La théorie équationnelle de l'ordre faible de Bruhat

Luigi Santocanale ${ }^{1}$ et Friedrich Wehrung ${ }^{2}$

${ }^{1}$ LIF (Marseille)
E-mail: luigi.santocanale@lis-lab.fr
URL: http://pageperso.lis-lab.fr/~luigi.santocanale/
${ }^{2}$ LMNO (Caen)

E-mail: friedrich.wehrung01@unicaen.fr URL: https://wehrungf.users.lmno.cnrs.fr

LIX, École Polytechnique (Palaiseau), Décembre 2018

Outline

Théorie équationnelle

2 An identity satisfied by all the permutohedra
1 Elementary theory of permutohedra

- Permutohedra
- Geyer's Conj
- $4 \mathrm{~A}(N)$
$\quad-\in \operatorname{HS}\left(\mathrm{A}_{U}(N)\right)$

3 Decidability of the weak Bruhat ordering on permutations via MSO and S1S

What is a permutohedron?

- The weak Bruhat ordering (on the symmetric group \mathfrak{S}_{N}) is characterized by the formula:

$$
\alpha \leq \beta \Longleftrightarrow \operatorname{inv}(\alpha) \subseteq \operatorname{inv}(\beta),
$$

What is a permutohedron?

- The weak Bruhat ordering (on the symmetric group \mathfrak{S}_{N}) is characterized by the formula:

$$
\alpha \leq \beta \Longleftrightarrow \operatorname{inv}(\alpha) \subseteq \operatorname{inv}(\beta)
$$

- where we set

$$
\begin{aligned}
& {[N] \underset{\text { def. }}{=}\{1,2, \ldots, N\},} \\
& \mathcal{J}_{N} \underset{\text { def. }}{=}\{(i, j) \in[N] \times[N] \mid i<j\}, \\
& \operatorname{inv}(\alpha) \underset{\text { def. }}{=}\left\{(i, j) \in \mathcal{J}_{N} \mid \alpha^{-1}(i)>\alpha^{-1}(j)\right\} .
\end{aligned}
$$

What is a permutohedron?

- The weak Bruhat ordering (on the symmetric group \mathfrak{S}_{N}) is characterized by the formula:

$$
\alpha \leq \beta \Longleftrightarrow \operatorname{inv}(\alpha) \subseteq \operatorname{inv}(\beta)
$$

- where we set

$$
\begin{aligned}
& {[N] \underset{\text { def. }}{=}\{1,2, \ldots, N\},} \\
& \mathcal{J}_{N} \underset{\text { def. }}{=}\{(i, j) \in[N] \times[N] \mid i<j\}, \\
& \operatorname{inv}(\alpha) \underset{\text { def. }}{=}\left\{(i, j) \in \mathcal{J}_{N} \mid \alpha^{-1}(i)>\alpha^{-1}(j)\right\} .
\end{aligned}
$$

- Alternative definition of the permutohedron:

$$
\mathrm{P}(N):=\left\{\operatorname{inv}(\sigma) \mid \sigma \in \mathfrak{S}_{N}\right\}, \text { ordered by } \subseteq .
$$

What are the $\operatorname{inv}(\sigma)$?

- Both $\operatorname{inv}(\sigma)$ and $\mathcal{J}_{N} \backslash \operatorname{inv}(\sigma)$ are transitive relations on $[N]$.

What are the $\operatorname{inv}(\sigma)$?

El. theory
Permutohedra
Geyer's Conj
$\Leftrightarrow A(N)$
$\in \operatorname{HS}\left(\mathrm{A}_{\nu}(N)\right)$
An identity
Handling
varieties without identities
Tensor prod
Box prod
$\mathrm{P}(N) \models \theta$
Decidability
Towards
decidability
\ldots getting
there!!!

- Both $\operatorname{inv}(\sigma)$ and $\mathcal{J}_{N} \backslash \operatorname{inv}(\sigma)$ are transitive relations on [N]. (Proof: let $(i, j) \in \mathcal{J}_{N}$. Then $(i, j) \in \operatorname{inv}(\sigma)$ iff $\sigma^{-1}(i)>\sigma^{-1}(j)$; $(i, j) \notin \operatorname{inv}(\sigma)$ iff $\left.\sigma^{-1}(i)<\sigma^{-1}(j).\right)$

What are the $\operatorname{inv}(\sigma)$?

- Both $\operatorname{inv}(\sigma)$ and $\mathcal{J}_{N} \backslash \operatorname{inv}(\sigma)$ are transitive relations on [N]. (Proof: let $(i, j) \in \mathcal{J}_{N}$. Then $(i, j) \in \operatorname{inv}(\sigma)$ iff $\sigma^{-1}(i)>\sigma^{-1}(j)$; $(i, j) \notin \operatorname{inv}(\sigma)$ iff $\left.\sigma^{-1}(i)<\sigma^{-1}(j).\right)$
- Conversely, every subset $\boldsymbol{x} \subseteq \mathcal{J}_{N}$, such that both \boldsymbol{x} and $\mathrm{J}_{N} \backslash \boldsymbol{x}$ are transitive, is $\operatorname{inv}(\sigma)$ for a unique $\sigma \in \mathfrak{S}_{N}$ (Dushnik and Miller 1941, Guilbaud and Rosenstiehl 1963).

What are the $\operatorname{inv}(\sigma)$?

- Both $\operatorname{inv}(\sigma)$ and $\mathcal{J}_{N} \backslash \operatorname{inv}(\sigma)$ are transitive relations on [N]. (Proof: let $(i, j) \in \mathcal{J}_{N}$. Then $(i, j) \in \operatorname{inv}(\sigma)$ iff $\sigma^{-1}(i)>\sigma^{-1}(j)$; $(i, j) \notin \operatorname{inv}(\sigma)$ iff $\left.\sigma^{-1}(i)<\sigma^{-1}(j).\right)$
- Conversely, every subset $\boldsymbol{x} \subseteq \mathcal{J}_{N}$, such that both \boldsymbol{x} and $\mathcal{J}_{N} \backslash \boldsymbol{x}$ are transitive, is $\operatorname{inv}(\sigma)$ for a unique $\sigma \in \mathfrak{S}_{N}$ (Dushnik and Miller 1941, Guilbaud and Rosenstiehl 1963).
- Say that $\boldsymbol{x} \subseteq \mathcal{J}_{N}$ is closed if it is transitive, open if $\mathcal{J}_{N} \backslash \boldsymbol{x}$ is closed, and clopen if it is both closed and open.

What are the $\operatorname{inv}(\sigma)$?

■ Both $\operatorname{inv}(\sigma)$ and $\mathcal{J}_{N} \backslash \operatorname{inv}(\sigma)$ are transitive relations on $[N]$. (Proof: let $(i, j) \in \mathcal{J}_{N}$. Then $(i, j) \in \operatorname{inv}(\sigma)$ iff $\sigma^{-1}(i)>\sigma^{-1}(j)$; $(i, j) \notin \operatorname{inv}(\sigma)$ iff $\sigma^{-1}(i)<\sigma^{-1}(j)$.)
$■$ Conversely, every subset $\boldsymbol{x} \subseteq \mathcal{J}_{N}$, such that both \boldsymbol{x} and $\mathcal{J}_{N} \backslash \boldsymbol{x}$ are transitive, is $\operatorname{inv}(\sigma)$ for a unique $\sigma \in \mathfrak{S}_{N}$ (Dushnik and Miller 1941, Guilbaud and Rosenstiehl 1963).
■ Say that $\boldsymbol{x} \subseteq \mathcal{J}_{N}$ is closed if it is transitive, open if $\mathcal{J}_{N} \backslash \boldsymbol{x}$ is closed, and clopen if it is both closed and open.
■ Hence $\mathrm{P}(N)=\left\{\boldsymbol{x} \subseteq \mathcal{J}_{N} \mid \boldsymbol{x}\right.$ is clopen $\}$, ordered by \subseteq.

What are the $\operatorname{inv}(\sigma)$?

- Both $\operatorname{inv}(\sigma)$ and $\mathcal{J}_{N} \backslash \operatorname{inv}(\sigma)$ are transitive relations on $[N]$. (Proof: let $(i, j) \in \mathcal{J}_{N}$. Then $(i, j) \in \operatorname{inv}(\sigma)$ iff $\sigma^{-1}(i)>\sigma^{-1}(j)$; $(i, j) \notin \operatorname{inv}(\sigma)$ iff $\left.\sigma^{-1}(i)<\sigma^{-1}(j).\right)$
- Conversely, every subset $\boldsymbol{x} \subseteq \mathcal{J}_{N}$, such that both \boldsymbol{x} and $\mathcal{J}_{N} \backslash \boldsymbol{x}$ are transitive, is $\operatorname{inv}(\sigma)$ for a unique $\sigma \in \mathfrak{S}_{N}$ (Dushnik and Miller 1941, Guilbaud and Rosenstiehl 1963).
- Say that $\boldsymbol{x} \subseteq \mathcal{J}_{N}$ is closed if it is transitive, open if $\mathcal{J}_{N} \backslash \boldsymbol{x}$ is closed, and clopen if it is both closed and open.
- Hence $\mathrm{P}(N)=\left\{\boldsymbol{x} \subseteq \mathcal{J}_{N} \mid \boldsymbol{x}\right.$ is clopen $\}$, ordered by \subseteq.
- Observe that each $\boldsymbol{x} \in \mathrm{P}(N)$ is a strict ordering. It can be proved (Dushnik and Miller 1941) that those are exactly the finite strict orderings of order-dimension 2.

The permutohedra $P(2), P(3)$, and $P(4)$.

Théorie
équationnelle

El. theor

Permutohedra Geyer's Conj $\psi \rightarrow A(N)$ $\in \operatorname{HS}\left(\mathrm{A}_{\nu}(N)\right)$

An identity

Handling
varieties without identities
Tensor prod
Box prod
$\mathrm{P}(N)=\theta_{L}$
Decidability
Towards decidability
i...getting there!!!

Permutohedra are ortholattices

Théorie
équationnelle

El. theory

Permutohedra

Geyer's Conj
$\psi \rightarrow A(N)$
$\in \operatorname{HS}\left(\mathrm{A}_{u}(\mathrm{~N})\right)$
An identity
Handling
varieties without identities
Tensor prod
Box prod
$\mathrm{P}(N) \models \theta$
Decidability
Towards
decidability
therting
there!!!

Theorem (Guilbaud and Rosenstiehl 1963)

Permutohedra are ortholattices

Theorem (Guilbaud and Rosenstiehl 1963)
The permutohedron $\mathrm{P}(N)$ is a lattice, for every positive integer N.

Permutohedra are ortholattices

Theorem (Guilbaud and Rosenstiehl 1963)
The permutohedron $\mathrm{P}(N)$ is a lattice, for every positive integer N.
The assignment $\boldsymbol{x} \mapsto \boldsymbol{x}^{\mathrm{c}}=\mathcal{J}_{N} \backslash \boldsymbol{x}$ defines an orthocomplementation on $\mathrm{P}(N)$:

Permutohedra are ortholattices

Theorem (Guilbaud and Rosenstiehl 1963)

The permutohedron $\mathrm{P}(N)$ is a lattice, for every positive integer N.
The assignment $\boldsymbol{x} \mapsto \boldsymbol{x}^{\mathrm{c}}=\mathcal{J}_{N} \backslash \boldsymbol{x}$ defines an orthocomplementation on $\mathrm{P}(N)$:

$$
\begin{aligned}
\boldsymbol{x} \leq \boldsymbol{y} & \Rightarrow \boldsymbol{y}^{c} \leq \boldsymbol{x}^{c} ; \\
\left(\boldsymbol{x}^{c}\right)^{c} & =\boldsymbol{x} ; \\
\boldsymbol{x} & \left.\wedge \boldsymbol{x}^{c}=0 \quad \text { (equivalently, } \boldsymbol{x} \vee \boldsymbol{x}^{\mathrm{c}}=1\right)
\end{aligned}
$$

Permutohedra are ortholattices

Theorem (Guilbaud and Rosenstiehl 1963)

The permutohedron $\mathrm{P}(N)$ is a lattice, for every positive integer N.
The assignment $\boldsymbol{x} \mapsto \boldsymbol{x}^{\mathrm{c}}=\mathcal{J}_{N} \backslash \boldsymbol{x}$ defines an orthocomplementation on $\mathrm{P}(N)$:

$$
\begin{aligned}
\boldsymbol{x} \leq \boldsymbol{y} & \Rightarrow \boldsymbol{y}^{c} \leq \boldsymbol{x}^{c} ; \\
\left(\boldsymbol{x}^{c}\right)^{c} & =\boldsymbol{x} ; \\
\boldsymbol{x} & \left.\wedge \boldsymbol{x}^{c}=0 \quad \text { (equivalently, } \boldsymbol{x} \vee \boldsymbol{x}^{\mathrm{c}}=1\right)
\end{aligned}
$$

Hence $P(N)$ is an ortholattice.

What makes $\mathrm{P}(N)$ a lattice?

- Every $\boldsymbol{x} \subseteq \mathcal{J}_{N}$ is contained in a least closed set, namely, $\mathrm{cl}(\boldsymbol{x})=$ transitive closure of \boldsymbol{x} :

$$
\mathrm{cl}(\boldsymbol{x})=\left\{\left(k_{0}, k_{n}\right) \mid k_{0}<k_{1}<\cdots<k_{n}, \text { all }\left(k_{s}, k_{s+1}\right) \in \boldsymbol{x}\right\} .
$$

What makes $\mathrm{P}(N)$ a lattice?

- Every $\boldsymbol{x} \subseteq \mathcal{J}_{N}$ is contained in a least closed set, namely, $\mathrm{cl}(\boldsymbol{x})=$ transitive closure of \boldsymbol{x} :

$$
\mathrm{cl}(\boldsymbol{x})=\left\{\left(k_{0}, k_{n}\right) \mid k_{0}<k_{1}<\cdots<k_{n}, \text { all }\left(k_{s}, k_{s+1}\right) \in \boldsymbol{x}\right\} .
$$

■ Dually, every $\boldsymbol{x} \subseteq \mathcal{J}_{N}$ contains a largest open set, namely, $\operatorname{int}(\boldsymbol{x})=J_{N} \backslash \mathrm{cl}\left(\mathrm{J}_{N} \backslash \boldsymbol{x}\right):$

$$
\begin{aligned}
& \operatorname{int}(\boldsymbol{x})=\left\{(i, j) \mid \forall i=k_{0}<\cdots<k_{n}=j,\right. \\
&\text { some } \left.\left(k_{s}, k_{s+1}\right) \in \boldsymbol{x}\right\} .
\end{aligned}
$$

What makes $\mathrm{P}(N)$ a lattice?

- Every $\boldsymbol{x} \subseteq \mathcal{J}_{N}$ is contained in a least closed set, namely, $\mathrm{cl}(\boldsymbol{x})=$ transitive closure of \boldsymbol{x} :

$$
\mathrm{cl}(\boldsymbol{x})=\left\{\left(k_{0}, k_{n}\right) \mid k_{0}<k_{1}<\cdots<k_{n}, \text { all }\left(k_{s}, k_{s+1}\right) \in \boldsymbol{x}\right\} .
$$

■ Dually, every $\boldsymbol{x} \subseteq \mathcal{J}_{N}$ contains a largest open set, namely, $\operatorname{int}(\boldsymbol{x})=\mathcal{J}_{N} \backslash \mathrm{cl}\left(\mathcal{J}_{N} \backslash \boldsymbol{x}\right):$

$$
\operatorname{int}(\boldsymbol{x})=\left\{(i, j) \mid \forall i=k_{0}<\cdots<k_{n}=j,\right.
$$

$$
\text { some } \left.\left(k_{s}, k_{s+1}\right) \in \boldsymbol{x}\right\}
$$

Theorem (Guilbaud and Rosenstiehl 1963)

What makes $\mathrm{P}(N)$ a lattice?

- Every $\boldsymbol{x} \subseteq \mathcal{J}_{N}$ is contained in a least closed set, namely, $\mathrm{cl}(\boldsymbol{x})=$ transitive closure of \boldsymbol{x} :

$$
\mathrm{cl}(\boldsymbol{x})=\left\{\left(k_{0}, k_{n}\right) \mid k_{0}<k_{1}<\cdots<k_{n}, \text { all }\left(k_{s}, k_{s+1}\right) \in \boldsymbol{x}\right\} .
$$

■ Dually, every $\boldsymbol{x} \subseteq \mathcal{J}_{N}$ contains a largest open set, namely, $\operatorname{int}(\boldsymbol{x})=\mathcal{J}_{N} \backslash \mathrm{cl}\left(\mathcal{J}_{N} \backslash \boldsymbol{x}\right):$

$$
\operatorname{int}(\boldsymbol{x})=\left\{(i, j) \mid \forall i=k_{0}<\cdots<k_{n}=j,\right.
$$

$$
\text { some } \left.\left(k_{s}, k_{s+1}\right) \in \boldsymbol{x}\right\}
$$

Theorem (Guilbaud and Rosenstiehl 1963)

 $\operatorname{int}(\boldsymbol{x})$ is closed, for any closed $\boldsymbol{x} \subseteq \mathcal{J}_{N}$.
Now the lattice property of $\mathrm{P}(N)$

■ Evaluate $\boldsymbol{x} \wedge \boldsymbol{y}$, where $\boldsymbol{x}, \boldsymbol{y} \in \mathrm{P}(N)$.

Now the lattice property of $\mathrm{P}(\mathrm{N})$

- Evaluate $\boldsymbol{x} \wedge \boldsymbol{y}$, where $\boldsymbol{x}, \boldsymbol{y} \in \mathrm{P}(N)$.
- $\boldsymbol{x} \cap \boldsymbol{y}$ is no good: it is closed, but usually not open.

Now the lattice property of $\mathrm{P}(\mathrm{N})$

- Evaluate $\boldsymbol{x} \wedge \boldsymbol{y}$, where $\boldsymbol{x}, \boldsymbol{y} \in \mathrm{P}(N)$.
- $\boldsymbol{x} \cap \boldsymbol{y}$ is no good: it is closed, but usually not open.
- However, by the theorem above, the smaller set $\operatorname{int}(\boldsymbol{x} \cap \boldsymbol{y})$ is clopen. Hence $\boldsymbol{x} \wedge \boldsymbol{y}=\operatorname{int}(\boldsymbol{x} \cap \boldsymbol{y})$.

Now the lattice property of $\mathrm{P}(\mathrm{N})$

- Evaluate $\boldsymbol{x} \wedge \boldsymbol{y}$, where $\boldsymbol{x}, \boldsymbol{y} \in \mathrm{P}(N)$.
- $\boldsymbol{x} \cap \boldsymbol{y}$ is no good: it is closed, but usually not open.
- However, by the theorem above, the smaller set $\operatorname{int}(\boldsymbol{x} \cap \boldsymbol{y})$ is clopen. Hence $\boldsymbol{x} \wedge \boldsymbol{y}=\operatorname{int}(\boldsymbol{x} \cap \boldsymbol{y})$.
■ Likewise, $\boldsymbol{x} \cup \boldsymbol{y}$ is open, and $\boldsymbol{x} \vee \boldsymbol{y}=\mathrm{cl}(\boldsymbol{x} \cup \boldsymbol{y})$.

Permutohedra are even more peculiar lattices

Théorie
équationnelle

El. theory
Permutohedra
Geyer's Conj
$\leftrightarrow A(N)$
$\in \operatorname{HS}\left(\mathrm{A}_{\nu}(N)\right)$
An identity
Handling
varieties without identities
Tensor prod
Box prod
$\mathrm{P}(N) \neq \theta$
Decidability
Towards
decidability
. getting
there!!!

Theorem (Duquenne and Cherfouh 1994, Le Conte de Poly-Barbut 1994)

Permutohedra are even more peculiar lattices

Theorem (Duquenne and Cherfouh 1994, Le Conte de Poly-Barbut 1994)

The permutohedron $\mathrm{P}(N)$ is semidistributive (i.e., $x \wedge z=y \wedge z \Rightarrow x \wedge z=(x \vee y) \wedge z$ and dually), for every positive integer N. Thus it is also pseudocomplemented (i.e., $\forall x \exists$ largest x^{*} such that $x \wedge x^{*}=0$).

Permutohedra are even more peculiar lattices

Theorem (Caspard 2000) 1994) such that $x \wedge x^{*}=0$).

Theorem (Duquenne and Cherfouh 1994, Le Conte de Poly-Barbut

The permutohedron $\mathrm{P}(N)$ is semidistributive (i.e., $x \wedge z=y \wedge z \Rightarrow x \wedge z=(x \vee y) \wedge z$ and dually), for every positive integer N. Thus it is also pseudocomplemented (i.e., $\forall x \exists$ largest x^{*}

Permutohedra are even more peculiar lattices

Theorem (Duquenne and Cherfouh 1994, Le Conte de Poly-Barbut 1994)

The permutohedron $\mathrm{P}(N)$ is semidistributive (i.e., $x \wedge z=y \wedge z \Rightarrow x \wedge z=(x \vee y) \wedge z$ and dually), for every positive integer N. Thus it is also pseudocomplemented (i.e., $\forall x \exists$ largest x^{*} such that $x \wedge x^{*}=0$).

Theorem (Caspard 2000)

The permutohedron $\mathrm{P}(N)$ is McKenzie-bounded, for every positive integer N.

Recap: McKenzie-bounded lattices

- A lattice L is McKenzie-bounded if there are a free lattice F and a surjective lattice homomorphism $f: F \rightarrow L$ such that each $f^{-1}\{x\}$ has a least and a largest element.

Recap: McKenzie-bounded lattices

- A lattice L is McKenzie-bounded if there are a free lattice F and a surjective lattice homomorphism $f: F \rightarrow L$ such that each $f^{-1}\{x\}$ has a least and a largest element.
- A finite lattice L is McKenzie-bounded iff $|\mathrm{Ji}(L)|=|\mathrm{Mi}(L)|=\mid \mathrm{Ji}($ Con $L) \mid(=|\mathrm{Mi}(\operatorname{Con} L)|)($ where $\mathrm{Ji}(L)$ is the set of all join-irreducible elements of L and $\operatorname{Mi}(L)$ is the set of all meet-irreducible elements of L).

Recap: McKenzie-bounded lattices

- A lattice L is McKenzie-bounded if there are a free lattice F and a surjective lattice homomorphism $f: F \rightarrow L$ such that each $f^{-1}\{x\}$ has a least and a largest element.
■ A finite lattice L is McKenzie-bounded iff $|\mathrm{Ji}(L)|=|\operatorname{Mi}(L)|=|\mathrm{Ji}(\operatorname{Con} L)|(=|\mathrm{Mi}(\operatorname{Con} L)|$) (where $\mathrm{Ji}(L)$ is the set of all join-irreducible elements of L and $\operatorname{Mi}(L)$ is the set of all meet-irreducible elements of L).
■ The lattice N_{5} is McKenzie-bounded, while the lattice M_{3} is not.

Recap: McKenzie-bounded lattices

■ A lattice L is McKenzie-bounded if there are a free lattice F and a surjective lattice homomorphism $f: F \rightarrow L$ such that each $f^{-1}\{x\}$ has a least and a largest element.
■ A finite lattice L is McKenzie-bounded iff
$|\operatorname{Ji}(L)|=|\operatorname{Mi}(L)|=|\operatorname{Ji}(\operatorname{Con} L)|(=\mid \operatorname{Mi}($ Con $L) \mid$) (where $\mathrm{Ji}(L)$ is the set of all join-irreducible elements of L and $\operatorname{Mi}(L)$ is the set of all meet-irreducible elements of L).

- The lattice N_{5} is McKenzie-bounded, while the lattice M_{3} is not.

Recap: McKenzie-bounded lattices

- A lattice L is McKenzie-bounded if there are a free lattice F and a surjective lattice homomorphism $f: F \rightarrow L$ such that each $f^{-1}\{x\}$ has a least and a largest element.
■ A finite lattice L is McKenzie-bounded iff
$|\operatorname{Ji}(L)|=|\operatorname{Mi}(L)|=|\operatorname{Ji}(\operatorname{Con} L)|(=\mid \operatorname{Mi}($ Con $L) \mid$) (where $\mathrm{Ji}(L)$ is the set of all join-irreducible elements of L and $\operatorname{Mi}(L)$ is the set of all meet-irreducible elements of L).
■ The lattice N_{5} is McKenzie-bounded, while the lattice M_{3} is not.

■ Every McKenzie-bounded lattice is semidistributive. The converse fails, even for finite lattices.

Minimal subdirect decomposition of the permutohedron $\mathrm{P}(N)$

- For $U \subseteq[N]$, denote by $\mathrm{A}_{U}(N)$ the set of all transitive $\boldsymbol{x} \subseteq \mathcal{J}_{N}$ such that

Minimal subdirect decomposition of the permutohedron $\mathrm{P}(\mathrm{N})$

- $\mathrm{A}_{U}(N)$ is a sublattice of $\mathrm{P}(N)$, in which \wedge is \cap. More is true:
- For $U \subseteq[N]$, denote by $\mathrm{A}_{U}(N)$ the set of all transitive $\boldsymbol{x} \subseteq \mathcal{J}_{N}$ such that

$$
(i<j<k \text { and }(i, k) \in \boldsymbol{x}) \Rightarrow \begin{cases}(i, j) \in \boldsymbol{x} & (\text { if } j \in U) \\ (j, k) \in \boldsymbol{x} & (\text { if } j \notin U)\end{cases}
$$

Minimal subdirect decomposition of the permutohedron $\mathrm{P}(\mathrm{N})$

$\square \mathrm{A}_{U}(N)$ is a sublattice of $\mathrm{P}(N)$, in which \wedge is \cap. More is true:

Theorem (S. and W. 2011)

- For $U \subseteq[N]$, denote by $\mathrm{A}_{U}(N)$ the set of all transitive $\boldsymbol{x} \subseteq \mathcal{J}_{N}$ such that

$$
(i<j<k \text { and }(i, k) \in \boldsymbol{x}) \Rightarrow \begin{cases}(i, j) \in \boldsymbol{x} & (\text { if } j \in U) \\ (j, k) \in \boldsymbol{x} & (\text { if } j \notin U)\end{cases}
$$

Minimal subdirect decomposition of the permutohedron $\mathrm{P}(\mathrm{N})$

$\square \mathrm{A}_{U}(N)$ is a sublattice of $\mathrm{P}(N)$, in which \wedge is \cap. More is true:

- For $U \subseteq[N]$, denote by $\mathrm{A}_{U}(N)$ the set of all transitive $\boldsymbol{x} \subseteq J_{N}$ such that

$$
(i<j<k \text { and }(i, k) \in \boldsymbol{x}) \Rightarrow \begin{cases}(i, j) \in \boldsymbol{x} & (\text { if } j \in U) \\ (j, k) \in \boldsymbol{x} & (\text { if } j \notin U)\end{cases}
$$

Theorem (S. and W. 2011)

Each $\mathrm{A}_{U}(N)$ is a lattice-theoretical retract of $\mathrm{P}(N)$, and $\mathrm{P}(N)$ is a subdirect product of all $\mathrm{A}_{U}(N)$.

Minimal subdirect decomposition of the permutohedron $\mathrm{P}(\mathrm{N})$

Permutohedra
Geyer's Conj
$\leftrightarrow \rightarrow A(N)$
$\in \operatorname{HS}\left(\mathrm{A}_{u}(N)\right)$
An identity
Handling
varieties without identities
Tensor prod
Box prod
$\mathrm{P}(N) \neq \theta$
Decidability
Towards
decidability
... getting there!!!

■ For $U \subseteq[N]$, denote by $\mathrm{A}_{U}(N)$ the set of all transitive $\boldsymbol{x} \subseteq \mathcal{J}_{N}$ such that

$$
(i<j<k \text { and }(i, k) \in \boldsymbol{x}) \Rightarrow \begin{cases}(i, j) \in \boldsymbol{x} & (\text { if } j \in U) \\ (j, k) \in \boldsymbol{x} & (\text { if } j \notin U)\end{cases}
$$

$\square \mathrm{A}_{U}(N)$ is a sublattice of $\mathrm{P}(N)$, in which \wedge is \cap. More is true:
Theorem (S. and W. 2011)

Each $\mathrm{A}_{U}(N)$ is a lattice-theoretical retract of $\mathrm{P}(N)$, and $\mathrm{P}(N)$ is a subdirect product of all $\mathrm{A}_{U}(N)$. Furthermore, the $\mathrm{A}_{U}(N)$ are isomorphic to Nathan Reading's Cambrian lattices of type A.

Join-irreducibles in $\mathrm{A}_{U}(N)$ (and $\mathrm{P}(N)$)

Théorie
équationnelle

El. theory
Permutohedra
Geyer's Conj
$\oiiint A(N)$
$\in \operatorname{HS}\left(A_{U}(N)\right)$
An identity
Handling
varieties without
identities
Tensor prod
Box prod
$\mathrm{P}(N) \models \theta$
Decidability
Towards
decidability
.... getting
there!!!

- For $(i, j) \in \mathcal{I}_{N}$, set

$$
\langle i, j\rangle_{U}=\left\{(x, y) \in \mathcal{I}_{N} \mid x \in U^{c} \cup\{i\} \text { and } y \in U \cup\{j\}\right\} .
$$

Join-irreducibles in $\mathrm{A}_{U}(N)$ (and $\mathrm{P}(N)$)

- $\operatorname{For}(i, j) \in \mathcal{J}_{N}$, set

$$
\langle i, j\rangle_{U}=\left\{(x, y) \in \mathcal{J}_{N} \mid x \in U^{c} \cup\{i\} \text { and } y \in U \cup\{j\}\right\}
$$

$\square\langle i, j\rangle_{U}$ is the least $\boldsymbol{x} \in \mathrm{A}_{U}(N)$ such that $(i, j) \in \boldsymbol{x}$.

Join-irreducibles in $\mathrm{A}_{U}(N)(\operatorname{and} \mathrm{P}(N)$)

- $\operatorname{For}(i, j) \in \mathcal{J}_{N}$, set

$$
\langle i, j\rangle_{U}=\left\{(x, y) \in \mathcal{J}_{N} \mid x \in U^{c} \cup\{i\} \text { and } y \in U \cup\{j\}\right\}
$$

■ $\langle i, j\rangle_{U}$ is the least $\boldsymbol{x} \in \mathrm{A}_{U}(N)$ such that $(i, j) \in \boldsymbol{x}$.

- These are exactly the join-irreducible elements of $\mathrm{A}_{U}(N)$.

Join-irreducibles in $\mathrm{A}_{U}(N)(\operatorname{and} \mathrm{P}(N)$)

- $\operatorname{For}(i, j) \in \mathcal{J}_{N}$, set

$$
\langle i, j\rangle_{U}=\left\{(x, y) \in \mathcal{J}_{N} \mid x \in U^{c} \cup\{i\} \text { and } y \in U \cup\{j\}\right\}
$$

■ $\langle i, j\rangle_{U}$ is the least $\boldsymbol{x} \in \mathrm{A}_{U}(N)$ such that $(i, j) \in \boldsymbol{x}$.
■ These are exactly the join-irreducible elements of $\mathrm{A}_{U}(N)$.
$\square\left(\langle i, j\rangle_{U}\right)_{*}=\langle i, j\rangle_{U} \backslash\{(i, j)\}$.

Join-irreducibles in $\mathrm{A}_{U}(N)(\operatorname{and} \mathrm{P}(N)$)

■ $\operatorname{For}(i, j) \in \mathcal{J}_{N}$, set

$$
\langle i, j\rangle_{U}=\left\{(x, y) \in \mathcal{J}_{N} \mid x \in U^{c} \cup\{i\} \text { and } y \in U \cup\{j\}\right\}
$$

■ $\langle i, j\rangle_{U}$ is the least $\boldsymbol{x} \in \mathrm{A}_{U}(N)$ such that $(i, j) \in \boldsymbol{x}$.
■ These are exactly the join-irreducible elements of $\mathrm{A}_{U}(N)$.
$■\left(\langle i, j\rangle_{U}\right)_{*}=\langle i, j\rangle_{U} \backslash\{(i, j)\}$.
■ The open subsets of \mathcal{J}_{N} are exactly the unions of $\langle i, j\rangle_{U}$.

Join-irreducibles in $\mathrm{A}_{U}(N)$ (and $\mathrm{P}(N)$)

■ $\operatorname{For}(i, j) \in \mathcal{J}_{N}$, set

$$
\langle i, j\rangle_{U}=\left\{(x, y) \in \mathcal{J}_{N} \mid x \in U^{c} \cup\{i\} \text { and } y \in U \cup\{j\}\right\}
$$

$\square\langle i, j\rangle_{U}$ is the least $\boldsymbol{x} \in \mathrm{A}_{U}(N)$ such that $(i, j) \in \boldsymbol{x}$.

- These are exactly the join-irreducible elements of $\mathrm{A}_{U}(N)$.
$■\left(\langle i, j\rangle_{U}\right)_{*}=\langle i, j\rangle_{U} \backslash\{(i, j)\}$.
■ The open subsets of \mathcal{J}_{N} are exactly the unions of $\langle i, j\rangle_{U}$.
- The join-irreducible elements of $\mathrm{P}(N)$ are the $\langle i, j\rangle_{U}$, for $(i, j) \in \mathcal{J}_{N}$ and $U \subseteq[N]$.

All isomorphisms and dual isomorphisms between Cambrians of type A

Théorie
équationnelle

El. theory

Permutohedra

Geyer's Conj
$\leftrightarrow A(N)$
$\in \operatorname{HS}\left(\mathrm{A}_{\nu}(N)\right)$
An identity
Handling
varieties without identities
Tensor prod
Box prod
$\mathrm{P}(N) \models \theta_{l}$
Decidability
Towards
decidability
. getting
there!!!

An easy result:
Proposition

All isomorphisms and dual isomorphisms between Cambrians of type A

An easy result:

Proposition

$$
\begin{aligned}
& \text { Set } i^{*}=N+1-i(\text { for } i \in[N]), U^{*}=\left\{i^{*} \mid i \in U\right\}(\text { for } U \subseteq[N]) \text {, } \\
& \boldsymbol{a}^{*}=\left\{\left(j^{*}, i^{*}\right) \mid(i, j) \in \boldsymbol{a}\right\}\left(\text { for } \boldsymbol{a} \subseteq J_{N}\right)
\end{aligned}
$$

All isomorphisms and dual isomorphisms between Cambrians of type A

An easy result:

Proposition

Set $i^{*}=N+1-i($ for $i \in[N]), U^{*}=\left\{i^{*} \mid i \in U\right\}$ (for $U \subseteq[N]$), $\boldsymbol{a}^{*}=\left\{\left(j^{*}, i^{*}\right) \mid(i, j) \in \boldsymbol{a}\right\}$ (for $\left.\boldsymbol{a} \subseteq \mathcal{J}_{N}\right)$. Then $\boldsymbol{a} \mapsto \boldsymbol{a}^{*}$ defines an isomorphism from $\mathrm{A}_{U}(N)$ onto $\mathrm{A}_{[N] \backslash U^{*}}(N)$.

All isomorphisms and dual isomorphisms between Cambrians of type A

An easy result:
Proposition
Set $i^{*}=N+1-i($ for $i \in[N]), U^{*}=\left\{i^{*} \mid i \in U\right\}$ (for $U \subseteq[N]$), $\boldsymbol{a}^{*}=\left\{\left(j^{*}, i^{*}\right) \mid(i, j) \in \boldsymbol{a}\right\}$ (for $\left.\boldsymbol{a} \subseteq \mathcal{J}_{N}\right)$. Then $\boldsymbol{a} \mapsto \boldsymbol{a}^{*}$ defines an isomorphism from $\mathrm{A}_{U}(N)$ onto $\mathrm{A}_{[N] \backslash U^{*}}(N)$.
$\mathrm{A}(N) \underset{\text { def. }}{=} \mathrm{A}_{\varnothing}(N) \cong \mathrm{A}_{[N]}(N)$ is the Tamari lattice on $N+1$ letters.

All isomorphisms and dual isomorphisms between Cambrians of type A

An easy result:

Proposition

Set $i^{*}=N+1-i($ for $i \in[N]), U^{*}=\left\{i^{*} \mid i \in U\right\}$ (for $U \subseteq[N]$), $\boldsymbol{a}^{*}=\left\{\left(j^{*}, i^{*}\right) \mid(i, j) \in \boldsymbol{a}\right\}$ (for $\boldsymbol{a} \subseteq \mathcal{J}_{N}$). Then $\boldsymbol{a} \mapsto \boldsymbol{a}^{*}$ defines an isomorphism from $\mathrm{A}_{U}(N)$ onto $\mathrm{A}_{[N] \backslash U^{*}}(N)$.
$\mathrm{A}(N) \underset{\text { def. }}{=} \mathrm{A}_{\varnothing}(N) \cong \mathrm{A}_{[N]}(N)$ is the Tamari lattice on $N+1$ letters.
A more difficult result:

Proposition

All isomorphisms and dual isomorphisms between Cambrians of type A

An easy result:

Proposition

Set $i^{*}=N+1-i($ for $i \in[N]), U^{*}=\left\{i^{*} \mid i \in U\right\}$ (for $U \subseteq[N]$), $\boldsymbol{a}^{*}=\left\{\left(j^{*}, i^{*}\right) \mid(i, j) \in \boldsymbol{a}\right\}$ (for $\boldsymbol{a} \subseteq \mathcal{J}_{N}$). Then $\boldsymbol{a} \mapsto \boldsymbol{a}^{*}$ defines an isomorphism from $\mathrm{A}_{U}(N)$ onto $\mathrm{A}_{[N] \backslash U^{*}}(N)$.
$\mathrm{A}(N) \underset{\text { def. }}{=} \mathrm{A}_{\varnothing}(N) \cong \mathrm{A}_{[N]}(N)$ is the Tamari lattice on $N+1$ letters.
A more difficult result:

Proposition

There is an isomorphism $\psi_{U}: \mathrm{A}_{U^{c}}(N) \rightarrow \mathrm{A}_{U}(N)^{\mathrm{op}}$.

All isomorphisms and dual isomorphisms between Cambrians of type A

An easy result:

Proposition

Set $i^{*}=N+1-i($ for $i \in[N]), U^{*}=\left\{i^{*} \mid i \in U\right\}($ for $U \subseteq[N])$, $\boldsymbol{a}^{*}=\left\{\left(j^{*}, i^{*}\right) \mid(i, j) \in \boldsymbol{a}\right\}$ (for $\boldsymbol{a} \subseteq \mathcal{J}_{N}$). Then $\boldsymbol{a} \mapsto \boldsymbol{a}^{*}$ defines an isomorphism from $\mathrm{A}_{U}(N)$ onto $\mathrm{A}_{[N] \backslash U^{*}}(N)$.
$\mathrm{A}(N) \underset{\text { def. }}{=} \mathrm{A}_{\varnothing}(N) \cong \mathrm{A}_{[N]}(N)$ is the Tamari lattice on $N+1$ letters.
A more difficult result:

Proposition

There is an isomorphism $\psi_{U}: \mathrm{A}_{U^{c}}(N) \rightarrow \mathrm{A}_{U}(N)^{\mathrm{op}}$.

$$
\psi_{U}(\boldsymbol{y})=\left\{(i, j) \in \mathcal{J}_{N} \mid\langle i, j\rangle_{U} \cap \boldsymbol{y}=\varnothing\right\}, \text { for all } \boldsymbol{y} \in \mathrm{A}_{U^{c}}(N)
$$

Picturing the Cambrian lattices of type A, for $N=4$

Théorie
équationnelle

Permutohedra Geyer's Conj $\nrightarrow A(N)$ $\in \operatorname{HS}\left(\mathrm{A}_{u}(\mathrm{~N})\right)$

An identity

Handling
varieties without identities
Tensor prod
Box prod $\mathrm{P}(N) \neq \theta_{L}$

Decidability
Towards decidability there!!!

Picturing the Cambrian lattices of type A, for $N=4$

N. Reading observed that each $\mathrm{A}_{U}(N)$ has cardinality $\frac{1}{N+1}\binom{2 N}{N}$.

Grätzer's problem for Tamari lattices

Problem (Grätzer 1971)
Characterize the (finite) lattices that can be embedded into some Tamari lattice $\mathrm{A}(N)$.

Grätzer's problem for Tamari lattices

Problem (Grätzer 1971)
Characterize the (finite) lattices that can be embedded into some Tamari lattice $\mathrm{A}(N)$.

Grätzer's problem is still open: it is still unknown whether

$$
\{L \mid(\exists N)(L \hookrightarrow \mathrm{~A}(N))\}
$$

is decidable.

Geyer's Conjecture

- The following conjecture is natural:

Geyer's Conjecture

- The following conjecture is natural:

Conjecture (Geyer 1994)

Every finite McKenzie-bounded lattice can be embedded (as a sublattice) into some Tamari lattice $A(N)$.

Geyer's Conjecture

- The following conjecture is natural:

Conjecture (Geyer 1994)

Every finite McKenzie-bounded lattice can be embedded (as a sublattice) into some Tamari lattice $\mathrm{A}(N)$.

- Conjecture easy to verify for finite distributive lattices.

El. theory

Permutohedra

$\mathrm{B}(1,3)$ and $\mathrm{B}(2,2)$, non-atom join-irreducible element is \boldsymbol{p}.

The lattices $\mathrm{B}(m, n)$

$\mathrm{B}(1,3)$ and $\mathrm{B}(2,2)$, non-atom join-irreducible element is \boldsymbol{p}.

- The lattice $\mathrm{B}(m, n)$ is defined by doubling the join of m atoms in an $(m+n)$-atom Boolean lattice.

The lattices $\mathrm{B}(m, n)$

$\mathrm{B}(1,3)$ and $\mathrm{B}(2,2)$, non-atom join-irreducible element is \boldsymbol{p}.

- The lattice $\mathrm{B}(m, n)$ is defined by doubling the join of m atoms in an $(m+n)$-atom Boolean lattice.
- All lattices $\mathrm{B}(m, n)$ are McKenzie-bounded.

$\mathrm{B}(m, n), \mathrm{A}(N)$, and $\mathrm{P}(N)$

El. theory

Permutohedra
Geyer's Conj
4 A (N)
$\in \operatorname{HS}\left(\mathrm{A}_{u}(\mathrm{~N})\right)$
An identity
Handling
varieties without identities
Tensor prod
Box prod
$P(N)=\theta_{L}$
Decidability
Towards
decidability
... getting there!!!

Theorem (S. and W. 2010)

- $\mathrm{B}(m, n)$ can be embedded into a Tamari lattice iff $\min \{m, n\} \leq 1$.

$\mathrm{B}(m, n), \mathrm{A}(N)$, and $\mathrm{P}(N)$

El. theory

Permutohedra Geyer's Conj $4 \mathrm{~A}(\mathrm{~N})$ $\in \operatorname{HS}\left(\mathrm{A}_{u}(\mathrm{~N})\right)$
An identity
Handling
varieties without identities
Tensor prod
Box prod
$P(N)=\theta_{L}$
Decidability
Towards
decidability
... getting there!!!

Theorem (S. and W. 2010)

- $\mathrm{B}(m, n)$ can be embedded into a Tamari lattice iff $\min \{m, n\} \leq 1$.
- $\mathrm{P}(N)$ can be embedded into a Tamari lattice iff $N \leq 3$.

$\mathrm{B}(m, n), \mathrm{A}(N)$, and $\mathrm{P}(N)$

Theorem (S. and W. 2010) $\min \{m, n\} \leq 1$.

In particular:

- $\mathrm{B}(m, n)$ can be embedded into a Tamari lattice iff
- $\mathrm{P}(N)$ can be embedded into a Tamari lattice iff $N \leq 3$.

Neither $\mathrm{B}(2,2)$ nor $\mathrm{P}(4)$ can be embedded into any $\mathrm{A}(N)$ (although they are both McKenzie-bounded).

Vegetables and Gazpachos

- An identity witnessing $\mathrm{B}(2,2) \nrightarrow \mathrm{A}(N)$ is $\left(\mathrm{Veg}_{1}\right)$:

$$
\begin{aligned}
& \left(a_{1} \vee a_{2} \vee b_{1}\right) \wedge\left(a_{1} \vee a_{2} \vee b_{2}\right) \leq \bigvee_{i, j \in\{1,2\}}\left(\left(a_{i} \vee \tilde{b}_{j}\right) \wedge\left(a_{1} \vee a_{2} \vee b_{3-j}\right)\right), \\
& \text { with } \tilde{b}_{j}=\left(b_{1} \vee b_{2}\right) \wedge\left(a_{1} \vee a_{2} \vee b_{j}\right), \\
& \text { satisfied by all } A(N) \text { but not by } B(2,2)
\end{aligned}
$$

Vegetables and Gazpachos

- An identity witnessing $\mathrm{B}(2,2) \nrightarrow \mathrm{A}(N)$ is $\left(\operatorname{Veg}_{1}\right)$:

$$
\begin{array}{r}
\left(a_{1} \vee a_{2} \vee b_{1}\right) \wedge\left(a_{1} \vee a_{2} \vee b_{2}\right) \leq \bigvee_{i, j \in\{1,2\}}\left(\left(a_{i} \vee \tilde{b}_{j}\right) \wedge\left(a_{1} \vee a_{2} \vee b_{3-j}\right)\right), \\
\quad \text { with } \tilde{b}_{j}=\left(b_{1} \vee b_{2}\right) \wedge\left(a_{1} \vee a_{2} \vee b_{j}\right),
\end{array}
$$

satisfied by all $\mathrm{A}(N)$ but not by $\mathrm{B}(2,2)$.

- An infinite collection of identities, the Gazpacho identities, were discovered to hold in all $\mathrm{A}(N)$.

Vegetables and Gazpachos

- An identity witnessing $\mathrm{B}(2,2) \nrightarrow \mathrm{A}(N)$ is $\left(\operatorname{Veg}_{1}\right)$:

$$
\begin{gathered}
\left(a_{1} \vee a_{2} \vee b_{1}\right) \wedge\left(a_{1} \vee a_{2} \vee b_{2}\right) \leq \bigvee_{i, j \in\{1,2\}}\left(\left(a_{i} \vee \tilde{b}_{j}\right) \wedge\left(a_{1} \vee a_{2} \vee b_{3-j}\right)\right), \\
\quad \text { with } \tilde{b}_{j}=\left(b_{1} \vee b_{2}\right) \wedge\left(a_{1} \vee a_{2} \vee b_{j}\right),
\end{gathered}
$$

satisfied by all $\mathrm{A}(N)$ but not by $\mathrm{B}(2,2)$.

- An infinite collection of identities, the Gazpacho identities, were discovered to hold in all $\mathrm{A}(N)$.
■ $\left(\operatorname{Veg}_{1}\right)$ is a (consequence of a) Gazpacho identity.

Vegetables and Gazpachos

- An identity witnessing $\mathrm{B}(2,2) \nrightarrow \mathrm{A}(N)$ is $\left(\operatorname{Veg}_{1}\right)$:

$$
\begin{aligned}
& \left(a_{1} \vee a_{2} \vee b_{1}\right) \wedge\left(a_{1} \vee a_{2} \vee b_{2}\right) \leq \bigvee_{i, j \in\{1,2\}}\left(\left(a_{i} \vee \tilde{b}_{j}\right) \wedge\left(a_{1} \vee a_{2} \vee b_{3-j}\right)\right), \\
& \text { with } \tilde{b}_{j}=\left(b_{1} \vee b_{2}\right) \wedge\left(a_{1} \vee a_{2} \vee b_{j}\right), \\
& \text { satisfied by all } A(N) \text { but not by } B(2,2) .
\end{aligned}
$$

- An infinite collection of identities, the Gazpacho identities, were discovered to hold in all $\mathrm{A}(N)$.
- $\left(\operatorname{Veg}_{1}\right)$ is a (consequence of a) Gazpacho identity.
- The Gazpacho identity $\left(\mathrm{Veg}_{2}\right)$:

$$
\left(a_{1} \vee b_{1}\right) \wedge\left(a_{2} \vee b_{2}\right) \leq \bigvee_{i=1}^{2} \bigwedge_{j=1}^{2}\left(a_{i} \vee \tilde{b}_{j}\right)
$$

$$
\text { with } \tilde{b}_{i}=\left(b_{1} \vee b_{2}\right) \wedge\left(a_{i} \vee b_{i}\right)
$$

is satisfied by all $\mathrm{A}(N)$ but not by $\mathrm{P}(4)$.
... and permutohedra?

El. theory

Permutohedra
Geyer's Conj
$\leftrightarrow \mathrm{A}(\mathrm{N})$
$\in \operatorname{HS}\left(\mathrm{A}_{u}(\mathrm{~N})\right)$
An identity
Handling
varieties without identities
Tensor prod
Box prod
$P(N)=\theta$
Decidability
Towards
decidability
... getting
there!!!

Theorem (S. and W. 2011)
$\mathrm{B}(m, n)$ embeds into some permutohedron iff $\min \{m, n\} \leq 2$.

... and permutohedra?

Theorem (S. and W. 2011)
$\mathrm{B}(m, n)$ embeds into some permutohedron iff $\min \{m, n\} \leq 2$.

- In particular, $\mathrm{B}(3,3)$ cannot be embedded into any permutohedron (difficult).

... and permutohedra?

Theorem (S. and W. 2011)
$\mathrm{B}(m, n)$ embeds into some permutohedron iff $\min \{m, n\} \leq 2$.

- In particular, $\mathrm{B}(3,3)$ cannot be embedded into any permutohedron (difficult).
- A most useful tool for proving this is the notion of U-polarized measure, $\mu: \mathcal{J}_{N} \rightarrow L$: require that whenever $1 \leq x<y<z \leq N, \mu(x, z) \leq \mu(x, y) \vee \mu(y, z)$ together with $(y \in U \Rightarrow \mu(x, y) \leq \mu(x, z))$ and $(y \notin U \Rightarrow \mu(y, z) \leq \mu(x, z))$.

... and permutohedra?

Theorem (S. and W. 2011)

Permutohedra Geyer's Conj
$\leftrightarrow \mathrm{A}(\mathrm{N})$
$\in \operatorname{HS}\left(\mathrm{A}_{u}(\mathrm{~N})\right)$
An identity
Handling
varieties without identities
Tensor prod Box prod $P(N)=\theta$

Decidability
$\mathrm{B}(m, n)$ embeds into some permutohedron iff $\min \{m, n\} \leq 2$.

■ In particular, $B(3,3)$ cannot be embedded into any permutohedron (difficult).
■ A most useful tool for proving this is the notion of U-polarized measure, $\mu: \mathcal{J}_{N} \rightarrow L$: require that whenever $1 \leq x<y<z \leq N, \mu(x, z) \leq \mu(x, y) \vee \mu(y, z)$ together with $(y \in U \Rightarrow \mu(x, y) \leq \mu(x, z))$ and $(y \notin U \Rightarrow \mu(y, z) \leq \mu(x, z))$.
■ For a finite lattice L, certain U-polarized measures with values in L correspond to lattice embeddings of L into $\mathrm{A}_{U}(N)$.

Can $\mathrm{B}(3,3) \nleftarrow \mathrm{P}(N)$ be done via an identity?

- Negative embeddability results for the $\mathrm{A}(N)$
lead to discover separating identities.

El. theory
Permutohedra
Geyer's Conj $\Leftrightarrow A(N)$ $\in \operatorname{HS}\left(\mathrm{A}_{U}(N)\right)$

An identity

Handling
varieties without identities
Tensor prod
Box prod
$\mathrm{P}(N) \models \theta$
Decidability
Towards decidability getting there!!!

Can $\mathrm{B}(3,3) \nleftarrow \mathrm{P}(N)$ be done via an identity?

- Negative embeddability results for the $\mathrm{A}(N)$
lead to discover separating identities.
- Attempts to get an identity that holds in all the $\mathrm{P}(N)$ but not in $\mathrm{B}(3,3)$: failed.

Can $\mathrm{B}(3,3) \nleftarrow \mathrm{P}(N)$ be done via an identity?

El. theory
Permutohedra
Geyer's Conj
$\in \operatorname{HS}\left(\mathrm{A}_{U}(\mathrm{~N})\right)$
An identity
Handling
varieties without identities
Tensor prod
Box prod
$\mathrm{P}(N) \models \theta_{L}$
Decidability
Towards decidability … getting there!!!

- Negative embeddability results for the $\mathrm{A}(N)$
lead to discover separating identities.
- Attempts to get an identity that holds in all the $\mathrm{P}(N)$ but not in $\mathrm{B}(3,3)$: failed.
- In fact, there is no such identity!

Can $\mathrm{B}(3,3) \nleftarrow \mathrm{P}(N)$ be done via an identity?

■ Negative embeddability results for the $\mathrm{A}(N)$
lead to discover separating identities.
■ Attempts to get an identity that holds in all the $\mathrm{P}(N)$ but not in $\mathrm{B}(3,3)$: failed.
■ In fact, there is no such identity!
Theorem (S. and W. 2011)
$B(3,3)$ is a homomorphic image of a sublattice of $P(12)$.

Can $\mathrm{B}(3,3) \nleftarrow \mathrm{P}(N)$ be done via an identity?

- Negative embeddability results for the $\mathrm{A}(N)$
lead to discover separating identities.
- Attempts to get an identity that holds in all the $\mathrm{P}(N)$ but not in $\mathrm{B}(3,3)$: failed.
- In fact, there is no such identity!
$\mathrm{B}(3,3)$ is a homomorphic image of a sublattice of $\mathrm{P}(12)$.
- We prove that for a suitable U, the lattice $\mathrm{A}_{U}(12)$ does not satisfy the "splitting identity" of $B(3,3)$:

$$
\bigwedge_{1 \leq j \leq 3}\left(x_{1} \vee x_{2} \vee x_{3} \vee y_{j}\right) \leq \bigvee_{1 \leq i \leq 3}\left(\hat{x}_{i} \wedge \hat{y}_{1} \wedge \hat{y}_{2} \wedge \hat{y}_{3}\right)
$$

$$
\text { where } x=x_{1} \vee x_{2} \vee x_{3}, y=y_{1} \vee y_{2} \vee y_{3}, \hat{x}_{1}=x_{2} \vee x_{3} \vee y,
$$

$$
\hat{\mathrm{y}}_{1}=\mathrm{y}_{2} \vee \mathrm{y}_{3} \vee \mathrm{x}, \text { etc. }
$$

No separating identity for $\mathrm{B}(3,3)$ (cont'd)

- Relevant values of the x_{i}, y_{i} obtained with help of the Prover9-Mace4 program (yields $U=\{5,6,9,10,11\}$).

No separating identity for $\mathrm{B}(3,3)$ (cont'd)

- Relevant values of the x_{i}, y_{i} obtained with help of the Prover9-Mace4 program (yields $U=\{5,6,9,10,11\}$).
- A lattice variety (or equational class of lattices) is the class of all lattices satisfying a given set of identities.

No separating identity for $\mathrm{B}(3,3)$ (cont'd)

- Relevant values of the x_{i}, y_{i} obtained with help of the Prover9-Mace4 program (yields $U=\{5,6,9,10,11\}$).
- A lattice variety (or equational class of lattices) is the class of all lattices satisfying a given set of identities.
■ Birkhoff's Theorem: The variety generated by a class \mathcal{X} is $\operatorname{HSP}(X)$.

No separating identity for $\mathrm{B}(3,3)$ (cont'd)

- Relevant values of the x_{i}, y_{i} obtained with help of the Prover9-Mace4 program (yields $U=\{5,6,9,10,11\}$).
- A lattice variety (or equational class of lattices) is the class of all lattices satisfying a given set of identities.
■ Birkhoff's Theorem: The variety generated by a class X is $\operatorname{HSP}(X)$.
- Variety membership problem, in the $\mathrm{A}_{U}(N)$, captured by combinatorial objects called scores.

No separating identity for $\mathrm{B}(3,3)$ (cont'd)

- Relevant values of the x_{i}, y_{i} obtained with help of the Prover9-Mace4 program (yields $U=\{5,6,9,10,11\}$).
- A lattice variety (or equational class of lattices) is the class of all lattices satisfying a given set of identities.
■ Birkhoff's Theorem: The variety generated by a class X is $\operatorname{HSP}(X)$.
- Variety membership problem, in the $\mathrm{A}_{U}(N)$, captured by combinatorial objects called scores.
■ An (m, n)-score, with respect to $U \subseteq[N]$, expresses a certain tiling property of $m+n$ copies of $[N]$.

Theorem (S. and W. 2014)

Theorem (S. and W. 2014)

The following statements are equivalent, for all positive integers m, n, N and all $U \subseteq[N]$:
$1 \mathrm{~B}(m, n)$ belongs to the lattice variety generated by $\mathrm{A}_{U}(N)$.
$2 \mathrm{~A}_{U}(N)$ does not satisfy the splitting identity of $\mathrm{B}(m, n)$.
3 There exists an (m, n)-score on $[N]$ with respect to U.

The score for $\mathrm{B}(3,3) \in \mathrm{HS}\left(\mathrm{A}_{U}(12)\right)$

Théorie
équationnelle

El. theory
Permutohedra
Geyer's Conj
$\% A(N)$
$\in \operatorname{HS}\left(\mathrm{A}_{U}(N)\right)$
An identity
Handling
varieties without
identities
Tensor prod
Box prod
$P(N) \neq \theta$
Decidability
Towards
decidability
.... getting
there!!!
$\left(A_{1}\right)$

$\left(A_{2}\right)$

$\left(A_{3}\right)$

$\left(B_{1}\right) \quad(1)-(\overrightarrow{2}) \frac{b_{1}}{a_{1}}(\overrightarrow{3}) \stackrel{a_{2}}{4}$

$\left(B_{3}\right)$

A question

Théorie
équationnelle

El. theory

Permutohedra
Geyer's Conj $\Leftrightarrow A(N)$ $\in \operatorname{HS}\left(\mathrm{A}_{U}(N)\right)$

An identity
Handling
varieties without identities
Tensor prod
Box prod
$\mathrm{P}(N) \models \theta$
Decidability
Towards
decidability
. getting
there!!!

Suggests the following question.

A question

Théorie
équationnelle

El. theory

Permutohedra
Geyer's Conj $\Leftrightarrow A(N)$ $\in \operatorname{HS}\left(\mathrm{A}_{U}(N)\right)$

An identity

Handling
varieties without identities
Tensor prod
Box prod
$\mathrm{P}(N) \neq \theta$
Decidability
Towards
decidability
. getting
there!!!

Suggests the following question.

Question (S. and W. 2011)

A question

Suggests the following question.

Question (S. and W. 2011)

Is there a nontrivial lattice-theoretical identity satisfied by all permutohedra $\mathrm{P}(N)$?

A question

Question (S. and W. 2011)

Is there a nontrivial lattice-theoretical identity satisfied by all permutohedra $\mathrm{P}(N)$? Answer coming soon.

Outline

1 Elementary theory of permutohedra

2 An identity satisfied by all the permutohedra

- Handling varieties without identities
- Tensor prod
- Box prod
- $\mathrm{P}(N)=\theta_{L}$

Decirdabibitity
Towards decidability getting there!!!

3 Decidability of the weak Bruhat ordering on permutations via MSO and S1S

Varieties of lattices

- Recall that the variety generated by a class X is $\operatorname{HSP}(X)$.
an identity
Handling
varieties without identities
Tensor prod
Box prod
$\mathrm{P}(N) \models \theta$
Decidability
Towards
decidability
.... getting
there!!!

Varieties of lattices

- Recall that the variety generated by a class X is $\operatorname{HSP}(X)$.
- Checking whether $L \in \operatorname{HSP}(X)$ can be difficult.

Varieties of lattices

■ Recall that the variety generated by a class X is $\operatorname{HSP}(X)$.

Tensor prod
Box prod
$\mathrm{P}(N) \neq \theta$

- Checking whether $L \in \operatorname{HSP}(X)$ can be difficult.
- An obvious sufficient condition: say that $(\exists X \in X)(\exists e)(e: L \hookrightarrow X)$.

Varieties of lattices

■ Recall that the variety generated by a class X is $\operatorname{HSP}(X)$.

- Checking whether $L \in \operatorname{HSP}(X)$ can be difficult.
- An obvious sufficient condition: say that $(\exists X \in X)(\exists e)(e: L \hookrightarrow X)$.
- The condition above is not necessary: for example, take $L:=\mathrm{B}(3,3), \mathcal{X}:=\{\mathrm{P}(n) \mid n \in \mathbb{N}\}$.

Splitting lattices and splitting identities

Théorie
équationnelle

El. theory
Permutohedra
Geyer's Conj
$\oiiint A(N)$
$\in \operatorname{HS}\left(A_{U}(N)\right)$
An identity
Handling
varieties without identities
Tensor prod
Box prod
$\mathrm{P}(N) \models \theta$
Decidability
Towards
decidability
.... getting
there!!!

- A lattice K is splitting if there is a largest lattice variety \mathcal{C}_{K} such that $K \notin \mathcal{C}_{K}$.

Splitting lattices and splitting identities

El. theory

Permutohedra
Geyer's Conj $\Leftrightarrow A(N)$ $\in \operatorname{HS}\left(A_{U}(N)\right)$

An identity

Handling
varieties without identities
Tensor prod
Box prod
$\mathrm{P}(N) \models \theta$
Decidability
Towards
decidability
... getting
there!!!

- A lattice K is splitting if there is a largest lattice variety \mathcal{C}_{K} such that $K \notin \mathcal{C}_{K}$.
■ Necessarily, $\mathcal{C}_{K}=\{L \mid K \notin \operatorname{HSP}(L)\}$.

Splitting lattices and splitting identities

■ A lattice K is splitting if there is a largest lattice variety \mathcal{C}_{K} such that $K \notin \mathcal{C}_{K}$.

- Necessarily, $\mathcal{C}_{K}=\{L \mid K \notin \operatorname{HSP}(L)\}$.

■ R. McKenzie proved in 1972 that K is splitting iff it is finite, subdirectly irreducible, and McKenzie-bounded.

Splitting lattices and splitting identities

- A lattice K is splitting if there is a largest lattice variety \mathcal{C}_{K} such that $K \notin \mathcal{C}_{K}$.
■ Necessarily, $\mathcal{C}_{K}=\{L \mid K \notin \operatorname{HSP}(L)\}$.
- R. McKenzie proved in 1972 that K is splitting iff it is finite, subdirectly irreducible, and McKenzie-bounded. Furthermore, \mathcal{C}_{K} is defined by a single identity θ_{K}, called "the" splitting identity of K.

Splitting lattices and splitting identities

- A lattice K is splitting if there is a largest lattice variety \mathcal{C}_{K} such that $K \notin \mathcal{C}_{K}$.
■ Necessarily, $\mathcal{C}_{K}=\{L \mid K \notin \operatorname{HSP}(L)\}$.
- R. McKenzie proved in 1972 that K is splitting iff it is finite, subdirectly irreducible, and McKenzie-bounded. Furthermore, \mathcal{C}_{K} is defined by a single identity θ_{K}, called "the" splitting identity of K.
■ Hence θ_{K} is the weakest identity failing in K.

Splitting lattices and splitting identities

- A lattice K is splitting if there is a largest lattice variety \mathcal{C}_{K} such that $K \notin \mathcal{C}_{K}$.
■ Necessarily, $\mathcal{C}_{K}=\{L \mid K \notin \operatorname{HSP}(L)\}$.
- R. McKenzie proved in 1972 that K is splitting iff it is finite, subdirectly irreducible, and McKenzie-bounded. Furthermore, \mathcal{C}_{K} is defined by a single identity θ_{K}, called "the" splitting identity of K.
■ Hence θ_{K} is the weakest identity failing in K.
- If K is splitting and $K \in \operatorname{HSP}(X)$, then $K \in \operatorname{HSP}(L)$ for some $L \in X$.

Splitting lattices and splitting identities

- A lattice K is splitting if there is a largest lattice variety \mathcal{C}_{K} such that $K \notin \mathcal{C}_{K}$.
■ Necessarily, $\mathcal{C}_{K}=\{L \mid K \notin \operatorname{HSP}(L)\}$.
- R. McKenzie proved in 1972 that K is splitting iff it is finite, subdirectly irreducible, and McKenzie-bounded. Furthermore, \mathcal{C}_{K} is defined by a single identity θ_{K}, called "the" splitting identity of K.
- Hence θ_{K} is the weakest identity failing in K.

■ If K is splitting and $K \in \mathrm{HSP}(X)$, then $K \in \mathrm{HSP}(L)$ for some $L \in X$. (Proof: $\operatorname{HSP}(X) \nsubseteq \mathcal{C}_{K}$, that is, $X \nsubseteq \mathcal{C}_{K}$, so there exists $L \in \mathcal{X}$ with $\left.L \notin \mathcal{C}_{K}.\right)$

Splitting lattices and splitting identities

- A lattice K is splitting if there is a largest lattice variety \mathcal{C}_{K} such that $K \notin \mathcal{C}_{K}$.
■ Necessarily, $\mathcal{C}_{K}=\{L \mid K \notin \operatorname{HSP}(L)\}$.
■ R. McKenzie proved in 1972 that K is splitting iff it is finite, subdirectly irreducible, and McKenzie-bounded. Furthermore, \mathcal{C}_{K} is defined by a single identity θ_{K}, called "the" splitting identity of K.
■ Hence θ_{K} is the weakest identity failing in K.
■ If K is splitting and $K \in \mathrm{HSP}(X)$, then $K \in \mathrm{HSP}(L)$ for some $L \in X$. (Proof: $\operatorname{HSP}(X) \nsubseteq \mathcal{C}_{K}$, that is, $X \nsubseteq \mathcal{C}_{K}$, so there exists $L \in \mathcal{X}$ with $\left.L \notin \mathcal{C}_{K}.\right)$
■ It is well-known (Day 1977) that every identity satisfied by all finite splitting lattices is trivial.

Splitting lattices and splitting identities

- A lattice K is splitting if there is a largest lattice variety \mathcal{C}_{K} such that $K \notin \mathcal{C}_{K}$.
■ Necessarily, $\mathcal{C}_{K}=\{L \mid K \notin \operatorname{HSP}(L)\}$.
■ R. McKenzie proved in 1972 that K is splitting iff it is finite, subdirectly irreducible, and McKenzie-bounded. Furthermore, \mathcal{C}_{K} is defined by a single identity θ_{K}, called "the" splitting identity of K.
- Hence θ_{K} is the weakest identity failing in K.

■ If K is splitting and $K \in \mathrm{HSP}(X)$, then $K \in \mathrm{HSP}(L)$ for some $L \in X$. (Proof: $\operatorname{HSP}(X) \nsubseteq \mathcal{C}_{K}$, that is, $X \nsubseteq \mathcal{C}_{K}$, so there exists $L \in X$ with $\left.L \notin \mathcal{C}_{K}.\right)$
■ It is well-known (Day 1977) that every identity satisfied by all finite splitting lattices is trivial.

- All lattices $\mathrm{B}(m, n)$ are splitting.

The Soprano: Aloysia Weber (1760-1839)

Théorie
équationnelle

El. theory

Permutohedra
Geyer's Conj
$\oiiint A(N)$
$\in \operatorname{HS}\left(\mathrm{A}_{v}(N)\right)$
An identity
Handling
varieties without identities
Tensor prod
Box prod
$\mathrm{P}(N) \neq \theta$
Decidability
Towards
decidability
. getting
there!!!

The Soprano: Aloysia Weber (1760-1839)

Théorie
équationnelle

"Born in Zell im Wiesental (Baden-Württemberg, Germany), Aloysia Weber (later on Aloysia Weber-Lange) was one of the four daughters of the musical Weber family."

The Bass: Édouard de Reszke (1853-1917)

Théorie
équationnelle

El. theory
Permutohedra
Geyer's Conj
$\oiiint A(N)$
$\in \operatorname{HS}\left(A_{U}(N)\right)$
An identity
Handling
varieties without identities
Tensor prod
Box prod
$\mathrm{P}(N) \neq \theta$
Decidability
Towards
decidability
. getting
there!!!

The Bass: Édouard de Reszke (1853-1917)

Théorie équationnelle
"A Polish bass from Warsaw. Born with an impressive natural voice and equipped with compelling histrionic skills, he became one of the most illustrious opera singers active in Europe and America during the late-Victorian era."

A convenient criterion for variety membership

Definition

```
El. theory
Permutohedra
Geyer's Conj
\psi
\inHS(Au(N))
An identity
Handling
varieties without
identities
Tensor prod
Box prod
P(N)}\vDash
Decidability
Towards
decidability
    getting
there!!
```


A convenient criterion for variety membership

Definition

For lattices K and L, a pair (f, g) of maps $K \rightarrow L$ is an EA-duet if f is a join-homomorphism, g is a meet-homomorphism, and $f(x) \leq g(y) \Leftrightarrow x \leq y \forall x, y \in K$.

A convenient criterion for variety membership

Definition

For lattices K and L, a pair (f, g) of maps $K \rightarrow L$ is an EA-duet if f is a join-homomorphism, g is a meet-homomorphism, and $f(x) \leq g(y) \Leftrightarrow x \leq y \forall x, y \in K$. It is tight if $f=g^{\vee}$ (the largest join-homomorphism $\leq g$) and $g=f^{\wedge}$ (the least meet-homomorphism $\geq f$).

A convenient criterion for variety membership

Definition

For lattices K and L, a pair (f, g) of maps $K \rightarrow L$ is an EA-duet if f is a join-homomorphism, g is a meet-homomorphism, and $f(x) \leq g(y) \Leftrightarrow x \leq y \forall x, y \in K$. It is tight if $f=g^{\vee}$ (the largest join-homomorphism $\leq g$) and $g=f^{\wedge}$ (the least meet-homomorphism $\geq f$).

Lemma

A convenient criterion for variety membership

Definition

For lattices K and L, a pair (f, g) of maps $K \rightarrow L$ is an EA-duet if f is a join-homomorphism, g is a meet-homomorphism, and $f(x) \leq g(y) \Leftrightarrow x \leq y \forall x, y \in K$. It is tight if $f=g^{\vee}$ (the largest join-homomorphism $\leq g$) and $g=f^{\wedge}$ (the least meet-homomorphism $\geq f$).

Lemma

For lattices K and L of finite length, TFAE:

A convenient criterion for variety membership

Definition

For lattices K and L, a pair (f, g) of maps $K \rightarrow L$ is an EA-duet if f is a join-homomorphism, g is a meet-homomorphism, and $f(x) \leq g(y) \Leftrightarrow x \leq y \forall x, y \in K$. It is tight if $f=g^{\vee}$ (the largest join-homomorphism $\leq g$) and $g=f^{\wedge}$ (the least meet-homomorphism $\geq f$).

Lemma

For lattices K and L of finite length, TFAE:
$1 L \in \mathrm{HS}(K)$.

A convenient criterion for variety membership

Definition

For lattices K and L, a pair (f, g) of maps $K \rightarrow L$ is an EA-duet if f is a join-homomorphism, g is a meet-homomorphism, and $f(x) \leq g(y) \Leftrightarrow x \leq y \forall x, y \in K$. It is tight if $f=g^{\vee}$ (the largest join-homomorphism $\leq g$) and $g=f^{\wedge}$ (the least meet-homomorphism $\geq f$).

Lemma

For lattices K and L of finite length, TFAE:
$1 L \in \mathrm{HS}(K)$.
2 There exists a tight EA-duet of maps $K \rightarrow L$.

A convenient criterion for variety membership

Definition

For lattices K and L, a pair (f, g) of maps $K \rightarrow L$ is an EA-duet if f is a join-homomorphism, g is a meet-homomorphism, and $f(x) \leq g(y) \Leftrightarrow x \leq y \forall x, y \in K$. It is tight if $f=g^{\vee}$ (the largest join-homomorphism $\leq g$) and $g=f^{\wedge}$ (the least meet-homomorphism $\geq f$).

Lemma

For lattices K and L of finite length, TFAE:
$1 L \in \mathrm{HS}(K)$.
2 There exists a tight EA-duet of maps $K \rightarrow L$.
Outline of proof: Let $h: H \rightarrow K$ with $H \leq L$. Define $f(x) \underset{\text { def. }}{=} \min h^{-1}\{x\}, g(x) \underset{\text { def. }}{=} \max h^{-1}\{x\}$.

A convenient criterion for variety membership

Definition

For lattices K and L, a pair (f, g) of maps $K \rightarrow L$ is an EA-duet if f is a join-homomorphism, g is a meet-homomorphism, and $f(x) \leq g(y) \Leftrightarrow x \leq y \forall x, y \in K$. It is tight if $f=g^{\vee}$ (the largest join-homomorphism $\leq g$) and $g=f^{\wedge}$ (the least meet-homomorphism $\geq f$).

Lemma

For lattices K and L of finite length, TFAE:
$1 L \in \mathrm{HS}(K)$.
2 There exists a tight EA-duet of maps $K \rightarrow L$.
Outline of proof: Let $h: H \rightarrow K$ with $H \leq L$. Define $f(x) \underset{\text { def. }}{=} \min h^{-1}\{x\}, g(x) \underset{\text { def. }}{=} \max h^{-1}\{x\}$. Then replace f by g^{\vee}, g by f^{\wedge}.

Variety membership (cont'd)

Théorie équationnelle

El. theory
Permutohedra
By using Jónsson's Lemma, we get

Geyer's Conj $\oiiint A(N)$ $\in \operatorname{HS}\left(A_{u}(N)\right)$

An identity
Handling
varieties without identities
Tensor prod
Box prod
$\mathrm{P}(N) \models \theta$
Decidability
Towards
decidability
. getting
there!!!

Variety membership (cont'd)

Théorie
équationnelle

El. theory
Permutohedra
Geyer's Conj
$\oiiint A(N)$
$\in \operatorname{HS}\left(A_{\nu}(N)\right)$
An identity
Handling
varieties without identities
Tensor prod
Box prod
$\mathrm{P}(N) \neq \theta$
Decidability
Towards
decidability
.... getting
there!!!

By using Jónsson's Lemma, we get
Proposition

Variety membership (cont'd)

Théorie
équationnelle

El. theory
Permutohedra
Geyer's Conj
$\leftrightarrow A(N)$
$\in \operatorname{HS}\left(A_{U}(N)\right)$

By using Jónsson's Lemma, we get
Proposition
Let K be a splitting lattice and let \mathcal{X} be a class of lattices. Then $K \in \operatorname{HSP}(X)$ iff $(\exists L \in X)(\exists$ tight EA-duet of maps $f, g: K \rightarrow L)$.

Variety membership (cont'd)

Théorie
équationnelle

El. theory
Permutohedra
Geyer's Conj
$\leftrightarrow A(N)$
$\in \operatorname{HS}\left(A_{u}(N)\right)$
By using Jónsson's Lemma, we get
Proposition
Let K be a splitting lattice and let X be a class of lattices. Then $K \in \operatorname{HSP}(X)$ iff $(\exists L \in X)(\exists$ tight EA-duet of maps $f, g: K \rightarrow L)$.

Lemma

Decidability
Towards decidability
....getting there!!!

Variety membership (cont'd)

By using Jónsson's Lemma, we get

Proposition

Let K be a splitting lattice and let X be a class of lattices. Then $K \in \operatorname{HSP}(X)$ iff $(\exists L \in X)(\exists$ tight EA-duet of maps $f, g: K \rightarrow L)$.

Lemma

Let K and L be lattices, with K splitting, and let $u, v \in K$ such that ($u \wedge v, u$) generates the least nonzero congruence of K and $u \wedge v \prec u$.

Variety membership (cont'd)

Proposition

Let K be a splitting lattice and let X be a class of lattices. Then $K \in \operatorname{HSP}(X)$ iff $(\exists L \in X)(\exists$ tight EA-duet of maps $f, g: K \rightarrow L)$.

Lemma

Let K and L be lattices, with K splitting, and let $u, v \in K$ such that $(u \wedge v, u)$ generates the least nonzero congruence of K and $u \wedge v \prec u$. Then a pair $f, g: K \rightarrow L$ is an EA-duet iff f is a join-homomorphism, g is a meet-homomorphism, $f \leq g$, and $f(u) \not \leq g(v)$.

Strategy for the $\mathrm{P}(n)$

- The variety generated by all $\mathrm{P}(n)$ is also generated by $\left\{\mathrm{A}_{U}(n) \mid n \in \mathbb{N}, U \subseteq[n]\right\}$.

Handling

Strategy for the $\mathrm{P}(n)$

- The variety generated by all $P(n)$ is also generated by $\left\{\mathrm{A}_{U}(n) \mid n \in \mathbb{N}, U \subseteq[n]\right\}$.
- We need to find a splitting lattice L such that every $\mathrm{A}_{U}(n)$ satisfies the splitting identity of L.

Strategy for the $\mathrm{P}(n)$

- The variety generated by all $\mathrm{P}(n)$ is also generated by $\left\{\mathrm{A}_{U}(n) \mid n \in \mathbb{N}, U \subseteq[n]\right\}$.
- We need to find a splitting lattice L such that every $\mathrm{A}_{U}(n)$ satisfies the splitting identity of L.
- We thus need to find a splitting lattice L such that for every (n, U), there is no tight EA-duet $f, g: L \rightarrow \mathrm{~A}_{U}(n)$.

Strategy for the $\mathrm{P}(n)$

- The variety generated by all $\mathrm{P}(n)$ is also generated by $\left\{\mathrm{A}_{U}(n) \mid n \in \mathbb{N}, U \subseteq[n]\right\}$.
- We need to find a splitting lattice L such that every $\mathrm{A}_{U}(n)$ satisfies the splitting identity of L.
- We thus need to find a splitting lattice L such that for every (n, U), there is no tight EA-duet $f, g: L \rightarrow \mathrm{~A}_{U}(n)$.
- Getting at L, and proving that it worked, was the biggest challenge.

Tensor products of $(\mathrm{V}, 0)$-semilattices

■ G. Fraser defined in 1978 the tensor product of join-semilattices.

Permutohedra
Geyer's Conj $\oiiint A(N)$ $\in \operatorname{HS}\left(A_{\nu}(N)\right)$

An identity

Handling
varieties without identities
Tensor prod
Box prod
$\mathrm{P}(N) \neq \theta_{\perp}$
Decidabibility
Towards
decidability
.... getting
there!!!

Tensor products of $(\mathrm{V}, 0)$-semilattices

■ G. Fraser defined in 1978 the tensor product of join-semilattices.
■ Grätzer, Lakser, and Quackenbush considered in 1981 tensor products of $(\vee, 0)$-semilattices.

Tensor products of $(\mathrm{V}, 0)$-semilattices

■ G. Fraser defined in 1978 the tensor product of join-semilattices.
■ Grätzer, Lakser, and Quackenbush considered in 1981 tensor products of $(\vee, 0)$-semilattices.
■ For ($\vee, 0$)-semilattices A and B, a bi-ideal of $A \times B$ is a lower subset $I \subseteq A \times B$,

Tensor products of $(\mathrm{V}, 0)$-semilattices

■ G. Fraser defined in 1978 the tensor product of join-semilattices.
■ Grätzer, Lakser, and Quackenbush considered in 1981 tensor products of $(\vee, 0)$-semilattices.

- For $(\vee, 0)$-semilattices A and B, a bi-ideal of $A \times B$ is a lower subset $I \subseteq A \times B$, containing

$$
0_{A, B}=\left(\left\{0_{A}\right\} \times B\right) \cup\left(A \times\left\{0_{B}\right\}\right),
$$

Tensor products of $(\mathrm{V}, 0)$-semilattices

Permutohedra
Geyer's Conj
$\Leftrightarrow A(N)$
$\in \operatorname{HS}\left(A_{U}(N)\right)$
An identity
Handling
varieties without identities
Tensor prod
Box prod
$P(N)=\theta_{l}$
Decidability
Towards decidability ... getting there!!!

■ G. Fraser defined in 1978 the tensor product of join-semilattices.
■ Grätzer, Lakser, and Quackenbush considered in 1981 tensor products of $(\vee, 0)$-semilattices.

■ For $(\vee, 0)$-semilattices A and B, a bi-ideal of $A \times B$ is a lower subset $I \subseteq A \times B$, containing

$$
0_{A, B}=\left(\left\{0_{A}\right\} \times B\right) \cup\left(A \times\left\{0_{B}\right\}\right),
$$

such that $\left(a, b_{0}\right),\left(a, b_{1}\right) \in I$ implies that $\left(a, b_{0} \vee b_{1}\right) \in I$, and symmetrically $(A \leftrightharpoons B)$.

Tensor products of $(\mathrm{V}, 0)$-semilattices

Permutohedra
Geyer's Conj
$\Leftrightarrow A(N)$
$\in \operatorname{HS}\left(A_{U}(N)\right)$
An identity
Handling
varieties without identities
Tensor prod
Box prod
$P(N)=\theta_{l}$
Decidability
Towards decidability ... getting there!!!

■ G. Fraser defined in 1978 the tensor product of join-semilattices.
■ Grätzer, Lakser, and Quackenbush considered in 1981 tensor products of $(\vee, 0)$-semilattices.

■ For $(\vee, 0)$-semilattices A and B, a bi-ideal of $A \times B$ is a lower subset $I \subseteq A \times B$, containing

$$
0_{A, B}=\left(\left\{0_{A}\right\} \times B\right) \cup\left(A \times\left\{0_{B}\right\}\right),
$$

such that $\left(a, b_{0}\right),\left(a, b_{1}\right) \in I$ implies that $\left(a, b_{0} \vee b_{1}\right) \in I$, and symmetrically $(A \leftrightharpoons B)$.

- The bi-ideals form an algebraic lattice.

Tensor products of $(\mathrm{V}, 0)$-semilattices

■ G. Fraser defined in 1978 the tensor product of join-semilattices.
■ Grätzer, Lakser, and Quackenbush considered in 1981 tensor products of $(\vee, 0)$-semilattices.
■ For $(\vee, 0)$-semilattices A and B, a bi-ideal of $A \times B$ is a lower subset $I \subseteq A \times B$, containing

$$
0_{A, B}=\left(\left\{0_{A}\right\} \times B\right) \cup\left(A \times\left\{0_{B}\right\}\right),
$$

such that $\left(a, b_{0}\right),\left(a, b_{1}\right) \in I$ implies that $\left(a, b_{0} \vee b_{1}\right) \in I$, and symmetrically $(A \leftrightharpoons B)$.

- The bi-ideals form an algebraic lattice.

■ $A \otimes B=(\vee, 0)$-semilattice of all compact bi-ideals of $A \times B$.

Useful bi-ideals, universal property

El. theory

Permutohedra
Geyer's Conj
$\oiiint \mathrm{A}(\mathrm{N})$
$\in \operatorname{HS}\left(\mathrm{A}_{U}(\mathrm{~N})\right)$
An identity
Handling
varieties without identities
Tensor prod
Box prod
$\mathrm{P}(\mathrm{N})=\theta$
Decidability
Towards
decidability
... getting
there!!!

Useful bi-ideals :
■ Pure tensors:

$$
a \otimes b=0_{A, B} \cup\{(x, y) \mid x \leq a \text { and } y \leq b\}
$$

Useful bi-ideals, universal property

El. theory

Permutohedra
Geyer's Conj
$\leftrightarrow A(N)$
$\in \operatorname{HS}\left(\mathrm{A}_{U}(\mathrm{~N})\right)$
An identity
Handling
varieties without identities
Tensor prod
Box prod
$P(N)=\theta_{L}$
Decidability
Towards
decidability ... getting there!!!

Useful bi-ideals :

- Pure tensors:

$$
a \otimes b=0_{A, B} \cup\{(x, y) \mid x \leq a \text { and } y \leq b\}
$$

- Boxes:

$$
a \square b=\{(x, y) \mid x \leq a \text { or } y \leq b\} .
$$

Useful bi-ideals, universal property

El. theory

Permutohedra
Geyer's Conj
$\leftrightarrow A(N)$
$\in \operatorname{HS}\left(\mathrm{A}_{U}(\mathrm{~N})\right)$
An identity
Handling
varieties without identities
Tensor prod
Box prod
$\mathrm{P}(N) \models \theta_{t}$
Decidability
Towards decidability ... getting there!!!

Useful bi-ideals:
■ Pure tensors:

$$
a \otimes b=0_{A, B} \cup\{(x, y) \mid x \leq a \text { and } y \leq b\}
$$

- Boxes:

$$
a \square b=\{(x, y) \mid x \leq a \text { or } y \leq b\}
$$

Belongs to $A \otimes B$ if A and B both have a unit.
■ Mixed tensors: $\left(a \otimes b^{\prime}\right) \cup\left(a^{\prime} \otimes b\right)$, where $a \leq a^{\prime}$ and $b \leq b^{\prime}$.

The box product

Definition (Grätzer and W. 1999)

The box product of lattices A and B, denoted by $A \square B$, is the set of all finite intersections $\bigcap_{i<n}\left(a_{i} \square b_{i}\right)$, where all $\left(a_{i}, b_{i}\right) \in A \times B$.

The box product

Definition (Grätzer and W. 1999)

The box product of lattices A and B, denoted by $A \square B$, is the set of all finite intersections $\bigcap_{i<n}\left(a_{i} \square b_{i}\right)$, where all $\left(a_{i}, b_{i}\right) \in A \times B$.

- Analogue, for bounded lattices, of Wille's tensor product of concept lattices. Equivalent in the finite case.

The box product

Definition (Grätzer and W. 1999)

The box product of lattices A and B, denoted by $A \square B$, is the set of all finite intersections $\bigcap_{i<n}\left(a_{i} \square b_{i}\right)$, where all $\left(a_{i}, b_{i}\right) \in A \times B$.

- Analogue, for bounded lattices, of Wille's tensor product of concept lattices. Equivalent in the finite case.

Lemma

Let A and B be finite lattices. If A and B are both McKenzie-bounded (resp., splitting), then so is $A \square B$.

The variety of permutohedra is non-trivial

Théorie
équationnelle

El. theory

Permutohedra
Geyer's Conj
$\oiiint \mathrm{A}(\mathrm{N})$
$\in \operatorname{HS}\left(A_{\nu}(N)\right)$
An identity
Handling
varieties without identities
Tensor prod
Box prod
$\mathrm{P}(N) \models \theta_{L}$
Decidability
Towards
decidability
... getting there!!!

Theorem (S. and W. 2014)
Let $L:=N_{5} \square \mathrm{~B}(3,2)$. Then $\mathrm{P}(N) \models \theta_{L}$, for each $N \geq 1$.

The variety of permutohedra is non-trivial

Théorie
équationnelle

El. theory
Permutohedra
Geyer's Conj
$\leftrightarrow A(N)$
$\in \operatorname{HS}\left(A_{u}(N)\right)$
An identity
Handling
varieties without identities
Tensor prod
Box prod
$\mathrm{P}(N) \neq \theta_{L}$
Decidability
Towards
decidability
.... getting there!!!

Theorem (S. and W. 2014)
Let $L:=N_{5} \square \mathrm{~B}(3,2)$. Then $\mathrm{P}(N) \models \theta_{L}$, for each $N \geq 1$.

- $N_{5} \square \mathrm{~B}(3,2)$ is a splitting lattice.

The variety of permutohedra is non-trivial

El. theory
Permutohedra
Geyer's Conj $\Perp A(N)$ $\in \operatorname{HS}\left(\mathrm{A}_{u}(\mathrm{~N})\right)$

Theorem (S. and W. 2014)
Let $L:=N_{5} \square \mathrm{~B}(3,2)$. Then $\mathrm{P}(N) \models \theta_{L}$, for each $N \geq 1$.

- $N_{5} \square \mathrm{~B}(3,2)$ is a splitting lattice.
- Brute force computation shows that it has 3,338 elements.

The variety of permutohedra is non-trivial

Theorem (S. and W. 2014)

$$
\text { Let } L:=N_{5} \square \mathrm{~B}(3,2) \text {. Then } \mathrm{P}(N) \models \theta_{L} \text {, for each } N \geq 1 \text {. }
$$

- $N_{5} \square \mathrm{~B}(3,2)$ is a splitting lattice.
- Brute force computation shows that it has 3,338 elements.
- One needs to prove that there are no (n, U) and no tight EA-duet $f, g: \mathrm{N}_{5} \square \mathrm{~B}(3,2) \rightarrow \mathrm{A}_{U}(n)$.

The variety of permutohedra is non-trivial

Theorem (S. and W. 2014)
Let $L:=\mathrm{N}_{5} \square \mathrm{~B}(3,2)$. Then $\mathrm{P}(N) \models \theta_{L}$, for each $N \geq 1$.
$\square N_{5} \square \mathrm{~B}(3,2)$ is a splitting lattice.

- Brute force computation shows that it has 3,338 elements.
- One needs to prove that there are no (n, U) and no tight EA-duet $f, g: \mathrm{N}_{5} \square \mathrm{~B}(3,2) \rightarrow \mathrm{A}_{U}(n)$.
- "EA-duet" implies that $f(p \otimes q) \nsubseteq g\left(p_{*} \square q_{*}\right)$ (where p and q are the unique join-irreducible, non join-prime elements in N_{5} and $\mathrm{B}(3,2)$, respectively); "tight" implies that f and g agree on all join-prime elements of $N_{5} \square B(3,2)$.

A portrait view of $N_{5} \square B(3,2)$

Outline

1 Elementary theory of permutohedra

2 An identity satisfied by all the permutohedra
3 Decidability of the weak Bruhat ordering on permutations via MSO and S1S
■ Towards decidability ...

- ... getting there: decidability of the weak Bruhat order

The equational theory of permutohedra

The word problem for permutohedra
Given lattice terms s and t, does the relation

$$
\mathrm{P}(N) \models s=t,
$$

hold for each $N \geq 1$?

The equational theory of permutohedra

Theorem (S. and W. 2014)

The word problem for permutohedra is decidable.

Pemutohedra and Cambrian lattices

El. theory
Permutohedra
Geyer's Conj
$\% A(N)$
$\in \operatorname{HS}\left(A_{u}(N)\right)$
An identity
Handling
varieties without
identities
Tensor prod
Box prod
$\mathrm{P}(\mathrm{N}) \models \theta_{L}$
Decidability
Towards decidability

Proposition

For all pair of lattice terms s, t, we have

$$
\mathrm{P}(N) \models s=t \text { for all } N
$$

iff

$$
\mathrm{A}_{U}(N) \vDash s=t \text { for all } N \text { and } U \subseteq[1, \ldots, N]
$$

This is because the Cambrian lattices of type A are the quotients of permutohedra by their minimal meet-irreducible congruences.

The lattice $B(4,4)$

Théorie
équationnelle

El. theory

Permutohedra
Geyer's Coni
$\Leftrightarrow A(N)$
$\in \operatorname{HS}\left(A_{\nu}(N)\right)$
An identity
Handling
varieties without
identities
Tensor prod
Box prod
$\mathrm{P}(N) \models \theta_{L}$
Decidability
Towards decidability ... getting there!!!

The lattices $\mathrm{B}(m, n)$

Recall that the lattice $\mathrm{B}(m, n)$ is obtained from a Boolean algebra over $m+n$ atoms by doubling the join of m atoms.

The lattices $\mathrm{B}(m, n)$

Problem

Recall that the lattice $\mathrm{B}(m, n)$ is obtained from a Boolean algebra over $m+n$ atoms by doubling the join of m atoms.

Given m and n, does the lattice $\mathrm{B}(m, n)$ belong to $\operatorname{HSP}(\operatorname{P}(N) \mid N \geq 1)$?

EA-duets and scores

Proposition

El. theory

Permutohedra
TFAE:
$\| \mathrm{B}(m, n) \in \operatorname{HSP}(\mathrm{P}(N) \mid N \geq 1)$,

EA-duets and scores

Proposition

El. theory

Permutohedra
Geyer's Conj
$\leftrightarrow A(N)$
$\in \operatorname{HS}\left(\mathrm{A}_{\nu}(\mathrm{N})\right)$
An identity
Handling
varieties without identities
Tensor prod
Box prod
$P(N)=\theta_{L}$
Decidability

TFAE:

$1 \mathrm{~B}(m, n) \in \operatorname{HSP}(\mathrm{P}(N) \mid N \geq 1)$,
$2 \exists N, U$ s.t. $\mathrm{B}(m, n) \in \operatorname{HSP}\left(\mathrm{A}_{U}(N)\right)$,

EA-duets and scores

Proposition

El. theory
Permutohedra
Geyer's Conj
$\leftrightarrow A(N)$
$\in \operatorname{HS}\left(\mathrm{A}_{u}(N)\right)$
An identity
Handling
varieties without
identities
Tensor prod
Box prod
$P(N)=\theta_{L}$
Decidability
Towards decidability \ldots getting there!!!

TFAE:

$1 \mathrm{~B}(m, n) \in \operatorname{HSP}(\mathrm{P}(N) \mid N \geq 1)$,
$2 \exists N, U$ s.t. $\mathrm{B}(m, n) \in \operatorname{HSP}\left(\mathrm{A}_{U}(N)\right)$,
$3 \exists N, U$ s.t. $\mathrm{B}(m, n) \in \operatorname{HS}\left(\mathrm{A}_{U}(N)\right)$,

EA-duets and scores

Proposition

El. theory
Permutohedra
Geyer's Conj
$\leftrightarrow A(N)$
$\in \operatorname{HS}\left(\mathrm{A}_{\nu}(\mathrm{N})\right)$
An identity
Handling
varieties without
identities
Tensor prod
Box prod
$\mathrm{P}(N) \models \theta_{L}$
Decidability

TFAE:
$1 \mathrm{~B}(m, n) \in \operatorname{HSP}(\mathrm{P}(N) \mid N \geq 1)$,
$2 \exists N, U$ s.t. $\mathrm{B}(m, n) \in \operatorname{HSP}\left(\mathrm{A}_{U}(N)\right)$,
$3 \exists N, U$ s.t. $\mathrm{B}(m, n) \in \mathrm{HS}\left(\mathrm{A}_{U}(N)\right)$,
$4 \exists N, U$ and an EA-duet $f, g: \mathrm{B}(m, n) \longrightarrow \mathrm{A}_{U}(N)$,

EA-duets and scores

Proposition

El. theory
Permutohedra
Geyer's Conj
$\oiiint A(N)$
$\in \operatorname{HS}\left(\mathrm{A}_{u}(N)\right)$
An identity
Handling
varieties without
identities
Tensor prod
Box prod
$\mathrm{P}(N)=\theta_{L}$
Decidability
TFAE:
$1 \mathrm{~B}(m, n) \in \operatorname{HSP}(\mathrm{P}(N) \mid N \geq 1)$,
$2 \exists N, U$ s.t. $\mathrm{B}(m, n) \in \operatorname{HSP}\left(\mathrm{A}_{U}(N)\right)$,
$3 \exists N, U$ s.t. $\mathrm{B}(m, n) \in \mathrm{HS}\left(\mathrm{A}_{U}(N)\right)$,
$4 \exists N, U$ and an EA-duet $f, g: \mathrm{B}(m, n) \longrightarrow \mathrm{A}_{U}(N)$,
$5 \exists N, U$ and an " (m, n, N, U)-score".

EA-duets and scores

Proposition

El. theory
Permutohedra
Geyer's Conj
$\leftrightarrow A(N)$
$\in \operatorname{HS}\left(A_{u}(N)\right)$
An identity
Handling
varieties without
identities
Tensor prod
Box prod
$P(N)=\theta_{L}$
Decidability
Towards decidability

TFAE:
$1 \mathrm{~B}(m, n) \in \operatorname{HSP}(\mathrm{P}(N) \mid N \geq 1)$,
$2 \exists N, U$ s.t. $\mathrm{B}(m, n) \in \operatorname{HSP}\left(\mathrm{A}_{U}(N)\right)$,
$3 \exists N, U$ s.t. $\mathrm{B}(m, n) \in \mathrm{HS}\left(\mathrm{A}_{U}(N)\right)$,
$4 \exists N, U$ and an EA-duet $f, g: \mathrm{B}(m, n) \longrightarrow \mathrm{A}_{U}(N)$,
$5 \exists N, U$ and an " (m, n, N, U)-score".
(m, n, N, U)-scores are defined from EA-duets of maps $f, g: \mathrm{B}(m, n) \longrightarrow \mathrm{A}_{U}(N)$, using the isomorphism $\psi_{U}: \mathrm{A}_{U^{c}}(N) \rightarrow \mathrm{A}_{U}(N)^{\mathrm{op}}$. They express a tiling property of the chain $[N]$.

What does an (m, n, N, U)-score look like?

$\left(A_{2}\right)$

$\left(B_{2}\right) \quad(1)-\left(\frac{5}{5}\right) \frac{a_{2}}{6}-\left(\frac{b_{2}}{-}-\frac{a_{3}}{-}\right.$

What does an (m, n, N, U)-score look like?

$\left(A_{3}\right)$

$\left(B_{1}\right)$

$\left(B_{3}\right)$

(therefore $\mathrm{B}(3,3) \in \mathrm{HS}(\mathrm{P}(12))$).

Summarizing

El. theory

Permutohedra
Geyer's Conj
$\Leftrightarrow A(N)$
$\in \operatorname{HS}\left(A_{U}(N)\right)$
An identity
Handling
varieties without identities
Tensor prod
Box prod
$\mathrm{P}(N) \models \theta$
Decidability
Towards decidability ... getting there!!!

- We can represent a (m, n, N, U)-score via subsets

$$
\begin{aligned}
& B_{i}, A_{j}, B_{i, c}, A_{j, c} \\
& \quad \text { where } i=1, \ldots m, j=1, \ldots n, c \in\left\{a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}\right\},
\end{aligned}
$$

satisfying certain simple conditions (solos, consonances);

Summarizing

■ We can represent a (m, n, N, U)-score via subsets

$$
\begin{aligned}
& B_{i}, A_{j}, B_{i, c}, A_{j, c} \\
& \quad \text { where } i=1, \ldots m, j=1, \ldots n, c \in\left\{a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}\right\},
\end{aligned}
$$

satisfying certain simple conditions (solos, consonances);
$■$ We can suppose that $B_{i}, A_{j}, B_{i, c}, A_{j, c}$ are all subsets of integers (that is, unary [aka monadic] predicates);

Summarizing

■ We can represent a (m, n, N, U)-score via subsets

- The property

$$
\text { " } B_{i}, A_{j}, B_{i, c}, A_{j, c} \text { is an }(m, n, N, U) \text {-score" }
$$

is definable in MSO (monadic second order logic of one successor).

MSO, S1S, and Büchi's Theorem

El. theory

Permutohedra
Geyer's Conj
$\oiiint \mathrm{A}(\mathrm{N})$
$\in \operatorname{HS}\left(A_{\nu}(N)\right)$
An identity
Handling
varieties without identities
Tensor prod
Box prod
$\mathrm{P}(N) \models \theta_{L}$
Decidability
Towards decidability
\ldots getting there!!!

■ MSO : atop the first-order language (s) (a unary function symbol), add second-order variables X, Y, Z, \ldots, and new atomic formulas $t \in X$, where t is a term of (s) and X is a second-order variable.

MSO, S1S, and Büchi's Theorem

■ MSO : atop the first-order language (s) (a unary function symbol), add second-order variables X, Y, Z, \ldots, and new atomic formulas $t \in X$, where t is a term of (s) and X is a second-order variable.

- S1S : the formulas of MSO holding over the non-negative integers.

MSO, S1S, and Büchi's Theorem

■ MSO : atop the first-order language (s) (a unary function symbol), add second-order variables X, Y, Z, \ldots, and new atomic formulas $t \in X$, where t is a term of (s) and X is a second-order variable.

- S1S : the formulas of MSO holding over the non-negative integers.

Theorem (Büchi 1962)

The set S1S is decidable.

MSO, S1S, and Büchi's Theorem

■ MSO : atop the first-order language (s) (a unary function symbol), add second-order variables X, Y, Z, \ldots, and new atomic formulas $t \in X$, where t is a term of (s) and X is a second-order variable.

- S1S : the formulas of MSO holding over the non-negative integers.

Theorem (Büchi 1962)

The set S1S is decidable.

Corollary

The problem $\mathrm{B}(m, n) \in \operatorname{HSP}(\mathrm{P}(N) \mid N \geq 1)$ is decidable.

Scores for a pair of terms

El. theory

Permutohedra
Geyer's Conj $\Perp A(N)$
$\in \operatorname{HS}\left(\mathrm{A}_{u}(\mathrm{~N})\right)$
An identity
Handling
varieties without identities
Tensor prod
Box prod
$P(N)=\theta_{L}$
Decidability
Towards
decidability getting there!!!

Given terms s, t, we can define (within MSO) the concept of an (s, t, N, U)-score, in such a way that:

Scores for a pair of terms

Théorie
équationnelle

El. theory

Permutohedra
Geyer's Conj
$\Leftrightarrow A(N)$
$\in \operatorname{HS}\left(\mathrm{A}_{u}(\mathrm{~N})\right)$
An identity
Handling
varieties without identities
Tensor prod
Box prod
$\mathrm{P}(N)=\theta_{L}$
Decidability
Towards decidability getting there!!!

Given terms s, t, we can define (within MSO) the concept of an (s, t, N, U)-score, in such a way that:

Proposition

Scores for a pair of terms

Given terms s, t, we can define (within MSO) the concept of an (s, t, N, U)-score, in such a way that:

Proposition

TFAE:
$1 \operatorname{HSP}(\mathrm{P}(N) \mid N \geq 1) \mid \vDash s \leq t$;
2 $\exists N, U$ s.t. $A_{U}(N) \mid \vDash s \leq t$;
$3 \exists N, U$ and an (s, t, N, U)-score.

Decidability results (S. and W. 2014)

El. theory

Permutohedra
Geyer's Conj
$\leftrightarrow A(N)$
$\in \operatorname{HS}\left(A_{\nu}(N)\right)$
An identity
Handling
varieties without identities
Tensor prod
Box prod
$\mathrm{P}(N)=\theta$
Decidability
Towards
decidability ... getting there!!!

Theorem

We can decide whether an identity $s=t$ is satisfied by all permutohedra.

Decidability results (S. and W. 2014)

Theorem

We can decide whether an identity $s=t$ is satisfied by all permutohedra.

Proposition

Let $\left(U_{i} \mid i \in I\right)$ be an MSO-definable collection of subsets of \mathbb{N}. We can decide whether an identity $s=t$ is satisfied by all Cambrian lattices of the form $A_{U_{i}}(N)$.

Decidability results (S. and W. 2014)

Theorem

We can decide whether an identity $s=t$ is satisfied by all permutohedra.

Proposition

Let ($U_{i} \mid i \in I$) be an MSO-definable collection of subsets of \mathbb{N}. We can decide whether an identity $s=t$ is satisfied by all Cambrian lattices of the form $\mathrm{A}_{U_{i}}(N)$.

Theorem

We can decide whether an identity $s=t$ is satisfied by all Tamari lattices.

