Representations of graph monoids by regular rings

Friedrich Wehrung

Université de Caen
LMNO, UMR 6139
Département de Mathématiques
14032 Caen cedex
E-mail: wehrung@math.unicaen.fr
URL: http://www.math.unicaen.fr/~wehrung
Potsdam, March 2009

Von Neumann regular rings

■ An associative ring R is (von Neumann) regular, if it satisfies $(\forall x \in R)(\exists y \in R)(x y x=x)$.

Von Neumann regular rings

■ An associative ring R is (von Neumann) regular, if it satisfies $(\forall x \in R)(\exists y \in R)(x y x=x)$.
■ For a regular ring R, all matrix rings $\mathrm{M}_{n}(R):=R^{n \times n}$ are also regular.

Von Neumann regular rings

- An associative ring R is (von Neumann) regular, if it satisfies $(\forall x \in R)(\exists y \in R)(x y x=x)$.
■ For a regular ring R, all matrix rings $\mathrm{M}_{n}(R):=R^{n \times n}$ are also regular.
■ $\mathrm{M}_{n}(R) \hookrightarrow \mathrm{M}_{n+1}(R)$, via $x \mapsto\left(\begin{array}{ll}x & 0 \\ 0 & 0\end{array}\right)$.

Von Neumann regular rings

■ An associative ring R is (von Neumann) regular, if it satisfies $(\forall x \in R)(\exists y \in R)(x y x=x)$.
■ For a regular ring R, all matrix rings $\mathrm{M}_{n}(R):=R^{n \times n}$ are also regular.

- $\mathrm{M}_{n}(R) \hookrightarrow \mathrm{M}_{n+1}(R)$, via $x \mapsto\left(\begin{array}{ll}x & 0 \\ 0 & 0\end{array}\right)$.

■ $\mathrm{M}_{\infty}(R):=\lim _{n<\omega} \mathrm{M}_{n}(R)$ is also a regular ring (without unit).

Nonstable K-theory $\mathcal{V}(R)$

■ For a ring R, define an equivalence relation \sim on $\operatorname{Idemp}(R)$ by $a \sim b \Leftrightarrow(\exists x, y)(a=x y$ and $b=y x)$.

Nonstable K-theory $\mathcal{V}(R)$

Regular rings, $\mathcal{V}(R)$

The
representation problem

Graph monoids and quivers

- For a ring R, define an equivalence relation \sim on $\operatorname{Idemp}(R)$ by $a \sim b \Leftrightarrow(\exists x, y)(a=x y$ and $b=y x)$.
■ On $\operatorname{Idemp}(R), a \perp b \Leftrightarrow a b=b a=0$.

Nonstable K-theory $\mathcal{V}(R)$

Regular rings, $\mathcal{V}(R)$

The
representation
problem
Graph
monoids and
quivers

- For a ring R, define an equivalence relation \sim on Idemp (R) by $a \sim b \Leftrightarrow(\exists x, y)(a=x y$ and $b=y x)$.
■ On $\operatorname{Idemp}(R), a \perp b \Leftrightarrow a b=b a=0$.
- $\mathcal{V}(R):=\mathrm{M}_{\infty}(R) / \sim$ is a commutative monoid, with $[a]+[b]:=[a+b]$ in case $a \perp b$.

Nonstable K-theory $\mathcal{V}(R)$

Regular rings, $\mathcal{V}(R)$

The
representation
problem
Graph
monoids and
quivers

■ For a ring R, define an equivalence relation \sim on Idemp (R) by $a \sim b \Leftrightarrow(\exists x, y)(a=x y$ and $b=y x)$.
■ On $\operatorname{Idemp}(R), a \perp b \Leftrightarrow a b=b a=0$.

- $\mathcal{V}(R):=\mathrm{M}_{\infty}(R) / \sim$ is a commutative monoid, with $[a]+[b]:=[a+b]$ in case $a \perp b$.
$■ \mathcal{V}(R)$ is conical, that is, it has $x+y=0 \Rightarrow x=y=0$.

Nonstable K-theory $\mathcal{V}(R)$

Regular rings, $\mathcal{V}(R)$
The
representation
problem
Graph
monoids and quivers

- For a ring R, define an equivalence relation \sim on $\operatorname{Idemp}(R)$ by $a \sim b \Leftrightarrow(\exists x, y)(a=x y$ and $b=y x)$.
■ On Idemp $(R), a \perp b \Leftrightarrow a b=b a=0$.
- $\mathcal{V}(R):=\mathrm{M}_{\infty}(R) / \sim$ is a commutative monoid, with $[a]+[b]:=[a+b]$ in case $a \perp b$.
$■ \mathcal{V}(R)$ is conical, that is, it has $x+y=0 \Rightarrow x=y=0$.
- Any conical commutative monoid appears as some $\mathcal{V}(R)$ (Bergman $1974+$ Bergman and Dicks 1978).

Nonstable K-theory $\mathcal{V}(R)$

Regular rings, $\mathcal{V}(R)$

The
representation problem

■ For a ring R, define an equivalence relation \sim on $\operatorname{Idemp}(R)$ by $a \sim b \Leftrightarrow(\exists x, y)(a=x y$ and $b=y x)$.
■ On Idemp $(R), a \perp b \Leftrightarrow a b=b a=0$.

- $\mathcal{V}(R):=\mathrm{M}_{\infty}(R) / \sim$ is a commutative monoid, with $[a]+[b]:=[a+b]$ in case $a \perp b$.
■ $\mathcal{V}(R)$ is conical, that is, it has $x+y=0 \Rightarrow x=y=0$.
- Any conical commutative monoid appears as some $\mathcal{V}(R)$ (Bergman 1974 + Bergman and Dicks 1978).
- For R regular, the situation is far more complicated...

Refinement monoids

Graph monoids

Regular rings, $\mathcal{V}(R)$

The
representation problem

Graph monoids and quivers

- A commutative monoid M is a refinement monoid, if for all $a_{0}, a_{1}, b_{0}, b_{1} \in M$, if $a_{0}+a_{1}=b_{0}+b_{1}$, then there are $c_{i, j} \in M($ for $i, j<2)$ such that

$$
a_{i}=c_{i, 0}+c_{i, 1} \text { and } b_{i}=c_{0, i}+c_{1, i} \quad(\text { for all } i<2) .
$$

Refinement monoids

Graph monoids

Regular rings, $\mathcal{V}(R)$

The
representation problem

Graph monoids and quivers

- A commutative monoid M is a refinement monoid, if for all $a_{0}, a_{1}, b_{0}, b_{1} \in M$, if $a_{0}+a_{1}=b_{0}+b_{1}$, then there are $c_{i, j} \in M($ for $i, j<2)$ such that

$$
a_{i}=c_{i, 0}+c_{i, 1} \text { and } b_{i}=c_{0, i}+c_{1, i} \quad(\text { for all } i<2)
$$

■ Examples of conical refinement monoids:

Refinement monoids

Graph monoids

Regular rings, $\mathcal{V}(R)$

The
representation problem

Graph monoids and quivers

- A commutative monoid M is a refinement monoid, if for all $a_{0}, a_{1}, b_{0}, b_{1} \in M$, if $a_{0}+a_{1}=b_{0}+b_{1}$, then there are $c_{i, j} \in M($ for $i, j<2)$ such that

$$
a_{i}=c_{i, 0}+c_{i, 1} \text { and } b_{i}=c_{0, i}+c_{1, i} \quad(\text { for all } i<2) .
$$

- Examples of conical refinement monoids:
- Any abelian group with a new zero added.

Refinement monoids

Graph monoids

Regular rings, $\mathcal{V}(R)$

The
representation problem

Graph monoids and quivers

- A commutative monoid M is a refinement monoid, if for all $a_{0}, a_{1}, b_{0}, b_{1} \in M$, if $a_{0}+a_{1}=b_{0}+b_{1}$, then there are $c_{i, j} \in M($ for $i, j<2)$ such that

$$
a_{i}=c_{i, 0}+c_{i, 1} \text { and } b_{i}=c_{0, i}+c_{1, i} \quad(\text { for all } i<2) .
$$

- Examples of conical refinement monoids:
- Any abelian group with a new zero added.
- Any positive cone of a lattice-ordered group.

Refinement monoids

Graph monoids

- A commutative monoid M is a refinement monoid, if for all $a_{0}, a_{1}, b_{0}, b_{1} \in M$, if $a_{0}+a_{1}=b_{0}+b_{1}$, then there are $c_{i, j} \in M($ for $i, j<2)$ such that

$$
a_{i}=c_{i, 0}+c_{i, 1} \text { and } b_{i}=c_{0, i}+c_{1, i} \quad(\text { for all } i<2) .
$$

- Examples of conical refinement monoids:
- Any abelian group with a new zero added.
- Any positive cone of a lattice-ordered group.
- A $(V, 0)$-semilattice is a (conical) refinement monoid iff it is distributive.

Refinement monoids

Graph monoids

- A commutative monoid M is a refinement monoid, if for all $a_{0}, a_{1}, b_{0}, b_{1} \in M$, if $a_{0}+a_{1}=b_{0}+b_{1}$, then there are $c_{i, j} \in M($ for $i, j<2)$ such that

$$
a_{i}=c_{i, 0}+c_{i, 1} \text { and } b_{i}=c_{0, i}+c_{1, i} \quad(\text { for all } i<2) .
$$

- Examples of conical refinement monoids:
- Any abelian group with a new zero added.
- Any positive cone of a lattice-ordered group.
- A $(V, 0)$-semilattice is a (conical) refinement monoid iff it is distributive.
■ $\{(x, y) \in \mathbb{Q} \times \mathbb{Q} \mid$ either $x=y=0$ or $x, y>0\}$.

Refinement monoids

Graph monoids

- A commutative monoid M is a refinement monoid, if for all $a_{0}, a_{1}, b_{0}, b_{1} \in M$, if $a_{0}+a_{1}=b_{0}+b_{1}$, then there are $c_{i, j} \in M($ for $i, j<2)$ such that

$$
a_{i}=c_{i, 0}+c_{i, 1} \text { and } b_{i}=c_{0, i}+c_{1, i} \quad(\text { for all } i<2) .
$$

- Examples of conical refinement monoids:
- Any abelian group with a new zero added.
- Any positive cone of a lattice-ordered group.
- A ($V, 0)$-semilattice is a (conical) refinement monoid iff it is distributive.
■ $\{(x, y) \in \mathbb{Q} \times \mathbb{Q} \mid$ either $x=y=0$ or $x, y>0\}$.
- The monoid of all isomorphism types of Boolean algebras, with $[A]+[B]:=[A \times B]$ (it is also a proper class).

Refinement monoids and regular rings

Theorem (Goodearl and Handelman, 1975)
For any regular ring $R, \mathcal{V}(R)$ is a conical refinement monoid.

Refinement monoids and regular rings

Graph

Theorem (Goodearl and Handelman, 1975)
For any regular ring $R, \mathcal{V}(R)$ is a conical refinement monoid.
Representation problem (Goodearl 1995)
Which monoids appear as $\mathcal{V}(R)$, for a regular ring R ?

Refinement monoids and regular rings

Graph

Theorem (Goodearl and Handelman, 1975)
For any regular ring $R, \mathcal{V}(R)$ is a conical refinement monoid.
Representation problem (Goodearl 1995)
Which monoids appear as $\mathcal{V}(R)$, for a regular ring R ?
First guess:

Refinement monoids and regular rings

Theorem (Goodearl and Handelman, 1975)
For any regular ring $R, \mathcal{V}(R)$ is a conical refinement monoid.
Representation problem (Goodearl 1995)
Which monoids appear as $\mathcal{V}(R)$, for a regular ring R ?
First guess: All conical refinement monoids.

Refinement monoids and regular rings

Theorem (Goodearl and Handelman, 1975)
For any regular ring $R, \mathcal{V}(R)$ is a conical refinement monoid.
Representation problem (Goodearl 1995)
Which monoids appear as $\mathcal{V}(R)$, for a regular ring R ?
First guess: All conical refinement monoids. . . . but that's not the case (W 1998, counterexample of cardinality \aleph_{2}, positive cone of a partially ordered abelian group).

Refinement monoids and regular rings

Theorem (Goodearl and Handelman, 1975)
For any regular ring $R, \mathcal{V}(R)$ is a conical refinement monoid.

Representation problem (Goodearl 1995)

Which monoids appear as $\mathcal{V}(R)$, for a regular ring R ?
First guess: All conical refinement monoids. . . . but that's not the case (W 1998, counterexample of cardinality \aleph_{2}, positive cone of a partially ordered abelian group). Representation problem still open in cardinalities \aleph_{0} and $\aleph_{1} \ldots$

Refinement monoids and regular rings

Theorem (Goodearl and Handelman, 1975)
For any regular ring $R, \mathcal{V}(R)$ is a conical refinement monoid.

Representation problem (Goodearl 1995)

Which monoids appear as $\mathcal{V}(R)$, for a regular ring R ?
First guess: All conical refinement monoids. . . . but that's not the case (W 1998, counterexample of cardinality \aleph_{2}, positive cone of a partially ordered abelian group). Representation problem still open in cardinalities \aleph_{0} and $\aleph_{1} \ldots$... and even still open in the finite case!

Row-finite quivers

Graph

Definition

A quiver is a quadruple $E=\left(E^{0}, E^{1}, s, r\right)$, where E^{0} (the vertices) and E^{1} (the edges) are sets, $s: E^{1} \rightarrow E^{0}$ (the source map) and $r: E^{1} \rightarrow E^{0}$ (the range map).

Row-finite quivers

Graph

Definition

A quiver is a quadruple $E=\left(E^{0}, E^{1}, s, r\right)$, where E^{0} (the vertices) and E^{1} (the edges) are sets, $s: E^{1} \rightarrow E^{0}$ (the source map) and $r: E^{1} \rightarrow E^{0}$ (the range map). It is row-finite, if $s^{-1}\{u\}$ is finite for each $u \in E^{0}$ (row-finiteness).

Row-finite quivers

Graph

Definition

A quiver is a quadruple $E=\left(E^{0}, E^{1}, s, r\right)$, where E^{0} (the vertices) and E^{1} (the edges) are sets, $s: E^{1} \rightarrow E^{0}$ (the source map) and $r: E^{1} \rightarrow E^{0}$ (the range map). It is row-finite, if $s^{-1}\{u\}$ is finite for each $u \in E^{0}$ (row-finiteness).

Think of each edge $e \in E^{1}$ as an arrow $e: s(e) \rightarrow r(e)$.

Row-finite quivers

Graph

Definition

A quiver is a quadruple $E=\left(E^{0}, E^{1}, s, r\right)$, where E^{0} (the vertices) and E^{1} (the edges) are sets, $s: E^{1} \rightarrow E^{0}$ (the source map) and $r: E^{1} \rightarrow E^{0}$ (the range map). It is row-finite, if $s^{-1}\{u\}$ is finite for each $u \in E^{0}$ (row-finiteness).

Think of each edge $e \in E^{1}$ as an arrow $e: s(e) \rightarrow r(e)$. Row-finiteness of E means: every vertex of E emits finitely many edges.

Row-finite quivers

Graph

Definition

A quiver is a quadruple $E=\left(E^{0}, E^{1}, s, r\right)$, where E^{0} (the vertices) and E^{1} (the edges) are sets, $s: E^{1} \rightarrow E^{0}$ (the source map) and $r: E^{1} \rightarrow E^{0}$ (the range map). It is row-finite, if $s^{-1}\{u\}$ is finite for each $u \in E^{0}$ (row-finiteness).

Think of each edge $e \in E^{1}$ as an arrow $e: s(e) \rightarrow r(e)$. Row-finiteness of E means: every vertex of E emits finitely many edges.
Example:

Graph monoids

Graph monoids

Regular rings,

 $\mathcal{V}(R)$The
representation problem

Graph
monoids and quivers

Given a row-finite quiver, consider the commutative monoid $\mathrm{M}(E)$ (graph monoid of E) defined by generators \bar{u} (for $u \in E^{0}$) and relations

Graph monoids

Graph monoids

Given a row-finite quiver, consider the commutative monoid $\mathrm{M}(E)$ (graph monoid of E) defined by generators \bar{u} (for $u \in E^{0}$) and relations

$$
\bar{u}=\sum\left(\overline{r(e)} \mid e \in s^{-1}\{u\}\right)
$$

Graph monoids

Graph monoids

Given a row-finite quiver, consider the commutative monoid $\mathrm{M}(E)$ (graph monoid of E) defined by generators \bar{u} (for $u \in E^{0}$) and relations

$$
\bar{u}=\sum\left(\overline{r(e)} \mid e \in s^{-1}\{u\}\right)
$$

for each $u \in E^{0}$ emitting edges.

Graph monoids

Graph monoids

Given a row-finite quiver, consider the commutative monoid $\mathrm{M}(E)$ (graph monoid of E) defined by generators \bar{u} (for $u \in E^{0}$) and relations

$$
\bar{u}=\sum\left(\overline{r(e)} \mid e \in s^{-1}\{u\}\right)
$$

for each $u \in E^{0}$ emitting edges.
For example, the quiver E

Graph monoids

Graph monoids

Given a row-finite quiver, consider the commutative monoid $\mathrm{M}(E)$ (graph monoid of E) defined by generators \bar{u} (for $u \in E^{0}$) and relations

$$
\bar{u}=\sum\left(\overline{r(e)} \mid e \in s^{-1}\{u\}\right),
$$

for each $u \in E^{0}$ emitting edges.
For example, the quiver E

gives $\mathrm{M}(E)$ defined by generators $\bar{u}, \bar{u}_{1}, \ldots, \bar{u}_{n}$ and the unique relation

Graph monoids

Graph monoids

Given a row-finite quiver, consider the commutative monoid $\mathrm{M}(E)$ (graph monoid of E) defined by generators \bar{u} (for $u \in E^{0}$) and relations

$$
\bar{u}=\sum\left(\overline{r(e)} \mid e \in s^{-1}\{u\}\right)
$$

for each $u \in E^{0}$ emitting edges.
For example, the quiver E

gives $\mathrm{M}(E)$ defined by generators $\bar{u}, \bar{u}_{1}, \ldots, \bar{u}_{n}$ and the unique relation

$$
\bar{u}=\bar{u}_{1}+\cdots+\bar{u}_{n} .
$$

Examples of quivers and graph monoids

Graph
monoids
The quiver

Examples of quivers and graph monoids

Graph monoids

Regular rings,

 $\mathcal{V}(R)$The
representation problem

Graph
monoids and quivers

The quiver

has graph monoid defined by generators p, a, b, and the unique relation $p=p+a+b$.

Examples of quivers and graph monoids

Graph monoids

Regular rings,

 $\mathcal{V}(R)$The
representation problem

Graph
monoids and quivers

The quiver

has graph monoid defined by generators p, a, b, and the unique relation $p=p+a+b$. The quiver

Examples of quivers and graph monoids

Graph monoids

Regular rings,

 $\mathcal{V}(R)$The quiver

has graph monoid defined by generators p, a, b, and the unique relation $p=p+a+b$. The quiver

has graph monoid defined by generators $a, b, 1$, and the two relations

Examples of quivers and graph monoids

Graph monoids

Regular rings,

 $\mathcal{V}(R)$The quiver

has graph monoid defined by generators p, a, b, and the unique relation $p=p+a+b$. The quiver

has graph monoid defined by generators $a, b, 1$, and the two relations

$$
a=a+1, \quad b=2 b+a .
$$

Graph monoids and refinement monoids

Theorem (Ara, Moreno, and Pardo 2007)
The graph monoid $M(E)$ is a conical refinement monoid, for any row-finite quiver E.

Graph monoids and refinement monoids

Theorem (Ara, Moreno, and Pardo 2007)
The graph monoid $M(E)$ is a conical refinement monoid, for any row-finite quiver E.

In fact, $\mathrm{M}(E)$ is a very special sort of conical refinement monoid.

Graph monoids and refinement monoids

Graph monoids

Regular rings, $\mathcal{V}(R)$

Theorem (Ara, Moreno, and Pardo 2007)
The graph monoid $M(E)$ is a conical refinement monoid, for any row-finite quiver E.

In fact, $\mathrm{M}(E)$ is a very special sort of conical refinement monoid. On any commutative monoid, set

Graph monoids and refinement monoids

Graph monoids

Regular rings, $\mathcal{V}(R)$

The
representation problem

Graph
monoids and quivers

Theorem (Ara, Moreno, and Pardo 2007)
The graph monoid $M(E)$ is a conical refinement monoid, for any row-finite quiver E.

In fact, $\mathrm{M}(E)$ is a very special sort of conical refinement monoid. On any commutative monoid, set

$$
x \leq y \Leftrightarrow(\exists z)(x+z=y) \quad \text { (algebraic preordering). }
$$

Graph monoids and refinement monoids

Theorem (Ara, Moreno, and Pardo 2007)
The graph monoid $M(E)$ is a conical refinement monoid, for any row-finite quiver E.

In fact, $\mathrm{M}(E)$ is a very special sort of conical refinement monoid. On any commutative monoid, set

$$
x \leq y \Leftrightarrow(\exists z)(x+z=y) \quad \text { (algebraic preordering). }
$$

Then $\mathrm{M}(E)$ always satisfies the following statements:

$$
\begin{array}{rlrl}
2 a=a+b=2 b & \Rightarrow a=b & & \text { (separativity); } \\
a+b=2 b & \Rightarrow a \leq b & & \text { (order-separativ } \\
m a \leq m b & \Rightarrow a \leq b & \text { for } m>0 & \\
\text { (unperforation) }
\end{array}
$$

Graph monoids and refinement monoids

Theorem (Ara, Moreno, and Pardo 2007)
The graph monoid $M(E)$ is a conical refinement monoid, for any row-finite quiver E.

In fact, $\mathrm{M}(E)$ is a very special sort of conical refinement monoid. On any commutative monoid, set

$$
x \leq y \Leftrightarrow(\exists z)(x+z=y) \quad \text { (algebraic preordering). }
$$

Then $\mathrm{M}(E)$ always satisfies the following statements:

$$
\begin{array}{rlrl}
2 a=a+b=2 b & \Rightarrow a=b & & \text { (separativity); } \\
a+b=2 b & \Rightarrow a \leq b & & \text { (order-separativ } \\
m a \leq m b & \Rightarrow a \leq b & \text { for } m>0 & \\
\text { (unperforation) }
\end{array}
$$

and others...

A representation result

Graph
monoids

Regular rings

 $\mathcal{V}(R)$The
representation

problem

Graph
monoids and
quivers

Theorem (Ara and Brustenga 2007)
Let E be a row-finite quiver. Then there exists a regular ring R such that $\mathcal{V}(R) \cong \mathrm{M}(E)$.

A representation result

Graph monoids

Theorem (Ara and Brustenga 2007)
Let E be a row-finite quiver. Then there exists a regular ring R such that $\mathcal{V}(R) \cong \mathrm{M}(E)$.

Furthermore, for any field \mathbb{F}, the ring R can be constructed as a \mathbb{F}-algebra.

A representation result

Graph monoids

Theorem (Ara and Brustenga 2007)
Let E be a row-finite quiver. Then there exists a regular ring R such that $\mathcal{V}(R) \cong \mathrm{M}(E)$.

Furthermore, for any field \mathbb{F}, the ring R can be constructed as a \mathbb{F}-algebra.
The latter cannot be said for all the instances of the representation problem.

Antisymmetric monoids, free primes

Graph monoids

Let M be a commutative monoid.
■ M is antisymmetric, if it satisfies

$$
a=a+x+y \Rightarrow a=a+x .
$$

Antisymmetric monoids, free primes

Graph monoids

Let M be a commutative monoid.
■ M is antisymmetric, if it satisfies

$$
a=a+x+y \Rightarrow a=a+x .
$$

- An element $p \in M$ with $p \not \leq 0$ is prime, if $p=x+y$ implies that either $p=x$ or $p=y$.

Antisymmetric monoids, free primes

Graph monoids

Let M be a commutative monoid.

- M is antisymmetric, if it satisfies

$$
a=a+x+y \Rightarrow a=a+x .
$$

- An element $p \in M$ with $p \not \leq 0$ is prime, if $p=x+y$ implies that either $p=x$ or $p=y$.
■ Free prime: $(n+1) p \not \leq n p$, for each positive integer n. In many (but not all) cases, this is equivalent to $2 p \not \leq p$.

Antisymmetric monoids, free primes

Graph monoids

Let M be a commutative monoid.

- M is antisymmetric, if it satisfies

$$
a=a+x+y \Rightarrow a=a+x .
$$

- An element $p \in M$ with $p \not \leq 0$ is prime, if $p=x+y$ implies that either $p=x$ or $p=y$.
■ Free prime: $(n+1) p \not \leq n p$, for each positive integer n. In many (but not all) cases, this is equivalent to $2 p \not \leq p$.
- $\operatorname{Prime}(M):=\{p \in M \mid p$ is prime $\}$.

Antisymmetric monoids, free primes

Graph monoids

Let M be a commutative monoid.
■ M is antisymmetric, if it satisfies

$$
a=a+x+y \Rightarrow a=a+x .
$$

- An element $p \in M$ with $p \not \leq 0$ is prime, if $p=x+y$ implies that either $p=x$ or $p=y$.
■ Free prime: $(n+1) p \not \leq n p$, for each positive integer n. In many (but not all) cases, this is equivalent to $2 p \not \leq p$.
- $\operatorname{Prime}(M):=\{p \in M \mid p$ is prime $\}$.

■ M is primitive, if it is an antisymmetric refinement monoid generated by its primes.

Antisymmetric monoids, free primes

Graph monoids

Let M be a commutative monoid.
■ M is antisymmetric, if it satisfies

$$
a=a+x+y \Rightarrow a=a+x
$$

- An element $p \in M$ with $p \not \leq 0$ is prime, if $p=x+y$ implies that either $p=x$ or $p=y$.
■ Free prime: $(n+1) p \not \leq n p$, for each positive integer n. In many (but not all) cases, this is equivalent to $2 p \not \leq p$.
- $\operatorname{Prime}(M):=\{p \in M \mid p$ is prime $\}$.

■ M is primitive, if it is an antisymmetric refinement monoid generated by its primes.
■ Equivalently, M is defined by generators and relations of the form $p_{j}=p_{i}+p_{j}(\forall(i, j) \in \Gamma)$.

Graph monoids

Regular rings, $\mathcal{V}(R)$

Theorem (Ara, Perera, W 2008)

A finitely generated primitive monoid M is a graph monoid iff it is a retract of a graph monoid, iff for each $p \in \operatorname{Prime}(M)$,

$$
\left\{q \in \operatorname{Prime}_{\text {free }}(M) \mid p \text { covers } q \text { in Prime }(M)\right\}
$$

has at most one element.

Theorem (Ara, Perera, W 2008)

A finitely generated primitive monoid M is a graph monoid iff it is a retract of a graph monoid, iff for each $p \in \operatorname{Prime}(M)$,

$$
\left\{q \in \operatorname{Prime}_{\text {free }}(M) \mid p \text { covers } q \text { in Prime }(M)\right\}
$$

has at most one element.
Main "forbidden monoid": commutative monoid with generators p, a, b and relations $p=p+a=p+b$.

Theorem (Ara, Perera, W 2008)

A finitely generated primitive monoid M is a graph monoid iff it is a retract of a graph monoid, iff for each $p \in \operatorname{Prime}(M)$,

$$
\left\{q \in \operatorname{Prime}_{\text {free }}(M) \mid p \text { covers } q \text { in Prime }(M)\right\}
$$

has at most one element.
Main "forbidden monoid": commutative monoid with generators p, a, b and relations $p=p+a=p+b$. If we want, in addition, the quiver to be finite: we need the set of all free primes to be an upper subset of M.

The strangest of all graph monoids. . .

Graph
monoids

Reguar rings.
$\nu(R)$

The
representation
problem
Graph
monoids and
quivers

The strangest of all graph monoids. . .

Regular rings,
 $\mathcal{V}(R)$

The
representation problem

Graph
monoids and quivers
\ldots it is $\{0,1,2, \ldots\} \cup\{\infty\}$.
It is a retract of the graph monoid of the following quiver:

The strangest of all graph monoids. . .

\ldots it is $\{0,1,2, \ldots\} \cup\{\infty\}$.
It is a retract of the graph monoid of the following quiver:

It is not the graph monoid of any finite quiver.

The strangest of all graph monoids. . .

\ldots it is $\{0,1,2, \ldots\} \cup\{\infty\}$.
It is a retract of the graph monoid of the following quiver:

It is not the graph monoid of any finite quiver. Nevertheless...

A strange quiver

Graph monoids

Regular rings,

$\mathcal{V}(R)$
The
representation
problem
Graph
monoids and quivers
... it can be represented by the following row-finite quiver:

A strange quiver

Graph monoids

Regular rings,

$\mathcal{V}(R)$
The
representation problem

Graph
monoids and quivers
... it can be represented by the following row-finite quiver:

Generators $1, b_{0}, b_{1}, b_{2}, \ldots$, and relations

$$
\begin{aligned}
& b_{0}=2 b_{0}+b_{1}+b_{2}+1 ; \\
& b_{1}=b_{0}+2 b_{1}+b_{2} ; \\
& b_{2}=b_{2}+b_{1}+b_{3}+b_{4} ; \\
& b_{3}=2 b_{3}+2 b_{1}+b_{4} ; \\
& \cdots \quad \cdots
\end{aligned}
$$

