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Von Neumann regular rings

An associative ring R is (von Neumann) regular, if it
satisfies (∀x ∈ R)(∃y ∈ R)(xyx = x).

For a regular ring R, all matrix rings Mn(R) := Rn×n are
also regular.

Mn(R) ↪→ Mn+1(R), via x 7→
(

x 0
0 0

)
.

M∞(R) := lim−→n<ω
Mn(R) is also a regular ring (without

unit).
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Nonstable K-theory V(R)

For a ring R, define an equivalence relation ∼ on
Idemp(R) by a ∼ b ⇔ (∃x , y)(a = xy and b = yx).

On Idemp(R), a ⊥ b ⇔ ab = ba = 0.

V(R) := M∞(R)/∼ is a commutative monoid, with
[a] + [b] := [a + b] in case a ⊥ b.

V(R) is conical, that is, it has x + y = 0⇒ x = y = 0.

Any conical commutative monoid appears as some V(R)
(Bergman 1974 + Bergman and Dicks 1978).

For R regular, the situation is far more complicated. . .
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Refinement monoids

A commutative monoid M is a refinement monoid, if for
all a0, a1, b0, b1 ∈ M, if a0 + a1 = b0 + b1, then there are
ci ,j ∈ M (for i , j < 2) such that

ai = ci ,0 + ci ,1 and bi = c0,i + c1,i (for all i < 2) .

Examples of conical refinement monoids:

Any abelian group with a new zero added.

Any positive cone of a lattice-ordered group.

A (∨, 0)-semilattice is a (conical) refinement monoid iff it
is distributive.

{(x , y) ∈ Q×Q | either x = y = 0 or x , y > 0}.
The monoid of all isomorphism types of Boolean algebras,
with [A] + [B] := [A× B] (it is also a proper class).



Graph
monoids

Regular rings,
V(R)

The
representation
problem

Graph
monoids and
quivers

Refinement monoids

A commutative monoid M is a refinement monoid, if for
all a0, a1, b0, b1 ∈ M, if a0 + a1 = b0 + b1, then there are
ci ,j ∈ M (for i , j < 2) such that

ai = ci ,0 + ci ,1 and bi = c0,i + c1,i (for all i < 2) .

Examples of conical refinement monoids:

Any abelian group with a new zero added.

Any positive cone of a lattice-ordered group.

A (∨, 0)-semilattice is a (conical) refinement monoid iff it
is distributive.

{(x , y) ∈ Q×Q | either x = y = 0 or x , y > 0}.
The monoid of all isomorphism types of Boolean algebras,
with [A] + [B] := [A× B] (it is also a proper class).



Graph
monoids

Regular rings,
V(R)

The
representation
problem

Graph
monoids and
quivers

Refinement monoids

A commutative monoid M is a refinement monoid, if for
all a0, a1, b0, b1 ∈ M, if a0 + a1 = b0 + b1, then there are
ci ,j ∈ M (for i , j < 2) such that

ai = ci ,0 + ci ,1 and bi = c0,i + c1,i (for all i < 2) .

Examples of conical refinement monoids:

Any abelian group with a new zero added.

Any positive cone of a lattice-ordered group.

A (∨, 0)-semilattice is a (conical) refinement monoid iff it
is distributive.

{(x , y) ∈ Q×Q | either x = y = 0 or x , y > 0}.
The monoid of all isomorphism types of Boolean algebras,
with [A] + [B] := [A× B] (it is also a proper class).



Graph
monoids

Regular rings,
V(R)

The
representation
problem

Graph
monoids and
quivers

Refinement monoids

A commutative monoid M is a refinement monoid, if for
all a0, a1, b0, b1 ∈ M, if a0 + a1 = b0 + b1, then there are
ci ,j ∈ M (for i , j < 2) such that

ai = ci ,0 + ci ,1 and bi = c0,i + c1,i (for all i < 2) .

Examples of conical refinement monoids:

Any abelian group with a new zero added.

Any positive cone of a lattice-ordered group.

A (∨, 0)-semilattice is a (conical) refinement monoid iff it
is distributive.

{(x , y) ∈ Q×Q | either x = y = 0 or x , y > 0}.
The monoid of all isomorphism types of Boolean algebras,
with [A] + [B] := [A× B] (it is also a proper class).



Graph
monoids

Regular rings,
V(R)

The
representation
problem

Graph
monoids and
quivers

Refinement monoids

A commutative monoid M is a refinement monoid, if for
all a0, a1, b0, b1 ∈ M, if a0 + a1 = b0 + b1, then there are
ci ,j ∈ M (for i , j < 2) such that

ai = ci ,0 + ci ,1 and bi = c0,i + c1,i (for all i < 2) .

Examples of conical refinement monoids:

Any abelian group with a new zero added.

Any positive cone of a lattice-ordered group.

A (∨, 0)-semilattice is a (conical) refinement monoid iff it
is distributive.

{(x , y) ∈ Q×Q | either x = y = 0 or x , y > 0}.
The monoid of all isomorphism types of Boolean algebras,
with [A] + [B] := [A× B] (it is also a proper class).



Graph
monoids

Regular rings,
V(R)

The
representation
problem

Graph
monoids and
quivers

Refinement monoids

A commutative monoid M is a refinement monoid, if for
all a0, a1, b0, b1 ∈ M, if a0 + a1 = b0 + b1, then there are
ci ,j ∈ M (for i , j < 2) such that

ai = ci ,0 + ci ,1 and bi = c0,i + c1,i (for all i < 2) .

Examples of conical refinement monoids:

Any abelian group with a new zero added.

Any positive cone of a lattice-ordered group.

A (∨, 0)-semilattice is a (conical) refinement monoid iff it
is distributive.

{(x , y) ∈ Q×Q | either x = y = 0 or x , y > 0}.

The monoid of all isomorphism types of Boolean algebras,
with [A] + [B] := [A× B] (it is also a proper class).



Graph
monoids

Regular rings,
V(R)

The
representation
problem

Graph
monoids and
quivers

Refinement monoids

A commutative monoid M is a refinement monoid, if for
all a0, a1, b0, b1 ∈ M, if a0 + a1 = b0 + b1, then there are
ci ,j ∈ M (for i , j < 2) such that

ai = ci ,0 + ci ,1 and bi = c0,i + c1,i (for all i < 2) .

Examples of conical refinement monoids:

Any abelian group with a new zero added.

Any positive cone of a lattice-ordered group.

A (∨, 0)-semilattice is a (conical) refinement monoid iff it
is distributive.

{(x , y) ∈ Q×Q | either x = y = 0 or x , y > 0}.
The monoid of all isomorphism types of Boolean algebras,
with [A] + [B] := [A× B] (it is also a proper class).



Graph
monoids

Regular rings,
V(R)

The
representation
problem

Graph
monoids and
quivers

Refinement monoids and regular rings

Theorem (Goodearl and Handelman, 1975)

For any regular ring R, V(R) is a conical refinement monoid.

Representation problem (Goodearl 1995)

Which monoids appear as V(R), for a regular ring R?

First guess: All conical refinement monoids. . . . but that’s not
the case (W 1998, counterexample of cardinality ℵ2, positive
cone of a partially ordered abelian group).
Representation problem still open in cardinalities ℵ0 and ℵ1. . .
. . . and even still open in the finite case!
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Row-finite quivers

Definition

A quiver is a quadruple E = (E 0, E 1, s, r), where E 0 (the
vertices) and E 1 (the edges) are sets, s : E 1 → E 0 (the source
map) and r : E 1 → E 0 (the range map).

It is row-finite, if
s−1{u} is finite for each u ∈ E 0 (row-finiteness).

Think of each edge e ∈ E 1 as an arrow e : s(e)→ r(e).
Row-finiteness of E means: every vertex of E emits finitely
many edges.
Example:

u1 u2 . . . un

u

hhQQQQQQQQQQQQQQQ

aaDDDDDDDD

==zzzzzzzz
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Graph monoids

Given a row-finite quiver, consider the commutative
monoid M(E ) (graph monoid of E ) defined by generators u
(for u ∈ E 0) and relations

u =
∑

(r(e) | e ∈ s−1{u}) ,

for each u ∈ E 0 emitting edges.
For example, the quiver E

u1 u2 . . . un

u

hhQQQQQQQQQQQQQQQ

aaDDDDDDDD

==zzzzzzzz

gives M(E ) defined by generators u, u1,. . . , un and the unique
relation

u = u1 + · · ·+ un .
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Examples of quivers and graph monoids

The quiver
p

��

����������

��>>>>>>>

a b

has graph monoid defined by generators p, a, b, and the unique
relation p = p + a + b. The quiver

a
$$

��

boo zz��

1

has graph monoid defined by generators a, b, 1, and the two
relations

a = a + 1 , b = 2b + a .



Graph
monoids

Regular rings,
V(R)

The
representation
problem

Graph
monoids and
quivers

Examples of quivers and graph monoids

The quiver
p

��

����������

��>>>>>>>

a b

has graph monoid defined by generators p, a, b, and the unique
relation p = p + a + b.

The quiver

a
$$

��

boo zz��

1

has graph monoid defined by generators a, b, 1, and the two
relations

a = a + 1 , b = 2b + a .



Graph
monoids

Regular rings,
V(R)

The
representation
problem

Graph
monoids and
quivers

Examples of quivers and graph monoids

The quiver
p

��

����������

��>>>>>>>

a b

has graph monoid defined by generators p, a, b, and the unique
relation p = p + a + b. The quiver

a
$$

��

boo zz��

1

has graph monoid defined by generators a, b, 1, and the two
relations

a = a + 1 , b = 2b + a .



Graph
monoids

Regular rings,
V(R)

The
representation
problem

Graph
monoids and
quivers

Examples of quivers and graph monoids

The quiver
p

��

����������

��>>>>>>>

a b

has graph monoid defined by generators p, a, b, and the unique
relation p = p + a + b. The quiver

a
$$

��

boo zz��

1

has graph monoid defined by generators a, b, 1, and the two
relations

a = a + 1 , b = 2b + a .



Graph
monoids

Regular rings,
V(R)

The
representation
problem

Graph
monoids and
quivers

Examples of quivers and graph monoids

The quiver
p

��

����������

��>>>>>>>

a b

has graph monoid defined by generators p, a, b, and the unique
relation p = p + a + b. The quiver

a
$$

��

boo zz��

1

has graph monoid defined by generators a, b, 1, and the two
relations

a = a + 1 , b = 2b + a .



Graph
monoids

Regular rings,
V(R)

The
representation
problem

Graph
monoids and
quivers

Graph monoids and refinement monoids

Theorem (Ara, Moreno, and Pardo 2007)

The graph monoid M(E ) is a conical refinement monoid, for
any row-finite quiver E .

In fact, M(E ) is a very special sort of conical refinement
monoid. On any commutative monoid, set

x ≤ y ⇔ (∃z)(x + z = y) (algebraic preordering).

Then M(E ) always satisfies the following statements:

2a = a + b = 2b ⇒ a = b (separativity);

a + b = 2b ⇒ a ≤ b (order-separativity);

ma ≤ mb ⇒ a ≤ b for m > 0 (unperforation)

and others. . .
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A representation result

Theorem (Ara and Brustenga 2007)

Let E be a row-finite quiver. Then there exists a regular ring R
such that V(R) ∼= M(E ).

Furthermore, for any field F, the ring R can be constructed as
a F-algebra.
The latter cannot be said for all the instances of the
representation problem.
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Antisymmetric monoids, free primes

Let M be a commutative monoid.

M is antisymmetric, if it satisfies

a = a + x + y ⇒ a = a + x .

An element p ∈ M with p � 0 is prime, if p = x + y
implies that either p = x or p = y .

Free prime: (n + 1)p � np, for each positive integer n. In
many (but not all) cases, this is equivalent to 2p � p.

Prime(M) := {p ∈ M | p is prime}.
M is primitive, if it is an antisymmetric refinement monoid
generated by its primes.

Equivalently, M is defined by generators and relations of
the form pj = pi + pj (∀(i , j) ∈ Γ).
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Theorem (Ara, Perera, W 2008)

A finitely generated primitive monoid M is a graph monoid iff
it is a retract of a graph monoid, iff for each p ∈ Prime(M),

{q ∈ Primefree(M) | p covers q in Prime(M)}

has at most one element.

Main “forbidden monoid”: commutative monoid with
generators p, a, b and relations p = p + a = p + b.
If we want, in addition, the quiver to be finite: we need the set
of all free primes to be an upper subset of M.
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The strangest of all graph monoids. . .

. . . it is {0, 1, 2, . . . } ∪ {∞}.

It is a retract of the graph monoid of the following quiver:

a
$$

��

boo zz��

1

It is not the graph monoid of any finite quiver.
Nevertheless. . .
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A strange quiver

. . . it can be represented by the following row-finite quiver:

1 b0
oo

�� ��
//

??b1
oo

�� ��
// b2

oo
��

//
??b3

�� ��
//

__YY b4

��
//

__ ??b5

�� ��
//

^^ZZ b6

��
//

^^ · · ·

Generators 1, b0, b1, b2, . . . , and relations

b0 = 2b0 + b1 + b2 + 1 ;

b1 = b0 + 2b1 + b2 ;

b2 = b2 + b1 + b3 + b4 ;

b3 = 2b3 + 2b1 + b4 ;

. . . . . .
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