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LIX, École Polytechnique (Palaiseau), Décembre 2018

1/49



Théorie
équationnelle

El. theory

Permutohedra

Geyer’s Conj

6↪→ A(N)

∈ HS(AU (N))

An identity

Handling
varieties without
identities

Tensor prod

Box prod

P(N) |= θL

Decidability

Towards
decidability . . .

. . . getting
there!!!

Outline

1 Elementary theory of permutohedra
Permutohedra
Geyer’s Conj
6↪→ A(N)
∈ HS(AU(N))

2 An identity satisfied by all the permutohedra

3 Decidability of the weak Bruhat ordering on permutations via
MSO and S1S

2/49
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What is a permutohedron?

The weak Bruhat ordering (on the symmetric group SN) is
characterized by the formula:

α ≤ β ⇐⇒ inv(α) ⊆ inv(β) ,

where we set

[N] =
def.
{1, 2, . . . ,N} ,

IN =
def.
{(i , j) ∈ [N]× [N] | i < j} ,

inv(α) =
def.
{(i , j) ∈ IN | α−1(i) > α−1(j)} .

Alternative definition of the permutohedron:

P(N) := {inv(σ) | σ ∈ SN} , ordered by ⊆ .

3/49
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What are the inv(σ)?

Both inv(σ) and IN \ inv(σ) are transitive relations on [N].

(Proof: let (i , j) ∈ IN . Then (i , j) ∈ inv(σ) iff σ−1(i) > σ−1(j);
(i , j) /∈ inv(σ) iff σ−1(i) < σ−1(j).)

Conversely, every subset x ⊆ IN , such that both x and IN \ x
are transitive, is inv(σ) for a unique σ ∈ SN (Dushnik and Miller
1941, Guilbaud and Rosenstiehl 1963).

Say that x ⊆ IN is closed if it is transitive, open if IN \ x is
closed, and clopen if it is both closed and open.

Hence P(N) = {x ⊆ IN | x is clopen}, ordered by ⊆.

Observe that each x ∈ P(N) is a strict ordering. It can be
proved (Dushnik and Miller 1941) that those are exactly the
finite strict orderings of order-dimension 2.
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Théorie
équationnelle

El. theory

Permutohedra

Geyer’s Conj

6↪→ A(N)

∈ HS(AU (N))

An identity

Handling
varieties without
identities

Tensor prod

Box prod

P(N) |= θL

Decidability

Towards
decidability . . .

. . . getting
there!!!

What are the inv(σ)?

Both inv(σ) and IN \ inv(σ) are transitive relations on [N].
(Proof: let (i , j) ∈ IN . Then (i , j) ∈ inv(σ) iff σ−1(i) > σ−1(j);
(i , j) /∈ inv(σ) iff σ−1(i) < σ−1(j).)

Conversely, every subset x ⊆ IN , such that both x and IN \ x
are transitive, is inv(σ) for a unique σ ∈ SN (Dushnik and Miller
1941, Guilbaud and Rosenstiehl 1963).

Say that x ⊆ IN is closed if it is transitive, open if IN \ x is
closed, and clopen if it is both closed and open.

Hence P(N) = {x ⊆ IN | x is clopen}, ordered by ⊆.

Observe that each x ∈ P(N) is a strict ordering. It can be
proved (Dushnik and Miller 1941) that those are exactly the
finite strict orderings of order-dimension 2.

4/49
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The permutohedra P(2), P(3), and P(4).

123

12

21 231 312

213 132

321

P(4)P(3)P(2)

4321

3421 42314312

3241 24313412 42134132

23413214
2413

3142 41231432

23142143
31241423

1342

2134
12431324

1234
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Permutohedra are ortholattices

Theorem (Guilbaud and Rosenstiehl 1963)

The permutohedron P(N) is a lattice, for every positive integer N.

The assignment x 7→ xc = IN \ x defines an orthocomplementation
on P(N):

x ≤ y ⇒ y c ≤ xc ;

(xc)c = x ;

x ∧ xc = 0 (equivalently, x ∨ xc = 1) .

Hence P(N) is an ortholattice.
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Théorie
équationnelle

El. theory

Permutohedra

Geyer’s Conj

6↪→ A(N)

∈ HS(AU (N))

An identity

Handling
varieties without
identities

Tensor prod

Box prod

P(N) |= θL

Decidability

Towards
decidability . . .

. . . getting
there!!!

Permutohedra are ortholattices

Theorem (Guilbaud and Rosenstiehl 1963)

The permutohedron P(N) is a lattice, for every positive integer N.

The assignment x 7→ xc = IN \ x defines an orthocomplementation
on P(N):

x ≤ y ⇒ y c ≤ xc ;

(xc)c = x ;

x ∧ xc = 0 (equivalently, x ∨ xc = 1) .

Hence P(N) is an ortholattice.

6/49
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What makes P(N) a lattice?

Every x ⊆ IN is contained in a least closed set, namely, cl(x) =
transitive closure of x :

cl(x) = {(k0, kn) | k0 < k1 < · · · < kn , all (ks , ks+1) ∈ x} .

Dually, every x ⊆ IN contains a largest open set, namely,
int(x) = IN \ cl(IN \ x):

int(x) = {(i , j) | ∀i = k0 < · · · < kn = j ,

some (ks , ks+1) ∈ x} .

Theorem (Guilbaud and Rosenstiehl 1963)

int(x) is closed, for any closed x ⊆ IN .
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Now the lattice property of P(N)

Evaluate x ∧ y , where x , y ∈ P(N).

x ∩ y is no good: it is closed, but usually not open.

However, by the theorem above, the smaller set int(x ∩ y) is
clopen. Hence x ∧ y = int(x ∩ y).

Likewise, x ∪ y is open, and x ∨ y = cl(x ∪ y).
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Permutohedra are even more peculiar lattices

Theorem (Duquenne and Cherfouh 1994, Le Conte de Poly-Barbut
1994)

The permutohedron P(N) is semidistributive (i.e.,
x ∧ z = y ∧ z ⇒ x ∧ z = (x ∨ y) ∧ z and dually), for every positive
integer N. Thus it is also pseudocomplemented (i.e., ∀x ∃ largest x∗

such that x ∧ x∗ = 0).

Theorem (Caspard 2000)

The permutohedron P(N) is McKenzie-bounded, for every positive
integer N.
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Theorem (Duquenne and Cherfouh 1994, Le Conte de Poly-Barbut
1994)

The permutohedron P(N) is semidistributive (i.e.,
x ∧ z = y ∧ z ⇒ x ∧ z = (x ∨ y) ∧ z and dually), for every positive
integer N. Thus it is also pseudocomplemented (i.e., ∀x ∃ largest x∗

such that x ∧ x∗ = 0).

Theorem (Caspard 2000)

The permutohedron P(N) is McKenzie-bounded, for every positive
integer N.
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Recap: McKenzie-bounded lattices

A lattice L is McKenzie-bounded if there are a free lattice F and
a surjective lattice homomorphism f : F � L such that each
f −1{x} has a least and a largest element.

A finite lattice L is McKenzie-bounded iff
| Ji(L)| = |Mi(L)| = | Ji(Con L)|(= |Mi(Con L)|) (where Ji(L) is
the set of all join-irreducible elements of L and Mi(L) is the set
of all meet-irreducible elements of L).

The lattice N5 is McKenzie-bounded, while the lattice M3 is not.

Every McKenzie-bounded lattice is semidistributive. The
converse fails, even for finite lattices.
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Théorie
équationnelle

El. theory

Permutohedra

Geyer’s Conj

6↪→ A(N)

∈ HS(AU (N))

An identity

Handling
varieties without
identities

Tensor prod

Box prod

P(N) |= θL

Decidability

Towards
decidability . . .

. . . getting
there!!!

Minimal subdirect decomposition of the
permutohedron P(N)

For U ⊆ [N], denote by AU(N) the set of all transitive x ⊆ IN
such that

(
i < j < k and (i , k) ∈ x

)
⇒
{

(i , j) ∈ x (if j ∈ U) ,

(j , k) ∈ x (if j /∈ U) .

AU(N) is a sublattice of P(N), in which ∧ is ∩. More is true:

Theorem (S. and W. 2011)

Each AU(N) is a lattice-theoretical retract of P(N), and P(N) is a
subdirect product of all AU(N). Furthermore, the AU(N) are
isomorphic to Nathan Reading’s Cambrian lattices of type A.
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Join-irreducibles in AU(N) (and P(N))

For (i , j) ∈ IN , set

〈i , j〉U = {(x , y) ∈ IN | x ∈ Uc ∪ {i} and y ∈ U ∪ {j}} .

〈i , j〉U is the least x ∈ AU(N) such that (i , j) ∈ x .

These are exactly the join-irreducible elements of AU(N).

(〈i , j〉U)∗ = 〈i , j〉U \ {(i , j)}.
The open subsets of IN are exactly the unions of 〈i , j〉U .

The join-irreducible elements of P(N) are the 〈i , j〉U , for
(i , j) ∈ IN and U ⊆ [N].
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All isomorphisms and dual isomorphisms between
Cambrians of type A

An easy result:

Proposition

Set i∗ = N + 1− i (for i ∈ [N]), U∗ = {i∗ | i ∈ U} (for U ⊆ [N]),
a∗ = {(j∗, i∗) | (i , j) ∈ a} (for a ⊆ IN). Then a 7→ a∗ defines an
isomorphism from AU(N) onto A[N]\U∗(N).

A(N) =
def.

A∅(N) ∼= A[N](N) is the Tamari lattice on N + 1 letters.

A more difficult result:

Proposition

There is an isomorphism ψU : AUc (N)→ AU(N)op.

ψU(y) = {(i , j) ∈ IN | 〈i , j〉U ∩ y = ∅}, for all y ∈ AUc (N).
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Picturing the Cambrian lattices of type A, for
N = 4

12

12

1313

14

14

23
23

24
24

34

34

N. Reading observed that each AU(N) has cardinality 1
N+1

(
2N
N

)
.
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Grätzer’s problem for Tamari lattices

Problem (Grätzer 1971)

Characterize the (finite) lattices that can be embedded into some
Tamari lattice A(N).

Grätzer’s problem is still open: it is still unknown whether

{L | (∃N)(L ↪→ A(N))}

is decidable.
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Geyer’s Conjecture

The following conjecture is natural:

Conjecture (Geyer 1994)

Every finite McKenzie-bounded lattice can be embedded (as a
sublattice) into some Tamari lattice A(N).

Conjecture easy to verify for finite distributive lattices.
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The lattices B(m, n)

p

p

B(1, 3) and B(2, 2), non-atom join-irreducible element is p.

The lattice B(m, n) is defined by doubling the join of m atoms in
an (m + n)-atom Boolean lattice.

All lattices B(m, n) are McKenzie-bounded.
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B(m, n), A(N), and P(N)

Theorem (S. and W. 2010)

B(m, n) can be embedded into a Tamari lattice iff
min{m, n} ≤ 1.

P(N) can be embedded into a Tamari lattice iff N ≤ 3.

In particular:

Neither B(2, 2) nor P(4) can be embedded into any A(N) (although
they are both McKenzie-bounded).
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Vegetables and Gazpachos

An identity witnessing B(2, 2) 6↪→ A(N) is (Veg1):

(a1 ∨ a2 ∨ b1) ∧ (a1 ∨ a2 ∨ b2) ≤
∨

i,j∈{1,2}

(
(ai ∨ b̃j) ∧ (a1 ∨ a2 ∨ b3−j)

)
,

with b̃j = (b1 ∨ b2) ∧ (a1 ∨ a2 ∨ bj ),

satisfied by all A(N) but not by B(2, 2).

An infinite collection of identities, the Gazpacho identities, were
discovered to hold in all A(N).

(Veg1) is a (consequence of a) Gazpacho identity.

The Gazpacho identity (Veg2):

(a1 ∨ b1) ∧ (a2 ∨ b2) ≤
2∨

i=1

2∧
j=1

(ai ∨ b̃j) ,

with b̃i = (b1 ∨ b2) ∧ (ai ∨ bi ),

is satisfied by all A(N) but not by P(4).
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. . . and permutohedra?

Theorem (S. and W. 2011)

B(m, n) embeds into some permutohedron iff min{m, n} ≤ 2.

In particular, B(3, 3) cannot be embedded into any
permutohedron (difficult).

A most useful tool for proving this is the notion of U-polarized
measure, µ : IN → L: require that whenever
1 ≤ x < y < z ≤ N, µ(x , z) ≤ µ(x , y) ∨ µ(y , z) together with
(y ∈ U ⇒ µ(x , y) ≤ µ(x , z)) and (y /∈ U ⇒ µ(y , z) ≤ µ(x , z)).

For a finite lattice L, certain U-polarized measures with values
in L correspond to lattice embeddings of L into AU(N).
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Can B(3, 3) 6↪→ P(N) be done via an identity?

Negative embeddability results for the A(N)
lead to discover separating identities.

Attempts to get an identity that
holds in all the P(N) but not in B(3, 3): failed.

In fact, there is no such identity!

Theorem (S. and W. 2011)

B(3, 3) is a homomorphic image of a sublattice of P(12).

We prove that for a suitable U, the lattice AU(12) does not
satisfy the “splitting identity” of B(3, 3):∧

1≤j≤3

(x1 ∨ x2 ∨ x3 ∨ yj) ≤
∨

1≤i≤3

(x̂i ∧ ŷ1 ∧ ŷ2 ∧ ŷ3) ,

where x = x1 ∨ x2 ∨ x3, y = y1 ∨ y2 ∨ y3, x̂1 = x2 ∨ x3 ∨ y,
ŷ1 = y2 ∨ y3 ∨ x, etc.
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ŷ1 = y2 ∨ y3 ∨ x, etc.

21/49
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ŷ1 = y2 ∨ y3 ∨ x, etc.

21/49
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No separating identity for B(3, 3) (cont’d)

Relevant values of the xi , yi obtained with help of the
Prover9-Mace4 program (yields U = {5, 6, 9, 10, 11}).

A lattice variety (or equational class of lattices) is the class of all
lattices satisfying a given set of identities.

Birkhoff’s Theorem: The variety generated by a class X

is HSP(X).

Variety membership problem, in the AU(N), captured by
combinatorial objects called scores.

An (m, n)-score, with respect to U ⊆ [N], expresses a certain
tiling property of m + n copies of [N].
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Birkhoff’s Theorem: The variety generated by a class X

is HSP(X).

Variety membership problem, in the AU(N), captured by
combinatorial objects called scores.

An (m, n)-score, with respect to U ⊆ [N], expresses a certain
tiling property of m + n copies of [N].
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Théorie
équationnelle

El. theory

Permutohedra

Geyer’s Conj

6↪→ A(N)

∈ HS(AU (N))

An identity

Handling
varieties without
identities

Tensor prod

Box prod

P(N) |= θL

Decidability

Towards
decidability . . .

. . . getting
there!!!

No separating identity for B(3, 3) (cont’d)

Relevant values of the xi , yi obtained with help of the
Prover9-Mace4 program (yields U = {5, 6, 9, 10, 11}).

A lattice variety (or equational class of lattices) is the class of all
lattices satisfying a given set of identities.

Birkhoff’s Theorem: The variety generated by a class X

is HSP(X).

Variety membership problem, in the AU(N), captured by
combinatorial objects called scores.

An (m, n)-score, with respect to U ⊆ [N], expresses a certain
tiling property of m + n copies of [N].

22/49
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Theorem (S. and W. 2014)

The following statements are equivalent, for all positive integers m,
n, N and all U ⊆ [N]:

1 B(m, n) belongs to the lattice variety generated by AU(N).

2 AU(N) does not satisfy the splitting identity of B(m, n).

3 There exists an (m, n)-score on [N] with respect to U.
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The score for B(3, 3) ∈ HS(AU(12))

(A1) 1
b1 −→

2
a1 ←−

5
b2 −→

8
a1 ←−

11
b3

12

(A2) 1
b1 −→

3
a2 ←−

6
b2 ←−

9
b3

12

(A3) 1
b1 −→

4
b2 −→

7
a3 ←−

10
b3

12

(B1) 1
b1 −→

2
a1 −→

3
a2 −→

4
a3 −→

8
a1

12

(B2) 1
a1 ←−

5
a2 ←−

6
b2 −→

7
a3 −→

8
a1

12

(B3) 1
a1 ←−

5
a2 ←−

9
a3 ←−

10
a1 ←−

11
b3

12
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A question

Suggests the following question.

Question (S. and W. 2011)

Is there a nontrivial lattice-theoretical identity satisfied by all
permutohedra P(N)? Answer coming soon.
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Outline

1 Elementary theory of permutohedra

2 An identity satisfied by all the permutohedra
Handling varieties without identities
Tensor prod
Box prod
P(N) |= θL

3 Decidability of the weak Bruhat ordering on permutations via
MSO and S1S
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Varieties of lattices

Recall that the variety generated by a class X is HSP(X).

Checking whether L ∈ HSP(X) can be difficult.

An obvious sufficient condition: say
that (∃X ∈ X)(∃e)(e : L ↪→ X ).

The condition above is not necessary: for example, take
L := B(3, 3), X := {P(n) | n ∈ N}.
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Splitting lattices and splitting identities

A lattice K is splitting if there is a largest lattice variety CK such
that K /∈ CK .

Necessarily, CK = {L | K /∈ HSP(L)}.
R. McKenzie proved in 1972 that K is splitting iff it is finite,
subdirectly irreducible, and McKenzie-bounded.

Furthermore,
CK is defined by a single identity θK , called “the” splitting
identity of K .

Hence θK is the weakest identity failing in K .

If K is splitting and K ∈ HSP(X), then K ∈ HSP(L) for some
L ∈ X.

(Proof: HSP(X) 6⊆ CK , that is, X 6⊆ CK , so there exists
L ∈ X with L /∈ CK .)

It is well-known (Day 1977) that every identity satisfied by all
finite splitting lattices is trivial.

All lattices B(m, n) are splitting.
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Théorie
équationnelle

El. theory

Permutohedra

Geyer’s Conj

6↪→ A(N)

∈ HS(AU (N))

An identity

Handling
varieties without
identities

Tensor prod

Box prod

P(N) |= θL

Decidability

Towards
decidability . . .

. . . getting
there!!!

Splitting lattices and splitting identities

A lattice K is splitting if there is a largest lattice variety CK such
that K /∈ CK .

Necessarily, CK = {L | K /∈ HSP(L)}.
R. McKenzie proved in 1972 that K is splitting iff it is finite,
subdirectly irreducible, and McKenzie-bounded. Furthermore,
CK is defined by a single identity θK , called “the” splitting
identity of K .

Hence θK is the weakest identity failing in K .

If K is splitting and K ∈ HSP(X), then K ∈ HSP(L) for some
L ∈ X. (Proof: HSP(X) 6⊆ CK , that is, X 6⊆ CK , so there exists
L ∈ X with L /∈ CK .)

It is well-known (Day 1977) that every identity satisfied by all
finite splitting lattices is trivial.

All lattices B(m, n) are splitting.

28/49
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The Soprano: Aloysia Weber (1760 – 1839)

“Born in Zell im Wiesental (Baden-Württemberg, Germany), Aloysia
Weber (later on Aloysia Weber-Lange) was one of the four daughters
of the musical Weber family.”
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The Bass: Édouard de Reszke (1853 – 1917)

“A Polish bass from Warsaw. Born with an impressive natural voice
and equipped with compelling histrionic skills, he became one of the
most illustrious opera singers active in Europe and America during
the late-Victorian era.”
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A convenient criterion for variety membership

Definition

For lattices K and L, a pair (f , g) of maps K → L is an EA-duet if f
is a join-homomorphism, g is a meet-homomorphism, and
f (x) ≤ g(y) ⇔ x ≤ y ∀x , y ∈ K . It is tight if f = g∨ (the largest
join-homomorphism ≤ g) and g = f ∧ (the least
meet-homomorphism ≥ f ).

Lemma

For lattices K and L of finite length, TFAE:

1 L ∈ HS(K ).

2 There exists a tight EA-duet of maps K → L.

Outline of proof: Let h : H � K with H ≤ L. Define
f (x) =

def.
min h−1{x}, g(x) =

def.
max h−1{x}. Then replace f by g∨, g

by f ∧.
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min h−1{x}, g(x) =

def.
max h−1{x}. Then replace f by g∨, g

by f ∧.
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Théorie
équationnelle

El. theory

Permutohedra

Geyer’s Conj

6↪→ A(N)

∈ HS(AU (N))

An identity

Handling
varieties without
identities

Tensor prod

Box prod

P(N) |= θL

Decidability

Towards
decidability . . .

. . . getting
there!!!

A convenient criterion for variety membership

Definition

For lattices K and L, a pair (f , g) of maps K → L is an EA-duet if f
is a join-homomorphism, g is a meet-homomorphism, and
f (x) ≤ g(y) ⇔ x ≤ y ∀x , y ∈ K . It is tight if f = g∨ (the largest
join-homomorphism ≤ g) and g = f ∧ (the least
meet-homomorphism ≥ f ).

Lemma

For lattices K and L of finite length, TFAE:

1 L ∈ HS(K ).

2 There exists a tight EA-duet of maps K → L.

Outline of proof: Let h : H � K with H ≤ L. Define
f (x) =

def.
min h−1{x}, g(x) =

def.
max h−1{x}. Then replace f by g∨, g

by f ∧.

31/49
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Variety membership (cont’d)

By using Jónsson’s Lemma, we get

Proposition

Let K be a splitting lattice and let X be a class of lattices. Then
K ∈ HSP(X) iff (∃L ∈ X) (∃ tight EA-duet of maps f , g : K → L).

Lemma

Let K and L be lattices, with K splitting, and let u, v ∈ K such that
(u∧ v , u) generates the least nonzero congruence of K and u∧ v ≺ u.
Then a pair f , g : K → L is an EA-duet iff f is a join-homomorphism,
g is a meet-homomorphism, f ≤ g , and f (u) � g(v).
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Strategy for the P(n)

The variety generated by all P(n) is also generated by
{AU(n) | n ∈ N, U ⊆ [n]}.

We need to find a splitting lattice L such that every AU(n)
satisfies the splitting identity of L.

We thus need to find a splitting lattice L such that for
every (n,U), there is no tight EA-duet f , g : L→ AU(n).

Getting at L, and proving that it worked, was the biggest
challenge.
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Tensor products of (∨, 0)-semilattices

G. Fraser defined in 1978 the tensor product of join-semilattices.

Grätzer, Lakser, and Quackenbush considered in 1981 tensor
products of (∨, 0)-semilattices.

For (∨, 0)-semilattices A and B, a bi-ideal of A× B is a lower
subset I ⊆ A× B, containing

0A,B = ({0A} × B) ∪ (A× {0B}) ,

such that (a, b0), (a, b1) ∈ I implies that (a, b0 ∨ b1) ∈ I , and
symmetrically (A � B).

The bi-ideals form an algebraic lattice.

A⊗ B = (∨, 0)-semilattice of all compact bi-ideals of A× B.
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Useful bi-ideals, universal property

Useful bi-ideals :

Pure tensors:

a⊗ b = 0A,B ∪ {(x , y) | x ≤ a and y ≤ b} .

Boxes:
a� b = {(x , y) | x ≤ a or y ≤ b} .

Belongs to A⊗ B if A and B both have a unit.

Mixed tensors: (a⊗ b′) ∪ (a′ ⊗ b), where a ≤ a′ and b ≤ b′.
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The box product

Definition (Grätzer and W. 1999)

The box product of lattices A and B, denoted by A� B, is the set of
all finite intersections

⋂
i<n(ai � bi ), where all (ai , bi ) ∈ A× B.

Analogue, for bounded lattices, of Wille’s tensor product of
concept lattices. Equivalent in the finite case.

Lemma

Let A and B be finite lattices. If A and B are both
McKenzie-bounded (resp., splitting), then so is A� B.
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The variety of permutohedra is non-trivial

Theorem (S. and W. 2014)

Let L := N5 � B(3, 2). Then P(N) |= θL , for each N ≥ 1.

N5 � B(3, 2) is a splitting lattice.

Brute force computation shows that it has 3,338 elements.

One needs to prove that there are no (n,U) and no tight
EA-duet f , g : N5 � B(3, 2)→ AU(n).

“EA-duet” implies that f (p ⊗ q) 6⊆ g(p∗ � q∗) (where p and q
are the unique join-irreducible, non join-prime elements in N5

and B(3, 2), respectively); “tight” implies that f and g agree on
all join-prime elements of N5 � B(3, 2).
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A portrait view of N5 � B(3, 2)
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Outline

1 Elementary theory of permutohedra

2 An identity satisfied by all the permutohedra

3 Decidability of the weak Bruhat ordering on permutations via
MSO and S1S

Towards decidability . . .
. . . getting there: decidability of the weak Bruhat order
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The equational theory of permutohedra

The word problem for permutohedra

Given lattice terms s and t, does the relation

P(N) |= s = t ,

hold for each N ≥ 1 ?

Theorem (S. and W. 2014)

The word problem for permutohedra is decidable.

40/49
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Pemutohedra and Cambrian lattices

Proposition

For all pair of lattice terms s, t, we have

P(N) |= s = t for all N

iff

AU(N) |= s = t for all N and U ⊆ [1, . . . ,N] .

This is because the Cambrian lattices of type A are the quotients of
permutohedra by their minimal meet-irreducible congruences.
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The lattice B(4, 4)

q

q*
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The lattices B(m, n)

Recall that the lattice B(m, n) is obtained from a Boolean algebra
over m + n atoms by doubling the join of m atoms.

Problem

Given m and n, does the lattice B(m, n) belong to
HSP(P(N) | N ≥ 1)?
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EA-duets and scores

Proposition

TFAE:

1 B(m, n) ∈ HSP(P(N) | N ≥ 1),

2 ∃N,U s.t. B(m, n) ∈ HSP(AU(N)),

3 ∃N,U s.t. B(m, n) ∈ HS(AU(N)),

4 ∃N,U and an EA-duet f , g : B(m, n) −−−→ AU(N),

5 ∃N,U and an “(m, n,N,U)-score”.

(m, n,N,U)-scores are defined from EA-duets of maps
f , g : B(m, n) −−−→ AU(N), using the isomorphism
ψU : AUc (N)→ AU(N)op. They express a tiling property of the
chain [N].
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What does an (m, n,N ,U)-score look like?

A (3, 3, 12, {5, 6, 9, 10, 11})-score :

(A1) 1
b1 −→

2
a1 ←−

5
b2 −→

8
a1 ←−

11
b3

12

(A2) 1
b1 −→

3
a2 ←−

6
b2 ←−

9
b3

12

(A3) 1
b1 −→

4
b2 −→

7
a3 ←−

10
b3

12

(B1) 1
b1 −→

2
a1 −→

3
a2 −→

4
a3 −→

8
a1

12

(B2) 1
a1 ←−

5
a2 ←−

6
b2 −→

7
a3 −→

8
a1

12

(B3) 1
a1 ←−

5
a2 ←−

9
a3 ←−

10
a1 ←−

11
b3

12

(therefore B(3, 3) ∈ HS(P(12))).

45/49
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Summarizing

We can represent a (m, n,N,U)-score via subsets

Bi ,Aj , Bi,c , Aj,c ,

where i = 1, . . .m, j = 1, . . . n , c ∈ {a1, . . . , an, b1, . . . , bm},

satisfying certain simple conditions (solos, consonances);

We can suppose that Bi ,Aj , Bi,c , Aj,c are all subsets of
integers (that is, unary [aka monadic] predicates);

The property

“Bi ,Aj ,Bi,c ,Aj,c is an (m, n,N,U)-score”

is definable in MSO (monadic second order logic of one
successor).
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Théorie
équationnelle

El. theory

Permutohedra

Geyer’s Conj

6↪→ A(N)

∈ HS(AU (N))

An identity

Handling
varieties without
identities

Tensor prod

Box prod

P(N) |= θL

Decidability

Towards
decidability . . .

. . . getting
there!!!

Summarizing

We can represent a (m, n,N,U)-score via subsets

Bi ,Aj , Bi,c , Aj,c ,

where i = 1, . . .m, j = 1, . . . n , c ∈ {a1, . . . , an, b1, . . . , bm},

satisfying certain simple conditions (solos, consonances);

We can suppose that Bi ,Aj , Bi,c , Aj,c are all subsets of
integers (that is, unary [aka monadic] predicates);

The property

“Bi ,Aj ,Bi,c ,Aj,c is an (m, n,N,U)-score”

is definable in MSO (monadic second order logic of one
successor).

46/49
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MSO, S1S, and Büchi’s Theorem

MSO : atop the first-order language (s) (a unary function
symbol), add second-order variables X , Y , Z , . . . , and new
atomic formulas t ∈ X , where t is a term of (s) and X is a
second-order variable.

S1S : the formulas of MSO holding over the non-negative
integers.

Theorem (Büchi 1962)

The set S1S is decidable.

Corollary

The problem B(m, n) ∈ HSP(P(N) | N ≥ 1) is decidable.
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S1S : the formulas of MSO holding over the non-negative
integers.

Theorem (Büchi 1962)

The set S1S is decidable.

Corollary

The problem B(m, n) ∈ HSP(P(N) | N ≥ 1) is decidable.
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Scores for a pair of terms

Given terms s, t, we can define (within MSO) the concept of an
(s, t,N,U)-score, in such a way that:

Proposition

TFAE:

1 HSP(P(N) | N ≥ 1) 6|= s ≤ t;

2 ∃N,U s.t. AU(N) 6|= s ≤ t;

3 ∃N,U and an (s, t,N,U)-score.
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Théorie
équationnelle

El. theory

Permutohedra

Geyer’s Conj

6↪→ A(N)

∈ HS(AU (N))

An identity

Handling
varieties without
identities

Tensor prod

Box prod

P(N) |= θL

Decidability

Towards
decidability . . .

. . . getting
there!!!

Scores for a pair of terms

Given terms s, t, we can define (within MSO) the concept of an
(s, t,N,U)-score, in such a way that:

Proposition

TFAE:

1 HSP(P(N) | N ≥ 1) 6|= s ≤ t;

2 ∃N,U s.t. AU(N) 6|= s ≤ t;

3 ∃N,U and an (s, t,N,U)-score.

48/49
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Decidability results (S. and W. 2014)

Theorem

We can decide whether an identity s = t is satisfied by all
permutohedra.

Proposition

Let (Ui | i ∈ I ) be an MSO-definable collection of subsets of N. We
can decide whether an identity s = t is satisfied by all Cambrian
lattices of the form AUi (N).

Theorem

We can decide whether an identity s = t is satisfied by all Tamari
lattices.

49/49
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