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model theory) categories C of models (say of first-order theories) are
“intractable”.

Motivation

m Examples: Posets of finitely generated ideals of rings,
Ordered Ky groups of unit-regular rings, Stone duals of
spectra of abelian lattice-ordered groups, ...and many
other classes.

m A way to define intractability is to state that € is not the
class of models of any infinitary (not just first-order!)
sentence.

m In what follows, we introduce a way to construct, for any
infinite cardinal A, an .Z,\-elementary submodel A of a
model B, such that A€ € and B ¢ C.

m This proves intractability of C, in the sense above.



Basics

Purity and
freshness
(in categorical

model theory) Def|n|t|0n (Prufer 1923)

A subgroup A of an abelian group B is a pure subgroup if
AN nB = nA for every integer n.

Purity for
abelian groups



Basics

Purity and
freshness
(in categorical

model theory) Def|n|t|0n (Prufer 1923)

A subgroup A of an abelian group B is a pure subgroup if
AN nB = nA for every integer n.

Purity for
abelian groups

Basic facts:

m Purity means that Va € A, Vn € Z \ {0}, if the equation
nx = a has a solution in B, then it has one in A.



Basics

Purity and
freshness
(in categorical

model theory) Def|n|t|0n (Prufer 1923)

A subgroup A of an abelian group B is a pure subgroup if
AN nB = nA for every integer n.

Purity for
abelian groups

Basic facts:

m Purity means that Va € A, Vn € Z \ {0}, if the equation
nx = a has a solution in B, then it has one in A.

m If B/A is torsion-free, then A is pure in B



Basics

Purity and
freshness
(in categorical

model theory) Def|n|t|0n (Prufer 1923)

A subgroup A of an abelian group B is a pure subgroup if
AN nB = nA for every integer n.

Purity for
abelian groups

Basic facts:

m Purity means that Va € A, Vn € Z \ {0}, if the equation
nx = a has a solution in B, then it has one in A.

m If B/A is torsion-free, then A is pure in B (Proof. let

nb = a with b € B; this means that n(b + A) = 0 within
B/A; since B/A is torsion-free, b+ A =0, that is, b € A).



Basics

Purity and
freshness
(in categorical

model theory) Def|n|t|0n (Prufer 1923)

A subgroup A of an abelian group B is a pure subgroup if
AN nB = nA for every integer n.

Purity for
abelian groups

Basic facts:

m Purity means that Va € A, Vn € Z \ {0}, if the equation
nx = a has a solution in B, then it has one in A.

m If B/A is torsion-free, then A is pure in B (Proof. let
nb = a with b € B; this means that n(b + A) = 0 within
B/A; since B/A is torsion-free, b+ A =0, that is, b € A).
m Every direct summand (equivalently, retract) of an abelian
group is a pure subgroup.



Basics

Purity and
freshness
(in categorical

model theory) Def|n|t|0n (Prufer 1923)

A subgroup A of an abelian group B is a pure subgroup if
AN nB = nA for every integer n.

Purity for
abelian groups

Basic facts:

m Purity means that Va € A, Vn € Z \ {0}, if the equation
nx = a has a solution in B, then it has one in A.

m If B/A is torsion-free, then A is pure in B (Proof. let
nb = a with b € B; this means that n(b + A) = 0 within
B/A; since B/A is torsion-free, b+ A =0, that is, b € A).
m Every direct summand (equivalently, retract) of an abelian
group is a pure subgroup. The converse fails.
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Purity for
abelian groups km].Xl + . e —|— kmnxn = am7

with all kj € Z and all a; € A.
Theorem (folklore)

A subgroup A is pure in B iff every finite equation system
over A, solvable in B, is also solvable in A.

Proof. Z is a PID, thus, letting K = (kj;);j, there are invertible
matrices P and @ such that PKQ is dlagonal this reduces the
problem to a system of the form d;x; = a (1 <j < n), where
all ajeAandd eZ.
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Pty e First-order language: ¥ = (F,R,ar) with FNR = & and

e ar: FUR — N with 0 ¢ ar[R]. The elements of F are the

function symbols, the elements of R are the relation
symbols, and ar(s) is the arity of a symbol s. The
elements of F with arity O are the constant symbols. Add
to this an infinite set (“alphabet”), the variables.
S ares m model for ¥ (or Y-structure): A = (A, s?)scgun, Where
— RAC A*(R) for each R € R;
— fA. A(f) 5 A for each f € F with nonzero arity;
— ¢” € A for each constant symbol c.

m Terms: closure of variables under all functions symbols.

m atomic formulas: Rty ...t,, where the t; are terms and R
is either the equality (n = 2), or a relation symbol
(n=ar(R)).

m First-order formulas obtained by closing the atomic
formulas under A, =, 3 (thus also V, V).
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freshness Formulas with parameters from a model A: some free

(in categorical

model theory) variables of ¢ are assigned to elements of A.

m Satisfaction of a closed (no free variables) formula ¢ with
parameters from a model A (in symbol A |= ¢) defined by
induction on the complexity of ¢, the usual way.

Purity for m Elementary equivalence of models A and B: A |= ¢ iff
B = ¢, for every closed formula ¢.

m A map f: A— B is an elementary embedding if A = (3)
< B |= ¢(fa), for every closed formula ¢ with
parameters & from A.

m Direction = (resp., <) for atomic ¢: we say that f is a
homomorphism (resp., an embedding).

m Those concepts can be extended to many logics (special
sets of formulas, infinitary logics. .. ).
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An atomic system over a model A is a set of atomic
formulas with parameters from A.

m For any homomorphism f: A — B, if an atomic
system ®(3) over A has a solution over A, then ®(f3a) has
Purity for a solution over B (straightforward).

Y -structures

m A homomorphism f: A — B is pure if for every finite
atomic system ®(a) over A, if (f3a) is solvable in B,
then ®(3) is solvable in A.

m Equivalently: for every finite conjunction ¢ of atomic
formulas, B |= 3xp(fa, X) implies A = 3Xp(a, X).

m For abelian groups, we recover the usual concept of purity.
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model theory)

Let > be a finite first-order language. An embedding
f: A— B, of models of ¥, is pure iff for all finitely

presentable A" and B’ and all homomorphisms a: A" — A,
b: B — B,and f': A — B, if foa= bo f’, then there

et exists a homomorphism g: B’ — A such that a=go f'.
A — B
la s l / l
A — B A — B

A model C is finitely presentable |f for every directed colimit
S= Ii_rgiel Si, every homomorphism c¢: C — S factors “in an
essentially unique way" through some S;.
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A-purity in an arbitrary category

P ey m Purity is thus a categorical concept.

freshness

e m Can be extended to \-purity, for any infinite regular
cardinal A\ (so purity is just w-purity).

Definition (Addmek and Rosicky 1994)

Let C be a category and let A be an infinite regular cardinal. A
morphism f: A — B in C is A-pure iff for all \-presentable A’
Purity in and B’ and all morphisms a: A’ — A, b: B’ — B, and

e f': A= B',if foa= bof, then there exists a morphism

g: B — Asuchthata=gof’.

m Can be expressed in terms of A-small atomic systems.

m \-presentability defined the same way as finite
presentability, now with / A-directed (every A-small subset
has an upper bound) instead of just directed (so A-purity
gets stronger as A increases).
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e Even “oco-purity” of f: A — B just means that f has a
Uhtissll  retraction (i.e., (3g)(g o f = id)), which does not imply that f
is an elementary embedding. We need a stronger concept.

Definition (W 2019)

Let C be a category and let A be an infinite regular cardinal. A
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f': A= B’ if foa= bof’, then there are an
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freshness

(in categorical Deﬁnition
model theory)

Define the symmetric category over a set 2, and denote it
by PBinj(2), by the one whose objects are the subsets of €, and
whose morphisms are the one-to-one maps f: X »— Y where
X, Y CQ.

m The only compositions occurring in Bi,j(Q2) are the go f,
where f: X — Y and g: Y — Z (and

(gof)(x)=g(f(x)) as usual).
m Directed colimits in PBi,;(2): X = lim,_, Xi means that up

A-freshness

to isomorphism, X = [J;c, Xi (directed union).

m A subset X C Q is A-presentable, within Pin;(Q), iff
card X < A.
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Purity and freshness on symmetric categories

Purity and ..
i Proposition (W 2019)
(in categorical

Bt et )\ be an infinite regular cardinal, let Q be a set, and let
f: A B in Piyi(2). The following are equivalent:

f is A-fresh.
f is A-pure.
Either f is a bijection or A < card A.

A-freshness Outline of proof of the interesting direction (3)=-(1):

m Let us suppose that f is the inclusion map A — B with
A < card A.

m Given M-small B’ € Band A C AN B’, we must find a
permutation o of B such that o[, = id and 0B’ C A.

m Since card B < X < card A, there is enough room in A for
this.
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et e m For cardinals k and A with k > A, infinitary formulas
(denoted .Z,;») over a first-order language X are defined
the same way as ordinary first-order formulas, with the
following differences:

m — For any a < k and any collection {p¢ | £ < a} of formulas
in %, over less than \ free variables altogether, the
conjunction A£<acp§ is a formula in Z,,.

— For any family (x, | n < ), with 3 < A, of free variables
of a formula ¢ € Zx, the formula (3,<sx;)p is in L.

Freshness and

logic m Extension to x = oo (yields .Z5)): we allow arbitrary
conjunctions on sets of formulas over less than A free
variables altogether, and A-small quantifications.

m Ordinary first-order logic: it is Z,,..
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m Torsion-freeness (of a group) is %"

/)(\O<n<w(vx)(x" —1=x=1).
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From fresh to elementary

Purity and

lieliness For any first-order language %, we denote by Str ¥ the

(in categorical

LSO category of all X-structures with X-homomorphisms.

Proposition (W 2019)

Let A be an infinite regular cardinal and let ¥ be a first-order
language. Then every A-fresh homomorphism f: A — B
in StrX is an Z,-elementary embedding.

m This says that A |= ¢(3) iff B |= ¢(fa), whenever ¢ is an
im=s o ZLoon sentence with parameters 3 from A. This is proved
- by induction on the complexity of ¢.

m The case where ¢ is atomic is not completely trivial, and
already follows from the A-purity of f. Thus f is an
embedding.
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From functor to freshness

Purity and The following says that functors from 9i,;(Q2) to a category €

freshness

(G¥SSIEl  create lots of fresh morphisms in C.

model theory)

Proposition (W 2019)

Let A be an infinite regular cardinal, let C be a category, let Q
be a set, and let ': Pin;(2) — € be a A-continuous functor.
Then for every f: X — Y in Piy;(2) with card X > A, the
morphism [(f): ['(X) — I'(Y) is A-fresh. In particular,

if @ = Str X for a first-order language X, then '(f) is an
Zor-elementary embedding.

Freshness and
logic

m A\-continuous means that I preserves A-directed colimits.
That is, from every A-directed union X = (J;c; X; we get a
col!m|t F(X.) = I|_m>ie r(X;).

m This result is a particular case of a more general

preservation result of freshness under functors.
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Anti-elementarity

Purity and
freshness
(in categorical

model theory) Deﬁnition (W 2019)

A class C of objects in a category § is anti-elementary in 8 if
there are arbitrarily large pairs A < x of cardinals, with A
regular, and A-continuous functors I': Binj(k) — 8 such that
(A) € Cand (k) ¢ C.

m By the previous result, the canonical morphism
et : T(A) = (k) is A-fresh. Thus, if 8 = StrX for some
R first-order language X, then e} is an £, 5-elementary
embedding.
m In particular, € is not the class of all models of any class
of £, sentences.
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Purity and
(inf’;st*;y;fjcal Typically, § = Str¥ and C is the range of a functor
model theory) ®: A — 8 R finitely generated ideals of R (rings),
R — nonstable K-theory of R (rings),

G +— Stone dual of the spectrum of G (lattice-ordered

groups), and so on.

m The main difficulty is the construction of the functor I'. It
relies on the existence of a “®-commutative diagram” A
from A, indexed by (usually) a lattice P, such that
PA 2 X for any commutative diagram X from A.

Freshness and

logic m Using infinite combinatorial properties of P, a certain
“lifter” 9: P(k) — P is constructed (usually x > A*",
where n = dim P — 1), then a "P-scaled Boolean algebra”
F(P(x)), and then a “condensate” F(P(x)) @3 A.

m The functor I is given by I'(X) = F(P(X)) @g A.
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Thanks for your attention!
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