Intractability for images of certain functors

Aims

Ideals of rings
Infinitary logic
Anti-
elementarity
Getting the functor Γ

Back to the problem on ideals of rings

Friedrich Wehrung

Université de Caen
LMNO, CNRS UMR 6139
Département de Mathématiques
14032 Caen cedex
E-mail: friedrich.wehrung01@unicaen.fr
URL: http://wehrungf.users.Imno.cnrs.fr

March 2021

Main references

Aims
ldeals of rings
Infinitary logic
Anti-
elementarity
Getting the functor Γ

Back to the problem on ideals of rings

1 P. Gillibert and F. Wehrung, From Objects to Diagrams for Ranges of Functors, Lecture Notes in Mathematics, vol. 2029, Springer, Heidelberg, 2011.
2 F. Wehrung, From non-commutative diagrams to anti-elementary classes, hal-02000602, J. Math. Logic, to appear.
3 F. Wehrung, Projective classes as images of accessible functors, in preparation.

General goal

Intractability
for images of certain functors

Aims

Ideals of rings
Infinitary logic
Anti-
elementarity
Getting the
functor Γ
Back to the problem on ideals of rings

- There are numerous mathematical problems stated as "Describe all structures \boldsymbol{M} such that $\varphi(\boldsymbol{M})$ ".

General goal

Intractability
for images of
certain
functors

Aims

Ideals of rings
Infinitary logic
Anti-
elementarity
Getting the
functor Γ
Back to the problem on ideals of rings

- There are numerous mathematical problems stated as "Describe all structures \boldsymbol{M} such that $\varphi(\boldsymbol{M})$ ".
- This looks more like a solution than a problem.

General goal

Intractability
for images of
certain
functors

Aims

Ideals of rings
Infinitary logic
Anti-
elementarity
Getting the
functor Γ
Back to the problem on ideals of rings

- There are numerous mathematical problems stated as "Describe all structures \boldsymbol{M} such that $\varphi(\boldsymbol{M})$ ".
■ This looks more like a solution than a problem. This, in turn, boils down to: What does "describe" mean?

General goal

Intractability
for images of
certain
functors

■ There are numerous mathematical problems stated as "Describe all structures \boldsymbol{M} such that $\varphi(\boldsymbol{M})$ ".
■ This looks more like a solution than a problem. This, in turn, boils down to: What does "describe" mean?

■ We present a method enabling to verify that a given class $\{\boldsymbol{M} \mid \varphi(\boldsymbol{M})\}$ cannot be "described"

General goal

Intractability
for images of
certain
functors

- There are numerous mathematical problems stated as "Describe all structures \boldsymbol{M} such that $\varphi(\boldsymbol{M})$ ".
- This looks more like a solution than a problem. This, in turn, boils down to: What does "describe" mean?

■ We present a method enabling to verify that a given class $\{\boldsymbol{M} \mid \varphi(\boldsymbol{M})\}$ cannot be "described" in certain ways.

An example

Intractability
for images of certain functors

Aims

Ideals of rings
Infinitary logic

Anti-

elementarity
Getting the
functor Γ
Back to the problem on ideals of rings

- A ring consists of a set R, binary operations $+: R \times R \rightarrow R,(x, y) \mapsto x+y, \cdot: R \times R \rightarrow R$, $(x, y) \mapsto x \cdot y$, and constants $0,1 \in R$, subjected to certain rules (e.g., $x \cdot 1=1 \cdot x=x ;(R,+, 0)$ is an abelian group; $x \cdot(y+z)=(x \cdot y)+(x \cdot z)$; etc. $)$.

An example

Intractability
for images of certain functors

Aims

Ideals of rings
Infinitary logic
Anti-
elementarity
Getting the functor Γ

Back to the problem on ideals of rings

- A ring consists of a set R, binary operations $+: R \times R \rightarrow R,(x, y) \mapsto x+y,: R \times R \rightarrow R$, $(x, y) \mapsto x \cdot y$, and constants $0,1 \in R$, subjected to certain rules (e.g., $x \cdot 1=1 \cdot x=x ;(R,+, 0)$ is an abelian group; $x \cdot(y+z)=(x \cdot y)+(x \cdot z)$; etc. $)$.
■ An additive subgroup I of R is an ideal if $I \cdot R \subseteq I$ and $R \cdot I \subseteq I$.

An example

Intractability
for images of certain functors

Aims

Ideals of rings
Infinitary logic
Anti-
elementarity
Getting the functor Γ

Back to the problem on ideals of rings

- A ring consists of a set R, binary operations $+: R \times R \rightarrow R,(x, y) \mapsto x+y, \cdot: R \times R \rightarrow R$, $(x, y) \mapsto x \cdot y$, and constants $0,1 \in R$, subjected to certain rules (e.g., $x \cdot 1=1 \cdot x=x ;(R,+, 0)$ is an abelian group; $x \cdot(y+z)=(x \cdot y)+(x \cdot z)$; etc. $)$.
■ An additive subgroup I of R is an ideal if $I \cdot R \subseteq I$ and $R \cdot I \subseteq I$.

■ The ideals of a ring R form a partially ordered set (poset) (ld R, \subseteq).

An example

- A ring consists of a set R, binary operations $+: R \times R \rightarrow R,(x, y) \mapsto x+y,: R \times R \rightarrow R$, $(x, y) \mapsto x \cdot y$, and constants $0,1 \in R$, subjected to certain rules (e.g., $x \cdot 1=1 \cdot x=x ;(R,+, 0)$ is an abelian group; $x \cdot(y+z)=(x \cdot y)+(x \cdot z)$; etc. $)$.
■ An additive subgroup I of R is an ideal if $I \cdot R \subseteq I$ and $R \cdot I \subseteq I$.
- The ideals of a ring R form a partially ordered set (poset) (ld R, \subseteq).

Question

Describe all posets of the form ($\operatorname{ld} R, \subseteq$).

An example

- A ring consists of a set R, binary operations $+: R \times R \rightarrow R,(x, y) \mapsto x+y, \cdot: R \times R \rightarrow R$, $(x, y) \mapsto x \cdot y$, and constants $0,1 \in R$, subjected to certain rules (e.g., $x \cdot 1=1 \cdot x=x ;(R,+, 0)$ is an abelian group; $x \cdot(y+z)=(x \cdot y)+(x \cdot z)$; etc. $)$.
■ An additive subgroup I of R is an ideal if $I \cdot R \subseteq I$ and $R \cdot I \subseteq I$.
- The ideals of a ring R form a partially ordered set (poset) (ld R, \subseteq).

Question

Describe all posets of the form ($\operatorname{Id} R, \subseteq$).
In that particular case, this will lead to an intractability result.

An observation (unction)

- The assignment $R \mapsto \mathrm{Id} R$, from rings to posets, can be extended to homomorphisms.

Aims

Ideals of rings
Infinitary logic
Anti-
elementarity
Getting the
functor Γ
Back to the problem on ideals of rings

An observation (unctior)

Intractability
for images of certain functors

Aims

Ideals of rings
Infinitary logic
Anti-
elementarity
Getting the
functor Γ
Back to the problem on ideals of rings

■ The assignment $R \mapsto \mathrm{Id} R$, from rings to posets, can be extended to homomorphisms.
■ A map $f: R \rightarrow S$ is a homomorphism if $f(0)=0$, $f(1)=1, f(x+y)=f(x)+f(y)$, and $f(x \cdot y)=f(x) \cdot f(y) \forall x, y \in R$.

An observation (unctor)

Intractability
for images of certain functors

Aims
Ideals of rings
Infinitary logic
Anti-
elementarity
Getting the functor Γ

Back to the problem on ideals of rings

■ The assignment $R \mapsto \mathrm{Id} R$, from rings to posets, can be extended to homomorphisms.
■ A map $f: R \rightarrow S$ is a homomorphism if $f(0)=0$, $f(1)=1, f(x+y)=f(x)+f(y)$, and $f(x \cdot y)=f(x) \cdot f(y) \forall x, y \in R$.
■ For such a map, we can define a map $\operatorname{ld} f: \operatorname{ld} R \rightarrow \operatorname{ld} S$, $X \mapsto$ ideal generated by $f(X)$. This map is order-preserving (in fact it preserves arbitrary ideal sums).

An observation (unction)

■ The assignment $R \mapsto \mathrm{Id} R$, from rings to posets, can be extended to homomorphisms.
■ A map $f: R \rightarrow S$ is a homomorphism if $f(0)=0$, $f(1)=1, f(x+y)=f(x)+f(y)$, and $f(x \cdot y)=f(x) \cdot f(y) \forall x, y \in R$.
■ For such a map, we can define a map $\operatorname{ld} f: \operatorname{ld} R \rightarrow \operatorname{ld} S$, $X \mapsto$ ideal generated by $f(X)$. This map is order-preserving (in fact it preserves arbitrary ideal sums).
■ We say that the assignment Id is a functor: defined on objects, extended to morphisms, natural rules $(\operatorname{ld}(f \circ g)=(\operatorname{ld} f) \circ(\operatorname{ld} g)$, etc. $)$.

An attempt at a description. . .

Intractability for images of certain functors

Aims

Ideals of rings
Infinitary logic
Anti-
elementarity
Getting the

functor Γ

Back to the problem on ideals of rings
\ldots for the example R, Id R above.

An attempt at a description. . .

Intractability
for images of certain functors
... for the example R, Id R above.
■ Any ideals X and Y of R have a greatest lower bound, namely $X \cap Y$.

Ideals of rings
Infinitary logic
Anti-
elementarity
Getting the
functor Γ
Back to the problem on ideals of rings

An attempt at a description. . .

Intractability for images of certain functors

Aims
Ideals of rings
Infinitary logic
Anti-
elementarity
Getting the
functor Γ
Back to the problem on ideals of rings
\ldots for the example R, Id R above.
■ Any ideals X and Y of R have a greatest lower bound, namely $X \cap Y$.

- This can be expressed by saying that the poset (Id R, \subseteq) satisfies the following sentence:

$$
(\forall x)(\forall y)(\exists z)(\forall t)((t \leq x \text { and } t \leq y) \Leftrightarrow t \leq z) .(\text { Meet })
$$

An attempt at a description. . .

Intractability for images of certain functors

Aims

Ideals of rings Infinitary logic

Anti-
elementarity
Getting the functor Γ

Back to the problem on ideals of rings
\ldots for the example R, Id R above.
■ Any ideals X and Y of R have a greatest lower bound, namely $X \cap Y$.
■ This can be expressed by saying that the poset ($\operatorname{ld} R, \subseteq$) satisfies the following sentence:

$$
(\forall x)(\forall y)(\exists z)(\forall t)((t \leq x \text { and } t \leq y) \Leftrightarrow t \leq z) .(\text { Meet })
$$

- The above is an example of a first-order sentence in the vocabulary which consists of a single binary relation symbol \leq.

An attempt at a description. . .

Intractability for images of certain functors

Aims
Ideals of rings Infinitary logic

Anti-
elementarity
Getting the functor Γ

Back to the problem on ideals of rings
\ldots for the example R, Id R above.
■ Any ideals X and Y of R have a greatest lower bound, namely $X \cap Y$.

- This can be expressed by saying that the poset (Id R, \subseteq) satisfies the following sentence:

$$
(\forall x)(\forall y)(\exists z)(\forall t)((t \leq x \text { and } t \leq y) \Leftrightarrow t \leq z) .(\text { Meet })
$$

- The above is an example of a first-order sentence in the vocabulary which consists of a single binary relation symbol \leq.
■ In order to improve legibility, use abbreviations.

An attempt at a description. . .

... for the example R, Id R above.
■ Any ideals X and Y of R have a greatest lower bound, namely $X \cap Y$.
■ This can be expressed by saying that the poset ($\operatorname{ld} R, \subseteq$) satisfies the following sentence:

$$
(\forall x)(\forall y)(\exists z)(\forall t)((t \leq x \text { and } t \leq y) \Leftrightarrow t \leq z) .(\text { Meet })
$$

- The above is an example of a first-order sentence in the vocabulary which consists of a single binary relation symbol \leq.
- In order to improve legibility, use abbreviations.
- For example, $(\forall t)((t \leq x$ and $t \leq y) \Leftrightarrow t \leq z)$ (a subformula of (Meet)) is often denoted $z=x \wedge y$.

An attempt at a description (cont'd)

Intractability for images of certain functors

■ Similarly, there is a sentence saying that any two ideals X, Y have a least upper bound $X \vee Y$ (here, the ideal generated by $X \cup Y$, usually denoted $X+Y$), namely

$$
(\forall x)(\forall y)(\exists z)(\forall t)((x \leq t \text { and } y \leq t) \Leftrightarrow z \leq t) .(\text { Join })
$$

An attempt at a description (cont'd)

Intractability
for images of
certain
functors

Aims
Ideals of rings Infinitary logic

Anti-
elementarity
Getting the functor Γ

Back to the problem on ideals of rings

■ Similarly, there is a sentence saying that any two ideals X, Y have a least upper bound $X \vee Y$ (here, the ideal generated by $X \cup Y$, usually denoted $X+Y$), namely

$$
(\forall x)(\forall y)(\exists z)(\forall t)((x \leq t \text { and } y \leq t) \Leftrightarrow z \leq t) .(\text { Join })
$$

- Although the following poset satisfies both (Meet) and (Join) (it is a lattice), it does not appear as any (Id R, \subseteq).

Continuing the attempt (2)

Intractability
for images of certain functors

- Reason for this: the modular law for ideal lattices of rings, $X \supseteq Z \Rightarrow X \cap(Y+Z)=(X \cap Y)+Z$, expressed by the first-order sentence

Aims

Ideals of rings
Infinitary logic

$$
(\forall x)(\forall y)(\forall z)(z \leq x \Rightarrow x \wedge(y \vee z)=(x \wedge y) \vee z)
$$

(Mod)

Continuing the attempt (2)

Intractability
for images of certain functors

- Reason for this: the modular law for ideal lattices of rings, $X \supseteq Z \Rightarrow X \cap(Y+Z)=(X \cap Y)+Z$, expressed by the first-order sentence

$$
(\forall x)(\forall y)(\forall z)(z \leq x \Rightarrow x \wedge(y \vee z)=(x \wedge y) \vee z)
$$

(Mod)
(note the use of the abbreviations $z=x \wedge y, z=x \vee y$).

Continuing the attempt (2)

Intractability
for images of certain functors

- Reason for this: the modular law for ideal lattices of rings, $X \supseteq Z \Rightarrow X \cap(Y+Z)=(X \cap Y)+Z$, expressed by the first-order sentence

$$
(\forall x)(\forall y)(\forall z)(z \leq x \Rightarrow x \wedge(y \vee z)=(x \wedge y) \vee z)
$$

(Mod)
(note the use of the abbreviations $z=x \wedge y, z=x \vee y$).
■ The sentence (Mod) is not satisfied by the pentagon N_{5} above (take $x:=a, y:=b, z:=c$).

Continuing the attempt (2)

Intractability
for images of certain functors

- Reason for this: the modular law for ideal lattices of rings, $X \supseteq Z \Rightarrow X \cap(Y+Z)=(X \cap Y)+Z$, expressed by the first-order sentence

$$
(\forall x)(\forall y)(\forall z)(z \leq x \Rightarrow x \wedge(y \vee z)=(x \wedge y) \vee z)
$$

(Mod)
(note the use of the abbreviations $z=x \wedge y, z=x \vee y$).
■ The sentence (Mod) is not satisfied by the pentagon N_{5} above (take $x:=a, y:=b, z:=c$).
■ Therefore, N_{5} does not appear as (Id R, \subseteq), or even as a sublattice of (Id $R, \cap,+$), for any ring R.

Continuing the attempt (2)

- Reason for this: the modular law for ideal lattices of rings, $X \supseteq Z \Rightarrow X \cap(Y+Z)=(X \cap Y)+Z$, expressed by the first-order sentence

$$
(\forall x)(\forall y)(\forall z)(z \leq x \Rightarrow x \wedge(y \vee z)=(x \wedge y) \vee z)
$$

(Mod)
(note the use of the abbreviations $z=x \wedge y, z=x \vee y$).
■ The sentence (Mod) is not satisfied by the pentagon N_{5} above (take $x:=a, y:=b, z:=c$).
■ Therefore, N_{5} does not appear as (Id R, \subseteq), or even as a sublattice of (Id $R, \cap,+$), for any ring R.
■ However, (Meet), (Join), (Mod) are still not enough!

Continuing the attempt (2)

- Reason for this: the modular law for ideal lattices of rings, $X \supseteq Z \Rightarrow X \cap(Y+Z)=(X \cap Y)+Z$, expressed by the first-order sentence

$$
(\forall x)(\forall y)(\forall z)(z \leq x \Rightarrow x \wedge(y \vee z)=(x \wedge y) \vee z)
$$

(Mod)
(note the use of the abbreviations $z=x \wedge y, z=x \vee y$).

- The sentence (Mod) is not satisfied by the pentagon N_{5} above (take $x:=a, y:=b, z:=c$).
- Therefore, N_{5} does not appear as (ld R, \subseteq), or even as a sublattice of (Id $R, \cap,+$), for any ring R.
■ However, (Meet), (Join), (Mod) are still not enough!
■ More complicated first-order sentences come up (e.g., the Arguesian law).

Continuing the attempt (3)

Intractability for images of certain functors

Aims

Ideals of rings
Infinitary logic
Anti-
elementarity
Getting the
functor Γ
Back to the problem on ideals of rings

- Those are still not enough!

Continuing the attempt (3)

Intractability
for images of certain functors

Aims

Ideals of rings
Infinitary logic
Anti-
elementarity
Getting the
functor Γ
Back to the problem on ideals of rings

- Those are still not enough!

■ For any ring R, the poset ($\operatorname{Id} R, \subseteq$) is a complete lattice: every set $\left\{X_{i} \mid i \in I\right\}$ of ideals has a greatest lower bound $\bigcap_{i \in I} X_{i}$ and a least upper bound $\sum_{i \in I} X_{i}$.

Continuing the attempt (3)

Intractability
for images of
certain
functors

Aims

Ideals of rings
Infinitary logic
Anti-
elementarity
Getting the
functor Γ
Back to the problem on ideals of rings

- Those are still not enough!

■ For any ring R, the poset ($\operatorname{Id} R, \subseteq$) is a complete lattice: every set $\left\{X_{i} \mid i \in I\right\}$ of ideals has a greatest lower bound $\bigcap_{i \in I} X_{i}$ and a least upper bound $\sum_{i \in I} X_{i}$.

- Stating the existence of greatest lower bounds or least upper bounds, of possibly infinite subsets, is not first-order.

Continuing the attempt (3)

- Those are still not enough!
- For any ring R, the poset ($\operatorname{ld} R, \subseteq$) is a complete lattice: every set $\left\{X_{i} \mid i \in I\right\}$ of ideals has a greatest lower bound $\bigcap_{i \in I} X_{i}$ and a least upper bound $\sum_{i \in I} X_{i}$.
- Stating the existence of greatest lower bounds or least upper bounds, of possibly infinite subsets, is not first-order.
- A possible way back into first-order is to express everything in terms of the poset ($\mathrm{Id}_{\mathrm{c}} R, \subseteq$) of finitely generated ideals of R

Continuing the attempt (3)

- Those are still not enough!
$■$ For any ring R, the poset ($\operatorname{ld} R, \subseteq$) is a complete lattice: every set $\left\{X_{i} \mid i \in I\right\}$ of ideals has a greatest lower bound $\bigcap_{i \in I} X_{i}$ and a least upper bound $\sum_{i \in I} X_{i}$.
- Stating the existence of greatest lower bounds or least upper bounds, of possibly infinite subsets, is not first-order.
■ A possible way back into first-order is to express everything in terms of the poset ($\mathrm{Id}_{\mathrm{c}} R, \subseteq$) of finitely generated ideals of R (the " c " in Id_{c} stands for "compact").

Continuing the attempt (3)

- Those are still not enough!
- For any ring R, the poset ($\operatorname{ld} R, \subseteq$) is a complete lattice: every set $\left\{X_{i} \mid i \in I\right\}$ of ideals has a greatest lower bound $\bigcap_{i \in I} X_{i}$ and a least upper bound $\sum_{i \in I} X_{i}$.
- Stating the existence of greatest lower bounds or least upper bounds, of possibly infinite subsets, is not first-order.
- A possible way back into first-order is to express everything in terms of the poset ($\mathrm{Id}_{\mathrm{c}} R, \subseteq$) of finitely generated ideals of R (the " c " in Id_{c} stands for "compact").
■ $\mathrm{Id}_{\mathrm{c}} R$ satisfies (Join), but not always (Meet). The (Mod) of $I d R$ can be translated to a first-order sentence for $\mathrm{Id}_{\mathrm{c}} R$.

Continuing the attempt (3)

- Those are still not enough!
- For any ring R, the poset ($\operatorname{Id} R, \subseteq$) is a complete lattice: every set $\left\{X_{i} \mid i \in I\right\}$ of ideals has a greatest lower bound $\bigcap_{i \in I} X_{i}$ and a least upper bound $\sum_{i \in I} X_{i}$.
- Stating the existence of greatest lower bounds or least upper bounds, of possibly infinite subsets, is not first-order.
- A possible way back into first-order is to express everything in terms of the poset ($\mathrm{Id}_{\mathrm{c}} R, \subseteq$) of finitely generated ideals of R (the " c " in Id_{c} stands for "compact").
■ $\mathrm{Id}_{\mathrm{c}} R$ satisfies (Join), but not always (Meet). The (Mod) of $I \mathrm{~d} R$ can be translated to a first-order sentence for $\mathrm{Id}_{\mathrm{c}} R$.

■ Id R and $\operatorname{Id}_{c} R$ can be obtained from each other:

Continuing the attempt (3)

- Those are still not enough!
- For any ring R, the poset ($\operatorname{ld} R, \subseteq$) is a complete lattice: every set $\left\{X_{i} \mid i \in I\right\}$ of ideals has a greatest lower bound $\bigcap_{i \in I} X_{i}$ and a least upper bound $\sum_{i \in I} X_{i}$.
- Stating the existence of greatest lower bounds or least upper bounds, of possibly infinite subsets, is not first-order.
■ A possible way back into first-order is to express everything in terms of the poset ($\mathrm{Id}_{\mathrm{c}} R, \subseteq$) of finitely generated ideals of R (the "c" in Id_{c} stands for "compact").
$■ \mathrm{Id}_{\mathrm{c}} R$ satisfies (Join), but not always (Meet). The (Mod) of $I d R$ can be translated to a first-order sentence for $\mathrm{Id}_{\mathrm{c}} R$.

■ Id R and $\mathrm{Id}_{\mathrm{c}} R$ can be obtained from each other: in that sense, describing one is describing the other.

First-order logic

Intractability for images of certain functors

- A (finitary) vocabulary consists of a set of relation symbols, a set of operation symbols, on which is defined a map to the natural numbers, the arity map ar.

First-order logic

Intractability
for images of
certain
functors

Aims

Ideals of rings
Infinitary logic
Anti-
elementarity
Getting the
functor Γ
Back to the problem on ideals of rings

■ A (finitary) vocabulary consists of a set of relation symbols, a set of operation symbols, on which is defined a map to the natural numbers, the arity map ar.
■ Relation symbols have nonzero arity. Symbols with arity 0 are constant symbols.

First-order logic

Intractability
for images of
certain
functors

Aims
Ideals of rings
Infinitary logic
Anti-
elementarity
Getting the functor Γ

Back to the problem on ideals of rings

■ A (finitary) vocabulary consists of a set of relation symbols, a set of operation symbols, on which is defined a map to the natural numbers, the arity map ar.
■ Relation symbols have nonzero arity. Symbols with arity 0 are constant symbols.
■ In the example of rings above, there are two operation symbols + and \cdot, with $\operatorname{ar}(+)=\operatorname{ar}(\cdot)=2$, and two constant symbols 0 and 1 (so $\operatorname{ar}(0)=\operatorname{ar}(1)=0)$.

First-order logic

Intractability
for images of certain functors

Aims
Ideals of rings
Infinitary logic
Anti-
elementarity
Getting the functor Γ

Back to the problem on ideals of rings

■ A (finitary) vocabulary consists of a set of relation symbols, a set of operation symbols, on which is defined a map to the natural numbers, the arity map ar.
■ Relation symbols have nonzero arity. Symbols with arity 0 are constant symbols.

- In the example of rings above, there are two operation symbols + and \cdot, with $\operatorname{ar}(+)=\operatorname{ar}(\cdot)=2$, and two constant symbols 0 and 1 (so $\operatorname{ar}(0)=\operatorname{ar}(1)=0)$. In the example of posets above, there is one relation symbol \leq, with $\operatorname{ar}(\leq)=2$.

First-order logic

- A (finitary) vocabulary consists of a set of relation symbols, a set of operation symbols, on which is defined a map to the natural numbers, the arity map ar.
■ Relation symbols have nonzero arity. Symbols with arity 0 are constant symbols.
- In the example of rings above, there are two operation symbols + and \cdot, with $\operatorname{ar}(+)=\operatorname{ar}(\cdot)=2$, and two constant symbols 0 and 1 (so $\operatorname{ar}(0)=\operatorname{ar}(1)=0)$. In the example of posets above, there is one relation symbol \leq, with $\operatorname{ar}(\leq)=2$.
- Terms of a vocabulary \mathbb{v} are (formal) compositions of operation symbols of \mathbb{v}. Atomic formulas have the form $s=t$ or $R\left(t_{1}, \ldots, t_{n}\right)$, for terms s, t, t_{i} and n-ary relation symbols R.

First-order logic

- A (finitary) vocabulary consists of a set of relation symbols, a set of operation symbols, on which is defined a map to the natural numbers, the arity map ar.
■ Relation symbols have nonzero arity. Symbols with arity 0 are constant symbols.
- In the example of rings above, there are two operation symbols + and \cdot, with $\operatorname{ar}(+)=\operatorname{ar}(\cdot)=2$, and two constant symbols 0 and 1 (so $\operatorname{ar}(0)=\operatorname{ar}(1)=0)$. In the example of posets above, there is one relation symbol \leq, with $\operatorname{ar}(\leq)=2$.
- Terms of a vocabulary \mathbb{v} are (formal) compositions of operation symbols of v . Atomic formulas have the form $s=t$ or $R\left(t_{1}, \ldots, t_{n}\right)$, for terms s, t, t_{i} and n-ary relation symbols R.
- For formulas φ and ψ of \mathbb{v}, their disjunction $\varphi \vee \psi$, their conjunction $\varphi \wedge \psi$, and the negation $\neg \varphi$ are also formulas.

First-order logic (cont'd)

Intractability
for images of certain functors

Aims

Ideals of rings
Infinitary logic
Anti-
elementarity
Getting the
functor Γ
Back to the problem on ideals of rings

■ For a formula φ and a variable symbol $x,(\exists x) \varphi$ and $(\forall x) \varphi$ are both formulas.

First-order logic (cont'd)

Intractability
for images of certain functors

Aims

Ideals of rings
Infinitary logic
Anti-
elementarity
Getting the
functor 「
Back to the problem on ideals of rings

■ For a formula φ and a variable symbol $x,(\exists x) \varphi$ and $(\forall x) \varphi$ are both formulas.
■ A sentence is a formula without free (i.e., not bound by either \exists or \forall) variables.

First-order logic (cont'd)

Intractability
for images of
certain
functors

Aims
Ideals of rings
Infinitary logic
Anti-
elementarity
Getting the functor Γ

Back to the problem on ideals of rings

■ For a formula φ and a variable symbol $x,(\exists x) \varphi$ and $(\forall x) \varphi$ are both formulas.

- A sentence is a formula without free (i.e., not bound by either \exists or \forall) variables.
- A \mathbb{v}-structure is a nonempty set M, together with subsets $R^{M} \subseteq M^{n}$ for $R \in \mathbb{v}_{\text {rel }}$ and $\operatorname{ar}(R)=n$, and maps $f^{M}: M^{n} \rightarrow M$ for $f \in \mathbb{W}_{\text {ope }}$ and $\operatorname{ar}(f)=n$. Notation: $\mathbf{M} \in \operatorname{Str}(\mathbb{w})$.

First-order logic (cont'd)

■ For a formula φ and a variable symbol $x,(\exists x) \varphi$ and $(\forall x) \varphi$ are both formulas.

- A sentence is a formula without free (i.e., not bound by either \exists or \forall) variables.
■ A \mathbb{v}-structure is a nonempty set M, together with subsets $R^{M} \subseteq M^{n}$ for $R \in \mathbb{V}_{\text {rel }}$ and $\operatorname{ar}(R)=n$, and maps $f^{M}: M^{n} \rightarrow M$ for $f \in \mathbb{W}_{\text {ope }}$ and $\operatorname{ar}(f)=n$. Notation: $M \in \operatorname{Str}(\mathbb{v})$.
- Satisfaction, of a formula with parameters (free variable assignment) in a model \boldsymbol{M}, is defined by induction of the complexity of the formula: for example, $\boldsymbol{M} \vDash(\exists x) \varphi(x, \vec{a})$ means that there exists $b \in M$ such that $\boldsymbol{M} \vDash \varphi(b, \vec{a})$.

First-order logic (cont'd)

■ For a formula φ and a variable symbol $x,(\exists x) \varphi$ and $(\forall x) \varphi$ are both formulas.

- A sentence is a formula without free (i.e., not bound by either \exists or \forall) variables.
■ A \mathbb{v}-structure is a nonempty set M, together with subsets $R^{M} \subseteq M^{n}$ for $R \in \mathbb{v}_{\text {rel }}$ and $\operatorname{ar}(R)=n$, and maps $f^{M}: M^{n} \rightarrow M$ for $f \in \mathbb{W}_{\text {ope }}$ and $\operatorname{ar}(f)=n$. Notation: $M \in \operatorname{Str}(\mathbb{v})$.
- Satisfaction, of a formula with parameters (free variable assignment) in a model \boldsymbol{M}, is defined by induction of the complexity of the formula: for example, $\boldsymbol{M} \vDash(\exists x) \varphi(x, \vec{a})$ means that there exists $b \in M$ such that $\boldsymbol{M} \vDash \varphi(b, \vec{a})$.
■ For example, a semigroup $\boldsymbol{M}=(M, \cdot)$ is commutative iff $\boldsymbol{M} \models(\forall x, y)(x \cdot y=y \cdot x)$.

Towards infinitary logic

Intractability
for images of
certain
functors

■ It is well known that finiteness is not first-order: if a sentence φ has arbitrarily large models, then it has an infinite model (follows from the compactness Theorem).

Aims

ldeals of rings
Infinitary logic
Anti-
elementarity
Getting the
functor Γ
Back to the problem on ideals of rings

Towards infinitary logic

Intractability
for images of
certain
functors

Aims
Ideals of rings
Infinitary logic
Anti-
elementarity
Getting the
functor Γ
Back to the problem on ideals of rings

■ It is well known that finiteness is not first-order: if a sentence φ has arbitrarily large models, then it has an infinite model (follows from the compactness Theorem).
■ On the other hand, finiteness can be expressed in infinitary logic (see below).

Towards infinitary logic

Intractability
for images of certain functors

■ It is well known that finiteness is not first-order: if a sentence φ has arbitrarily large models, then it has an infinite model (follows from the compactness Theorem).

- On the other hand, finiteness can be expressed in infinitary logic (see below).
■ For infinite cardinal numbers $\kappa \geq \lambda$, let $\mathscr{L}_{\kappa \lambda}(\mathbb{v})$ be the set of "infinitary formulas" of \mathbb{v}, defined in a similar way as first-order formulas, except that:

1 The arities, of symbols in \mathbb{v}, may be ordinals $<\lambda$ (Example: Banach spaces, with $\lambda=\omega_{1}$);
2 Iterated disjunctions $\mathbb{V}_{i \in I} \varphi_{i}$ and conjunctions $\mathbb{M}_{i \in I} \varphi_{i}$, with card $I<\kappa$ and the φ_{i} have $<\lambda$ free variables altogether, are allowed;
3 Quantifications $\exists_{i \in I} X_{i}$ and $\forall_{i \in I} X_{i}$, with card $I<\lambda$, are allowed.

Towards infinitary logic

■ It is well known that finiteness is not first-order: if a sentence φ has arbitrarily large models, then it has an infinite model (follows from the compactness Theorem).

- On the other hand, finiteness can be expressed in infinitary logic (see below).
■ For infinite cardinal numbers $\kappa \geq \lambda$, let $\mathscr{L}_{\kappa \lambda}(\mathbb{v})$ be the set of "infinitary formulas" of \mathbb{v}, defined in a similar way as first-order formulas, except that:

1 The arities, of symbols in \mathbb{v}, may be ordinals $<\lambda$ (Example: Banach spaces, with $\lambda=\omega_{1}$);
2 Iterated disjunctions $\mathbb{W}_{i \in I} \varphi_{i}$ and conjunctions $\mathbb{M}_{i \in I} \varphi_{i}$, with card $I<\kappa$ and the φ_{i} have $<\lambda$ free variables altogether, are allowed;
3 Quantifications $\exists_{i \in I} X_{i}$ and $\forall_{i \in I} X_{i}$, with card $I<\lambda$, are allowed.
■ Hence, $\mathscr{L}_{\omega \omega}(\mathbb{v})$ is the set of (ordinary) first-order formulas of \mathbb{v}.

Examples of infinitary sentences

Intractability
for images of certain functors

■ Finiteness can be expressed by a single $\mathscr{L}_{\omega_{1} \omega}$ sentence:

$$
W_{n<\omega}\left(\exists_{i<n} x_{i}\right)(\forall x) W_{i<n}\left(x=x_{i}\right)
$$

Examples of infinitary sentences

Intractability for images of certain functors

Aims

Ideals of rings
Infinitary logic
Anti-
elementarity
Getting the
functor 「
Back to the problem on ideals of rings

■ Finiteness can be expressed by a single $\mathscr{L}_{\omega_{1} \omega}$ sentence:

$$
W_{n<\omega}\left(\exists_{i<n} x_{i}\right)(\forall x) W_{i<n}\left(x=x_{i}\right)
$$

■ Countability can be expressed by a single $\mathscr{L}_{\omega_{1} \omega_{1}}$ sentence:

$$
\left(\exists_{i<\omega} x_{i}\right)(\forall x) \mathbb{W}_{i<\omega}\left(x=x_{i}\right) .
$$

Examples of infinitary sentences

Intractability
for images of certain functors

Aims

Ideals of rings
Infinitary logic
Anti-
elementarity
Getting the
functor 「
Back to the problem on ideals of rings

■ Finiteness can be expressed by a single $\mathscr{L}_{\omega_{1} \omega}$ sentence:

$$
W_{n<\omega}\left(\exists_{i<n} x_{i}\right)(\forall x) W_{i<n}\left(x=x_{i}\right)
$$

■ Countability can be expressed by a single $\mathscr{L}_{\omega_{1} \omega_{1}}$ sentence:

$$
\left(\exists_{i<\omega} x_{i}\right)(\forall x) \mathbb{W}_{i<\omega}\left(x=x_{i}\right) .
$$

■ Similar for well-foundedness of a given poset:

$$
\left(\forall_{i<\omega} x_{i}\right)\left(\bigwedge_{i<\omega}\left(x_{i+1} \leq x_{i}\right) \Rightarrow \mathbb{W}_{i<\omega}\left(x_{i+1}=x_{i}\right)\right)
$$

Examples of infinitary sentences

Intractability for images of certain functors

Aims

Ideals of rings
Infinitary logic

Anti-

elementarity
Getting the functor 「

Back to the
problem on ideals of rings

■ Finiteness can be expressed by a single $\mathscr{L}_{\omega_{1} \omega}$ sentence:

$$
W_{n<\omega}\left(\exists_{i<n} x_{i}\right)(\forall x) W_{i<n}\left(x=x_{i}\right)
$$

■ Countability can be expressed by a single $\mathscr{L}_{\omega_{1} \omega_{1}}$ sentence:

$$
\left(\exists_{i<\omega} x_{i}\right)(\forall x) \mathbb{W}_{i<\omega}\left(x=x_{i}\right) .
$$

■ Similar for well-foundedness of a given poset:

$$
\left(\forall_{i<\omega} x_{i}\right)\left(M \bigwedge_{i<\omega}\left(x_{i+1} \leq x_{i}\right) \Rightarrow W_{i<\omega}\left(x_{i+1}=x_{i}\right)\right)
$$

- Archimedean property (for partially ordered Abelian groups) can be expressed by an $\mathscr{L}_{\omega_{1} \omega}$ sentence:

$$
(\forall x, y)\left(\nmid \bigcap_{n<\omega}(n x \leq y) \Rightarrow x \leq 0\right)
$$

A little background in category theory

Intractability
for images of
certain
functors

Aims
Ideals of rings
Infinitary logic
Anti-
elementarity
Getting the
functor Γ
Back to the problem on ideals of rings

■ Formally, categories are classes of objects related by arrows ("morphisms"). Invertible arrows are isomorphisms. Isomorphic objects are "the same".

A little background in category theory

■ Formally, categories are classes of objects related by arrows ("morphisms"). Invertible arrows are isomorphisms. Isomorphic objects are "the same".

- Formally, a category \mathcal{S} consists of two disjoint classes $\mathrm{Ob} \mathcal{S}$ class Ob \mathcal{S} (the "objects" of \mathcal{S}), Mor \mathcal{S} (the "arrows" of \mathcal{S}), such that every arrow f is assigned two objects $\mathbf{d}(f)$ (the "domain" of f) and $\mathbf{r}(f)$ (the "range" of f) - in notation $f: \mathbf{d}(f) \rightarrow \mathbf{r}(f)$ - together with "identities" id ${ }_{A}$ (for $A \in \mathrm{Ob} \mathcal{S}$) and a partial binary "composition" operation $(f, g) \mapsto f \circ g$ on Mor \mathcal{S}, with natural rules (e.g., $f \circ(g \circ h)=(f \circ g) \circ h$ whenever one side is defined, $f \circ \operatorname{id}_{A}=f$ whenever $f: A \rightarrow B$, etc.).

A few examples of categories

Intractability
for images of certain functors

Aims
Ideals of rings
Infinitary logic
Anti-
elementarity
Getting the
functor Γ
Back to the problem on ideals of rings

- The category Ring of rings can be defined by Ob Ring = the class of all rings, Mor Ring $=$ the class of all ring homomorphisms $(f(x+y)=f(x)+f(y)$, etc. $)$.

A few examples of categories

Intractability
for images of certain functors

Aims
Ideals of rings
Infinitary logic
Anti-
elementarity
Getting the
functor Γ
Back to the problem on ideals of rings

- The category Ring of rings can be defined by Ob Ring = the class of all rings, Mor Ring $=$ the class of all ring homomorphisms $(f(x+y)=f(x)+f(y)$, etc. $)$.
■ Keeping the same objects, but changing the morphisms (e.g., use only ring embeddings) modifies the category.

A few examples of categories

■ The category Ring of rings can be defined by Ob Ring = the class of all rings, Mor Ring $=$ the class of all ring homomorphisms $(f(x+y)=f(x)+f(y)$, etc. $)$.
■ Keeping the same objects, but changing the morphisms (e.g., use only ring embeddings) modifies the category.

■ For any vocabulary \mathbb{v}, the class $\operatorname{Str}(\mathbb{v})$ of all \mathbb{v}-structures with \mathbb{v}-homomorphisms is a category.

A few examples of categories

■ The category Ring of rings can be defined by Ob Ring = the class of all rings, Mor Ring $=$ the class of all ring homomorphisms $(f(x+y)=f(x)+f(y)$, etc. $)$.
■ Keeping the same objects, but changing the morphisms (e.g., use only ring embeddings) modifies the category.

■ For any vocabulary \mathbb{v}, the class $\operatorname{Str}(\mathbb{v})$ of all \mathbb{v}-structures with \mathbb{v}-homomorphisms is a category.
■ The class Set of all sets, with all maps, is a category.

A few examples of categories

- The category Ring of rings can be defined by Ob Ring = the class of all rings, Mor Ring $=$ the class of all ring homomorphisms $(f(x+y)=f(x)+f(y)$, etc. $)$.
■ Keeping the same objects, but changing the morphisms (e.g., use only ring embeddings) modifies the category.

■ For any vocabulary \mathbb{v}, the class $\operatorname{Str}(\mathbb{v})$ of all \mathbb{v}-structures with \mathbb{v}-homomorphisms is a category.

- The class Set of all sets, with all maps, is a category.

■ For any set Ω, we will consider later the category $[\Omega]^{\text {inj }}$ of all subsets of Ω with one-to-one maps $f: X \mapsto Y$ (where $X, Y \subseteq \Omega$) as arrows; it is a small category.

Functors, colimits

Intractability
for images of certain functors

- A functor $\Phi: \mathcal{P} \rightarrow \mathcal{S}$, between categories \mathcal{P} and \mathcal{S}, sends objects to objects and arrows to arrows, with natural rules (i.e., $\left.\Phi\left(\mathrm{id}_{A}\right)=\mathrm{id}_{\Phi(A)}, \Phi(f \circ g)=\Phi(f) \circ \Phi(g)\right)$.

Functors, colimits

Intractability
for images of
certain
functors

Aims
Ideals of rings
Infinitary logic
Anti-
elementarity
Getting the
functor Γ
Back to the problem on ideals of rings

- A functor $\Phi: \mathcal{P} \rightarrow \mathcal{S}$, between categories \mathcal{P} and \mathcal{S}, sends objects to objects and arrows to arrows, with natural rules (i.e., $\left.\Phi\left(\mathrm{id}_{A}\right)=\mathrm{id}_{\Phi(A)}, \Phi(f \circ g)=\Phi(f) \circ \Phi(g)\right)$.
- A particular case is the one where \mathcal{P} is the category associated with a poset P : that is, $\operatorname{Ob} \mathcal{P}=P$, and there is a necessarily unique arrow from p to q iff $p \leq q$.

Functors, colimits

Intractability
for images of certain functors

Aims
Ideals of rings
Infinitary logic
Anti-
elementarity
Getting the
functor Γ
Back to the problem on ideals of rings

- A functor $\Phi: \mathcal{P} \rightarrow \mathcal{S}$, between categories \mathcal{P} and \mathcal{S}, sends objects to objects and arrows to arrows, with natural rules (i.e., $\left.\Phi\left(\mathrm{id}_{A}\right)=\mathrm{id}_{\Phi(A)}, \Phi(f \circ g)=\Phi(f) \circ \Phi(g)\right)$.
- A particular case is the one where \mathcal{P} is the category associated with a poset P : that is, $\operatorname{Ob} \mathcal{P}=P$, and there is a necessarily unique arrow from p to q iff $p \leq q$. A functor from \mathcal{P} to \mathcal{S} is then a P-indexed commutative diagram, denoted $\vec{S}=\left(S_{p}, \sigma_{p, q} \mid p \leq q\right.$ in $\left.P\right)$.

Functors, colimits

- A functor $\Phi: \mathcal{P} \rightarrow \mathcal{S}$, between categories \mathcal{P} and \mathcal{S}, sends objects to objects and arrows to arrows, with natural rules (i.e., $\left.\Phi\left(\mathrm{id}_{A}\right)=\mathrm{id}_{\Phi(A)}, \Phi(f \circ g)=\Phi(f) \circ \Phi(g)\right)$.
- A particular case is the one where \mathcal{P} is the category associated with a poset P : that is, $\operatorname{Ob} \mathcal{P}=P$, and there is a necessarily unique arrow from p to q iff $p \leq q$. A functor from \mathcal{P} to \mathcal{S} is then a P-indexed commutative diagram, denoted $\vec{S}=\left(S_{p}, \sigma_{p, q} \mid p \leq q\right.$ in $\left.P\right)$. Here, $\sigma_{p, q}: S_{p} \rightarrow S_{q}$, all $\sigma_{p, p}=\operatorname{id}_{S_{p}}$, and $\sigma_{p, r}=\sigma_{q, r} \circ \sigma_{p, q}$ whenever $p \leq q \leq r$.

Functors, colimits

- A functor $\Phi: \mathcal{P} \rightarrow \mathcal{S}$, between categories \mathcal{P} and \mathcal{S}, sends objects to objects and arrows to arrows, with natural rules (i.e., $\left.\Phi\left(\mathrm{id}_{A}\right)=\mathrm{id}_{\Phi(A)}, \Phi(f \circ g)=\Phi(f) \circ \Phi(g)\right)$.
- A particular case is the one where \mathcal{P} is the category associated with a poset P : that is, $\operatorname{Ob} \mathcal{P}=P$, and there is a necessarily unique arrow from p to q iff $p \leq q$. A functor from \mathcal{P} to \mathcal{S} is then a P-indexed commutative diagram, denoted $\vec{S}=\left(S_{p}, \sigma_{p, q} \mid p \leq q\right.$ in $\left.P\right)$. Here, $\sigma_{p, q}: S_{p} \rightarrow S_{q}$, all $\sigma_{p, p}=\operatorname{id}_{S_{p}}$, and $\sigma_{p, r}=\sigma_{q, r} \circ \sigma_{p, q}$ whenever $p \leq q \leq r$.
■ It may happen that the diagram above has a colimit

$$
\left.\left(S, \sigma_{p} \mid p \in P\right)=\underset{\longrightarrow}{\lim } \vec{S} . \quad \begin{array}{c}
S_{p, q} \\
S_{q} \\
S_{q}
\end{array}\right)
$$

λ-directed colimits, λ-continuous functors

Intractability
for images of certain functors

Aims
Ideals of rings
Infinitary logic
Anti-
elementarity
Getting the
functor Γ
Back to the problem on ideals of rings

■ If, in the above, λ is an infinite regular cardinal and P is a λ-directed poset (i.e., every λ-small subset of P has an upper bound), we say that the colimit $S=\underset{\longrightarrow}{\lim } \vec{S}$ is λ-directed.

λ-directed colimits, λ-continuous functors

Intractability
for images of certain functors

Aims
Ideals of rings
Infinitary logic
Anti-
elementarity
Getting the
functor Γ
Back to the problem on ideals of rings

■ If, in the above, λ is an infinite regular cardinal and P is a λ-directed poset (i.e., every λ-small subset of P has an upper bound), we say that the colimit $S=\underset{\longrightarrow}{\lim } \vec{S}$ is λ-directed.

- A functor $\Phi: \mathcal{S} \rightarrow \mathcal{T}$ is λ-continuous if it preserves λ-directed colimits, that is,

$$
\left(S, \sigma_{p} \mid p \in P\right)=\underset{\longrightarrow}{\lim }\left(S_{p}, \sigma_{p, q} \mid p \leq q \text { in } P\right),
$$

with $P \lambda$-directed, implies
$\left(\Phi(S), \Phi\left(\sigma_{p}\right) \mid p \in P\right)=\underset{\longrightarrow}{\lim }\left(\Phi\left(S_{p}\right), \Phi\left(\sigma_{p, q}\right) \mid p \leq q\right.$ in $\left.P\right)$.

λ-directed colimits, λ-continuous functors

■ If, in the above, λ is an infinite regular cardinal and P is a λ-directed poset (i.e., every λ-small subset of P has an upper bound), we say that the colimit $S=\underset{\longrightarrow}{\lim } \vec{S}$ is λ-directed.

- A functor $\Phi: \mathcal{S} \rightarrow \mathcal{T}$ is λ-continuous if it preserves λ-directed colimits, that is,

$$
\left(S, \sigma_{p} \mid p \in P\right)=\underset{\longrightarrow}{\lim }\left(S_{p}, \sigma_{p, q} \mid p \leq q \text { in } P\right),
$$

with $P \lambda$-directed, implies
$\left(\Phi(S), \Phi\left(\sigma_{p}\right) \mid p \in P\right)=\underset{\longrightarrow}{\lim }\left(\Phi\left(S_{p}\right), \Phi\left(\sigma_{p, q}\right) \mid p \leq q\right.$ in $\left.P\right)$.

- The functor Id_{c} on rings (seen above) is ω-continuous.

λ-directed colimits, λ-continuous functors

■ If, in the above, λ is an infinite regular cardinal and P is a λ-directed poset (i.e., every λ-small subset of P has an upper bound), we say that the colimit $S=\underset{\longrightarrow}{\lim } \vec{S}$ is λ-directed.

- A functor $\Phi: \mathcal{S} \rightarrow \mathcal{T}$ is λ-continuous if it preserves λ-directed colimits, that is,

$$
\left(S, \sigma_{p} \mid p \in P\right)=\underset{\longrightarrow}{\lim }\left(S_{p}, \sigma_{p, q} \mid p \leq q \text { in } P\right),
$$

with $P \lambda$-directed, implies

$$
\left(\Phi(S), \Phi\left(\sigma_{p}\right) \mid p \in P\right)=\underset{\longrightarrow}{\lim }\left(\Phi\left(S_{p}\right), \Phi\left(\sigma_{p, q}\right) \mid p \leq q \text { in } P\right) .
$$

■ The functor Id_{c} on rings (seen above) is ω-continuous. The functor $\overline{\mathrm{Id}_{\mathrm{c}}}$ (finitely generated closed ideals) on C^{*}-algebras is ω_{1}-continuous.

A categorical statement implying elementarity

Intractability
for images of certain functors

- Recall that for any set $\Omega,[\Omega]^{\text {inj }}$ denotes the category of all subsets of Ω with one-to-one functions.

A categorical statement implying elementarity

Intractability
for images of certain functors

Aims

Ideals of rings
Infinitary logic
Anti-
elementarity
Getting the
functor Γ
Back to the problem on ideals of rings

- Recall that for any set $\Omega,[\Omega]^{\text {inj }}$ denotes the category of all subsets of Ω with one-to-one functions.
■ For a vocabulary \mathbb{v}, a map $f: A \rightarrow B$ between \mathbb{w}-structures is an $\mathscr{L}_{\infty \lambda}$-elementary embedding if $A \models \varphi(\vec{a}) \Leftrightarrow B \models \varphi(f \vec{a})$ whenever $\varphi \in \mathscr{L}_{\infty \lambda}$ and \vec{a} is a list of parameters from A.

A categorical statement implying elementarity

- Recall that for any set $\Omega,[\Omega]^{\text {inj }}$ denotes the category of all subsets of Ω with one-to-one functions.

■ For a vocabulary \mathbb{v}, a map $f: A \rightarrow B$ between \mathbb{W}-structures is an $\mathscr{L}_{\infty \lambda}$-elementary embedding if $A \models \varphi(\vec{a}) \Leftrightarrow B \models \varphi(f \vec{a})$ whenever $\varphi \in \mathscr{L}_{\infty \lambda}$ and \vec{a} is a list of parameters from A.

Proposition (W 2019)

Let λ be an infinite regular cardinal, let $\mathbb{*}$ be a first-order language, let Ω be a set, and let $\Gamma:[\Omega]^{\text {inj }} \rightarrow \boldsymbol{\operatorname { S t r }}(\mathbb{v})$ be a λ-continuous functor. Then for every $f: X \rightharpoondown Y$ in $[\Omega]^{\text {inj }}$ with card $X \geq \lambda, \Gamma(f)$ is an $\mathscr{L}_{\infty \lambda}$-elementary embedding from $\Gamma(X)$ into $\Gamma(Y)$.

Anti-elementarity

Intractability
for images of certain functors

Aims

Ideals of rings
Infinitary logic
Anti-
elementarity
Getting the
functor Γ
Back to the problem on ideals of rings

Definition

A class \mathcal{C} of objects, in a category \mathcal{S}, is anti-elementary if there are arbitrarily large cardinals $\lambda<\kappa$ with λ-continuous functors $\Gamma:[\kappa]^{\text {inj }} \rightarrow \mathcal{S}$ such that $\Gamma(\lambda) \in \mathcal{C}$ and $\Gamma(\kappa) \notin \mathcal{C}$.

Anti-elementarity

Intractability
for images of
certain
functors

Aims
ldeals of rings
Infinitary logic
Anti-
elementarity
Getting the
functor Γ
Back to the

Definition

A class \mathcal{C} of objects, in a category \mathcal{S}, is anti-elementary if there are arbitrarily large cardinals $\lambda<\kappa$ with λ-continuous functors $\Gamma:[\kappa]^{\text {inj }} \rightarrow \mathcal{S}$ such that $\Gamma(\lambda) \in \mathcal{C}$ and $\Gamma(\kappa) \notin \mathcal{C}$.

- If \mathcal{S} consists of \mathbb{w}-structures, then, by the Proposition above, $\Gamma(\lambda)$ is an $\mathscr{L}_{\infty \lambda}$-elementary submodel of $\Gamma(\kappa)$.

Anti-elementarity

Intractability
for images of certain functors

Aims
ldeals of rings
Infinitary logic
Anti-
elementarity
Getting the functor Γ

Back to the problem on ideals of rings

Definition

A class \mathcal{C} of objects, in a category \mathcal{S}, is anti-elementary if there are arbitrarily large cardinals $\lambda<\kappa$ with λ-continuous functors $\Gamma:[\kappa]^{\text {inj }} \rightarrow \mathcal{S}$ such that $\Gamma(\lambda) \in \mathcal{C}$ and $\Gamma(\kappa) \notin \mathcal{C}$.

- If \mathcal{S} consists of \mathbb{v}-structures, then, by the Proposition above, $\Gamma(\lambda)$ is an $\mathscr{L}_{\infty \lambda}$-elementary submodel of $\Gamma(\kappa)$.
- In particular, \mathcal{C} is not closed under $\mathscr{L}_{\infty \lambda}$-elementary equivalence;

Anti-elementarity

Intractability
for images of certain functors

Definition

A class \mathcal{C} of objects, in a category \mathcal{S}, is anti-elementary if there are arbitrarily large cardinals $\lambda<\kappa$ with λ-continuous functors $\Gamma:[\kappa]^{\text {inj }} \rightarrow \mathcal{S}$ such that $\Gamma(\lambda) \in \mathcal{C}$ and $\Gamma(\kappa) \notin \mathcal{C}$.

- If \mathcal{S} consists of \mathbb{v}-structures, then, by the Proposition above, $\Gamma(\lambda)$ is an $\mathscr{L}_{\infty \lambda}$-elementary submodel of $\Gamma(\kappa)$.
- In particular, \mathcal{C} is not closed under $\mathscr{L}_{\infty \lambda}$-elementary equivalence; hence it is not the class of models of any class of $\mathscr{L}_{\infty \lambda}$-sentences.

Anti-elementarity

Definition

A class \mathcal{C} of objects, in a category \mathcal{S}, is anti-elementary if there are arbitrarily large cardinals $\lambda<\kappa$ with λ-continuous functors $\Gamma:[\kappa]^{\text {inj }} \rightarrow \mathcal{S}$ such that $\Gamma(\lambda) \in \mathcal{C}$ and $\Gamma(\kappa) \notin \mathcal{C}$.

■ If \mathcal{S} consists of \mathbb{v}-structures, then, by the Proposition above, $\Gamma(\lambda)$ is an $\mathscr{L}_{\infty \lambda}$-elementary submodel of $\Gamma(\kappa)$.
■ In particular, \mathcal{C} is not closed under $\mathscr{L}_{\infty \lambda}$-elementary equivalence; hence it is not the class of models of any class of $\mathscr{L}_{\infty \lambda}$-sentences.

- We shall outline a method making it possible to establish anti-elementarity for many classes.

Anti-elementarity

Definition

A class \mathcal{C} of objects, in a category \mathcal{S}, is anti-elementary if there are arbitrarily large cardinals $\lambda<\kappa$ with λ-continuous functors $\Gamma:[\kappa]^{\text {inj }} \rightarrow \mathcal{S}$ such that $\Gamma(\lambda) \in \mathcal{C}$ and $\Gamma(\kappa) \notin \mathcal{C}$.

- If \mathcal{S} consists of \mathbb{w}-structures, then, by the Proposition above, $\Gamma(\lambda)$ is an $\mathscr{L}_{\infty \lambda}$-elementary submodel of $\Gamma(\kappa)$.
- In particular, \mathcal{C} is not closed under $\mathscr{L}_{\infty \lambda}$-elementary equivalence; hence it is not the class of models of any class of $\mathscr{L}_{\infty \lambda \text {-sentences. }}$
- We shall outline a method making it possible to establish anti-elementarity for many classes. Those classes will always be images of functors (for a functor $\Phi: \mathcal{A} \rightarrow \mathcal{B}$, $\operatorname{im} \Phi \stackrel{\text { def }}{=}\{B \mid(\exists A)(B \cong \Phi(A))\})$.

A few useful categories

- DLat ${ }_{0} \stackrel{\text { def }}{=}$ category of all distributive lattices with zero, with 0-lattice homomorphisms.

A few useful categories

Intractability
for images of
certain
functors

Aims
Ideals of rings
Infinitary logic
Anti-
elementarity
Getting the
functor Γ
Back to the problem on ideals of rings

- DLat ${ }_{0} \stackrel{\text { def }}{=}$ category of all distributive lattices with zero, with 0-lattice homomorphisms.
- SLat ${ }_{0} \stackrel{\text { def }}{=}$ category of all $(V, 0)$-semilattices, with ($\vee, 0$)-homomorphisms.

A few useful categories

Intractability
for images of
certain
functors

Aims
Ideals of rings
Infinitary logic
Anti-
elementarity
Getting the
functor Γ
Back to the problem on ideals of rings

- DLat ${ }_{0} \stackrel{\text { def }}{=}$ category of all distributive lattices with zero, with 0-lattice homomorphisms.
■ SLat ${ }_{0} \stackrel{\text { def }}{=}$ category of all ($V, 0$)-semilattices, with ($\vee, 0$)-homomorphisms.
- CMon $\stackrel{\text { def }}{=}$ category of all commutative monoids with monoid homomorphisms.

Functors for which the method works

Theorem (W 2019)

The images of the following functors are all anti-elementary:
$1 \mathrm{Cs}_{\mathrm{c}}: \mathcal{G} \rightarrow$ DLat $_{0}, G \mapsto$ lattice of all order-convex ℓ-subgroups of the ℓ-group G; for any class \mathcal{G} of ℓ-groups containing all Archimedean ones.
$2 \mathrm{Id}_{\mathrm{c}}: \mathcal{R} \rightarrow$ SLat $_{0}, R \mapsto$ semilattice of all finitely generated two-sided ideals of R, for many classes \mathcal{R} of rings, including all von Neumann regular rings and all rings.
$3 \mathrm{~V}: \mathcal{R} \rightarrow$ CMon, $R \mapsto$ nonstable K_{0}-theory $\mathrm{V}(R)$ of R, for many classes \mathcal{R} of rings, including all von Neumann regular rings and all C*-algebras of real rank zero.

General (categorical) method

Intractability
for images of certain functors

■ We are given a functor $\Phi: \mathcal{A} \rightarrow \mathcal{B}$. We want to prove that the image of Φ is anti-elementary.

General (categorical) method

Intractability
for images of certain functors

Aims

Ideals of rings
Infinitary logic
Anti-
elementarity
Getting the functor Γ

Back to the problem on ideals of rings

■ We are given a functor $\Phi: \mathcal{A} \rightarrow \mathcal{B}$. We want to prove that the image of Φ is anti-elementary.
■ We assume that there are a poset P of a certain kind (typically, but not always, a finite lattice) and a (necessarily non-commutative) P-indexed diagram \vec{A} in \mathcal{A}, such that

General (categorical) method

Intractability
for images of certain functors

■ We are given a functor $\Phi: \mathcal{A} \rightarrow \mathcal{B}$. We want to prove that the image of Φ is anti-elementary.
■ We assume that there are a poset P of a certain kind (typically, but not always, a finite lattice) and a (necessarily non-commutative) P-indexed diagram \vec{A} in \mathcal{A}, such that
$1 \Phi \vec{A}^{\prime}$ (now a P^{\prime}-indexed diagram) is a commutative diagram for every set I (we say that \vec{A} is ϕ-commutative);
2 There is no commutative P-indexed diagram \vec{X} in \mathcal{A} such that $\Phi \vec{A} \cong \Phi \vec{X}$.

General (categorical) method

■ We are given a functor $\Phi: \mathcal{A} \rightarrow \mathcal{B}$. We want to prove that the image of Φ is anti-elementary.
■ We assume that there are a poset P of a certain kind (typically, but not always, a finite lattice) and a (necessarily non-commutative) P-indexed diagram \vec{A} in \mathcal{A}, such that
$1 \Phi \vec{A}^{\prime}$ (now a P^{\prime}-indexed diagram) is a commutative diagram for every set I (we say that \vec{A} is Φ-commutative);
2 There is no commutative P-indexed diagram \vec{X} in \mathcal{A} such that $\Phi \vec{A} \cong \Phi \vec{X}$.

Theorem (W 2019)

Under quite general conditions, the above implies that the image of Φ is anti-elementary.

Outline of the construction

Intractability
for images of
certain
functors
■ We are given the poset P (say a lattice with 0) and the non-commutative diagram \vec{A} as above.

Aims

Ideals of rings
Infinitary logic
Anti-
elementarity
Getting the functor Γ

Back to the problem on ideals of rings

Outline of the construction

Intractability
for images of
certain
functors

Aims
Ideals of rings
Infinitary logic
Anti-
elementarity
Getting the functor Γ

Back to the problem on ideals of rings

■ We are given the poset P (say a lattice with 0) and the non-commutative diagram \vec{A} as above.
■ For any large enough infinite regular cardinal λ, we need to find a cardinal $\kappa>\lambda$ and a λ-continuous functor $\Gamma:[\kappa]^{\text {inj }} \rightarrow \mathcal{B}$ such that $\Gamma(\lambda) \in \operatorname{im} \Phi$ and $\Gamma(\kappa) \notin \operatorname{im} \Phi$.

Outline of the construction

Intractability
for images of
certain
functors

Aims
Ideals of rings
Infinitary logic
Anti-
elementarity
Getting the functor Γ

Back to the problem on ideals of rings

■ We are given the poset P (say a lattice with 0) and the non-commutative diagram \vec{A} as above.
■ For any large enough infinite regular cardinal λ, we need to find a cardinal $\kappa>\lambda$ and a λ-continuous functor $\Gamma:[\kappa]^{\text {inj }} \rightarrow \mathcal{B}$ such that $\Gamma(\lambda) \in \operatorname{im} \Phi$ and $\Gamma(\kappa) \notin \operatorname{im} \Phi$.

- There is an explicit description of that functor Γ, namely $\Gamma(U) \stackrel{\text { def }}{=} \mathbf{F}(P\langle U\rangle) \otimes_{\phi}^{\lambda} \vec{A}$ for every set U.

Outline of the construction

■ We are given the poset P (say a lattice with 0) and the non-commutative diagram \vec{A} as above.
■ For any large enough infinite regular cardinal λ, we need to find a cardinal $\kappa>\lambda$ and a λ-continuous functor $\Gamma:[\kappa]^{\text {inj }} \rightarrow \mathcal{B}$ such that $\Gamma(\lambda) \in \operatorname{im} \Phi$ and $\Gamma(\kappa) \notin \operatorname{im} \Phi$.

- There is an explicit description of that functor Γ, namely $\Gamma(U) \stackrel{\text { def }}{=} \mathbf{F}(P\langle U\rangle) \otimes_{\phi}^{\lambda} \vec{A}$ for every set U.
- Easy part of that description:
$P\langle U\rangle \stackrel{\text { def }}{=}\{(a, x) \mid a \in P, x: X \rightarrow U, X$ finite, $a=\bigvee X\}$
with $(a, x) \leq(b, y)$ iff $a \leq b$ and y extends x, and additional map $\partial: P\langle U\rangle \rightarrow P,(a, x) \mapsto a$.

Boosting and Armature

Intractability for images of certain functors

Recall that $\Gamma(U) \stackrel{\text { def }}{=} \mathbf{F}(P\langle U\rangle) \otimes_{\phi}^{\lambda} \vec{A}$, for every set U.

Aims

Ideals of rings
Infinitary logic
Anti-
elementarity
Getting the functor Γ

Back to the problem on ideals of rings

Boosting and Armature

```
Intractability
for images of
    certain
    functors
Ideals of rings
Infinitary logic
Anti-
elementarity
Getting the
functor \Gamma
Recall that \(\Gamma(U) \stackrel{\text { def }}{=} \mathbf{F}(P\langle U\rangle) \otimes_{\phi}^{\lambda} \vec{A}\), for every set \(U\).
Theorem (W 2019)

Under quite general conditions,

\section*{Boosting and Armature}

Intractability for images of certain functors

\section*{Aims}

Ideals of rings
Infinitary logic
Anti-
elementarity
Getting the functor \(\Gamma\)

Back to the problem on ideals of rings

Recall that \(\Gamma(U) \stackrel{\text { def }}{=} \mathbf{F}(P\langle U\rangle) \otimes_{\phi}^{\lambda} \vec{A}\), for every set \(U\).
Theorem (W 2019)
Under quite general conditions,
\(1 \Gamma(\lambda) \in \operatorname{im} \Phi\) (follows from "Boosting Lemma"; that's algebra);

\section*{Boosting and Armature}

Intractability for images of certain functors

Aims
Ideals of rings
Infinitary logic
Anti-
elementarity
Getting the functor \(\Gamma\)

Back to the problem on ideals of rings

Recall that \(\Gamma(U) \stackrel{\text { def }}{=} \mathbf{F}(P\langle U\rangle) \otimes_{\phi}^{\lambda} \vec{A}\), for every set \(U\).
Theorem (W 2019)
Under quite general conditions,
\(1 \Gamma(\lambda) \in \operatorname{im} \Phi\) (follows from "Boosting Lemma"; that's algebra);
2 For large enough \(\kappa, \Gamma(\kappa) \notin \operatorname{im} \Phi\) (follows from "Armature Lemma"; uses infinitary combinatorics).

\section*{Boosting and Armature}

Intractability for images of certain functors

Aims
Ideals of rings
Infinitary logic
Anti-
elementarity
Getting the functor \(\Gamma\)

Back to the problem on ideals of rings

Recall that \(\Gamma(U) \stackrel{\text { def }}{=} \mathbf{F}(P\langle U\rangle) \otimes_{\phi}^{\lambda} \vec{A}\), for every set \(U\).
Theorem (W 2019)
Under quite general conditions,
\(1 \Gamma(\lambda) \in \operatorname{im} \Phi\) (follows from "Boosting Lemma"; that's algebra);
2 For large enough \(\kappa, \Gamma(\kappa) \notin \operatorname{im} \Phi\) (follows from "Armature Lemma"; uses infinitary combinatorics).

■ If \(P\) has order-dimension \(n\) and \(\lambda=\aleph_{\alpha}\), then one can take \(\kappa=\aleph_{\alpha+n-1}\).

\section*{Boosting and Armature}

Intractability for images of certain functors

Aims
Ideals of rings
Infinitary logic
Anti-
elementarity
Getting the functor \(\Gamma\)

Back to the
problem on ideals of rings

Recall that \(\Gamma(U) \stackrel{\text { def }}{=} \mathbf{F}(P\langle U\rangle) \otimes_{\phi}^{\lambda} \vec{A}\), for every set \(U\).
Theorem (W 2019)
Under quite general conditions,
\(1 \Gamma(\lambda) \in \operatorname{im} \Phi\) (follows from "Boosting Lemma"; that's algebra);
2 For large enough \(\kappa, \Gamma(\kappa) \notin \operatorname{im} \Phi\) (follows from "Armature Lemma"; uses infinitary combinatorics).

■ If \(P\) has order-dimension \(n\) and \(\lambda=\aleph_{\alpha}\), then one can take \(\kappa=\aleph_{\alpha+n-1}\).
■ For most examples under discussion,
\[
P=\mathfrak{P}[3]=\{\varnothing, 1,2,3,12,13,23,123\} \text { (the cube). }
\]

\section*{Boosting and Armature}

Intractability for images of certain functors

Aims
Ideals of rings
Infinitary logic
Anti-
elementarity
Getting the functor \(\Gamma\)

Back to the
problem on ideals of rings

Recall that \(\Gamma(U) \stackrel{\text { def }}{=} \mathbf{F}(P\langle U\rangle) \otimes_{\phi}^{\lambda} \vec{A}\), for every set \(U\).
Theorem (W 2019)
Under quite general conditions,
\(1 \Gamma(\lambda) \in \operatorname{im} \Phi\) (follows from "Boosting Lemma"; that's algebra);
2 For large enough \(\kappa, \Gamma(\kappa) \notin \operatorname{im} \Phi\) (follows from "Armature Lemma"; uses infinitary combinatorics).

■ If \(P\) has order-dimension \(n\) and \(\lambda=\aleph_{\alpha}\), then one can take \(\kappa=\aleph_{\alpha+n-1}\).
■ For most examples under discussion, \(P=\mathfrak{P}[3]=\{\varnothing, 1,2,3,12,13,23,123\}\) (the cube).
■ It has order-dimension 3, thus one can take \(\kappa=\aleph_{\alpha+2}\).

\section*{The diagrams \(\vec{S}\) and \(\vec{R}_{\mathbb{k}}\)}

Intractability for images of certain functors
- On \(2 \stackrel{\text { def }}{=}\{0,1\}: \boldsymbol{e}(x) \stackrel{\text { def }}{=}(x, x), \boldsymbol{s}(x, y) \stackrel{\text { def }}{=}(y, x)\), \(\boldsymbol{p}(x, y) \stackrel{\text { def }}{=} x+y\).

\section*{Aims}

Ideals of rings
Infinitary logic
Anti-
elementarity
Getting the functor \(\Gamma\)

Back to the problem on ideals of rings

\section*{The diagrams \(\vec{S}\) and \(\vec{R}_{\mathbf{k}}\)}

Intractability
for images of certain functors

\section*{Aims}

Ideals of rings
Infinitary logic

\section*{Anti-}
elementarity
Getting the
functor \(\Gamma\)
Back to the problem on ideals of rings
- On \(\mathbf{2} \xlongequal{\text { def }}\{0,1\}: \boldsymbol{e}(x) \stackrel{\text { def }}{=}(x, x), \boldsymbol{s}(x, y) \stackrel{\text { def }}{=}(y, x)\), \(\boldsymbol{p}(x, y) \stackrel{\text { def }}{=} x+y\).
- On any field \(\mathbb{k}: e(x) \stackrel{\text { def }}{=}(x, x), s(x, y) \xlongequal{\text { def }}(y, x)\), \(h(x, y) \stackrel{\text { def }}{=}\left(\begin{array}{ll}x & 0 \\ 0 & y\end{array}\right)\).

\section*{The diagrams \(\vec{S}\) and \(\vec{R}_{\mathbb{k}}\)}

Intractability
for images of certain functors

\section*{Aims}

Ideals of rings
Infinitary logic
Anti-
elementarity
Getting the functor \(\Gamma\)

Back to the problem on ideals of rings
- On \(\mathbf{2} \stackrel{\text { def }}{=}\{0,1\}: \boldsymbol{e}(x) \stackrel{\text { def }}{=}(x, x), \boldsymbol{s}(x, y) \stackrel{\text { def }}{=}(y, x)\),
\[
\boldsymbol{p}(x, y) \stackrel{\text { def }}{=} x+y \text {. }
\]
- On any field \(\mathbb{k}: e(x) \stackrel{\text { def }}{=}(x, x), s(x, y) \xlongequal{\text { def }}(y, x)\),
\[
h(x, y) \stackrel{\text { def }}{=}\left(\begin{array}{ll}
x & 0 \\
0 & y
\end{array}\right) .
\]


\section*{Basic properties of \(\vec{S}\) and \(\vec{R}_{k}\)}

Intractability
for images of certain functors

■ \(\vec{S}\) is a commutative diagram of finite bounded semilattices (originates from the search for CLP, late nineties).

\section*{Basic properties of \(\vec{S}\) and \(\vec{R}_{k}\)}

Intractability
for images of certain functors

Aims
Ideals of rings
Infinitary logic
Anti-
elementarity
Getting the
functor \(\Gamma\)
Back to the problem on ideals of rings
- \(\vec{S}\) is a commutative diagram of finite bounded semilattices (originates from the search for CLP, late nineties).
- \(\vec{R}_{\mathbb{k}}\) is not a commutative diagram (for \(\left(\begin{array}{ll}x & 0 \\ 0 & y\end{array}\right) \neq\left(\begin{array}{ll}y & 0 \\ 0 & x\end{array}\right)\) as a rule; that is, \(h \circ s \neq h\) ).

\section*{Basic properties of \(\vec{S}\) and \(\vec{R}_{k}\)}

Intractability
for images of certain functors

Aims
Ideals of rings
Infinitary logic
Anti-
elementarity
Getting the functor \(\Gamma\)

Back to the problem on ideals of rings
- \(\vec{S}\) is a commutative diagram of finite bounded semilattices (originates from the search for CLP, late nineties).
- \(\vec{R}_{\mathbb{k}}\) is not a commutative diagram (for \(\left(\begin{array}{ll}x & 0 \\ 0 & y\end{array}\right) \neq\left(\begin{array}{ll}y & 0 \\ 0 & x\end{array}\right)\) as a rule; that is, \(h \circ s \neq h\) ).
- \(\operatorname{Id}_{\mathrm{c}}\left(\vec{R}_{\mathbb{k}}\right) \cong \vec{S}\) canonically.

\section*{Basic properties of \(\vec{S}\) and \(\vec{R}_{k}\)}

Intractability
for images of certain functors

Aims
Ideals of rings
Infinitary logic
Anti-
elementarity
Getting the functor \(\Gamma\)

Back to the problem on ideals of rings

■ \(\vec{S}\) is a commutative diagram of finite bounded semilattices (originates from the search for CLP, late nineties).
- \(\vec{R}_{\mathbb{k}}\) is not a commutative diagram (for \(\left(\begin{array}{ll}x & 0 \\ 0 & y\end{array}\right) \neq\left(\begin{array}{ll}y & 0 \\ 0 & x\end{array}\right)\) as a rule; that is, \(h \circ s \neq h\) ).
- \(\operatorname{Id}_{\mathrm{c}}\left(\vec{R}_{\mathbb{k}}\right) \cong \vec{S}\) canonically.
- In fact, the diagram \(\vec{R}_{\mathbb{k}}\) is \(\mathrm{Id}_{\mathrm{c}}\)-commutative, that is, \(\operatorname{Id}_{\mathrm{c}}\left(\vec{R}_{\mathrm{k}}^{J}\right)\) is a commutative diagram for every set \(I\).

\section*{Basic properties of \(\vec{S}\) and \(\vec{R}_{\mathbb{k}}\)}

■ \(\vec{S}\) is a commutative diagram of finite bounded semilattices (originates from the search for CLP, late nineties).
- \(\vec{R}_{\mathrm{k}}\) is not a commutative diagram (for \(\left(\begin{array}{ll}x & 0 \\ 0 & y\end{array}\right) \neq\left(\begin{array}{ll}y & 0 \\ 0 & x\end{array}\right)\) as a rule; that is, \(h \circ s \neq h\) ).
- \(\operatorname{Id}_{\mathrm{c}}\left(\vec{R}_{\mathbb{k}}\right) \cong \vec{S}\) canonically.

■ In fact, the diagram \(\vec{R}_{\mathbb{k}}\) is \(\mathrm{Id}_{\mathrm{c}}\)-commutative, that is, \(\operatorname{Id}_{\mathrm{c}}\left(\vec{R}_{\mathrm{k} \mathrm{k}}^{\prime}\right)\) is a commutative diagram for every set \(I\).
- There is no commutative diagram \(\vec{R}\) of rings such that \(\operatorname{Id}_{\mathrm{c}}(\vec{R}) \cong \vec{S}\) (origin: late nineties, cf. W 2014; a bit more needs to be proved).

\section*{Anti-elementarity for ideals of rings}

Intractability for images of certain functors

Putting all those results together, we obtain:

\section*{Aims}

Ideals of rings
Infinitary logic
Anti-
elementarity
Getting the functor \(\Gamma\)

Back to the problem on ideals of rings

\section*{Anti-elementarity for ideals of rings}

Intractability
for images of
certain
functors

Aims
ldeals of rings
Infinitary logic
Anti-
elementarity
Getting the
functor \(\Gamma\)
Back to the problem on ideals of rings

Putting all those results together, we obtain:

\section*{Theorem (W 2019)}

For any subcategory \(\mathcal{R}\) of \(\mathbf{R i n g}\) containing some \(\vec{R}_{\mathbb{k}}\), closed under products and \(\lambda\)-indexed colimits for large enough \(\lambda\), the class \(\mathrm{Id}_{\mathrm{c}} \mathcal{R}\) is anti-elementary.

\section*{Anti-elementarity for ideals of rings}

Intractability for images of certain functors

Aims
Ideals of rings
Infinitary logic
Anti-
elementarity
Getting the functor \(\Gamma\)

Back to the problem on ideals of rings

Putting all those results together, we obtain:

\section*{Theorem (W 2019)}

For any subcategory \(\mathcal{R}\) of \(\mathbf{R i n g}\) containing some \(\vec{R}_{\mathbb{k}}\), closed under products and \(\lambda\)-indexed colimits for large enough \(\lambda\), the class \(\operatorname{ld}_{c} \mathcal{R}\) is anti-elementary.

■ In particular, there is no infinite cardinal \(\lambda\) such that \(\mathrm{Id}_{\mathrm{c}}(\) Ring \() \stackrel{\text { def }}{=}\left\{\mathrm{Id}_{\mathrm{c}} R \mid R\right.\) ring \(\}\) is the class of models of some class of \(\mathscr{L}_{\infty \lambda}\) sentences.

\section*{Anti-elementarity for ideals of rings}

Putting all those results together, we obtain:

\section*{Theorem (W 2019)}

For any subcategory \(\mathcal{R}\) of \(\mathbf{R i n g}\) containing some \(\vec{R}_{\mathbb{k}}\), closed under products and \(\lambda\)-indexed colimits for large enough \(\lambda\), the class \(\operatorname{ld}_{c} \mathcal{R}\) is anti-elementary.
- In particular, there is no infinite cardinal \(\lambda\) such that \(\mathrm{Id}_{\mathrm{c}}(\) Ring \() \stackrel{\text { def }}{=}\left\{\mathrm{Id}_{\mathrm{c}} R \mid R\right.\) ring \(\}\) is the class of models of some class of \(\mathscr{L}_{\infty \lambda}\) sentences.
\(■ \operatorname{Id}_{\mathrm{c}}(\mathbf{R i n g})\) is a so-called projective class, here \(\mathrm{PC}\left(\mathscr{L}_{\infty \infty}\right)\). This means that it is the class of all \(\leq\)-reducts of the class of models of an \(\mathscr{L}_{\infty \infty}\) sentence in a larger vocabulary.

\section*{Anti-elementarity for ideals of rings}

Putting all those results together, we obtain:

\section*{Theorem (W 2019)}

For any subcategory \(\mathcal{R}\) of Ring containing some \(\vec{R}_{\mathbb{k}}\), closed under products and \(\lambda\)-indexed colimits for large enough \(\lambda\), the class \(\operatorname{ld}_{c} \mathcal{R}\) is anti-elementary.

■ In particular, there is no infinite cardinal \(\lambda\) such that \(\mathrm{Id}_{\mathrm{c}}(\) Ring \() \stackrel{\text { def }}{=}\left\{\mathrm{Id}_{\mathrm{c}} R \mid R\right.\) ring \(\}\) is the class of models of some class of \(\mathscr{L}_{\infty \lambda}\) sentences.
\(■ \mathrm{Id}_{\mathrm{c}}(\) Ring \()\) is a so-called projective class, here \(\mathrm{PC}\left(\mathscr{L}_{\infty \infty}\right)\). This means that it is the class of all \(\leq-\) reducts of the class of models of an \(\mathscr{L}_{\infty \infty}\) sentence in a larger vocabulary.
■ A closer look shows that \(\mathrm{Id}_{\mathrm{c}}(\mathbf{R i n g})\) is not co-PC. This extends to all cases (nonstable K-theory, \(\ell\)-groups. . . ) considered above.```

