly its regular
epimorphisms (i.e., coequalizers of two morphisms).

Proposition (Gillibert and W., 2009)

Every normal morphism in BoolP is a directed colimit of
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Defining A⊗ ~S for A finitely presented

Work in a category S with all nonempty finite products,
and fix a poset P.

Let ~S = (Sp, σ
q
p | p ≤ q in P) be a P-indexed diagram

in S.

Let A be a finitely presented P-scaled Boolean algebra.
For each atom u of A, denote by |u| the largest p ∈ P
such that u ∈ A(p).

Set A⊗ ~S :=
∏

(S|u| | u ∈ At A).

For a morphism ϕ : A→ B in BoolP , one can define
naturally a morphism ϕ⊗ ~S : A⊗ ~S → B⊗ ~S in S.

We get a S-valued functor A 7→ A⊗ ~S , defined on the
finitely presented part of BoolP .
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Defining A⊗ ~S for A finitely presented

Work in a category S with all nonempty finite products,
and fix a poset P.

Let ~S = (Sp, σ
q
p | p ≤ q in P) be a P-indexed diagram

in S.

Let A be a finitely presented P-scaled Boolean algebra.
For each atom u of A, denote by |u| the largest p ∈ P
such that u ∈ A(p).

Set A⊗ ~S :=
∏

(S|u| | u ∈ At A).

For a morphism ϕ : A→ B in BoolP , one can define
naturally a morphism ϕ⊗ ~S : A⊗ ~S → B⊗ ~S in S.

We get a S-valued functor A 7→ A⊗ ~S , defined on the
finitely presented part of BoolP .
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Defining A⊗ ~S in general

Let S be a category with all nonempty finite products and all
nonempty small directed colimits, and let ~S be a P-indexed
diagram in S.

Proposition (Gillibert and W., 2009)

The functor A 7→ A⊗ ~S can be uniquely (up to iso) extended
to a directed colimits preserving functor from BoolP to S.

This way, A⊗ ~S defined for any A ∈ BoolP . Also ϕ⊗ ~S , for
ϕ : A→ B in BoolP . We say that A⊗ ~S is a condensate of ~S .
A projection in S is either an isomorphism or a factor morphism
X × Y → X in S. An extended projection is a directed colimit
of projections (in S2).

Proposition (Gillibert and W., 2009)

If a morphism ϕ : A→ B in BoolP is normal, then ϕ⊗ ~S is an
extended projection in S.
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Special sorts of posets

For a subset X in a poset P, we set
P ⇑ X := {p ∈ P | X ≤ p} and 5X := Min(P ⇑ X ).

The O-closure of X ⊆ P is the least 5-closed subset of P
containing X .

P is a pseudo join-semilattice, if P ⇑ X is a finitely
generated upper subset of P, for any finite X ⊆ P.

P is supported, if it is a pseudo join-semilattice and the
O-closure of any finite subset of finite.

P is an almost join-semilattice, if it is a pseudo
join-semilattice and P ↓ a is a join-semilattice ∀a ∈ P.

(pseudo join-semilattice)⇒(supported)⇒(almost
join-semilattice); the converses do not hold.
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Norm-coverings and λ-lifters

A norm-covering of a poset P is a pair (X , ∂), where X is
a pseudo join-semilattice and ∂ : X → P is isotone.

An
ideal u of X is sharp, if ∂(u) has a largest element, then
denoted by ∂u.

Let λ be an infinite cardinal. A λ-lifter of P is a pair
(X ,X), where X is a norm-covering of P, X is a set of
sharp ideals of X , and, setting
X= := {x ∈ X | ∂x not maximal},

1 card(X ↓ x) < λ for each x ∈ X=.
2 (Kuratowski-like property) For each isotone

S : X= → [X ]<λ, there exists an isotone σ : P → X such
that

1 ∂ ◦ σ = idP ;
2 ∀p < q in P, S(σ(p)) ∩ σ(q) ⊆ σ(p).

3 If λ = ℵ0, then X is supported.
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The P-scaled Boolean algebras F(X )

For a norm-covering ∂ : X → P, denote by F(X ) the
Boolean algebra defined by generators ũ (for u ∈ X ) and
relations

1 ṽ ≤ ũ, for all u ≤ v in X ;
2 ũ ∧ ṽ =

∨
(w̃ | w ∈ u O v), for all u, v ∈ X ;

3 1 =
∨

(ũ | u ∈ Min X ).

Then define F(X )(p) as the ideal of F(X ) generated by
{ũ | u ∈ X and p ≤ ∂u}, for each p ∈ P.

The pair F(X ) :=
(
F(X ), (F(X )(p) | p ∈ P)

)
is a P-scaled

Boolean algebra.

The assignment X 7→ F(X ) has nice functorial properties.
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1 ṽ ≤ ũ, for all u ≤ v in X ;
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(ũ | u ∈ Min X ).

Then define F(X )(p) as the ideal of F(X ) generated by
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{ũ | u ∈ X and p ≤ ∂u}, for each p ∈ P.

The pair F(X ) :=
(
F(X ), (F(X )(p) | p ∈ P)

)
is a P-scaled

Boolean algebra.

The assignment X 7→ F(X ) has nice functorial properties.



Larders and
CLL

General
settings

P-scaled
algebras

Lifters,
larders, and
CLL

Diagram form
of GS

Relative
critical points

Non-
coordinatizable
SCMLs

Lattices
without
CPCP-
extension

The P-scaled Boolean algebras F(X )

For a norm-covering ∂ : X → P, denote by F(X ) the
Boolean algebra defined by generators ũ (for u ∈ X ) and
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More on λ-lifters

Proposition (Gillibert and W., 2009)

If a poset P has a λ-lifter, then P is a finite disjoint union of
almost join-semilattices with zero (in particular, it is an almost
join-semilattice).

Every finite almost join-semilattice P has a λ-lifter (λ
arbitrary infinite cardinal). The minimal cardinality of a
possible underlying X is ≤ λ+(dim P−1) (and < may occur).

For infinite P, the existence of λ-lifters is related to large
cardinal axioms, for instance Erdős cardinals.
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Larders and
CLL

General
settings

P-scaled
algebras

Lifters,
larders, and
CLL

Diagram form
of GS

Relative
critical points

Non-
coordinatizable
SCMLs

Lattices
without
CPCP-
extension

More on λ-lifters

Proposition (Gillibert and W., 2009)

If a poset P has a λ-lifter, then P is a finite disjoint union of
almost join-semilattices with zero (in particular, it is an almost
join-semilattice).

Every finite almost join-semilattice P has a λ-lifter (λ
arbitrary infinite cardinal). The minimal cardinality of a
possible underlying X is ≤ λ+(dim P−1) (and < may occur).

For infinite P, the existence of λ-lifters is related to large
cardinal axioms, for instance Erdős cardinals.
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Moving to the definition of a λ-larder

λ is an infinite regular cardinal.

We are given categories A, B, S together with functors
Φ: A→ S and Ψ: B→ S.

S

A

Φ
??��������

B

Ψ
__????????

For certain poset-indexed diagrams ~A of A, we are trying
to find a diagram ~B of B such that Φ~A ∼= Ψ~B. We are
trying to construct ~B from an object B ∈ B such that
Φ(A) ∼= Ψ(B), for a suitable condensate A of ~A.
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Defining a λ-larder

We shall need some add-ons to the data A, B, S, Φ, Ψ.

Definition (Gillibert and W., 2009)

An octuple (A,B, S,A†,B†, S⇒,Φ,Ψ) is a λ-larder, if A† ⊆ A

full, B† ⊆ B full, S⇒ ⊆ S subcategory, B ∈ B† is λ-presented
in B and Ψ(B) is λ-presented in S for each B ∈ B†, A has all
nonempty small directed lim−→s and all nonempty finite products,
S⇒ is “closed under nonempty small directed lim−→s”, Φ
preserves nonempty small directed lim−→s, Ψ preserves nonempty
λ-small directed lim−→s, Φ(projections) ⊆ S⇒, and

(Löwenheim-Skolem Property) for each S ∈ Φ(A†), each
B ∈ B, and each ϕ : Ψ(B)→ S in S⇒ there are “many”
u : U → B with U ∈ B† such that ϕ ◦Ψ(u) ∈ S⇒.
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The double arrows

Double arrows: arrows in S⇒, denoted ϕ : S ⇒ T ;
correspond to normal morphisms in BoolP .

Ideally, double arrows would be isomorphisms, but
practically this can’t always be done.

However, in many contexts, any double arrow
ϕ : Ψ(B)⇒ S can be “nicely factored” through an
isomorphism. Then we speak of projectable larders—most
(but not all) larders encountered in nature are projectable.
This can be viewed as a categorical analogue to
isomorphisms theorems in universal algebra.

For example, if S is the category of all (∨, 0)-semilattices
with (∨, 0)-homomorphisms, S⇒ is often the subcategory
with morphisms of the form S → S/I (I ideal of S) up to
iso, and then any double arrow ϕ : Conc U⇒ S can be
“nicely factored” through an isomorphism.
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practically this can’t always be done.

However, in many contexts, any double arrow
ϕ : Ψ(B)⇒ S can be “nicely factored” through an
isomorphism. Then we speak of projectable larders—most
(but not all) larders encountered in nature are projectable.
This can be viewed as a categorical analogue to
isomorphisms theorems in universal algebra.

For example, if S is the category of all (∨, 0)-semilattices
with (∨, 0)-homomorphisms, S⇒ is often the subcategory
with morphisms of the form S → S/I (I ideal of S) up to
iso, and then any double arrow ϕ : Conc U⇒ S can be
“nicely factored” through an isomorphism.
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The Condensate Lifting Lemma (CLL)

The statement of CLL is about as follows.

Theorem (Gillibert and W., 2009)

Let λ be an infinite cardinal and let P be a poset with a λ-lifter
(X ,X), let (A,B, S,A†,B†, S⇒,Φ,Ψ) be a λ-larder, let ~A be a
P-indexed diagram in A such that Ap ∈ A† for each
non-maximal p ∈ P, let B ∈ B a λ-continuous directed colimit
of a diagram in B†, and let χ : Ψ(B)⇒ Φ(F(X )⊗ ~A). Then
there are a P-indexed diagram ~B of subobjects of B in B† and
a double arrow ~χ : Ψ~B ⇒ Φ~A.

In short: in order to lift the diagram Φ~A with respect to Ψ, ⇒,
it is sufficient to lift the object Φ(A) with respect to Ψ, ⇒,
where A is a suitable condensate of ~A (viz. A := F(X )⊗ ~A).
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there are a P-indexed diagram ~B of subobjects of B in B† and
a double arrow ~χ : Ψ~B ⇒ Φ~A.
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Limitations on the shape of P

The poset P in the statement of CLL needs to be an
almost join-semilattice with zero (or a finite disjoint union
of such guys).

In particular, CLL does not apply to diagrams indexed by
the following posets:

Too bad. . .
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The Grätzer-Schmidt Theorem

Theorem (Grätzer and Schmidt, 1963)

Every (∨, 0)-semilattice is isomorphic to Conc A, for some
(universal) algebra A.

Of course A can be unary. Neverthelss, due to a 1979
paper by Freese, Lampe, and Taylor, there is no bound on
the cardinality of the similarity type of the algebra A.
Hence, if we want to state a diagram version of the GS
Theorem, we need to work in a suitable category of
non-indexed algebras.
Among 3 possible definitions of non-indexed algebras, 2 of
them won’t satisfy the assumptions of CLL.
The one that works is the following: consider the
category MAlg1 of all unary algebras, where f : A→ B
means that Op(A) ⊆ Op(B) and f is a homomorphism for
all symbols in Op(A).
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The Grätzer-Schmidt Theorem (introducing the
larder data)

Denote by Sem∨,0 the category of all (∨, 0)-semilattices
with (∨, 0)-homomorphisms.

A surjective homomorphism f : S � T of
(∨, 0)-semilattices is ideal-induced, if f (a) ≤ f (b) ⇒
(∃x)(f (x) = 0 and a ≤ b ∨ x). Let those be the double
arrows in Sem∨,0.

For an infinite regular cardinal λ, denote by Sem
(λ)
∨,0 the

class of all (∨, 0)-semilattices of cardinality < λ. Similarly

for MAlg
(λ)
1 (require card A + card Op(A) < λ).
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The Grätzer-Schmidt Theorem (picture of the
larder data)

S⇒ := ideal-ind. homs
S := Sem∨,0

A := Sem∨,0

A† := Sem
(λ)
∨,0

Φ := id

;;wwwwwwwwwwwwwwwwww
B := MAlg1

B† := MAlg
(λ)
1

Ψ := Conc

ccGGGGGGGGGGGGGGGGGGG
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The Grätzer-Schmidt Theorem (diagram version)

Theorem (Gillibert and W., 2009)

Let P be a poset and let ~S be a P-indexed diagram of
(∨, 0)-semilattices and (∨, 0)-homomorphisms. If either P is
finite, or P is infinite and “a large enough cardinal exists”,
then ~S has a lifting, wrt. the Conc functor, by a diagram of
unary algebras and homomorphisms in MAlg1.

The large cardinal axiom in question states the existence of
large independent sets for certain set functions (cf.
Kuratowski’s Free Set Theorem). If there is a proper class of
Erdős cardinals (this axiom is weaker, consistency-wise, than a
Ramsey cardinal), then this assumption is satisfied for any
poset P.
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Kuratowski’s Free Set Theorem). If there is a proper class of
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Relative critical points between quasivarieties

Quasivariety of structures: class of first-order structures, in
a given first-order language, closed under S, P, and
directed lim−→s.

For a structure A and a quasivariety V (in the same
language), set ConV A := {α ∈ Con A | A/α ∈ V}. In
particular, ConV A is an algebraic lattice.

Then set
Conc,r V := {S ∈ Sem∨,0 | (∃A ∈ V)(S ∼= ConV

c A)}.
For quasivarieties A and B (not necessarily in the same
language), set

critr(A; B) := min{card S | S ∈ (Conc,r A) \ (Conc,r B)}

if it exists, ∞ otherwise.
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Description of the larder data

Small variations around the following:

S⇒ := ideal-ind. homs
S := Sem∨,0

A
A† := Afinite

Φ := ConA
c
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B

B† := Bfinite

Ψ := ConB
c
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Upper bounds for relative critical points

Theorem (Gillibert and W., 2009)

Let A and B be quasivarieties (possibly in different
languages), such that the language of A has only finitely
many relations and B is finitely generated (no need for
CD), and let P be a nontrivial finite almost join-semilattice
with zero. If there exists a P-indexed diagram ~A of objects
of A with finite universe such that ConA

c
~A has no lifting,

wrt. ConB
c , in B, then critr(A; B) ≤ ℵdim(P)−1.

Furthermore, Conc,r A 6⊆ Conc,r B implies that
critr(A; B) < ℵω. (First obtained for varieties by Gillibert)

Here, dim(P) denotes the order-dimension of P.

The inequality critr(A; B) < ℵdim(P)−1 may hold.
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Restricted Kuratowski index of a finite poset

Actually, critr(A; B) ≤ ℵkur0(P)−1, where kur0(P), the
“restricted Kuratowski index of P”, is the least positive
integer n such that a certain “existence of large
independent sets”-type statement, denoted by
(ℵn−1, <ℵ0) ; P, holds.

In particular, kur0(P) ≤ dim(P).

In particular, calculations of critical points may lead to
estimates of the form critr(A; B) ≤ ℵlog log n. . .
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Coordinatization of sectionally complemented
modular lattices

An element a in a 0-lattice L is large, if con(0, a) = L× L.

An
n-frame in L is a family ((ai )0≤i<n, (ci )1≤i<n) such that (ai )i<n

is independent and ci is an axis of perspectivity between a0

and ai for each i ∈ {1, . . . , n}. It is large, if a0 is large.

Theorem (Jónsson, 1962)

Let L be a sectionally complemented modular lattice with a
large 4-frame. If L has a countable cofinal sequence, then L is
coordinatizable (i.e., ∃R regular ring such that L ∼= L(R)).

Theorem (W., 2008)

There exists a non-coordinatizable sectionally complemented
modular lattice, of cardinality ℵ1, with a large 4-frame.
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Why larders there?

Larders don’t play any role in the proof of the latter result,
until we reach a ω1-tower of sectionally complemented
modular lattices that cannot be lifted by the L functor.

Then larders are used to turn the diagram counterexample
to an object counterexample.
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Description of the larder data

A modification of the following (with λ := ℵ1):

S⇒ := SCML�

S := SCML

A := SCML
A† := SCML(λ)

Φ := id

<<xxxxxxxxxxxxxxxxxx
B := Reg

B† := Reg(λ)

Ψ := L

bbDDDDDDDDDDDDDDDDD
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Lattices without congruence-permutable,
congruence-preserving extension

An extension A ≤ B of algebras is congruence-preserving, if the
canonical map Con A→ Con B is an isomorphism.

Theorem (Gillibert and W., 2009)

Let V be a nondistributive lattice variety. Then the free lattice
(resp., the free bounded lattice) on ℵ1 generators within V has
no congruence-permutable, congruence-preserving extension.

Due to earlier results of Ploščica, Tůma, and W., the analogue
of this result at ℵ2 was already known. Furthermore, in case V

is locally finite, then ℵ1 is optimal in the result above. (Open
problem in the non locally finite case. For example: does the
free lattice on ℵ0 generators have a congruence-permutable,
congruence-preserving extension?).
Unlike all previous examples, the larder data are difficult to
figure out. Let’s give an outline.
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of this result at ℵ2 was already known. Furthermore, in case V

is locally finite, then ℵ1 is optimal in the result above. (Open
problem in the non locally finite case. For example: does the
free lattice on ℵ0 generators have a congruence-permutable,
congruence-preserving extension?).
Unlike all previous examples, the larder data are difficult to
figure out. Let’s give an outline.



Larders and
CLL

General
settings

P-scaled
algebras

Lifters,
larders, and
CLL

Diagram form
of GS

Relative
critical points

Non-
coordinatizable
SCMLs

Lattices
without
CPCP-
extension

Lattices without congruence-permutable,
congruence-preserving extension

An extension A ≤ B of algebras is congruence-preserving, if the
canonical map Con A→ Con B is an isomorphism.

Theorem (Gillibert and W., 2009)

Let V be a nondistributive lattice variety. Then the free lattice
(resp., the free bounded lattice) on ℵ1 generators within V has
no congruence-permutable, congruence-preserving extension.

Due to earlier results of Ploščica, Tůma, and W., the analogue
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Lattices without congruence-permutable,
congruence-preserving extension

An extension A ≤ B of algebras is congruence-preserving, if the
canonical map Con A→ Con B is an isomorphism.

Theorem (Gillibert and W., 2009)

Let V be a nondistributive lattice variety. Then the free lattice
(resp., the free bounded lattice) on ℵ1 generators within V has
no congruence-permutable, congruence-preserving extension.

Due to earlier results of Ploščica, Tůma, and W., the analogue
of this result at ℵ2 was already known. Furthermore, in case V

is locally finite, then ℵ1 is optimal in the result above. (Open
problem in the non locally finite case. For example: does the
free lattice on ℵ0 generators have a congruence-permutable,
congruence-preserving extension?).
Unlike all previous examples, the larder data are difficult to
figure out. Let’s give an outline.
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Semilattice-metric spaces

A semilattice-metric space is a triple A = (A, δA, Ã),
where A is a set, Ã is a (∨, 0)-semilattice, δA : A× A→ Ã,
δA(x , x) = 0, δA(x , y) = δA(y , x),
δA(x , z) ≤ δA(x , y) ∨ δA(y , z) ∀x , y , z ∈ A (say that δA is
a distance).

Morphisms: (f , f̃ ) : A→ B means that f : A→ B,

f̃ : Ã
∨,0→ B̃, and δB(f (x), f (y)) = f̃ δA(x , y) ∀x , y ∈ A. We

get a category, Metr.

Double arrows in Metr: (f , f̃ ) : A→ B such that f is
surjective (nothing said about f̃ ).
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where A is a set, Ã is a (∨, 0)-semilattice, δA : A× A→ Ã,
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Semilattice-metric spaces and covers

A semilattice-metric cover is a quadruple
A = (A∗,A, δA, Ã), where A∗ ⊆ A, (A, δA, Ã) is a
semilattice-metric space, and ∀x , y , z ∈ A∗, ∃t ∈ A such
that δA(x , t) ≤ δA(y , z) and δA(t, z) ≤ δA(x , y)
(Parallelogram Rule: imitates one step of
“congruence-permutable”).

Morphisms defined as in Metr, with f (A∗) ⊆ B∗. Get a
category Metr∗.

“Forgetful” functor Ψ: Metr∗ →Metr,
A 7→ (A∗, δA�A∗×A∗ , Ã).
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From algebras to semilattice-metric spaces

Every algebra A defines canonically a semilattice-metric
space Φ(A) := (A, conA,Conc A), where conA(x , y)
denotes the (principal) congruence generated by (x , y).

For algebras A and B with Op(A) ⊆ Op(B), a morphism
f : A→ B is a map A→ B which is a homomorphism for
each symbol in Op(A). This way we get a category, MAlg.

Then Φ extends naturally to a functor MAlg→Metr.
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Picture of the larder data

S⇒ := Metr⇒

S := Metr

A := MAlg
A† := MAlgfin

Φ

<<zzzzzzzzzzzzzzzzz
B := Metr∗

B† := Metr∗fin

Ψ

aaDDDDDDDDDDDDDDDDD
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Hard core of the proof 1: a square of finite lattices

The lattices in the two following diagrams have no
CPCP-extension that would be functorial wrt. those diagrams:

a0

a0

a0

a0
a1

a1 a2

a2

A0

A1 A2

A

0

00

0

1

11

1

f1 f2

g1 g2
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Hard core of the proof 2: another square of finite
lattices

a0

a0

a0a1

a1

a2

a2

A0

A1 A2

A

0

0

0

1

1

a0

0

1

1

f1 f2

g1 g2
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