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Motivation

We would like to prove that certain “naturally defined”
categories C of models (say of first-order theories) are
“intractable”.

Examples: Posets of finitely generated ideals of rings,
Ordered K0 groups of unit-regular rings, Stone duals of
spectra of abelian lattice-ordered groups, . . . and many
other classes.

A way to define intractability is to state that C is not the
class of models of any infinitary (not just first-order!)
sentence.

In what follows, we introduce a way to construct, for any
infinite cardinal λ, an L∞λ-elementary submodel A of a
model B, such that A ∈ C and B /∈ C.

This proves intractability of C, in the sense above.
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Basics

Definition (Prüfer 1923)

A subgroup A of an abelian group B is a pure subgroup if
A ∩ nB = nA for every integer n.

Basic facts:

Purity means that ∀a ∈ A, ∀n ∈ Z \ {0}, if the equation
nx = a has a solution in B, then it has one in A.

If B/A is torsion-free, then A is pure in B (Proof: let
nb = a with b ∈ B; this means that n(b + A) = 0 within
B/A; since B/A is torsion-free, b + A = 0, that is, b ∈ A).

Every direct summand (equivalently, retract) of an abelian
group is a pure subgroup. The converse fails.
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Finite equation systems and pure subgroups

Finite equation system over an abelian group A:

k11x1 + · · ·+ k1nxn = a1;

k21x1 + · · ·+ k2nxn = a2;

· · · · · · · · ·
km1x1 + · · ·+ kmnxn = am,

with all kij ∈ Z and all ai ∈ A.

Theorem (folklore)

A subgroup A is pure in B iff every finite equation system
over A, solvable in B, is also solvable in A.

Proof: Z is a PID, thus, letting K = (kij)i ,j , there are invertible
matrices P and Q such that PKQ is diagonal; this reduces the
problem to a system of the form djxj = a′j (1 ≤ j ≤ n), where
all a′j ∈ A and di ∈ Z.
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Σ-structures

First-order language: Σ = (F,R, ar) with F ∩ R = ∅ and
ar : F ∪ R→ N with 0 /∈ ar[R].

The elements of F are the
function symbols, the elements of R are the relation
symbols, and ar(s) is the arity of a symbol s. The
elements of F with arity 0 are the constant symbols. Add
to this an infinite set (“alphabet”), the variables.
model for Σ (or Σ-structure): A = (A, sA)s∈F∪R, where

— RA ⊆ Aar(R) for each R ∈ R;
— f A : Aar(f ) → A for each f ∈ F with nonzero arity;
— cA ∈ A for each constant symbol c .

Terms: closure of variables under all functions symbols.
atomic formulas: Rt1 . . . tn, where the ti are terms and R
is either the equality (n = 2), or a relation symbol
(n = ar(R)).
First-order formulas obtained by closing the atomic
formulas under ∧, ¬, ∃ (thus also ∨, ∀).
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elements of F with arity 0 are the constant symbols. Add
to this an infinite set (“alphabet”), the variables.
model for Σ (or Σ-structure): A = (A, sA)s∈F∪R, where

— RA ⊆ Aar(R) for each R ∈ R;
— f A : Aar(f ) → A for each f ∈ F with nonzero arity;
— cA ∈ A for each constant symbol c .

Terms: closure of variables under all functions symbols.
atomic formulas: Rt1 . . . tn, where the ti are terms and R
is either the equality (n = 2), or a relation symbol
(n = ar(R)).

First-order formulas obtained by closing the atomic
formulas under ∧, ¬, ∃ (thus also ∨, ∀).



Purity and
freshness

(in categorical
model theory)

Motivation

Purity for
abelian groups

Purity for
Σ-structures

Purity in
categories

λ-freshness

Freshness and
logic

Σ-structures

First-order language: Σ = (F,R, ar) with F ∩ R = ∅ and
ar : F ∪ R→ N with 0 /∈ ar[R]. The elements of F are the
function symbols, the elements of R are the relation
symbols, and ar(s) is the arity of a symbol s. The
elements of F with arity 0 are the constant symbols. Add
to this an infinite set (“alphabet”), the variables.
model for Σ (or Σ-structure): A = (A, sA)s∈F∪R, where

— RA ⊆ Aar(R) for each R ∈ R;
— f A : Aar(f ) → A for each f ∈ F with nonzero arity;
— cA ∈ A for each constant symbol c .

Terms: closure of variables under all functions symbols.
atomic formulas: Rt1 . . . tn, where the ti are terms and R
is either the equality (n = 2), or a relation symbol
(n = ar(R)).
First-order formulas obtained by closing the atomic
formulas under ∧, ¬, ∃ (thus also ∨, ∀).



Purity and
freshness

(in categorical
model theory)

Motivation

Purity for
abelian groups

Purity for
Σ-structures

Purity in
categories

λ-freshness

Freshness and
logic

Σ-structures (cont’d)

Formulas with parameters from a model A: some free
variables of ϕ are assigned to elements of A.

Satisfaction of a closed (no free variables) formula ϕ with
parameters from a model A (in symbol A |= ϕ) defined by
induction on the complexity of ϕ, the usual way.

Elementary equivalence of models A and B: A |= ϕ iff
B |= ϕ, for every closed formula ϕ.

A map f : A→ B is an elementary embedding if A |= ϕ(~a)
⇔ B |= ϕ(f ~a), for every closed formula ϕ with
parameters ~a from A.

Direction ⇒ (resp., ⇔) for atomic ϕ: we say that f is a
homomorphism (resp., an embedding).

Those concepts can be extended to many logics (special
sets of formulas, infinitary logics. . . ).
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Purity for Σ-structures

An atomic system over a model A is a set of atomic
formulas with parameters from A.

For any homomorphism f : A→ B, if an atomic
system Φ(~a) over A has a solution over A, then Φ(f ~a) has
a solution over B (straightforward).

A homomorphism f : A→ B is pure if for every finite
atomic system Φ(~a) over A, if Φ(f ~a) is solvable in B,
then Φ(~a) is solvable in A.

Equivalently: for every finite conjunction ϕ of atomic
formulas, B |= ∃~xϕ(f ~a, ~x) implies A |= ∃~xϕ(~a, ~x).

For abelian groups, we recover the usual concept of purity.
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A categorical formulation of purity

Proposition (Adámek and Rosický 1994)

Let Σ be a finite first-order language. An embedding
f : A→ B, of models of Σ, is pure iff for all finitely
presentable A′ and B ′ and all homomorphisms a : A′ → A,
b : B ′ → B, and f ′ : A′ → B ′, if f ◦ a = b ◦ f ′, then there
exists a homomorphism g : B ′ → A such that a = g ◦ f ′.

A′ B ′ A′ B ′

A B A B

f ′

a b

f ′

a b
g

f f

A model C is finitely presentable if for every directed colimit
S = lim−→i∈I Si , every homomorphism c : C → S factors “in an
essentially unique way” through some Si .
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λ-purity in an arbitrary category

Purity is thus a categorical concept.

Can be extended to λ-purity, for any infinite regular
cardinal λ (so purity is just ω-purity).

Definition (Adámek and Rosický 1994)

Let C be a category and let λ be an infinite regular cardinal. A
morphism f : A→ B in C is λ-pure iff for all λ-presentable A′

and B ′ and all morphisms a : A′ → A, b : B ′ → B, and
f ′ : A′ → B ′, if f ◦ a = b ◦ f ′, then there exists a morphism
g : B ′ → A such that a = g ◦ f ′.

Can be expressed in terms of λ-small atomic systems.
λ-presentability defined the same way as finite
presentability, now with I λ-directed (every λ-small subset
has an upper bound) instead of just directed (so λ-purity
gets stronger as λ increases).
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Let C be a category and let λ be an infinite regular cardinal. A
morphism f : A→ B in C is λ-pure iff for all λ-presentable A′

and B ′ and all morphisms a : A′ → A, b : B ′ → B, and
f ′ : A′ → B ′, if f ◦ a = b ◦ f ′, then there exists a morphism
g : B ′ → A such that a = g ◦ f ′.

Can be expressed in terms of λ-small atomic systems.
λ-presentability defined the same way as finite
presentability, now with I λ-directed (every λ-small subset
has an upper bound) instead of just directed (so λ-purity
gets stronger as λ increases).



Purity and
freshness

(in categorical
model theory)

Motivation

Purity for
abelian groups

Purity for
Σ-structures

Purity in
categories

λ-freshness

Freshness and
logic

λ-purity in an arbitrary category

Purity is thus a categorical concept.
Can be extended to λ-purity, for any infinite regular
cardinal λ (so purity is just ω-purity).
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λ-freshness

Even “∞-purity” of f : A→ B just means that f has a
retraction (i.e., (∃g)(g ◦ f = id)),

which does not imply that f
is an elementary embedding. We need a stronger concept.

Definition (W 2019)

Let C be a category and let λ be an infinite regular cardinal. A
morphism f : A→ B in C is λ-fresh if for all λ-presentable A′

and B ′ and all morphisms a : A′ → A, b : B ′ → B, and
f ′ : A′ → B ′, if f ◦ a = b ◦ f ′, then there are an
automorphism s of B and a morphism g : B ′ → A such that
a = g ◦ f ′ and f ◦ g = s ◦ b.

A′ B ′ A′ B ′ B

A B A B

f ′

a b

f ′

a sb
g

b

s

f f
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The symmetric category Pinj(Ω)

Definition

Define the symmetric category over a set Ω, and denote it
by Pinj(Ω), by the one whose objects are the subsets of Ω, and
whose morphisms are the one-to-one maps f : X � Y where
X ,Y ⊆ Ω.

The only compositions occurring in Pinj(Ω) are the g ◦ f ,
where f : X � Y and g : Y � Z (and
(g ◦ f )(x) = g(f (x)) as usual).

Directed colimits in Pinj(Ω): X = lim−→i∈I Xi means that up

to isomorphism, X =
⋃

i∈I Xi (directed union).

A subset X ⊆ Ω is λ-presentable, within Pinj(Ω), iff
cardX < λ.
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Purity and freshness on symmetric categories

Proposition (W 2019)

Let λ be an infinite regular cardinal, let Ω be a set, and let
f : A � B in Pinj(Ω). The following are equivalent:

1 f is λ-fresh.

2 f is λ-pure.

3 Either f is a bijection or λ ≤ cardA.

Outline of proof of the interesting direction (3)⇒(1):

Let us suppose that f is the inclusion map A ↪→ B with
λ ≤ cardA.

Given λ-small B ′ ⊂ B and A′ ⊆ A ∩ B ′, we must find a
permutation σ of B such that σ�A′ = id and σB ′ ⊆ A.

Since cardB ′ < λ ≤ cardA, there is enough room in A for
this.
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Infinitary languages

For cardinals κ and λ with κ ≥ λ, infinitary formulas
(denoted Lκλ) over a first-order language Σ are defined
the same way as ordinary first-order formulas, with the
following differences:

— For any α < κ and any collection {ϕξ | ξ < α} of formulas
in Lκλ, over less than λ free variables altogether, the
conjunction

∧∧
ξ<αϕξ is a formula in Lκλ.

— For any family (xη | η < β), with β < λ, of free variables
of a formula ϕ ∈ Lκλ, the formula (∃η<βxη)ϕ is in Lκλ.

Extension to κ =∞ (yields L∞λ): we allow arbitrary
conjunctions on sets of formulas over less than λ free
variables altogether, and λ-small quantifications.

Ordinary first-order logic: it is Lωω.
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Examples outside first-order logic

Finiteness (of the ambiant universe) is Lω1ω:∨∨
n<ω

(∃i<nxi )(∀x)
∨∨

i<n
(x = xi ) .

Well-foundedness (of the ambiant poset) is Lω1ω1 :

(∀n<ωxn)
∨∨

n<ω
(xn+1 6< xn) .

Torsion-freeness (of a group) is Lω1ω:∧∧
0<n<ω

(∀x)(xn = 1⇒ x = 1) .
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From fresh to elementary

For any first-order language Σ, we denote by StrΣ the
category of all Σ-structures with Σ-homomorphisms.

Proposition (W 2019)

Let λ be an infinite regular cardinal and let Σ be a first-order
language. Then every λ-fresh homomorphism f : A→ B
in StrΣ is an L∞λ-elementary embedding.

This says that A |= ϕ(~a) iff B |= ϕ(f ~a), whenever ϕ is an
L∞λ sentence with parameters ~a from A. This is proved
by induction on the complexity of ϕ.

The case where ϕ is atomic is not completely trivial, and
already follows from the λ-purity of f . Thus f is an
embedding.
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From functor to freshness

The following says that functors from Pinj(Ω) to a category C

create lots of fresh morphisms in C.

Proposition (W 2019)

Let λ be an infinite regular cardinal, let C be a category, let Ω
be a set, and let Γ: Pinj(Ω)→ C be a λ-continuous functor.

Then for every f : X � Y in Pinj(Ω) with cardX ≥ λ, the
morphism Γ(f ) : Γ(X )→ Γ(Y ) is λ-fresh. In particular,
if C = StrΣ for a first-order language Σ, then Γ(f ) is an
L∞λ-elementary embedding.

λ-continuous means that Γ preserves λ-directed colimits.
That is, from every λ-directed union X =

⋃
i∈I Xi we get a

colimit Γ(X ) = lim−→i∈I Γ(Xi ).

This result is a particular case of a more general
preservation result of freshness under functors.
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Anti-elementarity

Definition (W 2019)

A class C of objects in a category S is anti-elementary in S if
there are arbitrarily large pairs λ < κ of cardinals, with λ
regular, and λ-continuous functors Γ: Pinj(κ)→ S such that
Γ(λ) ∈ C and Γ(κ) /∈ C.

By the previous result, the canonical morphism
eκλ : Γ(λ)→ Γ(κ) is λ-fresh. Thus, if S = StrΣ for some
first-order language Σ, then eκλ is an L∞λ-elementary
embedding.

In particular, C is not the class of all models of any class
of L∞λ sentences.
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of L∞λ sentences.
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Where does Γ come from?

Typically, S = StrΣ and C is the range of a functor
Φ: A→ S:

R 7→ finitely generated ideals of R (rings),
R 7→ nonstable K-theory of R (rings),
G 7→ Stone dual of the spectrum of G (lattice-ordered
groups), and so on.

The main difficulty is the construction of the functor Γ. It
relies on the existence of a “Φ-commutative diagram” ~A
from A, indexed by (usually) a lattice P, such that
Φ~A 6∼= Φ~X for any commutative diagram ~X from A.

Using infinite combinatorial properties of P, a certain
“lifter” ∂ : P〈κ〉 → P is constructed (usually κ ≥ λ+n,
where n = dimP − 1), then a “P-scaled Boolean algebra”
F(P〈κ〉), and then a “condensate” F(P〈κ〉)⊗λΦ ~A.

The functor Γ is given by Γ(X ) = F(P〈X 〉)⊗λΦ ~A.
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Thanks for your attention!
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