Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension From lifting objects to lifting diagrams: recent progress on larders and CLL

Friedrich Wehrung

Université de Caen LMNO, UMR 6139 Département de Mathématiques 14032 Caen cedex *E-mail:* wehrung@math.unicaen.fr *URL:* http://www.math.unicaen.fr[~] wehrung *Most of the results discussed here obtained with* **Pierre Gillibert**.

August 17, 2009

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

We are given categories $\mathcal{A}, \mathcal{B}, \mathcal{S}$ together with functors $\Phi \colon \mathcal{A} \to \mathcal{S}$ and $\Psi \colon \mathcal{B} \to \mathcal{S}$.

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension We are given categories \mathcal{A} , \mathcal{B} , \mathcal{S} together with functors $\Phi: \mathcal{A} \to \mathcal{S}$ and $\Psi: \mathcal{B} \to \mathcal{S}$. We are trying to find a functor $\Gamma: \mathcal{A} \to \mathcal{B}$ such that $\Phi(\mathcal{A}) \cong \Psi\Gamma(\mathcal{A})$, naturally in \mathcal{A} , for "many" (ideally, all) $\mathcal{A} \in \mathcal{A}$.

Larders and CLL

General settings

P-scaled algebras

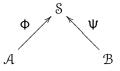
Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension We are given categories \mathcal{A} , \mathcal{B} , \mathcal{S} together with functors $\Phi: \mathcal{A} \to \mathcal{S}$ and $\Psi: \mathcal{B} \to \mathcal{S}$. We are trying to find a functor $\Gamma: \mathcal{A} \to \mathcal{B}$ such that $\Phi(\mathcal{A}) \cong \Psi \Gamma(\mathcal{A})$, naturally in \mathcal{A} , for "many" (ideally, all) $\mathcal{A} \in \mathcal{A}$.



Larders and CLL

General settings

P-scaled algebras

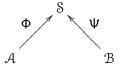
Lifters, larders, and CLL

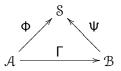
Diagram forn of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension We are given categories \mathcal{A} , \mathcal{B} , \mathcal{S} together with functors $\Phi: \mathcal{A} \to \mathcal{S}$ and $\Psi: \mathcal{B} \to \mathcal{S}$. We are trying to find a functor $\Gamma: \mathcal{A} \to \mathcal{B}$ such that $\Phi(\mathcal{A}) \cong \Psi\Gamma(\mathcal{A})$, naturally in \mathcal{A} , for "many" (ideally, all) $\mathcal{A} \in \mathcal{A}$.





Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension We are given categories \mathcal{A} , \mathcal{B} , \mathcal{S} together with functors $\Phi: \mathcal{A} \to \mathcal{S}$ and $\Psi: \mathcal{B} \to \mathcal{S}$. We are trying to find a functor $\Gamma: \mathcal{A} \to \mathcal{B}$ such that $\Phi(\mathcal{A}) \cong \Psi\Gamma(\mathcal{A})$, naturally in \mathcal{A} , for "many" (ideally, all) $\mathcal{A} \in \mathcal{A}$.

Hence we need an assumption of the form "for many $A \in \mathcal{A}$, there exists $B \in \mathcal{B}$ such that $\Phi(A) \cong \Psi(B)$ ".

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension We are given categories \mathcal{A} , \mathcal{B} , \mathcal{S} together with functors $\Phi: \mathcal{A} \to \mathcal{S}$ and $\Psi: \mathcal{B} \to \mathcal{S}$. We are trying to find a functor $\Gamma: \mathcal{A} \to \mathcal{B}$ such that $\Phi(\mathcal{A}) \cong \Psi\Gamma(\mathcal{A})$, naturally in \mathcal{A} , for "many" (ideally, all) $\mathcal{A} \in \mathcal{A}$.

Hence we need an assumption of the form "for many $A \in A$, there exists $B \in \mathcal{B}$ such that $\Phi(A) \cong \Psi(B)$ ". Ask for $\Gamma: A \mapsto B$ to be a functor (at least on a large enough subcategory of A).

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension We are given categories \mathcal{A} , \mathcal{B} , \mathcal{S} together with functors $\Phi: \mathcal{A} \to \mathcal{S}$ and $\Psi: \mathcal{B} \to \mathcal{S}$. We are trying to find a functor $\Gamma: \mathcal{A} \to \mathcal{B}$ such that $\Phi(\mathcal{A}) \cong \Psi\Gamma(\mathcal{A})$, naturally in \mathcal{A} , for "many" (ideally, all) $\mathcal{A} \in \mathcal{A}$.

Hence we need an assumption of the form "for many $A \in A$, there exists $B \in \mathcal{B}$ such that $\Phi(A) \cong \Psi(B)$ ". Ask for $\Gamma: A \mapsto B$ to be a functor (at least on a large enough subcategory of A).

Let's see some examples.

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram forn of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

Theorem (Schmidt 1981)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Larders and CLL

Theorem (Schmidt 1981)

For each distributive 0-lattice D,

General settings *P*-scaled

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

Theorem (Schmidt 1981)

For each distributive 0-lattice D, there exists a lattice L such that Con_c L, the (\lor , 0)-semilattice of all *compact* (*=finitely generated*) *congruences* of L, is isomorphic to D.

Theorem (Schmidt 1981)

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension For each distributive 0-lattice D, there exists a lattice L such that Con_c L, the (\lor , 0)-semilattice of all *compact* (*=finitely generated*) *congruences* of L, is isomorphic to D.

Question: Can the assignment $D \mapsto L$ be made *functorial*?

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

Theorem (Schmidt 1981)

For each distributive 0-lattice D, there exists a lattice L such that Con_c L, the (\lor , 0)-semilattice of all *compact* (*=finitely generated*) congruences of L, is isomorphic to D.

Question: Can the assignment $D \mapsto L$ be made *functorial*? Hence, in the above discussed functor-lifting settings,

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram forn of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

Theorem (Schmidt 1981)

For each distributive 0-lattice D, there exists a lattice L such that Con_c L, the (\lor , 0)-semilattice of all *compact* (*=finitely generated*) congruences of L, is isomorphic to D.

Question: Can the assignment $D \mapsto L$ be made *functorial*? Hence, in the above discussed functor-lifting settings,

S is the category of all (∨, 0)-semilattices with (∨, 0)-homomorphisms,

Larders and CLL

General settings

- P-scaled algebras
- Lifters, larders, and CLL
- Diagram form of GS
- Relative critical points
- Noncoordinatizable SCMLs
- Lattices without CPCPextension

Theorem (Schmidt 1981)

For each distributive 0-lattice D, there exists a lattice L such that Con_c L, the (\lor , 0)-semilattice of all *compact* (*=finitely generated*) congruences of L, is isomorphic to D.

Question: Can the assignment $D \mapsto L$ be made *functorial*? Hence, in the above discussed functor-lifting settings,

- S is the category of all (∨, 0)-semilattices with (∨, 0)-homomorphisms,
- A is the category of all distributive 0-lattices with 0-lattice embeddings,

Larders and CLL

General settings

- P-scaled algebras
- Lifters, larders, and CLL
- Diagram form of GS
- Relative critical points
- Noncoordinatizable SCMLs
- Lattices without CPCPextension

Theorem (Schmidt 1981)

For each distributive 0-lattice D, there exists a lattice L such that $\operatorname{Con}_{c} L$, the $(\lor, 0)$ -semilattice of all *compact* (*=finitely generated*) congruences of L, is isomorphic to D.

Question: Can the assignment $D \mapsto L$ be made *functorial*? Hence, in the above discussed functor-lifting settings,

- S is the category of all (∨, 0)-semilattices with (∨, 0)-homomorphisms,
- A is the category of all distributive 0-lattices with 0-lattice embeddings,

• Φ is the inclusion functor $\mathcal{A} \hookrightarrow \mathcal{B}$,

Larders and CLL

General settings

- P-scaled algebras
- Lifters, larders, and CLL
- Diagram form of GS
- Relative critical points
- Noncoordinatizable SCMLs
- Lattices without CPCPextension

Theorem (Schmidt 1981)

For each distributive 0-lattice D, there exists a lattice L such that Con_c L, the (\lor , 0)-semilattice of all *compact* (*=finitely generated*) congruences of L, is isomorphic to D.

Question: Can the assignment $D \mapsto L$ be made *functorial*? Hence, in the above discussed functor-lifting settings,

- S is the category of all (∨, 0)-semilattices with (∨, 0)-homomorphisms,
- A is the category of all distributive 0-lattices with 0-lattice embeddings,

- Φ is the inclusion functor $\mathcal{A} \hookrightarrow \mathcal{B}$,
- B is the category of all lattices with lattice homomorphisms,

Larders and CLL

General settings

- P-scaled algebras
- Lifters, larders, and CLL
- Diagram form of GS
- Relative critical points
- Noncoordinatizable SCMLs
- Lattices without CPCPextension

Theorem (Schmidt 1981)

For each distributive 0-lattice D, there exists a lattice L such that Con_c L, the (\lor , 0)-semilattice of all *compact* (*=finitely generated*) congruences of L, is isomorphic to D.

Question: Can the assignment $D \mapsto L$ be made *functorial*? Hence, in the above discussed functor-lifting settings,

- S is the category of all (∨, 0)-semilattices with (∨, 0)-homomorphisms,
- A is the category of all distributive 0-lattices with 0-lattice embeddings,
- Φ is the inclusion functor $\mathcal{A} \hookrightarrow \mathcal{B}$,
- B is the category of all lattices with lattice homomorphisms,
- $\Psi: \mathcal{B} \to \mathcal{S}, L \mapsto \operatorname{Con}_{c} L$ (naturally extended to homomorphisms).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram forn of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

Answer to the above question (Pudlák 1985)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram forn of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

Answer to the above question (Pudlák 1985)

Yes.

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

Answer to the above question (Pudlák 1985)

Yes. Namely, there exists a functor

 $\mathsf{\Gamma}: (\mathsf{distr. 0-latt., 0-latt. emb.}) \rightarrow (\mathsf{latt., latt. emb.})$

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

Answer to the above question (Pudlák 1985)

Yes. Namely, there exists a functor

 $\mathsf{\Gamma} \colon (\mathsf{distr.}\ \mathsf{0}\text{-}\mathsf{latt.}, \mathsf{0}\text{-}\mathsf{latt.}\ \mathsf{emb.}) \to (\mathsf{latt.}, \mathsf{latt.}\ \mathsf{emb.})$

such that $\operatorname{Con}_{c} \Gamma(D) \cong D$ naturally for each distributive 0-lattice D.

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram forn of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

Answer to the above question (Pudlák 1985)

Yes. Namely, there exists a functor

 $\mathsf{\Gamma} \colon (\mathsf{distr.}\ \mathsf{0}\text{-}\mathsf{latt.}, \mathsf{0}\text{-}\mathsf{latt.}\ \mathsf{emb.}) \to (\mathsf{latt.}, \mathsf{latt.}\ \mathsf{emb.})$

such that $\operatorname{Con}_{c} \Gamma(D) \cong D$ naturally for each distributive 0-lattice D.

In fact, the functor Γ constructed in Pudlák's proof sends finite distributive lattices to finite atomistic lattices, and preserves directed colimits (=direct limits).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

Question (Pudlák 1985)

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Larders and CLL

General settings

- P-scaled algebras
- Lifters, larders, and CLL
- Diagram forn of GS
- Relative critical points
- Noncoordinatizable SCMLs
- Lattices without CPCPextension

Question (Pudlák 1985)

Can this be done with

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

Question (Pudlák 1985)

Can this be done with

 $\mathsf{\Gamma}: (\mathsf{distr.} \ \mathsf{0}\text{-semilatt.}, (\lor, \mathsf{0})\text{-embeddings}) \to (\mathsf{latt.}, \mathsf{latt.} \ \mathsf{emb.})$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

?

Larders and CLL

General settings

P-scaled algebras

```
Lifters,
larders, and
CLL
```

Diagram forn of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

Question (Pudlák 1985)

Can this be done with

 $\mathsf{\Gamma}: (\mathsf{distr.} \ \mathsf{0}\text{-semilatt.}, (\lor, \mathsf{0})\text{-embeddings}) \to (\mathsf{latt.}, \mathsf{latt.} \ \mathsf{emb.})$

?

```
(Note: there is no hope with

\Gamma: (distr. 0-semilatt., (\lor, 0)-homomorphisms) \rightarrow

(latt., latt. hom.),

for "trivial" reasons.)
```

Larders and CLL

General settings

P-scaled algebras

```
Lifters,
larders, and
CLL
```

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

Question (Pudlák 1985)

Can this be done with

 $\mathsf{\Gamma} \colon (\mathsf{distr.} \ \mathsf{0}\text{-semilatt.}, (\lor, \mathsf{0})\text{-embeddings}) \to (\mathsf{latt.}, \mathsf{latt.} \ \mathsf{emb.})$

?

```
(Note: there is no hope with

\Gamma: (distr. 0-semilatt., (\lor, 0)-homomorphisms) \rightarrow

(latt., latt. hom.),

for "trivial" reasons.)
```

Answer (Tůma and W., 2006)

Larders and CLL

General settings

P-scaled algebras

```
Lifters,
larders, and
CLL
```

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

Question (Pudlák 1985)

Can this be done with

 $\mathsf{\Gamma} \colon (\mathsf{distr.} \ \mathsf{0}\text{-semilatt.}, (\lor, \mathsf{0})\text{-embeddings}) \to (\mathsf{latt.}, \mathsf{latt.} \ \mathsf{emb.})$

?

```
(Note: there is no hope with

\Gamma: (distr. 0-semilatt., (\lor, 0)-homomorphisms) \rightarrow

(latt., latt. hom.),

for "trivial" reasons.)
```

Answer (Tůma and W., 2006)

No, it cannot.

Larders and CLL

General settings

P-scaled algebras

```
Lifters,
larders, and
CLL
```

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

Question (Pudlák 1985)

Can this be done with

 $\mathsf{\Gamma}: (\mathsf{distr.} \ \mathsf{0}\text{-semilatt.}, (\lor, \mathsf{0})\text{-embeddings}) \to (\mathsf{latt.}, \mathsf{latt.} \ \mathsf{emb.})$

?

```
(Note: there is no hope with

\Gamma: (distr. 0-semilatt., (\lor, 0)-homomorphisms) \rightarrow

(latt., latt. hom.),

for "trivial" reasons.)
```

Answer (Tůma and W., 2006)

No, it cannot. (For nontrivial reasons, that can be extended to any variety with a nontrivial congruence (\lor, \land) -identity.)

Distributive 0-lattices as compact ideal semilattices of locally matricial algebras (at object level)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

An algebra R over a field F is

Distributive 0-lattices as compact ideal semilattices of locally matricial algebras (at object level)

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension • matricial, if $R \cong \prod_{i=1}^{m} F^{n_i \times n_i}$ (direct product of matrix rings), for positive integers n_1, \ldots, n_m .

An algebra R over a field F is

Distributive 0-lattices as compact ideal semilattices of locally matricial algebras (at object level)

Larders and CLL

General settings

- P-scaled algebras
- Lifters, larders, and CLL
- Diagram form of GS
- Relative critical points
- Noncoordinatizable SCMLs
- Lattices without CPCPextension

An algebra R over a field F is

- matricial, if $R \cong \prod_{i=1}^{m} F^{n_i \times n_i}$ (direct product of matrix rings), for positive integers n_1, \ldots, n_m .
- locally matricial, if R is a directed colimit (=direct limit) of matricial algebras.

Distributive 0-lattices as compact ideal semilattices of locally matricial algebras (at object level)

Larders and CLL

General settings

- P-scaled algebras
- Lifters, larders, and CLL
- Diagram form of GS
- Relative critical points
- Noncoordinatizable SCMLs
- Lattices without CPCPextension

An algebra R over a field F is

- matricial, if $R \cong \prod_{i=1}^{m} F^{n_i \times n_i}$ (direct product of matrix rings), for positive integers n_1, \ldots, n_m .
- locally matricial, if R is a directed colimit (=direct limit) of matricial algebras.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem (Růžička 2004)

Distributive 0-lattices as compact ideal semilattices of locally matricial algebras (at object level)

Larders and CLL

General settings

- P-scaled algebras
- Lifters, larders, and CLL
- Diagram form of GS
- Relative critical points
- Noncoordinatizable SCMLs
- Lattices without CPCPextension

- An algebra R over a field F is
 - matricial, if $R \cong \prod_{i=1}^{m} F^{n_i \times n_i}$ (direct product of matrix rings), for positive integers n_1, \ldots, n_m .
 - locally matricial, if R is a directed colimit (=direct limit) of matricial algebras.

Theorem (Růžička 2004)

For each field F and each distributive 0-lattice D,

Distributive 0-lattices as compact ideal semilattices of locally matricial algebras (at object level)

Larders and CLL

General settings

- P-scaled algebras
- Lifters, larders, and CLL
- Diagram form of GS
- Relative critical points
- Noncoordinatizable SCMLs
- Lattices without CPCPextension

An algebra R over a field F is

- matricial, if $R \cong \prod_{i=1}^{m} F^{n_i \times n_i}$ (direct product of matrix rings), for positive integers n_1, \ldots, n_m .
- locally matricial, if R is a directed colimit (=direct limit) of matricial algebras.

Theorem (Růžička 2004)

For each field F and each distributive 0-lattice D, there exists a locally matricial F-algebra R such that $Id_c R$, the $(\lor, 0)$ -semilattice of all *compact* (*=finitely generated*) *two-sided ideals* of R, is isomorphic to D.

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

Question: Can the assignment $D \mapsto R$ be made *functorial*?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension **Question**: Can the assignment $D \mapsto R$ be made *functorial*? It cannot be (distr. 0-latt., 0-latt. hom.) \rightarrow (*F*-alg., *F*-alg. hom.) (easy to see). However,

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension **Question**: Can the assignment $D \mapsto R$ be made *functorial*? It cannot be (distr. 0-latt., 0-latt. hom.) \rightarrow (*F*-alg., *F*-alg. hom.) (easy to see). However,

Theorem (Růžička 2006)

The assignment $D \mapsto R$ can be made functorial (distr. 0-latt., 0-latt. emb.) \rightarrow (*F*-alg., *F*-alg. hom.).

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension **Question**: Can the assignment $D \mapsto R$ be made *functorial*? It cannot be (distr. 0-latt., 0-latt. hom.) \rightarrow (*F*-alg., *F*-alg. hom.) (easy to see). However,

Theorem (Růžička 2006)

The assignment $D \mapsto R$ can be made functorial (distr. 0-latt., 0-latt. emb.) \rightarrow (*F*-alg., *F*-alg. hom.).

Due to the link between K-theory of regular rings and congruence lattices of lattices, Růžička's result extends Schmidt's result.

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension For varieties A and B of algebras (not necessarily over the same similarity type), we set

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram forn of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension For varieties A and B of algebras (not necessarily over the same similarity type), we set

•
$$\operatorname{Con}_{\mathsf{c}} \mathcal{A} := \{ S \mid (\exists A \in \mathcal{A}) (S \cong \operatorname{Con}_{\mathsf{c}} A) \};$$

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension For varieties A and B of algebras (not necessarily over the same similarity type), we set

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

•
$$\operatorname{Con}_{c} \mathcal{A} := \{ S \mid (\exists A \in \mathcal{A}) (S \cong \operatorname{Con}_{c} A) \};$$

 crit(A; B) :=least cardinality of a member of (Con_c A) \ (Con_c B) if it exists, ∞ otherwise.

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension For varieties A and B of algebras (not necessarily over the same similarity type), we set

•
$$\operatorname{Con}_{c} \mathcal{A} := \{ S \mid (\exists A \in \mathcal{A}) (S \cong \operatorname{Con}_{c} A) \};$$

 crit(A; B) :=least cardinality of a member of (Con_c A) \ (Con_c B) if it exists, ∞ otherwise.

Theorem (Gillibert 2008)

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension For varieties ${\cal A}$ and ${\cal B}$ of algebras (not necessarily over the same similarity type), we set

•
$$\operatorname{Con}_{c} \mathcal{A} := \{ S \mid (\exists A \in \mathcal{A}) (S \cong \operatorname{Con}_{c} A) \};$$

 crit(A; B) :=least cardinality of a member of (Con_c A) \ (Con_c B) if it exists, ∞ otherwise.

Theorem (Gillibert 2008)

Let \mathcal{A} be a locally finite variety and let \mathcal{B} be a finitely generated congruence-distributive variety. Then $\operatorname{Con}_{c} \mathcal{A} \not\subseteq \operatorname{Con}_{c} \mathcal{B}$ implies that $\operatorname{crit}(\mathcal{A}; \mathcal{B}) < \aleph_{\omega}$.

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension For varieties \mathcal{A} and \mathcal{B} of algebras (not necessarily over the same similarity type), we set

•
$$\operatorname{Con}_{c} \mathcal{A} := \{ S \mid (\exists A \in \mathcal{A}) (S \cong \operatorname{Con}_{c} A) \};$$

 crit(A; B) :=least cardinality of a member of (Con_c A) \ (Con_c B) if it exists, ∞ otherwise.

Theorem (Gillibert 2008)

Let \mathcal{A} be a locally finite variety and let \mathcal{B} be a finitely generated congruence-distributive variety. Then $\operatorname{Con}_{c} \mathcal{A} \not\subseteq \operatorname{Con}_{c} \mathcal{B}$ implies that $\operatorname{crit}(\mathcal{A}; \mathcal{B}) < \aleph_{\omega}$.

Whether all \aleph_n can be thus reached (for finite similarity types) is a difficult open problem.

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension For varieties A and B of algebras (not necessarily over the same similarity type), we set

•
$$\operatorname{Con}_{c} \mathcal{A} := \{ S \mid (\exists A \in \mathcal{A}) (S \cong \operatorname{Con}_{c} A) \};$$

 crit(A; B) :=least cardinality of a member of (Con_c A) \ (Con_c B) if it exists, ∞ otherwise.

Theorem (Gillibert 2008)

Let \mathcal{A} be a locally finite variety and let \mathcal{B} be a finitely generated congruence-distributive variety. Then $\operatorname{Con}_{c} \mathcal{A} \not\subseteq \operatorname{Con}_{c} \mathcal{B}$ implies that $\operatorname{crit}(\mathcal{A}; \mathcal{B}) < \aleph_{\omega}$.

Whether all \aleph_n can be thus reached (for finite similarity types) is a difficult open problem. (However, some partial results are known.)

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram forn of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension A ring (associative, not necessarily unital) R is (von Neumann) regular, if $(\forall x \in R)(\exists y \in R)(xyx = x)$.

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension • A ring (associative, not necessarily unital) R is (von Neumann) regular, if $(\forall x \in R)(\exists y \in R)(xyx = x)$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• For a ring R, set $\mathbb{L}(R) := \{xR \mid x \in R\}$.

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension • A ring (associative, not necessarily unital) R is (von Neumann) regular, if $(\forall x \in R)(\exists y \in R)(xyx = x)$.

• For a ring R, set $\mathbb{L}(R) := \{xR \mid x \in R\}$.

• For $R := \mathbb{Z}[\sqrt{-5}]$, the poset $(\mathbb{L}(R), \subseteq)$ is not a lattice.

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension • A ring (associative, not necessarily unital) R is (von Neumann) regular, if $(\forall x \in R)(\exists y \in R)(xyx = x)$.

• For a ring R, set $\mathbb{L}(R) := \{xR \mid x \in R\}$.

• For $R := \mathbb{Z}[\sqrt{-5}]$, the poset $(\mathbb{L}(R), \subseteq)$ is not a lattice.

• If R is regular, then $\mathbb{L}(R)$ is a sectionally complemented sublattice of the right ideal lattice of R. In particular, it is modular (even Arguesian).

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension • A ring (associative, not necessarily unital) R is (von Neumann) regular, if $(\forall x \in R)(\exists y \in R)(xyx = x)$.

• For a ring R, set $\mathbb{L}(R) := \{xR \mid x \in R\}$.

• For $R := \mathbb{Z}[\sqrt{-5}]$, the poset $(\mathbb{L}(R), \subseteq)$ is not a lattice.

If R is regular, then L(R) is a sectionally complemented sublattice of the right ideal lattice of R. In particular, it is modular (even Arguesian).

• For a homomorphism $f: R \to S$ of regular rings, the map $\mathbb{L}(f): \mathbb{L}(R) \to \mathbb{L}(S), I \mapsto f(I)S$ is a 0-lattice homomorphism. The functor \mathbb{L} thus defined preserves directed colimits (=direct limits).

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension • A ring (associative, not necessarily unital) R is (von Neumann) regular, if $(\forall x \in R)(\exists y \in R)(xyx = x)$.

- For a ring R, set $\mathbb{L}(R) := \{xR \mid x \in R\}$.
- For $R := \mathbb{Z}[\sqrt{-5}]$, the poset $(\mathbb{L}(R), \subseteq)$ is not a lattice.
- If R is regular, then L(R) is a sectionally complemented sublattice of the right ideal lattice of R. In particular, it is modular (even Arguesian).
- For a homomorphism $f: R \to S$ of regular rings, the map $\mathbb{L}(f): \mathbb{L}(R) \to \mathbb{L}(S), I \mapsto f(I)S$ is a 0-lattice homomorphism. The functor \mathbb{L} thus defined preserves directed colimits (=direct limits).
- A lattice is coordinatizable, if it is isomorphic to L(R) for some regular ring R.

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

The identity of 2-distributivity:

 $x \wedge (y_0 \vee y_1 \vee y_2) = (x \wedge (y_0 \vee y_1)) \vee (x \wedge (y_0 \vee y_2)) \vee (x \wedge (y_1 \vee y_2)).$

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

The identity of 2-distributivity: $x \wedge (y_0 \vee y_1 \vee y_2) = (x \wedge (y_0 \vee y_1)) \vee (x \wedge (y_0 \vee y_2)) \vee (x \wedge (y_1 \vee y_2)).$ $M_{\omega} := \{0, 1, a_0, a_1, a_2, \dots\}, \text{ all } a_i \text{ atoms, is 2-distributive.}$

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

The identity of 2-distributivity:

 $x \wedge (y_0 \vee y_1 \vee y_2) = (x \wedge (y_0 \vee y_1)) \vee (x \wedge (y_0 \vee y_2)) \vee (x \wedge (y_1 \vee y_2)).$

 $M_{\omega} := \{0, 1, a_0, a_1, a_2, \dots\}$, all a_i atoms, is 2-distributive. A spanning M_{ω} in a bounded lattice L is a 0, 1-sublattice of L isomorphic to M_{ω} .

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

$x \wedge (y_0 \vee y_1 \vee y_2) = (x \wedge (y_0 \vee y_1)) \vee (x \wedge (y_0 \vee y_2)) \vee (x \wedge (y_1 \vee y_2)) .$ $M_{\omega} := \{0, 1, a_0, a_1, a_2, \dots\}, \text{ all } a_i \text{ atoms, is 2-distributive.}$ A spanning M_{ω} in a bounded lattice L is a 0, 1-sublattice of L isomorphic to M_{ω} .

Theorem (W., 2006)

The identity of 2-distributivity:

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

The identity of 2-distributivity:

 $x \wedge (y_0 \vee y_1 \vee y_2) = (x \wedge (y_0 \vee y_1)) \vee (x \wedge (y_0 \vee y_2)) \vee (x \wedge (y_1 \vee y_2)).$

 $M_{\omega} := \{0, 1, a_0, a_1, a_2, \dots\}$, all a_i atoms, is 2-distributive. A spanning M_{ω} in a bounded lattice L is a 0, 1-sublattice of L isomorphic to M_{ω} .

Theorem (W., 2006)

• Every countable, 2-distributive complemented modular lattice with a spanning M_{ω} is coordinatizable.

Larders and CLL

General settings

- P-scaled algebras
- Lifters, larders, and CLL
- Diagram form of GS
- Relative critical points
- Noncoordinatizable SCMLs
- Lattices without CPCPextension

The identity of 2-distributivity:

 $x \wedge (y_0 \vee y_1 \vee y_2) = (x \wedge (y_0 \vee y_1)) \vee (x \wedge (y_0 \vee y_2)) \vee (x \wedge (y_1 \vee y_2)).$

 $M_{\omega} := \{0, 1, a_0, a_1, a_2, \dots\}$, all a_i atoms, is 2-distributive. A spanning M_{ω} in a bounded lattice L is a 0, 1-sublattice of L isomorphic to M_{ω} .

Theorem (W., 2006)

- Every countable, 2-distributive complemented modular lattice with a spanning M_{ω} is coordinatizable.
- The 0, 1-lattice embedding $\varphi \colon M_{\omega} \hookrightarrow M_{\omega}$, $a_n \mapsto a_{n+1}$ cannot be lifted with respect to the functor \mathbb{L} .

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

The identity of 2-distributivity:

 $x \wedge (y_0 \vee y_1 \vee y_2) = (x \wedge (y_0 \vee y_1)) \vee (x \wedge (y_0 \vee y_2)) \vee (x \wedge (y_1 \vee y_2)).$

 $M_{\omega} := \{0, 1, a_0, a_1, a_2, \dots\}$, all a_i atoms, is 2-distributive. A spanning M_{ω} in a bounded lattice L is a 0, 1-sublattice of L isomorphic to M_{ω} .

Theorem (W., 2006)

- Every countable, 2-distributive complemented modular lattice with a spanning M_{ω} is coordinatizable.
- The 0, 1-lattice embedding $\varphi \colon M_{\omega} \hookrightarrow M_{\omega}$, $a_n \mapsto a_{n+1}$ cannot be lifted with respect to the functor \mathbb{L} .
- There exists a non-coordinatizable 2-distributive complemented modular lattice, of cardinality ℵ₁, with a spanning M_ω.

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

The identity of 2-distributivity:

 $x \wedge (y_0 \vee y_1 \vee y_2) = (x \wedge (y_0 \vee y_1)) \vee (x \wedge (y_0 \vee y_2)) \vee (x \wedge (y_1 \vee y_2)).$

 $M_{\omega} := \{0, 1, a_0, a_1, a_2, \dots\}$, all a_i atoms, is 2-distributive. A spanning M_{ω} in a bounded lattice L is a 0, 1-sublattice of L isomorphic to M_{ω} .

Theorem (W., 2006)

- Every countable, 2-distributive complemented modular lattice with a spanning M_{ω} is coordinatizable.
- The 0, 1-lattice embedding $\varphi \colon M_{\omega} \hookrightarrow M_{\omega}$, $a_n \mapsto a_{n+1}$ cannot be lifted with respect to the functor \mathbb{L} .
- There exists a non-coordinatizable 2-distributive complemented modular lattice, of cardinality ℵ₁, with a spanning M_ω. In particular, coordinatizability is not first-order.

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram forn of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension An ideal of a poset P is a nonempty, upward directed lower subset of P. Denote by Id P the set of all ideals of P, ordered by containment.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram forn of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension An ideal of a poset P is a nonempty, upward directed lower subset of P. Denote by Id P the set of all ideals of P, ordered by containment.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Definition (Gillibert and W., 2009)

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension An ideal of a poset P is a nonempty, upward directed lower subset of P. Denote by Id P the set of all ideals of P, ordered by containment.

Definition (Gillibert and W., 2009)

A *P*-normed (topological) space is a pair $\mathbf{X} = (X, \nu)$, where X is a topological space, $\nu \colon X \to \operatorname{Id} P$, and the subset $\{x \in X \mid p \in \nu(x)\}$ is open in X, for each $p \in P$.

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram forn of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension An ideal of a poset P is a nonempty, upward directed lower subset of P. Denote by Id P the set of all ideals of P, ordered by containment.

Definition (Gillibert and W., 2009)

A *P*-normed (topological) space is a pair $\mathbf{X} = (X, \nu)$, where X is a topological space, $\nu \colon X \to \operatorname{Id} P$, and the subset $\{x \in X \mid p \in \nu(x)\}$ is open in X, for each $p \in P$.

• Write ||x||, or $||x||_{\mathbf{X}}$, instead of $\nu(x)$.

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram forn of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension An ideal of a poset P is a nonempty, upward directed lower subset of P. Denote by Id P the set of all ideals of P, ordered by containment.

Definition (Gillibert and W., 2009)

A *P*-normed (topological) space is a pair $\mathbf{X} = (X, \nu)$, where X is a topological space, $\nu : X \to \operatorname{Id} P$, and the subset $\{x \in X \mid p \in \nu(x)\}$ is open in X, for each $p \in P$.

• Write ||x||, or $||x||_{\mathbf{X}}$, instead of $\nu(x)$.

For P-normed spaces X and Y, a morphism X → Y is a continuous map f: X → Y such that ||f(x)||_Y ⊆ ||x||_X for each x ∈ X.

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension An ideal of a poset P is a nonempty, upward directed lower subset of P. Denote by Id P the set of all ideals of P, ordered by containment.

Definition (Gillibert and W., 2009)

A *P*-normed (topological) space is a pair $\mathbf{X} = (X, \nu)$, where X is a topological space, $\nu : X \to \operatorname{Id} P$, and the subset $\{x \in X \mid p \in \nu(x)\}$ is open in X, for each $p \in P$.

- Write ||x||, or $||x||_{\mathbf{X}}$, instead of $\nu(x)$.
- For P-normed spaces X and Y, a morphism X → Y is a continuous map f: X → Y such that ||f(x)||_Y ⊆ ||x||_X for each x ∈ X.
- BTop_P :=category of all P-normed Boolean spaces with morphisms as above.

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension An ideal of a poset P is a nonempty, upward directed lower subset of P. Denote by Id P the set of all ideals of P, ordered by containment.

Definition (Gillibert and W., 2009)

A *P*-normed (topological) space is a pair $\mathbf{X} = (X, \nu)$, where X is a topological space, $\nu : X \to \operatorname{Id} P$, and the subset $\{x \in X \mid p \in \nu(x)\}$ is open in X, for each $p \in P$.

• Write ||x||, or $||x||_{\mathbf{X}}$, instead of $\nu(x)$.

- For P-normed spaces X and Y, a morphism X → Y is a continuous map f: X → Y such that ||f(x)||_Y ⊆ ||x||_X for each x ∈ X.
- BTop_P :=category of all P-normed Boolean spaces with morphisms as above.

A description of the dual category follows.

	P-scaled Boolean algebras
arders and CLL	Fix a poset <i>P</i> .
eneral ttings	
-scaled gebras	
fters, rders, and _L	
agram form GS	
elative itical points	
on- ordinatizable CMLs	
attices thout PCP- tension	
tension	

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

P al

P-scaled Boolean algebras

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension Fix a poset *P*.

Definition (Gillibert and W., 2009)

P-scaled Boolean algebras

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension Fix a poset P.

Definition (Gillibert and W., 2009)

A P-scaled Boolean algebra is a structure

$$\mathbf{A} = \left(A, (A^{(p)} \mid p \in P)
ight)$$

where A is a Boolean algebra, each $A^{(p)}$ is an ideal of A, and

1
$$A = \bigvee (A^{(p)} | p \in P)$$
 in Id A;
2 $A^{(p)} \cap A^{(q)} = \bigvee (A^{(r)} | r \ge p, q)$ for all $p, q \in P$.

P-scaled Boolean algebras

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram forn of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension Fix a poset P.

Definition (Gillibert and W., 2009)

A P-scaled Boolean algebra is a structure

$$\mathbf{A} = \left(A, (A^{(p)} \mid p \in P) \right),$$

where A is a Boolean algebra, each $A^{(p)}$ is an ideal of A, and

- 1 $A = \bigvee (A^{(p)} | p \in P)$ in Id A; 2 $A^{(p)} \cap A^{(q)} = \bigvee (A^{(r)} | r \ge p, q)$ for all $p, q \in P$.
- For *P*-scaled Boolean algebras **A** and **B**, a morphism from **A** to **B** is a homomorphism $f: A \to B$ of Boolean algebras such that $f(A^{(p)}) \subseteq B^{(p)}$ for each $p \in P$.

P-scaled Boolean algebras

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram forn of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension Fix a poset *P*.

Definition (Gillibert and W., 2009)

A *P*-scaled Boolean algebra is a structure

$$\mathbf{A} = \left(A, (A^{(p)} \mid p \in P) \right),$$

where A is a Boolean algebra, each $A^{(p)}$ is an ideal of A, and

- 1 $A = \bigvee (A^{(p)} | p \in P)$ in Id A; 2 $A^{(p)} \cap A^{(q)} = \bigvee (A^{(r)} | r \ge p, q)$ for all $p, q \in P$.
- For *P*-scaled Boolean algebras **A** and **B**, a morphism from **A** to **B** is a homomorphism $f: A \to B$ of Boolean algebras such that $f(A^{(p)}) \subseteq B^{(p)}$ for each $p \in P$.
- Denote by **Bool**_P the category of all P-scaled Boolean algebras with above described morphisms.

Duality between $BTop_P$ and $Bool_P$

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram forn of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension For a *P*-scaled Boolean algebra **A**, we set

 $\|\mathfrak{a}\| := \{p \in P \mid \mathfrak{a} \cap A^{(p)} \neq \varnothing\}, \text{ for each } \mathfrak{a} \in \mathsf{Ult} A.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Duality between \mathbf{BTop}_P and \mathbf{Bool}_P

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension For a *P*-scaled Boolean algebra **A**, we set

 $\|\mathfrak{a}\| := \{ p \in P \mid \mathfrak{a} \cap A^{(p)} \neq \varnothing \} \,, \quad \text{for each } \mathfrak{a} \in \mathsf{UIt}\, A \,.$

• $||\mathfrak{a}||$ is an ideal of *P*, and $\mathfrak{a} \mapsto ||\mathfrak{a}||$ is a *P*-norm on Ult *A*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Duality between $BTop_P$ and $Bool_P$

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension For a *P*-scaled Boolean algebra **A**, we set

 $\|\mathfrak{a}\| := \{p \in P \mid \mathfrak{a} \cap A^{(p)} \neq \varnothing\}, \text{ for each } \mathfrak{a} \in \mathsf{Ult} A.$

• $||\mathfrak{a}||$ is an ideal of *P*, and $\mathfrak{a} \mapsto ||\mathfrak{a}||$ is a *P*-norm on Ult *A*.

Denote by Ult A the P-normed Boolean space thus constructed.

Duality between \mathbf{BTop}_{P} and \mathbf{Bool}_{P}

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension For a *P*-scaled Boolean algebra **A**, we set

 $\|\mathfrak{a}\| := \{p \in P \mid \mathfrak{a} \cap A^{(p)} \neq \varnothing\}, \text{ for each } \mathfrak{a} \in \mathsf{Ult} A.$

• $||\mathfrak{a}||$ is an ideal of *P*, and $\mathfrak{a} \mapsto ||\mathfrak{a}||$ is a *P*-norm on Ult *A*.

Denote by Ult A the P-normed Boolean space thus constructed.

For a *P*-normed space **X** and $A := \operatorname{Clop} X$, we set

 $A^{(p)} := \{U \in \operatorname{Clop} X \mid (\forall x \in U) (p \in ||x||)\}, \text{ for each } p \in P.$

Duality between $BTop_P$ and $Bool_P$

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension For a *P*-scaled Boolean algebra **A**, we set

 $\|\mathfrak{a}\| := \{p \in P \mid \mathfrak{a} \cap A^{(p)} \neq \varnothing\}, \text{ for each } \mathfrak{a} \in \mathsf{Ult} A.$

• $||\mathfrak{a}||$ is an ideal of *P*, and $\mathfrak{a} \mapsto ||\mathfrak{a}||$ is a *P*-norm on Ult *A*.

Denote by Ult A the P-normed Boolean space thus constructed.

For a *P*-normed space **X** and $A := \operatorname{Clop} X$, we set

$$\mathcal{A}^{(p)} := \{U \in \operatorname{Clop} X \mid (orall x \in U) (p \in ||x||)\}, ext{ for each } p \in P\}$$

■ The structure Clop X := (A, (A^(p) | p ∈ P)) is a P-scaled Boolean algebra.

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension Let P be a poset.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram forn of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension Let P be a poset.

Proposition (Gillibert and W., 2009)

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension Let P be a poset.

Proposition (Gillibert and W., 2009)

The pair (Ult, Clop) defines a duality between the category \mathbf{BTop}_P of all *P*-normed Boolean spaces and the category \mathbf{Bool}_P of all *P*-scaled Boolean algebras.

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram forn of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension Let P be a poset.

Proposition (Gillibert and W., 2009)

The pair (Ult, Clop) defines a duality between the category \mathbf{BTop}_P of all *P*-normed Boolean spaces and the category \mathbf{Bool}_P of all *P*-scaled Boolean algebras.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Proposition (Gillibert and W., 2009)

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram forn of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension Let P be a poset.

Proposition (Gillibert and W., 2009)

The pair (Ult, Clop) defines a duality between the category \mathbf{BTop}_P of all *P*-normed Boolean spaces and the category \mathbf{Bool}_P of all *P*-scaled Boolean algebras.

Proposition (Gillibert and W., 2009)

The category **Bool**_P has all nonempty small directed colimits.

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram forn of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension Let P be a poset.

Proposition (Gillibert and W., 2009)

The pair (Ult, Clop) defines a duality between the category \mathbf{BTop}_P of all *P*-normed Boolean spaces and the category \mathbf{Bool}_P of all *P*-scaled Boolean algebras.

Proposition (Gillibert and W., 2009)

- The category **Bool**_P has all nonempty small directed colimits.
- The category **Bool**_P has all nonempty finite products.

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram forn of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension Let P be a poset.

Proposition (Gillibert and W., 2009)

The pair (Ult, Clop) defines a duality between the category **BTop**_P of all P-normed Boolean spaces and the category **Bool**_P of all P-scaled Boolean algebras.

Proposition (Gillibert and W., 2009)

- The category **Bool**_P has all nonempty small directed colimits.
- The category **Bool**_P has all nonempty finite products. Furthermore, if P is finite, then **Bool**_P has all nonempty small products.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram forr of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

Definition (Gabriel and Ulmer 1971)

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram forn of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

Definition (Gabriel and Ulmer 1971)

An object A in a category C is finitely presented, if for every directed colimit representation

$$(X, x_i \mid i \in I) = \varinjlim(X_i, x_i^j \mid i \leq j \text{ in } I) \text{ in } \mathbb{C}$$

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

Definition (Gabriel and Ulmer 1971)

An object A in a category C is finitely presented, if for every directed colimit representation

$$(X, x_i \mid i \in I) = \underline{\lim}(X_i, x_i^j \mid i \leq j \text{ in } I) \text{ in } \mathcal{C},$$

1
$$\forall f : A \to X, \exists i \in I \text{ such that } f \text{ factors through } X_i;$$

2 $\forall i \in I \text{ and } \forall f, g : A \to X_i, x_i \circ f = x_i \circ g \Rightarrow$
 $(\exists j \ge i)(x_i^j \circ f = x_i^j \circ g).$

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

Definition (Gabriel and Ulmer 1971)

An object A in a category C is finitely presented, if for every directed colimit representation

$$(X, x_i \mid i \in I) = \underline{\lim}(X_i, x_i^j \mid i \leq j \text{ in } I) \text{ in } \mathcal{C},$$

1
$$\forall f : A \to X, \exists i \in I \text{ such that } f \text{ factors through } X_i$$

2 $\forall i \in I \text{ and } \forall f, g : A \to X_i, x_i \circ f = x_i \circ g \Rightarrow$
 $(\exists j \ge i)(x_i^j \circ f = x_i^j \circ g).$

For example, an element in a poset is finitely presented iff it is compact.

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram forn of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

Proposition (Gillibert and W., 2009)

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

Proposition (Gillibert and W., 2009)

A *P*-scaled Boolean algebra **A** is finitely presented in **Bool**_{*P*} iff *A* is finite and $||\alpha||$ is a principal ideal for each ultrafilter α of *A*.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

Proposition (Gillibert and W., 2009)

A *P*-scaled Boolean algebra **A** is finitely presented in **Bool**_{*P*} iff *A* is finite and $||\alpha||$ is a principal ideal for each ultrafilter α of *A*.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Proposition (Gillibert and W., 2009)

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

Proposition (Gillibert and W., 2009)

A *P*-scaled Boolean algebra **A** is finitely presented in **Bool**_{*P*} iff *A* is finite and $||\mathfrak{a}||$ is a principal ideal for each ultrafilter \mathfrak{a} of *A*.

Proposition (Gillibert and W., 2009)

Every *P*-scaled Boolean algebra is a monomorphic directed colimit of finitely presented *P*-scaled Boolean algebras.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

Definition (Gillibert and W., 2009)

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram forn of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

Definition (Gillibert and W., 2009)

A morphism $f : \mathbf{A} \to \mathbf{B}$ of *P*-scaled Boolean algebras is normal, if it is surjective and $f(A^{(p)}) = B^{(p)}$ for each $p \in P$.

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

Definition (Gillibert and W., 2009)

A morphism $f: \mathbf{A} \to \mathbf{B}$ of *P*-scaled Boolean algebras is normal, if it is surjective and $f(A^{(p)}) = B^{(p)}$ for each $p \in P$. It is compact, if both **A** and **B** are finitely presented.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

Definition (Gillibert and W., 2009)

A morphism $f: \mathbf{A} \to \mathbf{B}$ of *P*-scaled Boolean algebras is normal, if it is surjective and $f(A^{(p)}) = B^{(p)}$ for each $p \in P$. It is compact, if both **A** and **B** are finitely presented.

For an ideal I of A, one can define a P-scaled Boolean algebra \mathbf{A}/I of underlying algebra A/I, with $(\mathbf{A}/I)^{(p)} = A^{(p)}/I$ for each $p \in P$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

Definition (Gillibert and W., 2009)

A morphism $f: \mathbf{A} \to \mathbf{B}$ of *P*-scaled Boolean algebras is normal, if it is surjective and $f(A^{(p)}) = B^{(p)}$ for each $p \in P$. It is compact, if both **A** and **B** are finitely presented.

For an ideal I of A, one can define a P-scaled Boolean algebra \mathbf{A}/I of underlying algebra A/I, with $(\mathbf{A}/I)^{(p)} = A^{(p)}/I$ for each $p \in P$. The projection map $\mathbf{A} \to \mathbf{A}/I$ is a normal morphism, and every normal morphism has this form (up to isomorphism).

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

Definition (Gillibert and W., 2009)

A morphism $f: \mathbf{A} \to \mathbf{B}$ of *P*-scaled Boolean algebras is normal, if it is surjective and $f(A^{(p)}) = B^{(p)}$ for each $p \in P$. It is compact, if both **A** and **B** are finitely presented.

For an ideal I of A, one can define a P-scaled Boolean algebra \mathbf{A}/I of underlying algebra A/I, with $(\mathbf{A}/I)^{(p)} = A^{(p)}/I$ for each $p \in P$. The projection map $\mathbf{A} \to \mathbf{A}/I$ is a normal morphism, and every normal morphism has this form (up to isomorphism). The normal morphisms of **Bool**_P are exactly its regular epimorphisms (i.e., coequalizers of two morphisms).

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

A morphism $f: \mathbf{A} \to \mathbf{B}$ of *P*-scaled Boolean algebras is normal, if it is surjective and $f(A^{(p)}) = B^{(p)}$ for each $p \in P$. It is compact, if both **A** and **B** are finitely presented.

For an ideal I of A, one can define a P-scaled Boolean algebra \mathbf{A}/I of underlying algebra A/I, with $(\mathbf{A}/I)^{(p)} = A^{(p)}/I$ for each $p \in P$. The projection map $\mathbf{A} \to \mathbf{A}/I$ is a normal morphism, and every normal morphism has this form (up to isomorphism). The normal morphisms of **Bool**_P are exactly its regular epimorphisms (i.e., coequalizers of two morphisms).

Proposition (Gillibert and W., 2009)

Definition (Gillibert and W., 2009)

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

A morphism $f: \mathbf{A} \to \mathbf{B}$ of *P*-scaled Boolean algebras is normal, if it is surjective and $f(A^{(p)}) = B^{(p)}$ for each $p \in P$. It is compact, if both **A** and **B** are finitely presented.

For an ideal I of A, one can define a P-scaled Boolean algebra \mathbf{A}/I of underlying algebra A/I, with $(\mathbf{A}/I)^{(p)} = A^{(p)}/I$ for each $p \in P$. The projection map $\mathbf{A} \to \mathbf{A}/I$ is a normal morphism, and every normal morphism has this form (up to isomorphism). The normal morphisms of **Bool**_P are exactly its regular epimorphisms (i.e., coequalizers of two morphisms).

Proposition (Gillibert and W., 2009)

Definition (Gillibert and W., 2009)

Every normal morphism in **Bool**_P is a directed colimit of compact normal morphisms.

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram forn of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension Work in a category S with all nonempty finite products, and fix a poset P.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram forn of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

- Work in a category S with all nonempty finite products, and fix a poset P.
- Let S
 [¯] = (S_p, σ^q_p | p ≤ q in P) be a P-indexed diagram in S.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Larders and CLL

- General settings
- P-scaled algebras
- Lifters, larders, and CLL
- Diagram form of GS
- Relative critical points
- Noncoordinatizable SCMLs
- Lattices without CPCPextension

- Work in a category S with all nonempty finite products, and fix a poset P.
- Let S
 [¯] = (S_p, σ^q_p | p ≤ q in P) be a P-indexed diagram in S.
- Let A be a finitely presented P-scaled Boolean algebra.
 For each atom u of A, denote by |u| the largest p ∈ P such that u ∈ A^(p).

Larders and CLL

- General settings
- P-scaled algebras
- Lifters, larders, and CLL
- Diagram form of GS
- Relative critical points
- Noncoordinatizable SCMLs
- Lattices without CPCPextension

- Work in a category S with all nonempty finite products, and fix a poset P.
- Let S
 [¬] = (S_p, σ^q_p | p ≤ q in P) be a P-indexed diagram in S.
- Let A be a finitely presented P-scaled Boolean algebra.
 For each atom u of A, denote by |u| the largest p ∈ P such that u ∈ A^(p).

• Set $\mathbf{A} \otimes \vec{S} := \prod (S_{|u|} \mid u \in \operatorname{At} A).$

Larders and CLL

- General settings
- P-scaled algebras
- Lifters, larders, and CLL
- Diagram form of GS
- Relative critical points
- Noncoordinatizable SCMLs
- Lattices without CPCPextension

- Work in a category S with all nonempty finite products, and fix a poset P.
- Let S
 [¯] = (S_p, σ^q_p | p ≤ q in P) be a P-indexed diagram in S.
- Let A be a finitely presented P-scaled Boolean algebra.
 For each atom u of A, denote by |u| the largest p ∈ P such that u ∈ A^(p).
- Set $\mathbf{A} \otimes \vec{S} := \prod (S_{|u|} \mid u \in \operatorname{At} A).$
- For a morphism φ : $\mathbf{A} \to \mathbf{B}$ in \mathbf{Bool}_P , one can define naturally a morphism $\varphi \otimes \vec{S}$: $\mathbf{A} \otimes \vec{S} \to \mathbf{B} \otimes \vec{S}$ in \mathcal{S} .

Larders and CLL

- General settings
- P-scaled algebras
- Lifters, larders, and CLL
- Diagram form of GS
- Relative critical points
- Noncoordinatizable SCMLs
- Lattices without CPCPextension

- Work in a category S with all nonempty finite products, and fix a poset P.
- Let S
 [¬] = (S_p, σ^q_p | p ≤ q in P) be a P-indexed diagram in S.
- Let A be a finitely presented P-scaled Boolean algebra.
 For each atom u of A, denote by |u| the largest p ∈ P such that u ∈ A^(p).
- Set $\mathbf{A} \otimes \vec{S} := \prod (S_{|u|} \mid u \in \operatorname{At} A).$
- For a morphism φ : $\mathbf{A} \to \mathbf{B}$ in \mathbf{Bool}_P , one can define naturally a morphism $\varphi \otimes \vec{S}$: $\mathbf{A} \otimes \vec{S} \to \mathbf{B} \otimes \vec{S}$ in S.
- We get a S-valued functor $\mathbf{A} \mapsto \mathbf{A} \otimes \vec{S}$, defined on the finitely presented part of **Bool**_P.

Defining $\mathbf{A}\otimes\vec{S}$ in general

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram forn of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension Let S be a category with all nonempty finite products and all nonempty small directed colimits, and let \vec{S} be a *P*-indexed diagram in S.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension Let S be a category with all nonempty finite products and all nonempty small directed colimits, and let \vec{S} be a *P*-indexed diagram in S.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Proposition (Gillibert and W., 2009)

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension Let S be a category with all nonempty finite products and all nonempty small directed colimits, and let \vec{S} be a *P*-indexed diagram in S.

Proposition (Gillibert and W., 2009)

The functor $\mathbf{A} \mapsto \mathbf{A} \otimes \vec{S}$ can be uniquely (up to iso) extended to a directed colimits preserving functor from **Bool**_P to S.

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram forn of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension Let S be a category with all nonempty finite products and all nonempty small directed colimits, and let \vec{S} be a *P*-indexed diagram in S.

Proposition (Gillibert and W., 2009)

The functor $\mathbf{A} \mapsto \mathbf{A} \otimes \vec{S}$ can be uniquely (up to iso) extended to a directed colimits preserving functor from **Bool**_P to S.

This way, $\mathbf{A} \otimes \vec{S}$ defined for any $\mathbf{A} \in \mathbf{Bool}_P$. Also $\varphi \otimes \vec{S}$, for $\varphi : \mathbf{A} \to \mathbf{B}$ in \mathbf{Bool}_P . We say that $\mathbf{A} \otimes \vec{S}$ is a condensate of \vec{S} .

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram forn of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension Let S be a category with all nonempty finite products and all nonempty small directed colimits, and let \vec{S} be a *P*-indexed diagram in S.

Proposition (Gillibert and W., 2009)

The functor $\mathbf{A} \mapsto \mathbf{A} \otimes \vec{S}$ can be uniquely (up to iso) extended to a directed colimits preserving functor from **Bool**_P to S.

This way, $\mathbf{A} \otimes \vec{S}$ defined for any $\mathbf{A} \in \mathbf{Bool}_P$. Also $\varphi \otimes \vec{S}$, for $\varphi : \mathbf{A} \to \mathbf{B}$ in \mathbf{Bool}_P . We say that $\mathbf{A} \otimes \vec{S}$ is a condensate of \vec{S} . A projection in \mathcal{S} is either an isomorphism or a factor morphism $X \times Y \to X$ in \mathcal{S} . An extended projection is a directed colimit of projections (in \mathcal{S}^2).

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension Let S be a category with all nonempty finite products and all nonempty small directed colimits, and let \vec{S} be a *P*-indexed diagram in S.

Proposition (Gillibert and W., 2009)

The functor $\mathbf{A} \mapsto \mathbf{A} \otimes \vec{S}$ can be uniquely (up to iso) extended to a directed colimits preserving functor from **Bool**_P to S.

This way, $\mathbf{A} \otimes \vec{S}$ defined for any $\mathbf{A} \in \mathbf{Bool}_P$. Also $\varphi \otimes \vec{S}$, for $\varphi : \mathbf{A} \to \mathbf{B}$ in \mathbf{Bool}_P . We say that $\mathbf{A} \otimes \vec{S}$ is a condensate of \vec{S} . A projection in \mathcal{S} is either an isomorphism or a factor morphism $X \times Y \to X$ in \mathcal{S} . An extended projection is a directed colimit of projections (in \mathcal{S}^2).

Proposition (Gillibert and W., 2009)

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension Let S be a category with all nonempty finite products and all nonempty small directed colimits, and let \vec{S} be a *P*-indexed diagram in S.

Proposition (Gillibert and W., 2009)

The functor $\mathbf{A} \mapsto \mathbf{A} \otimes \vec{S}$ can be uniquely (up to iso) extended to a directed colimits preserving functor from **Bool**_P to S.

This way, $\mathbf{A} \otimes \vec{S}$ defined for any $\mathbf{A} \in \mathbf{Bool}_P$. Also $\varphi \otimes \vec{S}$, for $\varphi : \mathbf{A} \to \mathbf{B}$ in \mathbf{Bool}_P . We say that $\mathbf{A} \otimes \vec{S}$ is a condensate of \vec{S} . A projection in \mathcal{S} is either an isomorphism or a factor morphism $X \times Y \to X$ in \mathcal{S} . An extended projection is a directed colimit of projections (in \mathcal{S}^2).

Proposition (Gillibert and W., 2009)

If a morphism $\varphi : \mathbf{A} \to \mathbf{B}$ in \mathbf{Bool}_P is normal, then $\varphi \otimes \vec{S}$ is an extended projection in S.

Larders and CLL

- General settings
- P-scaled algebras

Lifters, larders, and CLL

- Diagram form of GS
- Relative critical points
- Noncoordinatizable SCMLs
- Lattices without CPCPextension

For a subset X in a poset P, we set $P \Uparrow X := \{p \in P \mid X \le p\}$ and $\bigtriangledown X := Min(P \Uparrow X)$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Larders and CLL

- General settings
- P-scaled algebras

Lifters, larders, and CLL

- Diagram form of GS
- Relative critical points
- Noncoordinatizable SCMLs
- Lattices without CPCPextension

- For a subset X in a poset P, we set $P \Uparrow X := \{p \in P \mid X \le p\}$ and $\bigtriangledown X := Min(P \Uparrow X)$.
- The ∇-closure of X ⊆ P is the least ∇-closed subset of P containing X.

Larders and CLL

- General settings
- P-scaled algebras

Lifters, larders, and CLL

- Diagram form of GS
- Relative critical points
- Noncoordinatizable SCMLs
- Lattices without CPCPextension

- For a subset X in a poset P, we set $P \Uparrow X := \{ p \in P \mid X \le p \}$ and $\bigtriangledown X := Min(P \Uparrow X)$.
- The ∇-closure of X ⊆ P is the least ∇-closed subset of P containing X.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

■ *P* is a pseudo join-semilattice, if $P \Uparrow X$ is a finitely generated upper subset of *P*, for any finite $X \subseteq P$.

Larders and CLL

- General settings
- P-scaled algebras

Lifters, larders, and CLL

- Diagram form of GS
- Relative critical points
- Noncoordinatizable SCMLs
- Lattices without CPCPextension

- For a subset X in a poset P, we set $P \Uparrow X := \{p \in P \mid X \le p\}$ and $\nabla X := Min(P \Uparrow X)$.
- The ∇-closure of X ⊆ P is the least ∇-closed subset of P containing X.
- *P* is a pseudo join-semilattice, if $P \Uparrow X$ is a finitely generated upper subset of *P*, for any finite $X \subseteq P$.
- *P* is supported, if it is a pseudo join-semilattice and the ∇-closure of any finite subset of finite.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Larders and CLL

- General settings
- P-scaled algebras

Lifters, larders, and CLL

- Diagram form of GS
- Relative critical points
- Noncoordinatizable SCMLs
- Lattices without CPCPextension

- For a subset X in a poset P, we set $P \uparrow X := \{p \in P \mid X \le p\}$ and $\nabla X := Min(P \uparrow X)$.
- The ∇-closure of X ⊆ P is the least ∇-closed subset of P containing X.
- *P* is a pseudo join-semilattice, if $P \Uparrow X$ is a finitely generated upper subset of *P*, for any finite $X \subseteq P$.
- *P* is supported, if it is a pseudo join-semilattice and the ∇-closure of any finite subset of finite.
- P is an almost join-semilattice, if it is a pseudo join-semilattice and P↓ a is a join-semilattice ∀a ∈ P.

Larders and CLL

- General settings
- P-scaled algebras

Lifters, larders, and CLL

- Diagram form of GS
- Relative critical points
- Noncoordinatizable SCMLs
- Lattices without CPCPextension

- For a subset X in a poset P, we set $P \uparrow X := \{p \in P \mid X \le p\}$ and $\nabla X := Min(P \uparrow X)$.
- The ∇-closure of X ⊆ P is the least ∇-closed subset of P containing X.
- *P* is a pseudo join-semilattice, if $P \uparrow X$ is a finitely generated upper subset of *P*, for any finite $X \subseteq P$.
- *P* is supported, if it is a pseudo join-semilattice and the ∇-closure of any finite subset of finite.
- P is an almost join-semilattice, if it is a pseudo join-semilattice and P↓ a is a join-semilattice ∀a ∈ P.
- (pseudo join-semilattice)⇒(supported)⇒(almost join-semilattice); the converses do not hold.

Norm-coverings and λ -lifters

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension • A norm-covering of a poset P is a pair (X, ∂) , where X is a pseudo join-semilattice and $\partial \colon X \to P$ is isotone.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Norm-coverings and λ -lifters

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension • A norm-covering of a poset P is a pair (X, ∂) , where X is a pseudo join-semilattice and $\partial: X \to P$ is isotone. An ideal \mathbf{u} of X is sharp, if $\partial(\mathbf{u})$ has a largest element, then denoted by $\partial \mathbf{u}$.

Norm-coverings and λ -lifters

Larders and CLL

- General settings
- P-scaled algebras

Lifters, larders, and CLL

- Diagram form of GS
- Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

- A norm-covering of a poset P is a pair (X, ∂) , where X is a pseudo join-semilattice and $\partial : X \to P$ is isotone. An ideal \mathbf{u} of X is sharp, if $\partial(\mathbf{u})$ has a largest element, then denoted by $\partial \mathbf{u}$.
- Let λ be an infinite cardinal. A λ-lifter of P is a pair (X, X), where X is a norm-covering of P, X is a set of sharp ideals of X, and, setting

$$\mathbf{X}^{=} := \{ \mathbf{x} \in \mathbf{X} \mid \partial \mathbf{x} \text{ not maximal} \},\$$

- 1 card($\mathbf{X} \downarrow \mathbf{x}$) < λ for each $\mathbf{x} \in \mathbf{X}^{=}$.
- 2 (Kuratowski-like property) For each isotone

 $S: \mathbf{X}^{=} \to [X]^{<\lambda}$, there exists an isotone $\sigma: P \to X$ such that

1 $\partial \circ \sigma = \operatorname{id}_{P}$; 2 $\forall p < q \text{ in } P, S(\sigma(p)) \cap \sigma(q) \subseteq \sigma(p).$

3 If $\lambda = \aleph_0$, then X is supported.

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram forn of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension For a norm-covering $\partial : X \to P$, denote by F(X) the Boolean algebra defined by generators \tilde{u} (for $u \in X$) and relations

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- 1 $\tilde{v} \leq \tilde{u}$, for all $u \leq v$ in X;
- 2 $\tilde{u} \wedge \tilde{v} = \bigvee (\tilde{w} \mid w \in u \lor v)$, for all $u, v \in X$;
- $3 1 = \bigvee (\tilde{u} \mid u \in \operatorname{Min} X).$

Larders and CLL

- General settings
- P-scaled algebras

Lifters, larders, and CLL

Diagram for of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

- For a norm-covering ∂: X → P, denote by F(X) the Boolean algebra defined by generators ũ (for u ∈ X) and relations
 - 1 $\tilde{v} \leq \tilde{u}$, for all $u \leq v$ in X;
 - 2 $\tilde{u} \wedge \tilde{v} = \bigvee (\tilde{w} \mid w \in u \lor v)$, for all $u, v \in X$;
 - $3 1 = \bigvee (\tilde{u} \mid u \in \operatorname{Min} X).$
- Then define $F(X)^{(p)}$ as the ideal of F(X) generated by $\{\tilde{u} \mid u \in X \text{ and } p \leq \partial u\}$, for each $p \in P$.

Larders and CLL

- General settings
- P-scaled algebras

Lifters, larders, and CLL

- Diagram forr of GS
- Relative critical points
- Noncoordinatizable SCMLs
- Lattices without CPCPextension

- For a norm-covering $\partial : X \to P$, denote by F(X) the Boolean algebra defined by generators \tilde{u} (for $u \in X$) and relations
 - 1 $\tilde{v} \leq \tilde{u}$, for all $u \leq v$ in X;
 - 2 $\tilde{u} \wedge \tilde{v} = \bigvee (\tilde{w} \mid w \in u \lor v)$, for all $u, v \in X$;
 - $3 1 = \bigvee (\tilde{u} \mid u \in \operatorname{Min} X).$
- Then define $F(X)^{(p)}$ as the ideal of F(X) generated by $\{\tilde{u} \mid u \in X \text{ and } p \leq \partial u\}$, for each $p \in P$.
- The pair $\mathbf{F}(X) := (F(X), (F(X)^{(p)} | p \in P))$ is a *P*-scaled Boolean algebra.

Larders and CLL

- General settings
- P-scaled algebras

Lifters, larders, and CLL

- Diagram forr of GS
- Relative critical points
- Noncoordinatizable SCMLs
- Lattices without CPCPextension

- For a norm-covering $\partial : X \to P$, denote by F(X) the Boolean algebra defined by generators \tilde{u} (for $u \in X$) and relations
 - 1 $\tilde{v} \leq \tilde{u}$, for all $u \leq v$ in X;
 - 2 $\tilde{u} \wedge \tilde{v} = \bigvee (\tilde{w} \mid w \in u \lor v)$, for all $u, v \in X$;
 - $3 \quad 1 = \bigvee (\tilde{u} \mid u \in \operatorname{Min} X).$
- Then define $F(X)^{(p)}$ as the ideal of F(X) generated by $\{\tilde{u} \mid u \in X \text{ and } p \leq \partial u\}$, for each $p \in P$.
- The pair $\mathbf{F}(X) := (F(X), (F(X)^{(p)} | p \in P))$ is a *P*-scaled Boolean algebra.
- The assignment $X \mapsto \mathbf{F}(X)$ has nice functorial properties.

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

Proposition (Gillibert and W., 2009)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

Proposition (Gillibert and W., 2009)

If a poset P has a λ -lifter, then P is a finite disjoint union of almost join-semilattices with zero (in particular, it is an almost join-semilattice).

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram forn of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

Proposition (Gillibert and W., 2009)

If a poset P has a λ -lifter, then P is a finite disjoint union of almost join-semilattices with zero (in particular, it is an almost join-semilattice).

■ Every finite almost join-semilattice P has a λ-lifter (λ arbitrary infinite cardinal). The minimal cardinality of a possible underlying X is ≤ λ^{+(dim P-1)} (and < may occur).</p>

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

Proposition (Gillibert and W., 2009)

If a poset P has a λ -lifter, then P is a finite disjoint union of almost join-semilattices with zero (in particular, it is an almost join-semilattice).

- Every finite almost join-semilattice P has a λ-lifter (λ arbitrary infinite cardinal). The minimal cardinality of a possible underlying X is ≤ λ^{+(dim P-1)} (and < may occur).</p>
- For infinite P, the existence of λ-lifters is related to large cardinal axioms, for instance Erdős cardinals.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram forn of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension • λ is an infinite regular cardinal.

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

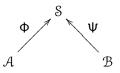
Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

- λ is an infinite regular cardinal.
- We are given categories \mathcal{A} , \mathcal{B} , \mathcal{S} together with functors $\Phi : \mathcal{A} \to S$ and $\Psi : \mathcal{B} \to S$.



▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

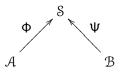
Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

- λ is an infinite regular cardinal.
- We are given categories \mathcal{A} , \mathcal{B} , \mathcal{S} together with functors $\Phi : \mathcal{A} \to S$ and $\Psi : \mathcal{B} \to S$.



For certain poset-indexed diagrams \vec{A} of \mathcal{A} , we are trying to find a diagram \vec{B} of \mathcal{B} such that $\Phi \vec{A} \cong \Psi \vec{B}$.

Larders and CLL

General settings

P-scaled algebras

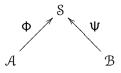
Lifters, larders, and CLL

Diagram form of GS

- Relative critical points
- Noncoordinatizable SCMLs

Lattices without CPCPextension

- λ is an infinite regular cardinal.
- We are given categories \mathcal{A} , \mathcal{B} , \mathcal{S} together with functors $\Phi : \mathcal{A} \to S$ and $\Psi : \mathcal{B} \to S$.



For certain poset-indexed diagrams A of A, we are trying to find a diagram B of B such that ΦA ≅ ΨB. We are trying to construct B from an object B ∈ B such that Φ(A) ≅ Ψ(B), for a suitable condensate A of A.

Defining a λ -larder

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram forn of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

We shall need some add-ons to the data $\mathcal{A},\,\mathcal{B},\,\mathcal{S},\,\Phi,\,\Psi.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Defining a $\lambda\text{-larder}$

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram forn of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension We shall need some add-ons to the data $\mathcal{A},\ \mathcal{B},\ \mathcal{S},\ \Phi,\ \Psi.$

Definition (Gillibert and W., 2009)

Defining a λ -larder

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension We shall need some add-ons to the data $\mathcal{A},\ \mathcal{B},\ \mathcal{S},\ \Phi,\ \Psi.$

Definition (Gillibert and W., 2009)

An octuple $(\mathcal{A}, \mathcal{B}, \mathcal{S}, \mathcal{A}^{\dagger}, \mathcal{B}^{\dagger}, \mathcal{S}^{\Rightarrow}, \Phi, \Psi)$ is a λ -larder, if $\mathcal{A}^{\dagger} \subset \mathcal{A}$ full, $\mathcal{B}^{\dagger} \subseteq \mathcal{B}$ full, $\mathcal{S}^{\Rightarrow} \subseteq \mathcal{S}$ subcategory, $B \in \mathcal{B}^{\dagger}$ is λ -presented in \mathcal{B} and $\Psi(B)$ is λ -presented in S for each $B \in \mathcal{B}^{\dagger}$, \mathcal{A} has all nonempty small directed lims and all nonempty finite products, S^{\Rightarrow} is "closed under nonempty small directed lims", Φ preserves nonempty small directed lims, Ψ preserves nonempty λ -small directed lims, $\Phi(\text{projections}) \subseteq \mathbb{S}^{\Rightarrow}$, and (Löwenheim-Skolem Property) for each $S \in \Phi(\mathcal{A}^{\dagger})$, each $B \in \mathcal{B}$, and each $\varphi \colon \Psi(B) \to S$ in S^{\Rightarrow} there are "many" $u: U \to B$ with $U \in \mathbb{B}^{\dagger}$ such that $\varphi \circ \Psi(u) \in \mathbb{S}^{\Rightarrow}$.

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram forn of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension ■ Double arrows: arrows in S[⇒], denoted φ: S ⇒ T; correspond to normal morphisms in Bool_P.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

- Double arrows: arrows in S[⇒], denoted φ: S ⇒ T; correspond to normal morphisms in Bool_P.
- Ideally, double arrows would be isomorphisms, but practically this can't always be done.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Larders and CLL

- General settings
- P-scaled algebras

Lifters, larders, and CLL

- Diagram form of GS
- Relative critical points
- Noncoordinatizable SCMLs
- Lattices without CPCPextension

- Double arrows: arrows in S[⇒], denoted φ: S ⇒ T; correspond to normal morphisms in Bool_P.
- Ideally, double arrows would be isomorphisms, but practically this can't always be done.
- However, in many contexts, any double arrow
 φ: Ψ(B) ⇒ S can be "nicely factored" through an
 isomorphism. Then we speak of projectable larders—most
 (but not all) larders encountered in nature are projectable.
 This can be viewed as a categorical analogue to
 isomorphisms theorems in universal algebra.

Larders and CLL

- General settings
- P-scaled algebras

Lifters, larders, and CLL

- Diagram form of GS
- Relative critical points
- Noncoordinatizable SCMLs
- Lattices without CPCPextension

- Double arrows: arrows in S[⇒], denoted φ: S ⇒ T; correspond to normal morphisms in Bool_P.
- Ideally, double arrows would be isomorphisms, but practically this can't always be done.
- However, in many contexts, any double arrow
 φ: Ψ(B) ⇒ S can be "nicely factored" through an
 isomorphism. Then we speak of projectable larders—most
 (but not all) larders encountered in nature are projectable.
 This can be viewed as a categorical analogue to
 isomorphisms theorems in universal algebra.
- For example, if S is the category of all (∨, 0)-semilattices with (∨, 0)-homomorphisms, S[⇒] is often the subcategory with morphisms of the form S → S/I (I ideal of S) up to iso, and then any double arrow φ: Con_c U ⇒ S can be "nicely factored" through an isomorphism.

The Condensate Lifting Lemma (CLL)

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram forn of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension The statement of CLL is about as follows.

The Condensate Lifting Lemma (CLL)

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram forn of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension The statement of CLL is about as follows.

Theorem (Gillibert and W., 2009)

The Condensate Lifting Lemma (CLL)

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension The statement of CLL is about as follows.

Theorem (Gillibert and W., 2009)

Let λ be an infinite cardinal and let P be a poset with a λ -lifter (X, \mathbf{X}) , let $(\mathcal{A}, \mathcal{B}, \mathcal{S}, \mathcal{A}^{\dagger}, \mathcal{B}^{\dagger}, \mathcal{S}^{\Rightarrow}, \Phi, \Psi)$ be a λ -larder, let $\vec{\mathcal{A}}$ be a P-indexed diagram in \mathcal{A} such that $A_p \in \mathcal{A}^{\dagger}$ for each non-maximal $p \in P$, let $B \in \mathcal{B}$ a λ -continuous directed colimit of a diagram in \mathcal{B}^{\dagger} , and let $\chi \colon \Psi(B) \Rightarrow \Phi(\mathbf{F}(X) \otimes \vec{\mathcal{A}})$. Then there are a P-indexed diagram \vec{B} of subobjects of B in \mathcal{B}^{\dagger} and a double arrow $\vec{\chi} \colon \Psi \vec{B} \Rightarrow \Phi \vec{\mathcal{A}}$.

The Condensate Lifting Lemma (CLL)

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension The statement of CLL is about as follows.

Theorem (Gillibert and W., 2009)

Let λ be an infinite cardinal and let P be a poset with a λ -lifter (X, \mathbf{X}) , let $(\mathcal{A}, \mathcal{B}, \mathcal{S}, \mathcal{A}^{\dagger}, \mathcal{B}^{\dagger}, \mathcal{S}^{\Rightarrow}, \Phi, \Psi)$ be a λ -larder, let \vec{A} be a P-indexed diagram in \mathcal{A} such that $A_p \in \mathcal{A}^{\dagger}$ for each non-maximal $p \in P$, let $B \in \mathcal{B}$ a λ -continuous directed colimit of a diagram in \mathcal{B}^{\dagger} , and let $\chi \colon \Psi(B) \Rightarrow \Phi(\mathbf{F}(X) \otimes \vec{A})$. Then there are a P-indexed diagram \vec{B} of subobjects of B in \mathcal{B}^{\dagger} and a double arrow $\vec{\chi} \colon \Psi \vec{B} \Rightarrow \Phi \vec{A}$.

In short: in order to lift the diagram $\Phi \vec{A}$ with respect to Ψ , \Rightarrow , it is sufficient to lift the object $\Phi(A)$ with respect to Ψ , \Rightarrow , where A is a suitable condensate of \vec{A} (viz. $A := \mathbf{F}(X) \otimes \vec{A}$).

Limitations on the shape of P

Larders and CLL

- General settings
- P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension The poset P in the statement of CLL needs to be an almost join-semilattice with zero (or a finite disjoint union of such guys).

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Limitations on the shape of P

Larders and CLL

- General settings
- P-scaled algebras

Lifters, larders, and CLL

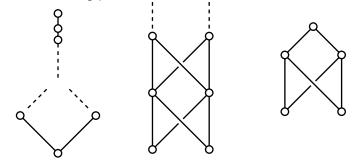
Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

- The poset P in the statement of CLL needs to be an almost join-semilattice with zero (or a finite disjoint union of such guys).
- In particular, CLL does not apply to diagrams indexed by the following posets:



Limitations on the shape of P

Larders and CLL

- General settings
- P-scaled algebras

Lifters, larders, and CLL

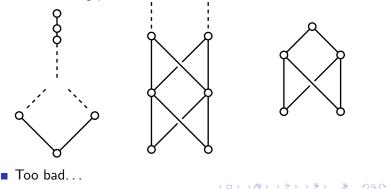
Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

- The poset P in the statement of CLL needs to be an almost join-semilattice with zero (or a finite disjoint union of such guys).
- In particular, CLL does not apply to diagrams indexed by the following posets:



Larders	an
CLL	

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

Theorem (Grätzer and Schmidt, 1963)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

Theorem (Grätzer and Schmidt, 1963)

Every $(\lor, 0)$ -semilattice is isomorphic to $Con_c A$, for some (universal) algebra A.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

Theorem (Grätzer and Schmidt, 1963)

Every $(\lor, 0)$ -semilattice is isomorphic to $Con_c A$, for some (universal) algebra A.

 Of course A can be unary. Neverthelss, due to a 1979 paper by Freese, Lampe, and Taylor, there is no bound on the cardinality of the similarity type of the algebra A.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

Theorem (Grätzer and Schmidt, 1963)

Every $(\lor, 0)$ -semilattice is isomorphic to $Con_c A$, for some (universal) algebra A.

Of course A can be unary. Neverthelss, due to a 1979 paper by Freese, Lampe, and Taylor, there is no bound on the cardinality of the similarity type of the algebra A.

Hence, if we want to state a diagram version of the GS Theorem, we need to work in a suitable category of non-indexed algebras.

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

Theorem (Grätzer and Schmidt, 1963)

Every $(\lor, 0)$ -semilattice is isomorphic to $Con_c A$, for some (universal) algebra A.

- Of course A can be unary. Neverthelss, due to a 1979 paper by Freese, Lampe, and Taylor, there is no bound on the cardinality of the similarity type of the algebra A.
- Hence, if we want to state a diagram version of the GS Theorem, we need to work in a suitable category of non-indexed algebras.
- Among 3 possible definitions of non-indexed algebras, 2 of them won't satisfy the assumptions of CLL.

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

Theorem (Grätzer and Schmidt, 1963)

Every $(\lor, 0)$ -semilattice is isomorphic to $Con_c A$, for some (universal) algebra A.

- Of course A can be unary. Neverthelss, due to a 1979 paper by Freese, Lampe, and Taylor, there is no bound on the cardinality of the similarity type of the algebra A.
- Hence, if we want to state a diagram version of the GS Theorem, we need to work in a suitable category of non-indexed algebras.
- Among 3 possible definitions of non-indexed algebras, 2 of them won't satisfy the assumptions of CLL.
- The one that works is the following: consider the category \mathbf{MAlg}_1 of all unary algebras, where $f : \mathbf{A} \to \mathbf{B}$ means that $Op(\mathbf{A}) \subseteq Op(\mathbf{B})$ and f is a homomorphism for all symbols in $Op(\mathbf{A})$.

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension ■ Denote by **Sem**_{∨,0} the category of all (∨, 0)-semilattices with (∨, 0)-homomorphisms.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension ■ Denote by **Sem**_{∨,0} the category of all (∨, 0)-semilattices with (∨, 0)-homomorphisms.

▲□▼▲□▼▲□▼▲□▼ □ ● ●

• A surjective homomorphism $f: S \twoheadrightarrow T$ of $(\lor, 0)$ -semilattices is ideal-induced, if $f(a) \le f(b) \Rightarrow (\exists x)(f(x) = 0 \text{ and } a \le b \lor x).$

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension ■ Denote by **Sem**_{∨,0} the category of all (∨, 0)-semilattices with (∨, 0)-homomorphisms.

• A surjective homomorphism $f: S \rightarrow T$ of $(\lor, 0)$ -semilattices is ideal-induced, if $f(a) \leq f(b) \Rightarrow (\exists x)(f(x) = 0 \text{ and } a \leq b \lor x)$. Let those be the double arrows in **Sem**_{$\lor,0$}.

Larders and CLL

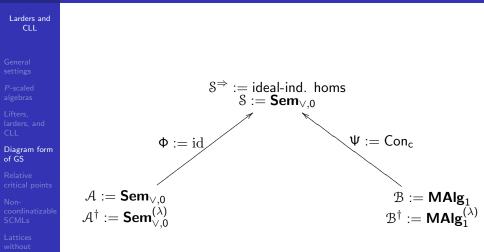
- General settings
- P-scaled algebras
- Lifters, larders, and CLL

Diagram form of GS

- Relative critical points
- Noncoordinatizable SCMLs
- Lattices without CPCPextension

- Denote by **Sem**_{∨,0} the category of all (∨, 0)-semilattices with (∨, 0)-homomorphisms.
- A surjective homomorphism f: S → T of (∨,0)-semilattices is ideal-induced, if f(a) ≤ f(b) ⇒ (∃x)(f(x) = 0 and a ≤ b ∨ x). Let those be the double arrows in Sem_{∨,0}.
- For an infinite regular cardinal λ, denote by Sem^(λ)_{∨,0} the class of all (∨, 0)-semilattices of cardinality < λ. Similarly for MAlg₁^(λ) (require card A + card Op(A) < λ).</p>

The Grätzer-Schmidt Theorem (picture of the larder data)



▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

CPCPextension

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

Theorem (Gillibert and W., 2009)

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

Theorem (Gillibert and W., 2009)

Let *P* be a poset and let \vec{S} be a *P*-indexed diagram of $(\vee, 0)$ -semilattices and $(\vee, 0)$ -homomorphisms.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

Theorem (Gillibert and W., 2009)

Let *P* be a poset and let \vec{S} be a *P*-indexed diagram of $(\lor, 0)$ -semilattices and $(\lor, 0)$ -homomorphisms. If either *P* is finite, or *P* is infinite and "a large enough cardinal exists", then \vec{S} has a lifting, wrt. the Con_c functor, by a diagram of unary algebras and homomorphisms in **MAlg**₁.

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

Theorem (Gillibert and W., 2009)

Let *P* be a poset and let \vec{S} be a *P*-indexed diagram of $(\lor, 0)$ -semilattices and $(\lor, 0)$ -homomorphisms. If either *P* is finite, or *P* is infinite and "a large enough cardinal exists", then \vec{S} has a lifting, wrt. the Con_c functor, by a diagram of unary algebras and homomorphisms in **MAlg**₁.

The large cardinal axiom in question states the existence of large independent sets for certain set functions (cf. Kuratowski's Free Set Theorem).

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

Theorem (Gillibert and W., 2009)

Let *P* be a poset and let \vec{S} be a *P*-indexed diagram of $(\lor, 0)$ -semilattices and $(\lor, 0)$ -homomorphisms. If either *P* is finite, or *P* is infinite and "a large enough cardinal exists", then \vec{S} has a lifting, wrt. the Con_c functor, by a diagram of unary algebras and homomorphisms in **MAlg**₁.

The large cardinal axiom in question states the existence of large independent sets for certain set functions (cf. Kuratowski's Free Set Theorem). If there is a proper class of Erdős cardinals (this axiom is weaker, consistency-wise, than a Ramsey cardinal), then this assumption is satisfied for any poset *P*.

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram forn of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension Quasivariety of structures: class of first-order structures, in a given first-order language, closed under S, P, and directed lims.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Larders and CLL

- General settings
- P-scaled algebras
- Lifters, larders, and CLL
- Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension Quasivariety of structures: class of first-order structures, in a given first-order language, closed under S, P, and directed lims.

For a structure **A** and a quasivariety \mathcal{V} (in the same language), set $\operatorname{Con}^{\mathcal{V}} \mathbf{A} := \{ \alpha \in \operatorname{Con} \mathbf{A} \mid \mathbf{A} / \alpha \in \mathcal{V} \}.$

Larders and CLL

- General settings
- P-scaled algebras
- Lifters, larders, and CLL
- Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension Quasivariety of structures: class of first-order structures, in a given first-order language, closed under S, P, and directed lims.

For a structure A and a quasivariety 𝒱 (in the same language), set Con^𝒱 A := {α ∈ Con A | A/α ∈ 𝒱}. In particular, Con^𝒱 A is an algebraic lattice.

Larders and CLL

- General settings
- P-scaled algebras
- Lifters, larders, and CLL
- Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

- Quasivariety of structures: class of first-order structures, in a given first-order language, closed under S, P, and directed lims.
- For a structure **A** and a quasivariety \mathcal{V} (in the same language), set $\operatorname{Con}^{\mathcal{V}} \mathbf{A} := \{ \alpha \in \operatorname{Con} \mathbf{A} \mid \mathbf{A}/\alpha \in \mathcal{V} \}$. In particular, $\operatorname{Con}^{\mathcal{V}} \mathbf{A}$ is an algebraic lattice.

Then set

 $\operatorname{Con}_{\mathsf{c},\mathsf{r}} \mathcal{V} := \{ S \in \operatorname{\mathbf{Sem}}_{\vee,0} \mid (\exists \mathbf{A} \in \mathcal{V}) (S \cong \operatorname{Con}_{\mathrm{c}}^{\mathcal{V}} \mathbf{A}) \}.$

Larders and CLL

- General settings
- P-scaled algebras
- Lifters, larders, and CLL
- Diagram forn of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

- Quasivariety of structures: class of first-order structures, in a given first-order language, closed under S, P, and directed lims.
- For a structure A and a quasivariety 𝔅 (in the same language), set Con^𝔅 A := {α ∈ Con A | A/α ∈ 𝔅}. In particular, Con^𝔅 A is an algebraic lattice.
- Then set $\operatorname{Con}_{c,r} \mathcal{V} := \{ S \in \operatorname{Sem}_{\vee,0} \mid (\exists A \in \mathcal{V}) (S \cong \operatorname{Con}_{c}^{\mathcal{V}} A) \}.$
- \blacksquare For quasivarieties ${\cal A}$ and ${\cal B}$ (not necessarily in the same language), set

 $\mathsf{crit}_{\mathsf{r}}(\mathcal{A};\mathcal{B}) := \min\{\mathsf{card}\, S \mid S \in (\mathsf{Con}_{\mathsf{c},\mathsf{r}}\,\mathcal{A}) \setminus (\mathsf{Con}_{\mathsf{c},\mathsf{r}}\,\mathcal{B})\}$

if it exists, ∞ otherwise.

Description of the larder data

Larders and CLL

General settings

P-scaled algebras

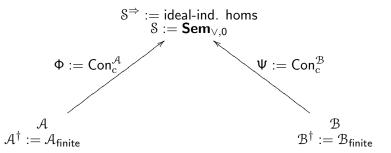
Lifters, larders, and CLL

Diagram forr of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension Small variations around the following:



▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

Theorem (Gillibert and W., 2009)

< ロ > < 荷 > < 三 > < 三 > 、 三 > 、 三 、 の Q (や

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

Theorem (Gillibert and W., 2009)

Let A and B be quasivarieties (possibly in different languages), such that the language of A has only finitely many relations and B is finitely generated (no need for CD), and let P be a nontrivial finite almost join-semilattice with zero.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

Theorem (Gillibert and W., 2009)

• Let \mathcal{A} and \mathcal{B} be quasivarieties (possibly in different languages), such that the language of \mathcal{A} has only finitely many relations and \mathcal{B} is finitely generated (no need for CD), and let P be a nontrivial finite almost join-semilattice with zero. If there exists a P-indexed diagram \vec{A} of objects of \mathcal{A} with finite universe such that $\operatorname{Con}_{c}^{\mathcal{A}} \vec{A}$ has no lifting, wrt. $\operatorname{Con}_{c}^{\mathcal{B}}$, in \mathcal{B} , then $\operatorname{crit}_{r}(\mathcal{A}; \mathcal{B}) \leq \aleph_{\dim(P)-1}$.

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

Theorem (Gillibert and W., 2009)

• Let \mathcal{A} and \mathcal{B} be quasivarieties (possibly in different languages), such that the language of \mathcal{A} has only finitely many relations and \mathcal{B} is finitely generated (no need for CD), and let P be a nontrivial finite almost join-semilattice with zero. If there exists a P-indexed diagram \vec{A} of objects of \mathcal{A} with finite universe such that $\operatorname{Con}_{c}^{\mathcal{A}} \vec{A}$ has no lifting, wrt. $\operatorname{Con}_{c}^{\mathcal{B}}$, in \mathcal{B} , then $\operatorname{crit}_{r}(\mathcal{A}; \mathcal{B}) \leq \aleph_{\dim(P)-1}$.

■ Furthermore, $Con_{c,r} \mathcal{A} \not\subseteq Con_{c,r} \mathcal{B}$ implies that $crit_r(\mathcal{A}; \mathcal{B}) < \aleph_{\omega}$.

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram forn of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

Theorem (Gillibert and W., 2009)

- Let \mathcal{A} and \mathcal{B} be quasivarieties (possibly in different languages), such that the language of \mathcal{A} has only finitely many relations and \mathcal{B} is finitely generated (no need for CD), and let P be a nontrivial finite almost join-semilattice with zero. If there exists a P-indexed diagram \vec{A} of objects of \mathcal{A} with finite universe such that $\operatorname{Con}_{c}^{\mathcal{A}} \vec{A}$ has no lifting, wrt. $\operatorname{Con}_{c}^{\mathcal{B}}$, in \mathcal{B} , then $\operatorname{crit}_{r}(\mathcal{A}; \mathcal{B}) \leq \aleph_{\dim(P)-1}$.
- Furthermore, Con_{c,r} A ⊈ Con_{c,r} B implies that crit_r(A; B) < ℵ_ω. (First obtained for varieties by Gillibert)

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

Theorem (Gillibert and W., 2009)

- Let \mathcal{A} and \mathcal{B} be quasivarieties (possibly in different languages), such that the language of \mathcal{A} has only finitely many relations and \mathcal{B} is finitely generated (no need for CD), and let P be a nontrivial finite almost join-semilattice with zero. If there exists a P-indexed diagram \vec{A} of objects of \mathcal{A} with finite universe such that $\operatorname{Con}_{c}^{\mathcal{A}} \vec{A}$ has no lifting, wrt. $\operatorname{Con}_{c}^{\mathcal{B}}$, in \mathcal{B} , then $\operatorname{crit}_{r}(\mathcal{A}; \mathcal{B}) \leq \aleph_{\dim(P)-1}$.
- Furthermore, Con_{c,r} A ⊈ Con_{c,r} B implies that crit_r(A; B) < ℵ_ω. (First obtained for varieties by Gillibert)

• Here, $\dim(P)$ denotes the order-dimension of P.

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

Theorem (Gillibert and W., 2009)

- Let \mathcal{A} and \mathcal{B} be quasivarieties (possibly in different languages), such that the language of \mathcal{A} has only finitely many relations and \mathcal{B} is finitely generated (no need for CD), and let P be a nontrivial finite almost join-semilattice with zero. If there exists a P-indexed diagram \vec{A} of objects of \mathcal{A} with finite universe such that $\operatorname{Con}_{c}^{\mathcal{A}} \vec{A}$ has no lifting, wrt. $\operatorname{Con}_{c}^{\mathcal{B}}$, in \mathcal{B} , then $\operatorname{crit}_{r}(\mathcal{A}; \mathcal{B}) \leq \aleph_{\dim(P)-1}$.
- Furthermore, Con_{c,r} A ⊈ Con_{c,r} B implies that crit_r(A; B) < ℵ_ω. (First obtained for varieties by Gillibert)

- ロ ト - 4 回 ト - 4 □ - 4

- Here, $\dim(P)$ denotes the order-dimension of P.
- The inequality $\operatorname{crit}_{r}(\mathcal{A}; \mathcal{B}) < \aleph_{\dim(P)-1}$ may hold.

Restricted Kuratowski index of a finite poset

Larders and CLL

- General settings
- P-scaled algebras
- Lifters, larders, and CLL
- Diagram form of GS

Relative critical points

- Noncoordinatizable SCMLs
- Lattices without CPCPextension

Actually, crit_r(A; B) ≤ ℵ_{kur₀(P)-1}, where kur₀(P), the "restricted Kuratowski index of P", is the least positive integer n such that a certain "existence of large independent sets"-type statement, denoted by (ℵ_{n-1}, <ℵ₀) → P, holds.

Restricted Kuratowski index of a finite poset

Larders and CLL

- General settings
- P-scaled algebras
- Lifters, larders, and CLL
- Diagram forn of GS

Relative critical points

- Noncoordinatizable SCMLs
- Lattices without CPCPextension

Actually, crit_r(A; B) ≤ ℵ_{kur₀(P)-1}, where kur₀(P), the "restricted Kuratowski index of P", is the least positive integer n such that a certain "existence of large independent sets"-type statement, denoted by (ℵ_{n-1}, <ℵ₀) → P, holds. In particular, kur₀(P) ≤ dim(P).

Restricted Kuratowski index of a finite poset

Larders and CLL

- General settings
- P-scaled algebras
- Lifters, larders, and CLL
- Diagram forn of GS

Relative critical points

- Noncoordinatizable SCMLs
- Lattices without CPCPextension

- Actually, crit_r(A; B) ≤ ℵ_{kur₀(P)-1}, where kur₀(P), the "restricted Kuratowski index of P", is the least positive integer n such that a certain "existence of large independent sets"-type statement, denoted by (ℵ_{n-1}, <ℵ₀) → P, holds. In particular, kur₀(P) ≤ dim(P).
- In particular, calculations of critical points may lead to estimates of the form crit_r(A; B) ≤ ℵ_{log log n}...

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension An element a in a 0-lattice L is large, if $con(0, a) = L \times L$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension An element *a* in a 0-lattice *L* is large, if $con(0, a) = L \times L$. An *n*-frame in *L* is a family $((a_i)_{0 \le i < n}, (c_i)_{1 \le i < n})$ such that $(a_i)_{i < n}$ is independent and c_i is an axis of perspectivity between a_0 and a_i for each $i \in \{1, ..., n\}$.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension An element *a* in a 0-lattice *L* is large, if $con(0, a) = L \times L$. An *n*-frame in *L* is a family $((a_i)_{0 \le i < n}, (c_i)_{1 \le i < n})$ such that $(a_i)_{i < n}$ is independent and c_i is an axis of perspectivity between a_0 and a_i for each $i \in \{1, ..., n\}$. It is large, if a_0 is large.

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension An element *a* in a 0-lattice *L* is large, if $con(0, a) = L \times L$. An *n*-frame in *L* is a family $((a_i)_{0 \le i < n}, (c_i)_{1 \le i < n})$ such that $(a_i)_{i < n}$ is independent and c_i is an axis of perspectivity between a_0 and a_i for each $i \in \{1, ..., n\}$. It is large, if a_0 is large.

Theorem (Jónsson, 1962)

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram forn of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension An element *a* in a 0-lattice *L* is large, if $con(0, a) = L \times L$. An *n*-frame in *L* is a family $((a_i)_{0 \le i < n}, (c_i)_{1 \le i < n})$ such that $(a_i)_{i < n}$ is independent and c_i is an axis of perspectivity between a_0 and a_i for each $i \in \{1, ..., n\}$. It is large, if a_0 is large.

Theorem (Jónsson, 1962)

Let L be a sectionally complemented modular lattice with a large 4-frame.

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension An element *a* in a 0-lattice *L* is large, if $con(0, a) = L \times L$. An *n*-frame in *L* is a family $((a_i)_{0 \le i < n}, (c_i)_{1 \le i < n})$ such that $(a_i)_{i < n}$ is independent and c_i is an axis of perspectivity between a_0 and a_i for each $i \in \{1, ..., n\}$. It is large, if a_0 is large.

Theorem (Jónsson, 1962)

Let *L* be a sectionally complemented modular lattice with a large 4-frame. If *L* has a countable cofinal sequence, then *L* is coordinatizable (i.e., $\exists R$ regular ring such that $L \cong \mathbb{L}(R)$).

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension An element *a* in a 0-lattice *L* is large, if $con(0, a) = L \times L$. An *n*-frame in *L* is a family $((a_i)_{0 \le i < n}, (c_i)_{1 \le i < n})$ such that $(a_i)_{i < n}$ is independent and c_i is an axis of perspectivity between a_0 and a_i for each $i \in \{1, ..., n\}$. It is large, if a_0 is large.

Theorem (Jónsson, 1962)

Let *L* be a sectionally complemented modular lattice with a large 4-frame. If *L* has a countable cofinal sequence, then *L* is coordinatizable (i.e., $\exists R$ regular ring such that $L \cong \mathbb{L}(R)$).

Theorem (W., 2008)

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension An element *a* in a 0-lattice *L* is large, if $con(0, a) = L \times L$. An *n*-frame in *L* is a family $((a_i)_{0 \le i < n}, (c_i)_{1 \le i < n})$ such that $(a_i)_{i < n}$ is independent and c_i is an axis of perspectivity between a_0 and a_i for each $i \in \{1, ..., n\}$. It is large, if a_0 is large.

Theorem (Jónsson, 1962)

Let *L* be a sectionally complemented modular lattice with a large 4-frame. If *L* has a countable cofinal sequence, then *L* is coordinatizable (i.e., $\exists R$ regular ring such that $L \cong \mathbb{L}(R)$).

Theorem (W., 2008)

There exists a non-coordinatizable sectionally complemented modular lattice, of cardinality \aleph_1 , with a large 4-frame.

Why larders there?

Larders and CLL

- General settings
- P-scaled algebras
- Lifters, larders, and CLL
- Diagram form of GS
- Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension Larders don't play any role in the proof of the latter result, until we reach a ω₁-tower of sectionally complemented modular lattices that cannot be lifted by the L functor.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Why larders there?

Larders and CLL

- General settings
- P-scaled algebras
- Lifters, larders, and CLL
- Diagram forr of GS
- Relative critical points
- Noncoordinatizable SCMLs
- Lattices without CPCPextension

- Larders don't play any role in the proof of the latter result, until we reach a ω₁-tower of sectionally complemented modular lattices that cannot be lifted by the L functor.
- Then larders are used to turn the diagram counterexample to an object counterexample.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Description of the larder data

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram forn of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension A modification of the following (with $\lambda := \aleph_1$):

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Description of the larder data

General settings

P-scaled algebras

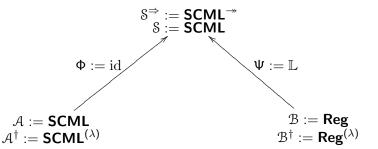
Lifters, larders, and CLL

Diagram forn of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension A modification of the following (with $\lambda := \aleph_1$):



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram forn of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension An extension $\mathbf{A} \leq \mathbf{B}$ of algebras is congruence-preserving, if the canonical map Con $\mathbf{A} \rightarrow$ Con \mathbf{B} is an isomorphism.

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram forn of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension An extension $A \leq B$ of algebras is congruence-preserving, if the canonical map Con $A \rightarrow$ Con B is an isomorphism.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem (Gillibert and W., 2009)

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension An extension $\mathbf{A} \leq \mathbf{B}$ of algebras is congruence-preserving, if the canonical map Con $\mathbf{A} \rightarrow$ Con \mathbf{B} is an isomorphism.

Theorem (Gillibert and W., 2009)

Let \mathcal{V} be a nondistributive lattice variety. Then the free lattice (resp., the free bounded lattice) on \aleph_1 generators within \mathcal{V} has no congruence-permutable, congruence-preserving extension.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension An extension $A \leq B$ of algebras is congruence-preserving, if the canonical map Con $A \rightarrow$ Con B is an isomorphism.

Theorem (Gillibert and W., 2009)

Let \mathcal{V} be a nondistributive lattice variety. Then the free lattice (resp., the free bounded lattice) on \aleph_1 generators within \mathcal{V} has no congruence-permutable, congruence-preserving extension.

Due to earlier results of Ploščica, Tůma, and W., the analogue of this result at \aleph_2 was already known.

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension An extension $\mathbf{A} \leq \mathbf{B}$ of algebras is congruence-preserving, if the canonical map Con $\mathbf{A} \rightarrow$ Con \mathbf{B} is an isomorphism.

Theorem (Gillibert and W., 2009)

Let \mathcal{V} be a nondistributive lattice variety. Then the free lattice (resp., the free bounded lattice) on \aleph_1 generators within \mathcal{V} has no congruence-permutable, congruence-preserving extension.

Due to earlier results of Ploščica, Tůma, and W., the analogue of this result at \aleph_2 was already known. Furthermore, in case \mathcal{V} is locally finite, then \aleph_1 is optimal in the result above. (Open problem in the non locally finite case. For example: does the free lattice on \aleph_0 generators have a congruence-permutable, congruence-preserving extension?).

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension An extension $\mathbf{A} \leq \mathbf{B}$ of algebras is congruence-preserving, if the canonical map Con $\mathbf{A} \rightarrow$ Con \mathbf{B} is an isomorphism.

Theorem (Gillibert and W., 2009)

Let \mathcal{V} be a nondistributive lattice variety. Then the free lattice (resp., the free bounded lattice) on \aleph_1 generators within \mathcal{V} has no congruence-permutable, congruence-preserving extension.

Due to earlier results of Ploščica, Tůma, and W., the analogue of this result at \aleph_2 was already known. Furthermore, in case \mathcal{V} is locally finite, then \aleph_1 is optimal in the result above. (Open problem in the non locally finite case. For example: does the free lattice on \aleph_0 generators have a congruence-permutable, congruence-preserving extension?). Unlike all previous examples, the larder data are difficult to figure out.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension An extension $\mathbf{A} \leq \mathbf{B}$ of algebras is congruence-preserving, if the canonical map Con $\mathbf{A} \rightarrow$ Con \mathbf{B} is an isomorphism.

Theorem (Gillibert and W., 2009)

Let \mathcal{V} be a nondistributive lattice variety. Then the free lattice (resp., the free bounded lattice) on \aleph_1 generators within \mathcal{V} has no congruence-permutable, congruence-preserving extension.

Due to earlier results of Ploščica, Tůma, and W., the analogue of this result at \aleph_2 was already known. Furthermore, in case \mathcal{V} is locally finite, then \aleph_1 is optimal in the result above. (Open problem in the non locally finite case. For example: does the free lattice on \aleph_0 generators have a congruence-permutable, congruence-preserving extension?). Unlike all previous examples, the larder data are difficult to figure out. Let's give an outline.

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension • A semilattice-metric space is a triple $\mathbf{A} = (A, \delta_{\mathbf{A}}, \tilde{A})$, where A is a set, \tilde{A} is a $(\lor, 0)$ -semilattice, $\delta_{\mathbf{A}} : A \times A \to \tilde{A}$, $\delta_{\mathbf{A}}(x, x) = 0$, $\delta_{\mathbf{A}}(x, y) = \delta_{\mathbf{A}}(y, x)$, $\delta_{\mathbf{A}}(x, z) \leq \delta_{\mathbf{A}}(x, y) \lor \delta_{\mathbf{A}}(y, z) \forall x, y, z \in A$ (say that $\delta_{\mathbf{A}}$ is a distance).

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Larders and CLL

- General settings
- P-scaled algebras
- Lifters, larders, and CLL
- Diagram fori of GS
- Relative critical points
- Noncoordinatizable SCMLs

Lattices without CPCPextension

- A semilattice-metric space is a triple $\mathbf{A} = (A, \delta_{\mathbf{A}}, \tilde{A})$, where A is a set, \tilde{A} is a $(\lor, 0)$ -semilattice, $\delta_{\mathbf{A}} : A \times A \to \tilde{A}$, $\delta_{\mathbf{A}}(x, x) = 0$, $\delta_{\mathbf{A}}(x, y) = \delta_{\mathbf{A}}(y, x)$, $\delta_{\mathbf{A}}(x, z) \leq \delta_{\mathbf{A}}(x, y) \lor \delta_{\mathbf{A}}(y, z) \ \forall x, y, z \in A$ (say that $\delta_{\mathbf{A}}$ is a distance).
- Morphisms: (f, \tilde{f}) : $\mathbf{A} \to \mathbf{B}$ means that $f: A \to B$,
 - $\tilde{f} \colon \tilde{A} \stackrel{\vee,0}{\rightarrow} \tilde{B}$, and $\delta_{\mathbf{B}}(f(x), f(y)) = \tilde{f} \delta_{\mathbf{A}}(x, y) \ \forall x, y \in A$.

Larders and CLL

- General settings
- P-scaled algebras
- Lifters, larders, and CLL
- Diagram forr of GS
- Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

- A semilattice-metric space is a triple $\mathbf{A} = (A, \delta_{\mathbf{A}}, \tilde{A})$, where A is a set, \tilde{A} is a $(\lor, 0)$ -semilattice, $\delta_{\mathbf{A}} : A \times A \to \tilde{A}$, $\delta_{\mathbf{A}}(x, x) = 0$, $\delta_{\mathbf{A}}(x, y) = \delta_{\mathbf{A}}(y, x)$, $\delta_{\mathbf{A}}(x, z) \leq \delta_{\mathbf{A}}(x, y) \lor \delta_{\mathbf{A}}(y, z) \ \forall x, y, z \in A$ (say that $\delta_{\mathbf{A}}$ is a distance).
- Morphisms: $(f, \tilde{f}): \mathbf{A} \to \mathbf{B}$ means that $f: A \to B$, $\tilde{f}: \tilde{A} \xrightarrow{\vee,0} \tilde{B}$, and $\delta_{\mathbf{B}}(f(x), f(y)) = \tilde{f} \delta_{\mathbf{A}}(x, y) \ \forall x, y \in A$. We get a category, Metr.

Larders and CLL

- General settings
- P-scaled algebras
- Lifters, larders, and CLL
- Diagram forr of GS
- Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

- A semilattice-metric space is a triple $\mathbf{A} = (A, \delta_{\mathbf{A}}, \tilde{A})$, where A is a set, \tilde{A} is a $(\lor, 0)$ -semilattice, $\delta_{\mathbf{A}} : A \times A \to \tilde{A}$, $\delta_{\mathbf{A}}(x, x) = 0$, $\delta_{\mathbf{A}}(x, y) = \delta_{\mathbf{A}}(y, x)$, $\delta_{\mathbf{A}}(x, z) \leq \delta_{\mathbf{A}}(x, y) \lor \delta_{\mathbf{A}}(y, z) \ \forall x, y, z \in A$ (say that $\delta_{\mathbf{A}}$ is a distance).
- Morphisms: $(f, \tilde{f}): \mathbf{A} \to \mathbf{B}$ means that $f: A \to B$, $\tilde{f}: \tilde{A} \stackrel{\vee,0}{\to} \tilde{B}$, and $\delta_{\mathbf{B}}(f(x), f(y)) = \tilde{f} \delta_{\mathbf{A}}(x, y) \ \forall x, y \in A$. We get a category, Metr.

■ Double arrows in Metr: (f, f): A → B such that f is surjective (nothing said about f).

Semilattice-metric spaces and covers

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension • A semilattice-metric cover is a quadruple $\mathbf{A} = (A^*, A, \delta_{\mathbf{A}}, \tilde{A})$, where $A^* \subseteq A$, $(A, \delta_{\mathbf{A}}, \tilde{A})$ is a semilattice-metric space, and $\forall x, y, z \in A^*$, $\exists t \in A$ such that $\delta_{\mathbf{A}}(x, t) \leq \delta_{\mathbf{A}}(y, z)$ and $\delta_{\mathbf{A}}(t, z) \leq \delta_{\mathbf{A}}(x, y)$ (Parallelogram Rule: imitates one step of "congruence-permutable").

▲□▼▲□▼▲□▼▲□▼ □ ● ●

Semilattice-metric spaces and covers

Larders and CLL

- General settings
- P-scaled algebras
- Lifters, larders, and CLL
- Diagram form of GS
- Relative critical points
- Noncoordinatizable SCMLs
- Lattices without CPCPextension

- A semilattice-metric cover is a quadruple $\mathbf{A} = (A^*, A, \delta_{\mathbf{A}}, \tilde{A})$, where $A^* \subseteq A$, $(A, \delta_{\mathbf{A}}, \tilde{A})$ is a semilattice-metric space, and $\forall x, y, z \in A^*$, $\exists t \in A$ such that $\delta_{\mathbf{A}}(x, t) \leq \delta_{\mathbf{A}}(y, z)$ and $\delta_{\mathbf{A}}(t, z) \leq \delta_{\mathbf{A}}(x, y)$ (Parallelogram Rule: imitates one step of "congruence-permutable").
- Morphisms defined as in Metr, with f(A*) ⊆ B*. Get a category Metr*.

Semilattice-metric spaces and covers

Larders and CLL

- General settings
- P-scaled algebras
- Lifters, larders, and CLL
- Diagram form of GS
- Relative critical points

Noncoordinatizable SCMLs

Lattices without CPCPextension

- A semilattice-metric cover is a quadruple $\mathbf{A} = (A^*, A, \delta_{\mathbf{A}}, \tilde{A})$, where $A^* \subseteq A$, $(A, \delta_{\mathbf{A}}, \tilde{A})$ is a semilattice-metric space, and $\forall x, y, z \in A^*$, $\exists t \in A$ such that $\delta_{\mathbf{A}}(x, t) \leq \delta_{\mathbf{A}}(y, z)$ and $\delta_{\mathbf{A}}(t, z) \leq \delta_{\mathbf{A}}(x, y)$ (Parallelogram Rule: imitates one step of "congruence-permutable").
- Morphisms defined as in Metr, with f(A*) ⊆ B*. Get a category Metr*.

• "Forgetful" functor Ψ : Metr^{*} \rightarrow Metr,

$$\mathbf{A} \mapsto (A^*, \delta_{\mathbf{A}} \upharpoonright_{A^* \times A^*}, \widehat{A})$$

From algebras to semilattice-metric spaces

Larders and CLL

- General settings
- P-scaled algebras
- Lifters, larders, and CLL
- Diagram form of GS
- Relative critical points
- Noncoordinatizable SCMLs
- Lattices without CPCPextension

Every algebra A defines canonically a semilattice-metric space Φ(A) := (A, con_A, Con_c A), where con_A(x, y) denotes the (principal) congruence generated by (x, y).

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

From algebras to semilattice-metric spaces

Larders and CLL

- General settings
- P-scaled algebras
- Lifters, larders, and CLL
- Diagram form of GS
- Relative critical points
- Noncoordinatizable SCMLs
- Lattices without CPCPextension

- Every algebra A defines canonically a semilattice-metric space Φ(A) := (A, con_A, Con_c A), where con_A(x, y) denotes the (principal) congruence generated by (x, y).
- For algebras A and B with Op(A) ⊆ Op(B), a morphism f: A → B is a map A → B which is a homomorphism for each symbol in Op(A). This way we get a category, MAIg.

From algebras to semilattice-metric spaces

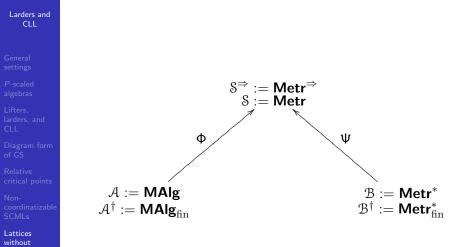
Larders and CLL

- General settings
- P-scaled algebras
- Lifters, larders, and CLL
- Diagram form of GS
- Relative critical points
- Noncoordinatizable SCMLs
- Lattices without CPCPextension

- Every algebra A defines canonically a semilattice-metric space Φ(A) := (A, con_A, Con_c A), where con_A(x, y) denotes the (principal) congruence generated by (x, y).
- For algebras A and B with Op(A) ⊆ Op(B), a morphism f: A → B is a map A → B which is a homomorphism for each symbol in Op(A). This way we get a category, MAIg.

• Then Φ extends naturally to a functor **MAlg** \rightarrow **Metr**.

Picture of the larder data



▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

CPCPextension

Hard core of the proof 1: a square of finite lattices

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

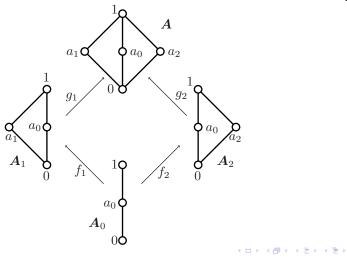
Diagram forr of GS

Relative critical points

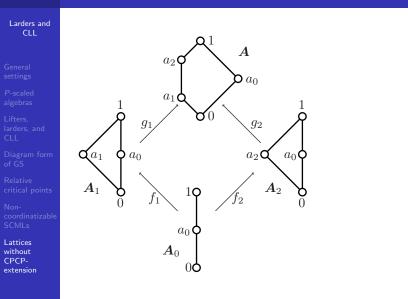
Noncoordinatizabl SCMLs

Lattices without CPCPextension The lattices in the two following diagrams have no CPCP-extension that would be functorial wrt. those diagrams:

э



Hard core of the proof 2: another square of finite lattices



◆□> ◆□> ◆三> ◆三> ・三 のへの