Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic

Purity and freshness (in categorical model theory)

Friedrich Wehrung

Université de Caen LMNO, CNRS UMR 6139 Département de Mathématiques 14032 Caen cedex *E-mail:* friedrich.wehrung01@unicaen.fr *URL:* http://wehrungf.users.lmno.cnrs.fr

September 2020

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic J. Adámek and J. Rosický, *Locally Presentable and* Accessible Categories, London Mathematical Society Lecture Notes Series 189, Cambridge University Press, Cambridge, 1994.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structure

Purity in categories

 λ -freshness

Freshness and logic

- J. Adámek and J. Rosický, Locally Presentable and Accessible Categories, London Mathematical Society Lecture Notes Series 189, Cambridge University Press, Cambridge, 1994.
- P. Gillibert and F. Wehrung, From Objects to Diagrams for Ranges of Functors, Springer Lecture Notes 2029, Springer, Heidelberg, 2011.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structure

Purity in categories

 λ -freshness

Freshness and logic

- J. Adámek and J. Rosický, *Locally Presentable and* Accessible Categories, London Mathematical Society Lecture Notes Series 189, Cambridge University Press, Cambridge, 1994.
- P. Gillibert and F. Wehrung, From Objects to Diagrams for Ranges of Functors, Springer Lecture Notes 2029, Springer, Heidelberg, 2011.
- **3** F. Wehrung, *From non-commutative diagrams to anti-elementary classes*, preprint hal-02000602, J. Math. Logic, to appear.

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structure

Purity in categories

 λ -freshness

Freshness and logic

- J. Adámek and J. Rosický, Locally Presentable and Accessible Categories, London Mathematical Society Lecture Notes Series 189, Cambridge University Press, Cambridge, 1994.
- P. Gillibert and F. Wehrung, From Objects to Diagrams for Ranges of Functors, Springer Lecture Notes 2029, Springer, Heidelberg, 2011.
- **3** F. Wehrung, *From non-commutative diagrams to anti-elementary classes*, preprint hal-02000602, J. Math. Logic, to appear.
- 4 References [2] and [3] above can both be downloaded from https://wehrungf.users.lmno.cnrs.fr/pubs.html .

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic We would like to prove that certain "naturally defined" categories C of models (say of first-order theories) are "intractable".

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic We would like to prove that certain "naturally defined" categories C of models (say of first-order theories) are "intractable".

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Examples:

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic

- We would like to prove that certain "naturally defined" categories C of models (say of first-order theories) are "intractable".
- **Examples:** Posets of finitely generated ideals of rings,

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic

- We would like to prove that certain "naturally defined" categories C of models (say of first-order theories) are "intractable".
- Examples: Posets of finitely generated ideals of rings, Ordered K₀ groups of unit-regular rings,

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic

- We would like to prove that certain "naturally defined" categories C of models (say of first-order theories) are "intractable".
- Examples: Posets of finitely generated ideals of rings, Ordered K₀ groups of unit-regular rings, Stone duals of spectra of abelian lattice-ordered groups,

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic

- We would like to prove that certain "naturally defined" categories C of models (say of first-order theories) are "intractable".
- Examples: Posets of finitely generated ideals of rings, Ordered K₀ groups of unit-regular rings, Stone duals of spectra of abelian lattice-ordered groups, ... and many other classes.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic

- We would like to prove that certain "naturally defined" categories C of models (say of first-order theories) are "intractable".
- Examples: Posets of finitely generated ideals of rings, Ordered K₀ groups of unit-regular rings, Stone duals of spectra of abelian lattice-ordered groups, ... and many other classes.
 - A way to define intractability is to state that C is not the class of models of any infinitary (not just first-order!) sentence.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic

- We would like to prove that certain "naturally defined" categories C of models (say of first-order theories) are "intractable".
- Examples: Posets of finitely generated ideals of rings, Ordered K₀ groups of unit-regular rings, Stone duals of spectra of abelian lattice-ordered groups, ... and many other classes.
- A way to define intractability is to state that C is not the class of models of any infinitary (not just first-order!) sentence.
- In what follows, we introduce a way to construct, for any infinite cardinal λ, an L_{∞λ}-elementary submodel A of a model B, such that A ∈ C and B ∉ C.

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic

- We would like to prove that certain "naturally defined" categories C of models (say of first-order theories) are "intractable".
- Examples: Posets of finitely generated ideals of rings, Ordered K₀ groups of unit-regular rings, Stone duals of spectra of abelian lattice-ordered groups, ... and many other classes.
- A way to define intractability is to state that C is not the class of models of any infinitary (not just first-order!) sentence.
- In what follows, we introduce a way to construct, for any infinite cardinal λ, an L_{∞λ}-elementary submodel A of a model B, such that A ∈ C and B ∉ C.
- This proves intractability of C, in the sense above.

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic

Definition (Prüfer 1923)

A subgroup A of an abelian group B is a pure subgroup if $A \cap nB = nA$ for every integer n.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic

Definition (Prüfer 1923)

A subgroup A of an abelian group B is a pure subgroup if $A \cap nB = nA$ for every integer n.

Basic facts:

Purity means that $\forall a \in A, \forall n \in \mathbb{Z} \setminus \{0\}$, if the equation nx = a has a solution in B, then it has one in A.

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic

Definition (Prüfer 1923)

A subgroup A of an abelian group B is a pure subgroup if $A \cap nB = nA$ for every integer n.

Basic facts:

Purity means that $\forall a \in A, \forall n \in \mathbb{Z} \setminus \{0\}$, if the equation nx = a has a solution in B, then it has one in A.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• If B/A is torsion-free, then A is pure in B

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic

Definition (Prüfer 1923)

A subgroup A of an abelian group B is a pure subgroup if $A \cap nB = nA$ for every integer n.

Basic facts:

- Purity means that $\forall a \in A, \forall n \in \mathbb{Z} \setminus \{0\}$, if the equation nx = a has a solution in B, then it has one in A.
- If B/A is torsion-free, then A is pure in B (*Proof*: let nb = a with $b \in B$; this means that n(b + A) = 0 within B/A; since B/A is torsion-free, b + A = 0, that is, $b \in A$).

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic

Definition (Prüfer 1923)

A subgroup A of an abelian group B is a pure subgroup if $A \cap nB = nA$ for every integer n.

Basic facts:

- Purity means that $\forall a \in A, \forall n \in \mathbb{Z} \setminus \{0\}$, if the equation nx = a has a solution in B, then it has one in A.
- If B/A is torsion-free, then A is pure in B (*Proof*: let nb = a with $b \in B$; this means that n(b + A) = 0 within B/A; since B/A is torsion-free, b + A = 0, that is, $b \in A$).
- Every direct summand (equivalently, retract) of an abelian group is a pure subgroup.

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic

Definition (Prüfer 1923)

A subgroup A of an abelian group B is a pure subgroup if $A \cap nB = nA$ for every integer n.

Basic facts:

- Purity means that $\forall a \in A, \forall n \in \mathbb{Z} \setminus \{0\}$, if the equation nx = a has a solution in B, then it has one in A.
- If B/A is torsion-free, then A is pure in B (*Proof*: let nb = a with $b \in B$; this means that n(b + A) = 0 within B/A; since B/A is torsion-free, b + A = 0, that is, $b \in A$).
- Every direct summand (equivalently, retract) of an abelian group is a pure subgroup. The converse fails.

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic Finite equation system over an abelian group A:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 $\lambda ext{-freshness}$

Freshness and logic Finite equation system over an abelian group A:

$$k_{11}x_1 + \dots + k_{1n}x_n = a_1;$$

 $k_{21}x_1 + \dots + k_{2n}x_n = a_2;$
 $\dots \dots \dots \dots$

$$k_{m1}x_1+\cdots+k_{mn}x_n=a_m,$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic Finite equation system over an abelian group A:

$$k_{11}x_1 + \dots + k_{1n}x_n = a_1;$$

 $k_{21}x_1 + \dots + k_{2n}x_n = a_2;$

$$k_{m1}x_1+\cdots+k_{mn}x_n=a_m,$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

with all $k_{ij} \in \mathbb{Z}$ and all $a_i \in A$.

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 $\lambda ext{-freshness}$

Freshness and logic Finite equation system over an abelian group A:

$$k_{11}x_1 + \dots + k_{1n}x_n = a_1;$$

 $k_{21}x_1 + \dots + k_{2n}x_n = a_2;$

. . .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$k_{m1}x_1+\cdots+k_{mn}x_n=a_m,$$

with all $k_{ij} \in \mathbb{Z}$ and all $a_i \in A$.

Theorem (folklore)

A subgroup A is pure in B iff every finite equation system over A, solvable in B, is also solvable in A.

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic

Finite equation system over an abelian group A:

. . .

$$k_{11}x_1 + \dots + k_{1n}x_n = a_1;$$

 $k_{21}x_1 + \dots + k_{2n}x_n = a_2;$

. . .

$$k_{m1}x_1+\cdots+k_{mn}x_n=a_m,$$

with all $k_{ij} \in \mathbb{Z}$ and all $a_i \in A$.

Theorem (folklore)

A subgroup A is pure in B iff every finite equation system over A, solvable in B, is also solvable in A.

Proof. \mathbb{Z} is a PID, thus, letting $K = (k_{ij})_{i,j}$, there are invertible matrices P and Q such that PKQ is diagonal; this reduces the problem to a system of the form $d_j x_j = a'_j$ $(1 \le j \le n)$, where all $a'_j \in A$ and $d_i \in \mathbb{Z}$.

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ -structures

Purity in categories

 $\lambda ext{-freshness}$

Freshness and logic ■ First-order language: $\Sigma = (\mathcal{F}, \mathcal{R}, ar)$ with $\mathcal{F} \cap \mathcal{R} = \emptyset$ and $ar: \mathcal{F} \cup \mathcal{R} \to \mathbb{N}$ with $0 \notin ar[\mathcal{R}]$.

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ -structures

Purity in categories

 λ -freshness

Freshness and logic First-order language: Σ = (𝔅, 𝔅, ar) with 𝔅 ∩ 𝔅 = Ø and ar: 𝔅 ∪ 𝔅 → ℕ with 0 ∉ ar[𝔅]. The elements of 𝔅 are the function symbols, the elements of 𝔅 are the relation symbols, and ar(𝔅) is the arity of a symbol 𝔅. The elements of 𝔅 with arity 0 are the constant symbols.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ -structures

Purity in categories

 λ -freshness

Freshness and logic First-order language: Σ = (𝔅, 𝔅, ar) with 𝔅 ∩ 𝔅 = 𝔅 and ar: 𝔅 ∪ 𝔅 → ℕ with 0 ∉ ar[𝔅]. The elements of 𝔅 are the function symbols, the elements of 𝔅 are the relation symbols, and ar(s) is the arity of a symbol s. The elements of 𝔅 with arity 0 are the constant symbols. Add to this an infinite set ("alphabet"), the variables.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ -structures

Purity in categories

 λ -freshness

Freshness and logic First-order language: Σ = (𝔅, 𝔅, ar) with 𝔅 ∩ 𝔅 = Ø and ar: 𝔅 ∪ 𝔅 → ℕ with 0 ∉ ar[𝔅]. The elements of 𝔅 are the function symbols, the elements of 𝔅 are the relation symbols, and ar(𝔅) is the arity of a symbol 𝔅. The elements of 𝔅 with arity 0 are the constant symbols. Add to this an infinite set ("alphabet"), the variables.

• model for Σ (or Σ -structure): $\mathbf{A} = (A, s^{\mathbf{A}})_{s \in \mathcal{F} \cup \mathcal{R}}$, where

$$-R^{\mathbf{A}} \subseteq A^{\operatorname{ar}(R)}$$
 for each $R \in \mathbb{R}$;

- $f^{\mathbf{A}}: A^{\operatorname{ar}(f)} \to A$ for each $f \in \mathfrak{F}$ with nonzero arity;

— $c^{\mathbf{A}} \in A$ for each constant symbol c.

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ -structures

Purity in categories

 λ -freshness

Freshness and logic First-order language: Σ = (𝔅, 𝔅, ar) with 𝔅 ∩ 𝔅 = Ø and ar: 𝔅 ∪ 𝔅 → ℕ with 0 ∉ ar[𝔅]. The elements of 𝔅 are the function symbols, the elements of 𝔅 are the relation symbols, and ar(s) is the arity of a symbol s. The elements of 𝔅 with arity 0 are the constant symbols. Add to this an infinite set ("alphabet"), the variables.

• model for Σ (or Σ -structure): $\mathbf{A} = (A, s^{\mathbf{A}})_{s \in \mathcal{F} \cup \mathcal{R}}$, where $\mathbf{A} = (A, s^{\mathbf{A}})_{s \in \mathcal{F} \cup \mathcal{R}}$

$$- R \subseteq A \quad \text{for each } R \in \mathcal{K},$$

 $-f^{\mathbf{A}}: A^{\operatorname{ar}(f)} \to A$ for each $f \in \mathcal{F}$ with nonzero arity;

— $c^{\mathbf{A}} \in A$ for each constant symbol c.

Terms: closure of variables under all functions symbols.

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ -structures

Purity in categories

 λ -freshness

Freshness and logic First-order language: Σ = (𝔅, 𝔅, ar) with 𝔅 ∩ 𝔅 = 𝔅 and ar: 𝔅 ∪ 𝔅 → ℕ with 0 ∉ ar[𝔅]. The elements of 𝔅 are the function symbols, the elements of 𝔅 are the relation symbols, and ar(𝔅) is the arity of a symbol 𝔅. The elements of 𝔅 with arity 0 are the constant symbols. Add to this an infinite set ("alphabet"), the variables.

- model for Σ (or Σ -structure): $\mathbf{A} = (A, s^{\mathbf{A}})_{s \in \mathcal{F} \cup \mathcal{R}}$, where
 - $R^{\mathbf{A}} \subseteq A^{\operatorname{ar}(R)} \text{ for each } R \in \mathfrak{R};$
 - $f^{\mathbf{A}}: A^{\operatorname{ar}(f)} \to A$ for each $f \in \mathcal{F}$ with nonzero arity;
 - $c^{\mathbf{A}} \in A$ for each constant symbol c.
- **Terms**: closure of variables under all functions symbols.
- atomic formulas: Rt₁...t_n, where the t_i are terms and R is either the equality (n = 2), or a relation symbol (n = ar(R)).

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ -structures

Purity in categories

 λ -freshness

Freshness and logic First-order language: Σ = (𝔅, 𝔅, ar) with 𝔅 ∩ 𝔅 = Ø and ar: 𝔅 ∪ 𝔅 → ℕ with 0 ∉ ar[𝔅]. The elements of 𝔅 are the function symbols, the elements of 𝔅 are the relation symbols, and ar(𝔅) is the arity of a symbol 𝔅. The elements of 𝔅 with arity 0 are the constant symbols. Add to this an infinite set ("alphabet"), the variables.

• model for Σ (or Σ -structure): $\mathbf{A} = (A, s^{\mathbf{A}})_{s \in \mathcal{F} \cup \mathcal{R}}$, where

$$- R^{\mathbf{A}} \subseteq A^{\operatorname{ar}(R)} \text{ for each } R \in \mathcal{R};$$

- $f^{\mathbf{A}}: A^{\operatorname{ar}(f)} \to A$ for each $f \in \mathfrak{F}$ with nonzero arity;
- $c^{\mathbf{A}} \in A$ for each constant symbol c.
- **Terms**: closure of variables under all functions symbols.
- atomic formulas: Rt₁...t_n, where the t_i are terms and R is either the equality (n = 2), or a relation symbol (n = ar(R)).
- First-order formulas obtained by closing the atomic formulas under ∧, ¬, ∃ (thus also ∨, ∀).

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ -structures

Purity in categories

 λ -freshness

Freshness and logic Formulas with parameters from a model *A*: some free variables of φ are assigned to elements of *A*.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ -structures

Purity in categories

 λ -freshness

Freshness and logic

- Formulas with parameters from a model A: some free variables of φ are assigned to elements of A.
- Satisfaction of a closed (no free variables) formula φ with parameters from a model A (in symbol A ⊨ φ) defined by induction on the complexity of φ, the usual way.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ -structures

Purity in categories

 λ -freshness

Freshness and logic

- Formulas with parameters from a model A: some free variables of φ are assigned to elements of A.
- Satisfaction of a closed (no free variables) formula φ with parameters from a model A (in symbol A ⊨ φ) defined by induction on the complexity of φ, the usual way.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Elementary equivalence of models \boldsymbol{A} and \boldsymbol{B} : $\boldsymbol{A} \models \varphi$ iff $\boldsymbol{B} \models \varphi$, for every closed formula φ .

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ -structures

Purity in categories

 λ -freshness

Freshness and logic

- Formulas with parameters from a model *A*: some free variables of φ are assigned to elements of *A*.
- Satisfaction of a closed (no free variables) formula φ with parameters from a model A (in symbol A ⊨ φ) defined by induction on the complexity of φ, the usual way.
- Elementary equivalence of models \boldsymbol{A} and \boldsymbol{B} : $\boldsymbol{A} \models \varphi$ iff $\boldsymbol{B} \models \varphi$, for every closed formula φ .
- A map $f: A \to B$ is an elementary embedding if $\mathbf{A} \models \varphi(\vec{a})$ $\Leftrightarrow \mathbf{B} \models \varphi(f\vec{a})$, for every closed formula φ with parameters \vec{a} from \mathbf{A} .

Σ -structures (cont'd)

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ -structures

Purity in categories

 λ -freshness

Freshness and logic

- Formulas with parameters from a model A: some free variables of φ are assigned to elements of A.
- Satisfaction of a closed (no free variables) formula φ with parameters from a model A (in symbol A ⊨ φ) defined by induction on the complexity of φ, the usual way.
- Elementary equivalence of models \boldsymbol{A} and \boldsymbol{B} : $\boldsymbol{A} \models \varphi$ iff $\boldsymbol{B} \models \varphi$, for every closed formula φ .
- A map $f: A \to B$ is an elementary embedding if $\mathbf{A} \models \varphi(\vec{a})$ $\Leftrightarrow \mathbf{B} \models \varphi(f\vec{a})$, for every closed formula φ with parameters \vec{a} from \mathbf{A} .
- Direction ⇒ (resp., ⇔) for atomic φ: we say that f is a homomorphism (resp., an embedding).

Σ -structures (cont'd)

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ -structures

Purity in categories

 λ -freshness

Freshness and logic

- Formulas with parameters from a model *A*: some free variables of φ are assigned to elements of *A*.
- Satisfaction of a closed (no free variables) formula φ with parameters from a model A (in symbol A ⊨ φ) defined by induction on the complexity of φ, the usual way.
- Elementary equivalence of models \boldsymbol{A} and \boldsymbol{B} : $\boldsymbol{A} \models \varphi$ iff $\boldsymbol{B} \models \varphi$, for every closed formula φ .
- A map $f: A \to B$ is an elementary embedding if $\mathbf{A} \models \varphi(\vec{a})$ $\Leftrightarrow \mathbf{B} \models \varphi(f\vec{a})$, for every closed formula φ with parameters \vec{a} from \mathbf{A} .
- Direction ⇒ (resp., ⇔) for atomic φ: we say that f is a homomorphism (resp., an embedding).
- Those concepts can be extended to many logics (special sets of formulas, infinitary logics...).

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ -structures

Purity in categories

 λ -freshness

Freshness and logic ■ An atomic system over a model **A** is a set of atomic formulas with parameters from **A**.

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ -structures

Purity in categories

 λ -freshness

Freshness and logic

- An atomic system over a model **A** is a set of atomic formulas with parameters from **A**.
- For any homomorphism $f: \mathbf{A} \to \mathbf{B}$, if an atomic system $\Phi(\vec{a})$ over \mathbf{A} has a solution over \mathbf{A} , then $\Phi(f\vec{a})$ has a solution over \mathbf{B} (*straightforward*).

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ -structures

Purity in categories

 λ -freshness

Freshness and logic

- An atomic system over a model **A** is a set of atomic formulas with parameters from **A**.
- For any homomorphism $f: \mathbf{A} \to \mathbf{B}$, if an atomic system $\Phi(\vec{a})$ over \mathbf{A} has a solution over \mathbf{A} , then $\Phi(f\vec{a})$ has a solution over \mathbf{B} (*straightforward*).

• A homomorphism $f: \mathbf{A} \to \mathbf{B}$ is pure if for every finite atomic system $\Phi(\vec{a})$ over \mathbf{A} , if $\Phi(f\vec{a})$ is solvable in \mathbf{B} , then $\Phi(\vec{a})$ is solvable in \mathbf{A} .

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ -structures

Purity in categories

 λ -freshness

Freshness and logic

- An atomic system over a model **A** is a set of atomic formulas with parameters from **A**.
- For any homomorphism $f : \mathbf{A} \to \mathbf{B}$, if an atomic system $\Phi(\vec{a})$ over \mathbf{A} has a solution over \mathbf{A} , then $\Phi(f\vec{a})$ has a solution over \mathbf{B} (straightforward).
- A homomorphism $f: \mathbf{A} \to \mathbf{B}$ is pure if for every finite atomic system $\Phi(\vec{a})$ over \mathbf{A} , if $\Phi(f\vec{a})$ is solvable in \mathbf{B} , then $\Phi(\vec{a})$ is solvable in \mathbf{A} .
- Equivalently: for every finite conjunction φ of atomic formulas, $\boldsymbol{B} \models \exists \vec{x} \varphi(f \vec{a}, \vec{x})$ implies $\boldsymbol{A} \models \exists \vec{x} \varphi(\vec{a}, \vec{x})$.

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ -structures

Purity in categories

 λ -freshness

Freshness and logic

- An atomic system over a model **A** is a set of atomic formulas with parameters from **A**.
- For any homomorphism $f: \mathbf{A} \to \mathbf{B}$, if an atomic system $\Phi(\vec{a})$ over \mathbf{A} has a solution over \mathbf{A} , then $\Phi(f\vec{a})$ has a solution over \mathbf{B} (straightforward).
- A homomorphism $f: \mathbf{A} \to \mathbf{B}$ is pure if for every finite atomic system $\Phi(\vec{a})$ over \mathbf{A} , if $\Phi(f\vec{a})$ is solvable in \mathbf{B} , then $\Phi(\vec{a})$ is solvable in \mathbf{A} .
- Equivalently: for every finite conjunction φ of atomic formulas, $\boldsymbol{B} \models \exists \vec{x} \varphi(f \vec{a}, \vec{x})$ implies $\boldsymbol{A} \models \exists \vec{x} \varphi(\vec{a}, \vec{x})$.
- For abelian groups, we recover the usual concept of purity.

A categorical formulation of purity

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ -structures

Purity in categories

 λ -freshness

Freshness and logic

Proposition (Adámek and Rosický 1994)

Let Σ be a finite first-order language. An embedding $f: \mathbf{A} \to \mathbf{B}$, of models of Σ , is pure iff for all finitely presentable \mathbf{A}' and \mathbf{B}' and all homomorphisms $a: \mathbf{A}' \to \mathbf{A}$, $b: \mathbf{B}' \to \mathbf{B}$, and $f': \mathbf{A}' \to \mathbf{B}'$, if $f \circ a = b \circ f'$, then there exists a homomorphism $g: \mathbf{B}' \to \mathbf{A}$ such that $a = g \circ f'$.

A categorical formulation of purity

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ -structures

Purity in categories

 λ -freshness

 $\mathbf{A}' \xrightarrow{f'} \mathbf{B}'$

Freshness and logic

Proposition (Adámek and Rosický 1994)

Let Σ be a finite first-order language. An embedding $f: \mathbf{A} \to \mathbf{B}$, of models of Σ , is pure iff for all finitely presentable \mathbf{A}' and \mathbf{B}' and all homomorphisms $a: \mathbf{A}' \to \mathbf{A}$, $b: \mathbf{B}' \to \mathbf{B}$, and $f': \mathbf{A}' \to \mathbf{B}'$, if $f \circ a = b \circ f'$, then there exists a homomorphism $g: \mathbf{B}' \to \mathbf{A}$ such that $a = g \circ f'$.

 $\mathbf{A}' \xrightarrow{f'} \mathbf{B}'$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

A categorical formulation of purity

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ -structures

Purity in categories

 λ -freshness

Freshness and logic

Proposition (Adámek and Rosický 1994)

Let Σ be a finite first-order language. An embedding $f: \mathbf{A} \to \mathbf{B}$, of models of Σ , is pure iff for all finitely presentable \mathbf{A}' and \mathbf{B}' and all homomorphisms $a: \mathbf{A}' \to \mathbf{A}$, $b: \mathbf{B}' \to \mathbf{B}$, and $f': \mathbf{A}' \to \mathbf{B}'$, if $f \circ a = b \circ f'$, then there exists a homomorphism $g: \mathbf{B}' \to \mathbf{A}$ such that $a = g \circ f'$.

A model C is finitely presentable if for every directed colimit $S = \lim_{i \in I} S_i$, every homomorphism $c: C \to S$ factors "in an essentially unique way" through some S_i .

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 $\lambda ext{-freshness}$

Freshness and logic Purity is thus a categorical concept.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 $\lambda ext{-freshness}$

Freshness and logic

Purity is thus a categorical concept.

Can be extended to λ-purity, for any infinite regular cardinal λ (so purity is just ω-purity).

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic

- Purity is thus a categorical concept.
- Can be extended to λ-purity, for any infinite regular cardinal λ (so purity is just ω-purity).

Definition (Adámek and Rosický 1994)

Let \mathcal{C} be a category and let λ be an infinite regular cardinal. A morphism $f: A \to B$ in \mathcal{C} is λ -pure iff for all λ -presentable A' and B' and all morphisms $a: A' \to A$, $b: B' \to B$, and $f': A' \to B'$, if $f \circ a = b \circ f'$, then there exists a morphism $g: B' \to A$ such that $a = g \circ f'$.

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic

- Purity is thus a categorical concept.
- Can be extended to λ-purity, for any infinite regular cardinal λ (so purity is just ω-purity).

Definition (Adámek and Rosický 1994)

Let \mathcal{C} be a category and let λ be an infinite regular cardinal. A morphism $f: A \to B$ in \mathcal{C} is λ -pure iff for all λ -presentable A' and B' and all morphisms $a: A' \to A$, $b: B' \to B$, and $f': A' \to B'$, if $f \circ a = b \circ f'$, then there exists a morphism $g: B' \to A$ such that $a = g \circ f'$.

• Can be expressed in terms of λ -small atomic systems.

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic

- Purity is thus a categorical concept.
- Can be extended to λ-purity, for any infinite regular cardinal λ (so purity is just ω-purity).

Definition (Adámek and Rosický 1994)

Let \mathcal{C} be a category and let λ be an infinite regular cardinal. A morphism $f: A \to B$ in \mathcal{C} is λ -pure iff for all λ -presentable A' and B' and all morphisms $a: A' \to A$, $b: B' \to B$, and $f': A' \to B'$, if $f \circ a = b \circ f'$, then there exists a morphism $g: B' \to A$ such that $a = g \circ f'$.

- Can be expressed in terms of λ -small atomic systems.
- λ-presentability defined the same way as finite presentability, now with *I* λ-directed (every λ-small subset has an upper bound) instead of just directed

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic

- Purity is thus a categorical concept.
- Can be extended to λ-purity, for any infinite regular cardinal λ (so purity is just ω-purity).

Definition (Adámek and Rosický 1994)

Let \mathcal{C} be a category and let λ be an infinite regular cardinal. A morphism $f: A \to B$ in \mathcal{C} is λ -pure iff for all λ -presentable A' and B' and all morphisms $a: A' \to A$, $b: B' \to B$, and $f': A' \to B'$, if $f \circ a = b \circ f'$, then there exists a morphism $g: B' \to A$ such that $a = g \circ f'$.

- Can be expressed in terms of λ -small atomic systems.
- λ-presentability defined the same way as finite presentability, now with *I* λ-directed (every λ-small subset has an upper bound) instead of just directed (so λ-purity gets stronger as λ increases).

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic

Even " ∞ -purity" of $f: A \to B$ just means that f has a retraction (i.e., $(\exists g)(g \circ f = id)$),

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic Even " ∞ -purity" of $f: A \to B$ just means that f has a retraction (i.e., $(\exists g)(g \circ f = id)$), which does not imply that f is an elementary embedding.

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic Even " ∞ -purity" of $f: A \to B$ just means that f has a retraction (i.e., $(\exists g)(g \circ f = id)$), which does not imply that f is an elementary embedding. We need a stronger concept.

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic Even " ∞ -purity" of $f: A \to B$ just means that f has a retraction (i.e., $(\exists g)(g \circ f = id)$), which does not imply that f is an elementary embedding. We need a stronger concept.

Definition (W 2019)

Let \mathcal{C} be a category and let λ be an infinite regular cardinal. A morphism $f: A \to B$ in \mathcal{C} is λ -fresh if for all λ -presentable A' and B' and all morphisms $a: A' \to A$, $b: B' \to B$, and $f': A' \to B'$, if $f \circ a = b \circ f'$, then there are an automorphism s of B and a morphism $g: B' \to A$ such that $a = g \circ f'$ and $f \circ g = s \circ b$.

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

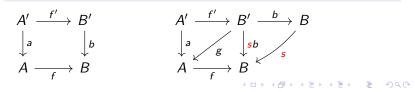
Purity in categories

 $\lambda ext{-freshness}$

Freshness and logic Even " ∞ -purity" of $f: A \to B$ just means that f has a retraction (i.e., $(\exists g)(g \circ f = id)$), which does not imply that f is an elementary embedding. We need a stronger concept.

Definition (W 2019)

Let \mathcal{C} be a category and let λ be an infinite regular cardinal. A morphism $f: A \to B$ in \mathcal{C} is λ -fresh if for all λ -presentable A' and B' and all morphisms $a: A' \to A$, $b: B' \to B$, and $f': A' \to B'$, if $f \circ a = b \circ f'$, then there are an automorphism s of B and a morphism $g: B' \to A$ such that $a = g \circ f'$ and $f \circ g = s \circ b$.



Purity and freshness (in categorical model theory)

Definition

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic Define the symmetric category over a set Ω , and denote it by $\mathfrak{P}_{inj}(\Omega)$, by the one whose objects are the subsets of Ω , and whose morphisms are the one-to-one maps $f: X \rightarrow Y$ where $X, Y \subseteq \Omega$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 $\lambda ext{-freshness}$

Freshness and logic

Definition

Define the symmetric category over a set Ω , and denote it by $\mathfrak{P}_{inj}(\Omega)$, by the one whose objects are the subsets of Ω , and whose morphisms are the one-to-one maps $f: X \rightarrow Y$ where $X, Y \subseteq \Omega$.

The only compositions occurring in 𝔅_{inj}(Ω) are the g ∘ f, where f: X → Y and g: Y → Z (and (g ∘ f)(x) = g(f(x)) as usual).

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 $\lambda ext{-freshness}$

Freshness and logic

Definition

Define the symmetric category over a set Ω , and denote it by $\mathfrak{P}_{inj}(\Omega)$, by the one whose objects are the subsets of Ω , and whose morphisms are the one-to-one maps $f: X \rightarrow Y$ where $X, Y \subseteq \Omega$.

- The only compositions occurring in 𝔅_{inj}(Ω) are the g ∘ f, where f: X → Y and g: Y → Z (and (g ∘ f)(x) = g(f(x)) as usual).
- Directed colimits in 𝔅_{inj}(Ω): X = lim_{i∈I} X_i means that up to isomorphism, X = ⋃_{i∈I} X_i (directed union).

Purity and freshness (in categorical model theory)

Definition

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 $\lambda ext{-freshness}$

Freshness and logic

Define the symmetric category over a set Ω , and denote it by $\mathfrak{P}_{inj}(\Omega)$, by the one whose objects are the subsets of Ω , and whose morphisms are the one-to-one maps $f: X \rightarrow Y$ where $X, Y \subseteq \Omega$.

- The only compositions occurring in 𝔅_{inj}(Ω) are the g ∘ f, where f: X → Y and g: Y → Z (and (g ∘ f)(x) = g(f(x)) as usual).
- Directed colimits in $\mathfrak{P}_{inj}(\Omega)$: $X = \varinjlim_{i \in I} X_i$ means that up to isomorphism, $X = \bigcup_{i \in I} X_i$ (directed union).

A subset X ⊆ Ω is λ-presentable, within 𝔅_{inj}(Ω), iff card X < λ.</p>

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 $\lambda ext{-freshness}$

Freshness and logic

Proposition (W 2019)

Let λ be an infinite regular cardinal, let Ω be a set, and let $f: A \rightarrow B$ in $\mathfrak{P}_{inj}(\Omega)$. The following are equivalent:

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

1 f is λ -fresh.

2 f is λ -pure.

3 Either f is a bijection or $\lambda \leq \operatorname{card} A$.

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 $\lambda ext{-freshness}$

Freshness and logic

Proposition (W 2019)

Let λ be an infinite regular cardinal, let Ω be a set, and let $f: A \rightarrow B$ in $\mathfrak{P}_{inj}(\Omega)$. The following are equivalent:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

1 f is λ -fresh.

2 f is λ -pure.

3 Either f is a bijection or $\lambda \leq \operatorname{card} A$.

Outline of proof of the interesting direction

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 $\lambda ext{-freshness}$

Freshness and logic

Proposition (W 2019)

Let λ be an infinite regular cardinal, let Ω be a set, and let $f: A \rightarrow B$ in $\mathfrak{P}_{inj}(\Omega)$. The following are equivalent:

1 f is λ -fresh.

2 f is λ -pure.

3 Either f is a bijection or $\lambda \leq \operatorname{card} A$.

Outline of proof of the interesting direction $(3) \Rightarrow (1)$:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 $\lambda ext{-freshness}$

Freshness and logic

Proposition (W 2019)

Let λ be an infinite regular cardinal, let Ω be a set, and let $f: A \rightarrow B$ in $\mathfrak{P}_{inj}(\Omega)$. The following are equivalent:

1 f is λ -fresh.

2 f is λ -pure.

3 Either f is a bijection or $\lambda \leq \operatorname{card} A$.

Outline of proof of the interesting direction $(3) \Rightarrow (1)$:

• Let us suppose that f is the inclusion map $A \hookrightarrow B$ with $\lambda \leq \operatorname{card} A$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 $\lambda ext{-freshness}$

Freshness and logic

Proposition (W 2019)

Let λ be an infinite regular cardinal, let Ω be a set, and let $f: A \rightarrow B$ in $\mathfrak{P}_{inj}(\Omega)$. The following are equivalent:

- **1** f is λ -fresh.
- **2** f is λ -pure.
- **3** Either f is a bijection or $\lambda \leq \operatorname{card} A$.

Outline of proof of the interesting direction $(3) \Rightarrow (1)$:

- Let us suppose that f is the inclusion map $A \hookrightarrow B$ with $\lambda \leq \operatorname{card} A$.
- Given λ -small $B' \subset B$ and $A' \subseteq A \cap B'$, we must find a permutation σ of B such that $\sigma \upharpoonright_{A'} = \operatorname{id}$ and $\sigma B' \subseteq A$.

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 $\lambda ext{-freshness}$

Freshness and logic

Proposition (W 2019)

Let λ be an infinite regular cardinal, let Ω be a set, and let $f: A \rightarrow B$ in $\mathfrak{P}_{inj}(\Omega)$. The following are equivalent:

- **1** f is λ -fresh.
- **2** f is λ -pure.
- **3** Either f is a bijection or $\lambda \leq \operatorname{card} A$.

Outline of proof of the interesting direction $(3) \Rightarrow (1)$:

- Let us suppose that f is the inclusion map $A \hookrightarrow B$ with $\lambda \leq \operatorname{card} A$.
- Given λ -small $B' \subset B$ and $A' \subseteq A \cap B'$, we must find a permutation σ of B such that $\sigma \upharpoonright_{A'} = \operatorname{id}$ and $\sigma B' \subseteq A$.
- Since card B' < λ ≤ card A, there is enough room in A for this.</p>

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic

■ For cardinals κ and λ with κ ≥ λ, infinitary formulas (denoted ℒ_{κλ}) over a first-order language Σ are defined the same way as ordinary first-order formulas, with the following differences:

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic

- For cardinals κ and λ with $\kappa \geq \lambda$, infinitary formulas (denoted $\mathscr{L}_{\kappa\lambda}$) over a first-order language Σ are defined the same way as ordinary first-order formulas, with the following differences:
 - For any $\alpha < \kappa$ and any collection $\{\varphi_{\xi} \mid \xi < \alpha\}$ of formulas in $\mathscr{L}_{\kappa\lambda}$, over less than λ free variables altogether, the conjunction $\bigwedge_{\xi < \alpha} \varphi_{\xi}$ is a formula in $\mathscr{L}_{\kappa\lambda}$.
 - For any family $(x_{\eta} | \eta < \beta)$, with $\beta < \lambda$, of free variables of a formula $\varphi \in \mathscr{L}_{\kappa\lambda}$, the formula $(\exists_{\eta < \beta} x_{\eta})\varphi$ is in $\mathscr{L}_{\kappa\lambda}$.

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic

- For cardinals κ and λ with $\kappa \geq \lambda$, infinitary formulas (denoted $\mathscr{L}_{\kappa\lambda}$) over a first-order language Σ are defined the same way as ordinary first-order formulas, with the following differences:
 - For any $\alpha < \kappa$ and any collection $\{\varphi_{\xi} \mid \xi < \alpha\}$ of formulas in $\mathscr{L}_{\kappa\lambda}$, over less than λ free variables altogether, the conjunction $\bigwedge_{\xi < \alpha} \varphi_{\xi}$ is a formula in $\mathscr{L}_{\kappa\lambda}$.
 - For any family $(x_{\eta} | \eta < \beta)$, with $\beta < \lambda$, of free variables of a formula $\varphi \in \mathscr{L}_{\kappa\lambda}$, the formula $(\exists_{\eta < \beta} x_{\eta})\varphi$ is in $\mathscr{L}_{\kappa\lambda}$.
- Extension to κ = ∞ (yields ℒ_{∞λ}): we allow arbitrary conjunctions on sets of formulas over less than λ free variables altogether, and λ-small quantifications.

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic

- For cardinals κ and λ with $\kappa \geq \lambda$, infinitary formulas (denoted $\mathscr{L}_{\kappa\lambda}$) over a first-order language Σ are defined the same way as ordinary first-order formulas, with the following differences:
 - For any $\alpha < \kappa$ and any collection $\{\varphi_{\xi} \mid \xi < \alpha\}$ of formulas in $\mathscr{L}_{\kappa\lambda}$, over less than λ free variables altogether, the conjunction $\bigwedge_{\xi < \alpha} \varphi_{\xi}$ is a formula in $\mathscr{L}_{\kappa\lambda}$.
 - For any family $(x_{\eta} | \eta < \beta)$, with $\beta < \lambda$, of free variables of a formula $\varphi \in \mathscr{L}_{\kappa\lambda}$, the formula $(\exists_{\eta < \beta} x_{\eta})\varphi$ is in $\mathscr{L}_{\kappa\lambda}$.

- Extension to κ = ∞ (yields ℒ_{∞λ}): we allow arbitrary conjunctions on sets of formulas over less than λ free variables altogether, and λ-small quantifications.
- Ordinary first-order logic: it is $\mathscr{L}_{\omega\omega}$.

Examples outside first-order logic

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic

Finiteness (of the ambiant universe) is $\mathscr{L}_{\omega_1\omega}$:

 $\bigvee_{n < \omega} (\exists_{i < n} x_i) (\forall x) \bigvee_{i < n} (x = x_i).$

Examples outside first-order logic

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic

Finiteness (of the ambiant universe) is
$$\mathscr{L}_{\omega_1\omega}$$

$$\bigvee_{n<\omega}(\exists_{i< n}x_i)(\forall x)\bigvee_{i< n}(x=x_i).$$

• Well-foundedness (of the ambiant poset) is $\mathscr{L}_{\omega_1\omega_1}$:

$$(\forall_{n<\omega}x_n) \bigvee_{n<\omega} (x_{n+1} \not< x_n).$$

Examples outside first-order logic

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic

Finiteness (of the ambiant universe) is
$$\mathscr{L}_{\omega_1\omega}$$

$$\bigvee_{n<\omega}(\exists_{i< n}x_i)(\forall x)\bigvee_{i< n}(x=x_i).$$

Well-foundedness (of the ambiant poset) is L_{ω1ω1}:
 (∀_{n<ω}x_n) W_{n<ω} (x_{n+1} ≮ x_n).

Torsion-freeness (of a group) is $\mathscr{L}_{\omega_1\omega}$:

$$\bigwedge_{0 < n < \omega} (\forall x) (x^n = 1 \Rightarrow x = 1).$$

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic

For any first-order language Σ , we denote by **Str** Σ the category of all Σ -structures with Σ -homomorphisms.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic

For any first-order language Σ , we denote by **Str** Σ the category of all Σ -structures with Σ -homomorphisms.

Proposition (W 2019)

Let λ be an infinite regular cardinal and let Σ be a first-order language. Then every λ -fresh homomorphism $f: \mathbf{A} \to \mathbf{B}$ in **Str** Σ is an $\mathscr{L}_{\infty\lambda}$ -elementary embedding.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic

For any first-order language Σ , we denote by **Str** Σ the category of all Σ -structures with Σ -homomorphisms.

Proposition (W 2019)

Let λ be an infinite regular cardinal and let Σ be a first-order language. Then every λ -fresh homomorphism $f : \mathbf{A} \to \mathbf{B}$ in **Str** Σ is an $\mathscr{L}_{\infty\lambda}$ -elementary embedding.

• This says that $\mathbf{A} \models \varphi(\vec{a})$ iff $\mathbf{B} \models \varphi(f\vec{a})$, whenever φ is an $\mathscr{L}_{\infty\lambda}$ sentence with parameters \vec{a} from \mathbf{A} .

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic

For any first-order language Σ , we denote by **Str** Σ the category of all Σ -structures with Σ -homomorphisms.

Proposition (W 2019)

Let λ be an infinite regular cardinal and let Σ be a first-order language. Then every λ -fresh homomorphism $f: \mathbf{A} \to \mathbf{B}$ in **Str** Σ is an $\mathscr{L}_{\infty\lambda}$ -elementary embedding.

• This says that $\mathbf{A} \models \varphi(\vec{a})$ iff $\mathbf{B} \models \varphi(f\vec{a})$, whenever φ is an $\mathscr{L}_{\infty\lambda}$ sentence with parameters \vec{a} from \mathbf{A} . This is proved by induction on the complexity of φ .

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic

For any first-order language Σ , we denote by **Str** Σ the category of all Σ -structures with Σ -homomorphisms.

Proposition (W 2019)

Let λ be an infinite regular cardinal and let Σ be a first-order language. Then every λ -fresh homomorphism $f: \mathbf{A} \to \mathbf{B}$ in **Str** Σ is an $\mathscr{L}_{\infty\lambda}$ -elementary embedding.

- This says that A ⊨ φ(ā) iff B ⊨ φ(fā), whenever φ is an *L*_{∞λ} sentence with parameters ā from A. This is proved by induction on the complexity of φ.
- The case where φ is atomic is not completely trivial, and already follows from the λ-purity of f. Thus f is an embedding.

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic

The following says that functors from $\mathfrak{P}_{inj}(\Omega)$ to a category \mathfrak{C} create lots of fresh morphisms in \mathfrak{C} .

Proposition (W 2019)

Let λ be an infinite regular cardinal, let \mathcal{C} be a category, let Ω be a set, and let $\Gamma : \mathfrak{P}_{inj}(\Omega) \to \mathcal{C}$ be a λ -continuous functor.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic The following says that functors from $\mathfrak{P}_{inj}(\Omega)$ to a category \mathfrak{C} create lots of fresh morphisms in \mathfrak{C} .

Proposition (W 2019)

Let λ be an infinite regular cardinal, let \mathcal{C} be a category, let Ω be a set, and let $\Gamma: \mathfrak{P}_{inj}(\Omega) \to \mathcal{C}$ be a λ -continuous functor. Then for every $f: X \to Y$ in $\mathfrak{P}_{inj}(\Omega)$ with card $X \ge \lambda$, the morphism $\Gamma(f): \Gamma(X) \to \Gamma(Y)$ is λ -fresh.

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic The following says that functors from $\mathfrak{P}_{inj}(\Omega)$ to a category \mathfrak{C} create lots of fresh morphisms in \mathfrak{C} .

Proposition (W 2019)

Let λ be an infinite regular cardinal, let \mathcal{C} be a category, let Ω be a set, and let $\Gamma : \mathfrak{P}_{inj}(\Omega) \to \mathcal{C}$ be a λ -continuous functor. Then for every $f : X \to Y$ in $\mathfrak{P}_{inj}(\Omega)$ with card $X \ge \lambda$, the morphism $\Gamma(f) : \Gamma(X) \to \Gamma(Y)$ is λ -fresh. In particular, if $\mathcal{C} = \operatorname{Str} \Sigma$ for a first-order language Σ , then $\Gamma(f)$ is an $\mathscr{L}_{\infty\lambda}$ -elementary embedding.

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic

The following says that functors from $\mathfrak{P}_{inj}(\Omega)$ to a category \mathfrak{C} create lots of fresh morphisms in \mathfrak{C} .

Proposition (W 2019)

Let λ be an infinite regular cardinal, let \mathcal{C} be a category, let Ω be a set, and let $\Gamma : \mathfrak{P}_{inj}(\Omega) \to \mathcal{C}$ be a λ -continuous functor. Then for every $f : X \to Y$ in $\mathfrak{P}_{inj}(\Omega)$ with card $X \ge \lambda$, the morphism $\Gamma(f) : \Gamma(X) \to \Gamma(Y)$ is λ -fresh. In particular, if $\mathcal{C} = \operatorname{Str} \Sigma$ for a first-order language Σ , then $\Gamma(f)$ is an $\mathscr{L}_{\infty\lambda}$ -elementary embedding.

• λ -continuous means that Γ preserves λ -directed colimits.

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic The following says that functors from $\mathfrak{P}_{inj}(\Omega)$ to a category \mathfrak{C} create lots of fresh morphisms in \mathfrak{C} .

Proposition (W 2019)

Let λ be an infinite regular cardinal, let \mathcal{C} be a category, let Ω be a set, and let $\Gamma : \mathfrak{P}_{inj}(\Omega) \to \mathcal{C}$ be a λ -continuous functor. Then for every $f : X \to Y$ in $\mathfrak{P}_{inj}(\Omega)$ with card $X \ge \lambda$, the morphism $\Gamma(f) : \Gamma(X) \to \Gamma(Y)$ is λ -fresh. In particular, if $\mathcal{C} = \operatorname{Str} \Sigma$ for a first-order language Σ , then $\Gamma(f)$ is an $\mathscr{L}_{\infty\lambda}$ -elementary embedding.

• λ -continuous means that Γ preserves λ -directed colimits. That is, from every λ -directed union $X = \bigcup_{i \in I} X_i$ we get a colimit $\Gamma(X) = \lim_{i \in I} \Gamma(X_i)$.

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic

The following says that functors from $\mathfrak{P}_{inj}(\Omega)$ to a category \mathfrak{C} create lots of fresh morphisms in \mathfrak{C} .

Proposition (W 2019)

Let λ be an infinite regular cardinal, let \mathcal{C} be a category, let Ω be a set, and let $\Gamma: \mathfrak{P}_{inj}(\Omega) \to \mathcal{C}$ be a λ -continuous functor. Then for every $f: X \to Y$ in $\mathfrak{P}_{inj}(\Omega)$ with card $X \ge \lambda$, the morphism $\Gamma(f): \Gamma(X) \to \Gamma(Y)$ is λ -fresh. In particular, if $\mathcal{C} = \operatorname{Str} \Sigma$ for a first-order language Σ , then $\Gamma(f)$ is an $\mathscr{L}_{\infty\lambda}$ -elementary embedding.

- λ -continuous means that Γ preserves λ -directed colimits. That is, from every λ -directed union $X = \bigcup_{i \in I} X_i$ we get a colimit $\Gamma(X) = \varinjlim_{i \in I} \Gamma(X_i)$.
- This result is a particular case of a more general preservation result of freshness under functors.

Definition (W 2019)

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic

A class \mathcal{C} of objects in a category \mathcal{S} is anti-elementary in \mathcal{S} if there are arbitrarily large pairs $\lambda < \kappa$ of cardinals, with λ regular, and λ -continuous functors $\Gamma : \mathfrak{P}_{inj}(\kappa) \to \mathcal{S}$ such that $\Gamma(\lambda) \in \mathcal{C}$ and $\Gamma(\kappa) \notin \mathcal{C}$.

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic

Definition (W 2019)

A class \mathbb{C} of objects in a category S is anti-elementary in S if there are arbitrarily large pairs $\lambda < \kappa$ of cardinals, with λ regular, and λ -continuous functors $\Gamma \colon \mathfrak{P}_{inj}(\kappa) \to S$ such that $\Gamma(\lambda) \in \mathbb{C}$ and $\Gamma(\kappa) \notin \mathbb{C}$.

By the previous result, the canonical morphism $e_{\lambda}^{\kappa} \colon \Gamma(\lambda) \to \Gamma(\kappa)$ is λ -fresh.

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic

Definition (W 2019)

A class \mathbb{C} of objects in a category S is anti-elementary in S if there are arbitrarily large pairs $\lambda < \kappa$ of cardinals, with λ regular, and λ -continuous functors $\Gamma \colon \mathfrak{P}_{inj}(\kappa) \to S$ such that $\Gamma(\lambda) \in \mathbb{C}$ and $\Gamma(\kappa) \notin \mathbb{C}$.

By the previous result, the canonical morphism
e^κ_λ: Γ(λ) → Γ(κ) is λ-fresh. Thus, if S = Str Σ for some first-order language Σ, then e^κ_λ is an ℒ_{∞λ}-elementary embedding.

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic

Definition (W 2019)

A class \mathbb{C} of objects in a category S is anti-elementary in S if there are arbitrarily large pairs $\lambda < \kappa$ of cardinals, with λ regular, and λ -continuous functors $\Gamma \colon \mathfrak{P}_{inj}(\kappa) \to S$ such that $\Gamma(\lambda) \in \mathbb{C}$ and $\Gamma(\kappa) \notin \mathbb{C}$.

- By the previous result, the canonical morphism
 e^κ_λ: Γ(λ) → Γ(κ) is λ-fresh. Thus, if S = Str Σ for some first-order language Σ, then e^κ_λ is an ℒ_{∞λ}-elementary embedding.
- In particular, C is not the class of all models of any class of $\mathscr{L}_{\infty\lambda}$ sentences.

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic

• Typically, $S = \mathbf{Str} \Sigma$ and C is the range of a functor $\Phi: \mathcal{A} \to S$:

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic

• Typically, $S = \operatorname{Str} \Sigma$ and C is the range of a functor $\Phi: \mathcal{A} \to S: R \mapsto \text{finitely generated ideals of } R \text{ (rings)},$ $R \mapsto \text{nonstable K-theory of } R \text{ (rings)},$

 $G \mapsto$ Stone dual of the spectrum of G (lattice-ordered groups), and so on.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structure

Purity in categories

 λ -freshness

Freshness and logic

• Typically, $S = \operatorname{Str} \Sigma$ and C is the range of a functor $\Phi: \mathcal{A} \to S: R \mapsto \text{finitely generated ideals of } R \text{ (rings)},$ $R \mapsto \text{nonstable K-theory of } R \text{ (rings)},$ $G \mapsto \text{Stope dual of the spectrum of } G \text{ (lattice ordered of the spectrum of f of the spectr$

 $G \mapsto$ Stone dual of the spectrum of G (lattice-ordered groups), and so on.

• The main difficulty is the construction of the functor Γ . It relies on the existence of a " Φ -commutative diagram" \vec{A} from \mathcal{A} , indexed by (usually) a lattice P, such that $\Phi \vec{A} \cong \Phi \vec{X}$ for any commutative diagram \vec{X} from \mathcal{A} .

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structure

Purity in categories

 λ -freshness

Freshness and logic

• Typically, $S = \operatorname{Str} \Sigma$ and C is the range of a functor $\Phi: \mathcal{A} \to S: R \mapsto \text{finitely generated ideals of } R \text{ (rings)},$ $R \mapsto \text{nonstable K-theory of } R \text{ (rings)},$ $G \mapsto Stope dual of the spectrum of <math>G$ (lattice ordered)

 $G \mapsto$ Stone dual of the spectrum of G (lattice-ordered groups), and so on.

- The main difficulty is the construction of the functor Γ . It relies on the existence of a " Φ -commutative diagram" \vec{A} from \mathcal{A} , indexed by (usually) a lattice P, such that $\Phi \vec{A} \cong \Phi \vec{X}$ for any commutative diagram \vec{X} from \mathcal{A} .
- Using infinite combinatorial properties of P, a certain "lifter" $\partial: P\langle \kappa \rangle \to P$ is constructed (usually $\kappa \ge \lambda^{+n}$, where $n = \dim P - 1$), then a "*P*-scaled Boolean algebra" $\mathbf{F}(P\langle \kappa \rangle)$, and then a "condensate" $\mathbf{F}(P\langle \kappa \rangle) \otimes_{\Phi}^{\lambda} \vec{A}$.

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structure

Purity in categories

 λ -freshness

Freshness and logic

• Typically, $S = \operatorname{Str} \Sigma$ and C is the range of a functor $\Phi: \mathcal{A} \to S: R \mapsto \text{finitely generated ideals of } R \text{ (rings)},$ $R \mapsto \text{nonstable K-theory of } R \text{ (rings)},$ $G \mapsto \text{Stope dual of the spectrum of } G \text{ (lattice ordered of the spectrum of f of the spectr$

 $G \mapsto$ Stone dual of the spectrum of G (lattice-ordered groups), and so on.

- The main difficulty is the construction of the functor Γ . It relies on the existence of a " Φ -commutative diagram" \vec{A} from \mathcal{A} , indexed by (usually) a lattice P, such that $\Phi \vec{A} \cong \Phi \vec{X}$ for any commutative diagram \vec{X} from \mathcal{A} .
- Using infinite combinatorial properties of P, a certain "lifter" $\partial: P\langle \kappa \rangle \to P$ is constructed (usually $\kappa \ge \lambda^{+n}$, where $n = \dim P - 1$), then a "*P*-scaled Boolean algebra" $\mathbf{F}(P\langle \kappa \rangle)$, and then a "condensate" $\mathbf{F}(P\langle \kappa \rangle) \otimes_{\Phi}^{\lambda} \vec{A}$.

▲□▼▲□▼▲□▼▲□▼ □ ● ●

• The functor Γ is given by $\Gamma(X) = \mathbf{F}(P\langle X \rangle) \otimes_{\Phi}^{\lambda} \vec{A}$.

Purity and freshness (in categorical model theory)

Motivation

Purity for abelian groups

Purity for Σ-structures

Purity in categories

 λ -freshness

Freshness and logic

Thanks for your attention!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ