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“Remarkable identities”

Basic remarkable identities:

(a + b)2 = a2 + 2ab + b2

(a− b)2 = a2 − 2ab + b2

(a + b)(a− b) = a2 − b2.

Karatsuba identity (To be checked as an exercise!): Solves a
problem stated in 1952 by Andrey Nikolaevich Kolmogorov
(April 25, 1903 – October 20, 1987).

(100a1 + a0)(100b1 + b0) =

10,000a1b1 + 100
(
(a0 + a1)(b0 + b1)− a0b0 − a1b1

)
+ a0b0

The “100” above can be replaced by any B, typically a power
of 10 (or of 2). The “10,000” above then becomes B2.



Hidden
identities

Basic
examples

Remarkable
identities for
matrices

Identities in
rings

Other
structures

“Remarkable identities”

Basic remarkable identities:

(a + b)2 = a2 + 2ab + b2

(a− b)2 = a2 − 2ab + b2

(a + b)(a− b) = a2 − b2.

Karatsuba identity (To be checked as an exercise!): Solves a
problem stated in 1952 by Andrey Nikolaevich Kolmogorov
(April 25, 1903 – October 20, 1987).

(100a1 + a0)(100b1 + b0) =

10,000a1b1 + 100
(
(a0 + a1)(b0 + b1)− a0b0 − a1b1

)
+ a0b0

The “100” above can be replaced by any B, typically a power
of 10 (or of 2). The “10,000” above then becomes B2.



Hidden
identities

Basic
examples

Remarkable
identities for
matrices

Identities in
rings

Other
structures

“Remarkable identities”

Basic remarkable identities:

(a + b)2 = a2 + 2ab + b2

(a− b)2 = a2 − 2ab + b2

(a + b)(a− b) = a2 − b2.

Karatsuba identity (To be checked as an exercise!): Solves a
problem stated in 1952 by Andrey Nikolaevich Kolmogorov
(April 25, 1903 – October 20, 1987).

(100a1 + a0)(100b1 + b0) =

10,000a1b1 + 100
(
(a0 + a1)(b0 + b1)− a0b0 − a1b1

)
+ a0b0

The “100” above can be replaced by any B, typically a power
of 10 (or of 2). The “10,000” above then becomes B2.



Hidden
identities

Basic
examples

Remarkable
identities for
matrices

Identities in
rings

Other
structures

“Remarkable identities”

Basic remarkable identities:

(a + b)2 = a2 + 2ab + b2

(a− b)2 = a2 − 2ab + b2

(a + b)(a− b) = a2 − b2.

Karatsuba identity (To be checked as an exercise!): Solves a
problem stated in 1952 by Andrey Nikolaevich Kolmogorov
(April 25, 1903 – October 20, 1987).

(100a1 + a0)(100b1 + b0) =

10,000a1b1 + 100
(
(a0 + a1)(b0 + b1)− a0b0 − a1b1

)
+ a0b0

The “100” above can be replaced by any B, typically a power
of 10 (or of 2). The “10,000” above then becomes B2.



Hidden
identities

Basic
examples

Remarkable
identities for
matrices

Identities in
rings

Other
structures

“Remarkable identities”

Basic remarkable identities:

(a + b)2 = a2 + 2ab + b2

(a− b)2 = a2 − 2ab + b2

(a + b)(a− b) = a2 − b2.

Karatsuba identity (To be checked as an exercise!):

Solves a
problem stated in 1952 by Andrey Nikolaevich Kolmogorov
(April 25, 1903 – October 20, 1987).

(100a1 + a0)(100b1 + b0) =

10,000a1b1 + 100
(
(a0 + a1)(b0 + b1)− a0b0 − a1b1

)
+ a0b0

The “100” above can be replaced by any B, typically a power
of 10 (or of 2). The “10,000” above then becomes B2.



Hidden
identities

Basic
examples

Remarkable
identities for
matrices

Identities in
rings

Other
structures

“Remarkable identities”

Basic remarkable identities:

(a + b)2 = a2 + 2ab + b2

(a− b)2 = a2 − 2ab + b2

(a + b)(a− b) = a2 − b2.

Karatsuba identity (To be checked as an exercise!): Solves a
problem stated in 1952 by Andrey Nikolaevich Kolmogorov
(April 25, 1903 – October 20, 1987).

(100a1 + a0)(100b1 + b0) =

10,000a1b1 + 100
(
(a0 + a1)(b0 + b1)− a0b0 − a1b1

)
+ a0b0

The “100” above can be replaced by any B, typically a power
of 10 (or of 2). The “10,000” above then becomes B2.



Hidden
identities

Basic
examples

Remarkable
identities for
matrices

Identities in
rings

Other
structures

“Remarkable identities”

Basic remarkable identities:

(a + b)2 = a2 + 2ab + b2

(a− b)2 = a2 − 2ab + b2

(a + b)(a− b) = a2 − b2.

Karatsuba identity (To be checked as an exercise!): Solves a
problem stated in 1952 by Andrey Nikolaevich Kolmogorov
(April 25, 1903 – October 20, 1987).

(100a1 + a0)(100b1 + b0) =

10,000a1b1 + 100
(
(a0 + a1)(b0 + b1)− a0b0 − a1b1

)
+ a0b0

The “100” above can be replaced by any B, typically a power
of 10 (or of 2). The “10,000” above then becomes B2.



Hidden
identities

Basic
examples

Remarkable
identities for
matrices

Identities in
rings

Other
structures

“Remarkable identities”

Basic remarkable identities:

(a + b)2 = a2 + 2ab + b2

(a− b)2 = a2 − 2ab + b2

(a + b)(a− b) = a2 − b2.

Karatsuba identity (To be checked as an exercise!): Solves a
problem stated in 1952 by Andrey Nikolaevich Kolmogorov
(April 25, 1903 – October 20, 1987).

(100a1 + a0)(100b1 + b0) =

10,000a1b1 + 100
(
(a0 + a1)(b0 + b1)− a0b0 − a1b1

)
+ a0b0

The “100” above can be replaced by any B, typically a power
of 10 (or of 2).

The “10,000” above then becomes B2.



Hidden
identities

Basic
examples

Remarkable
identities for
matrices

Identities in
rings

Other
structures

“Remarkable identities”

Basic remarkable identities:

(a + b)2 = a2 + 2ab + b2

(a− b)2 = a2 − 2ab + b2

(a + b)(a− b) = a2 − b2.

Karatsuba identity (To be checked as an exercise!): Solves a
problem stated in 1952 by Andrey Nikolaevich Kolmogorov
(April 25, 1903 – October 20, 1987).

(100a1 + a0)(100b1 + b0) =

10,000a1b1 + 100
(
(a0 + a1)(b0 + b1)− a0b0 − a1b1

)
+ a0b0

The “100” above can be replaced by any B, typically a power
of 10 (or of 2). The “10,000” above then becomes B2.



Hidden
identities

Basic
examples

Remarkable
identities for
matrices

Identities in
rings

Other
structures

Anatoly Alexeevich Karatsuba (1937–2008)
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Example of use of Karatsuba’s identity:

(100a1 + a0)(100b1 + b0) =

10,000a1b1 + 100
(
(a0 + a1)(b0 + b1)− a0b0 − a1b1

)
+ a0b0

Example:

2017× 8848 = (100× 20︸︷︷︸
a1

+ 17︸︷︷︸
a0

)× (100× 88︸︷︷︸
b1

+ 48︸︷︷︸
b0

)

= 10,000× ( 20︸︷︷︸
a1

× 88︸︷︷︸
b1

)+

100×
((

(17 + 20︸ ︷︷ ︸
a0+a1

)× (48 + 88︸ ︷︷ ︸
b0+b1

)
)

− 17︸︷︷︸
a0

× 48︸︷︷︸
b0

− 20︸︷︷︸
a1

× 88︸︷︷︸
b1

)
+ 17︸︷︷︸

a0

× 48︸︷︷︸
b0
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. . . Example (cont’d)

= 10,000× (20× 88)+

100× (37× 136− 17× 48− 20× 88) + 17× 48

= 17,846,416

Remarkable point: this requires only 3 multiplications (i.e.,
20× 88, 17× 48, 37× 136) instead of the usual 4 (i.e.,
20× 88, 20× 48, 17× 88, 17× 48).
By using the “divide and conquer” method, this enables to
multiply large numbers much faster. For example, with two
numbers of 210 = 1,024 digits, 310 = 59,048 multiplications
(Karatsuba multiplication) instead of 220 = 1,048,576 (classical
multiplication). There are even faster multiplication algorithms
(e.g., FFT), but not so easy to implement.
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Extending the validity range of remarkable
identities

Back to remarkable identities:

(a + b)2 = a2 + 2ab + b2

(a− b)2 = a2 − 2ab + b2

(a + b)(a− b) = a2 − b2.

Valid for any real numbers a and b.
How about more general objects?
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Matrices

2× 2 matrices: Arrays of numbers of the form

(
a b
c d

)
.

Addition defined by(
a1 b1

c1 d1

)
+

(
a2 b2

c2 d2

)
=

(
a1 + a2 b1 + b2

c1 + c2 d1 + d2

)
.

Multiplication defined by(
a1 b1

c1 d1

)
·
(
a2 b2

c2 d2

)
=

(
a1a2 + b1c2 a1b2 + b1d2

c1a2 + d1c2 c1b2 + d1d2

)
.



Hidden
identities

Basic
examples

Remarkable
identities for
matrices

Identities in
rings

Other
structures

Matrices

2× 2 matrices: Arrays of numbers of the form

(
a b
c d

)
.

Addition defined by(
a1 b1

c1 d1

)
+

(
a2 b2

c2 d2

)
=

(
a1 + a2 b1 + b2

c1 + c2 d1 + d2

)
.

Multiplication defined by(
a1 b1

c1 d1

)
·
(
a2 b2

c2 d2

)
=

(
a1a2 + b1c2 a1b2 + b1d2

c1a2 + d1c2 c1b2 + d1d2

)
.



Hidden
identities

Basic
examples

Remarkable
identities for
matrices

Identities in
rings

Other
structures

Matrices

2× 2 matrices: Arrays of numbers of the form

(
a b
c d

)
.

Addition defined by(
a1 b1

c1 d1

)
+

(
a2 b2

c2 d2

)
=

(
a1 + a2 b1 + b2

c1 + c2 d1 + d2

)
.

Multiplication defined by(
a1 b1

c1 d1

)
·
(
a2 b2

c2 d2

)
=

(
a1a2 + b1c2 a1b2 + b1d2

c1a2 + d1c2 c1b2 + d1d2

)
.



Hidden
identities

Basic
examples

Remarkable
identities for
matrices

Identities in
rings

Other
structures

Matrices

2× 2 matrices: Arrays of numbers of the form

(
a b
c d

)
.

Addition defined by(
a1 b1

c1 d1

)
+

(
a2 b2

c2 d2

)
=

(
a1 + a2 b1 + b2

c1 + c2 d1 + d2

)
.

Multiplication defined by(
a1 b1

c1 d1

)
·
(
a2 b2

c2 d2

)
=

(
a1a2 + b1c2 a1b2 + b1d2

c1a2 + d1c2 c1b2 + d1d2

)
.



Hidden
identities

Basic
examples

Remarkable
identities for
matrices

Identities in
rings

Other
structures

Matrices

2× 2 matrices: Arrays of numbers of the form

(
a b
c d

)
.

Addition defined by(
a1 b1

c1 d1

)
+

(
a2 b2

c2 d2

)
=

(
a1 + a2 b1 + b2

c1 + c2 d1 + d2

)
.

Multiplication defined by(
a1 b1

c1 d1

)
·
(
a2 b2

c2 d2

)
=

(
a1a2 + b1c2 a1b2 + b1d2

c1a2 + d1c2 c1b2 + d1d2

)
.



Hidden
identities

Basic
examples

Remarkable
identities for
matrices

Identities in
rings

Other
structures

The zero and the unit for matrices

The zero matrix is 0 =

(
0 0
0 0

)
.

(
a b
c d

)
+

(
0 0
0 0

)
=

(
0 0
0 0

)
+

(
a b
c d

)
=

(
a b
c d

)
.

The unit matrix is 1 =

(
1 0
0 1

)
.(

a b
c d

)
·
(

1 0
0 1

)
=

(
1 0
0 1

)
·
(
a b
c d

)
=

(
a b
c d

)
.



Hidden
identities

Basic
examples

Remarkable
identities for
matrices

Identities in
rings

Other
structures

The zero and the unit for matrices

The zero matrix is 0 =

(
0 0
0 0

)
.(

a b
c d

)
+

(
0 0
0 0

)
=

(
0 0
0 0

)
+

(
a b
c d

)
=

(
a b
c d

)
.

The unit matrix is 1 =

(
1 0
0 1

)
.(

a b
c d

)
·
(

1 0
0 1

)
=

(
1 0
0 1

)
·
(
a b
c d

)
=

(
a b
c d

)
.



Hidden
identities

Basic
examples

Remarkable
identities for
matrices

Identities in
rings

Other
structures

The zero and the unit for matrices

The zero matrix is 0 =

(
0 0
0 0

)
.(

a b
c d

)
+

(
0 0
0 0

)
=

(
0 0
0 0

)
+

(
a b
c d

)
=

(
a b
c d

)
.

The unit matrix is 1 =

(
1 0
0 1

)
.

(
a b
c d

)
·
(

1 0
0 1

)
=

(
1 0
0 1

)
·
(
a b
c d

)
=

(
a b
c d

)
.



Hidden
identities

Basic
examples

Remarkable
identities for
matrices

Identities in
rings

Other
structures

The zero and the unit for matrices

The zero matrix is 0 =

(
0 0
0 0

)
.(

a b
c d

)
+

(
0 0
0 0

)
=

(
0 0
0 0

)
+

(
a b
c d

)
=

(
a b
c d

)
.

The unit matrix is 1 =

(
1 0
0 1

)
.(

a b
c d

)
·
(

1 0
0 1

)
=

(
1 0
0 1

)
·
(
a b
c d

)
=

(
a b
c d

)
.



Hidden
identities

Basic
examples

Remarkable
identities for
matrices

Identities in
rings

Other
structures

Checking remarkable identities on matrices

Example:

a =

(
0 1
0 0

)
, b =

(
0 0
1 0

)
.

(a + b)2 =

(
0 1
1 0

)2

=

(
1 0
0 1

)
; a2 + 2ab + b2 =

(
2 0
0 0

)
.

For this example, (a + b)2 6= a2 + 2ab + b2. Similarly,
(a− b)2 6= a2 − 2ab + b2 and (a + b)(a− b) 6= a2 − b2.
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What’s the problem?

Computing (a + b)2, for arbitrary matrices a and b:

(a + b)2 = (a + b)(a + b)

= a(a + b) + b(a + b)

= a2 + ab + ba + b2

(as opposed to a2 + 2ab + b2) .

Hence the problem boils down to ab 6= ba.
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Validity range

Hence, for matrices a and b, “ (a + b)2 = a2 + 2ab + b2 ”
is equivalent to “ ab = ba ”.

Similarly, each of the other two remarkable identities,
(a− b)2 = a2 − 2ab + b2, and (a + b)(a− b) = a2 − b2, is
also equivalent to ab = ba.

For a =

(
0 1
0 0

)
and b =

(
0 0
1 0

)
(previous example), we

obtain ab =

(
1 0
0 0

)
and ba =

(
0 0
0 1

)
.

The argument above is valid in any ring.
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Rings

Defining identities for (unital) rings:

(x + y) + z = x + (y + z) (associativity of +) ;

x + y = y + x (commutativity of +) ;

x + 0 = 0 + x = x (0 is neutral pour +) ;

x + (−x) = (−x) + x = 0 (−x is the opposite of x) ;

(x · y) · z = x · (y · z) (associativity of ·) ;

x · (y + z) = (x · y) + (x · z) (left distributivity) ;

(x + y) · z = (x · z) + (y · z) (right distributivity) ;

x · 1 = 1 · x = x (1 is neutral for ·) .

The identity x · y = y · x (commutativity of ·) defines
commutative rings.
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Identities for rings of 2× 2 matrices, not valid in all
rings:

The easiest:

(ab − ba)2c = c(ab − ba)2.

The one with smallest degree (Amitsur-Levitzki, 1950):

abcd − bacd − abdc + badc − acbd + cabd

+ acdb − cadb + adbc − dabc − adcb + dacb

+ cdab − cdba− dcab + dcba− bdac + bdca

+ dbac − dbca + bcad − bcda− cbad + cbda

= 0 .
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An identity for all n × n matrices:

The Amitsur-Levitzki identity for n × n matrices:∑
σ∈S2n

sgn(σ)aσ(1) · · · aσ(2n) = 0 ,

(here, sgn(σ) denotes the “signature” of the
permutation σ), for all n × n real matrices a1, . . . , a2n.

Remark: If an identity holds in all real matrix rings (of
arbitrary dimension), then it holds in all rings. This implies
that “there is no version of the Amitsur-Levitzki identity
that holds for all n”.
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Permutation lattices (“permutohedra”) on 2, 3,
and 4 letters

123

12

21 231 312

213 132

321

P(4)P(3)P(2)

4321

3421 42314312

3241 24313412 42134132

23413214
2413

3142 41231432

23142143
31241423

1342

2134
12431324

1234

If n is the number of inversions of σ (height of σ in the
permutohedron), then sgn(σ) = 1 if n is even, −1 if n is odd.
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Boolean rings

Integers, reals, complex numbers all form commutative
rings.

2× 2 real matrices form a non commutative ring.

The system of identities [rings with x · x = x (abbreviated
x2 = x)] defines Boolean rings (important in logic and
probability theory).

Every Boolean ring is commutative. (Proof:
x2 = x · x = x , thus
4x = x2 + x · x + x · x + x2 = (x + x)2 = x + x = 2x ,
which yields 2x = 0; then
x + y = (x + y)2 = x + x · y + y · x + y yields
x · y + y · x = 0; however, x · y + x · y = 0, thus
x · y = y · x).

In fact, for every positive integer n, every ring satisfying
the identity xn = x is commutative (difficult result!).
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Boolean rings → Boolean algebras

In any Boolean ring (x2 = x), set

x ∨ y = x + y + x · y , x ∧ y = x · y , ¬x = 1 + x .

Boolean algebras:

(lattices)



(x ∨ y) ∨ z = x ∨ (y ∨ z) ;

x ∨ y = y ∨ x ;

x ∨ x = x ;

(x ∧ y) ∧ z = x ∧ (y ∧ z) ;

x ∧ y = y ∧ x ;

x ∧ x = x ;

x ∧ (x ∨ y) = x ∨ (x ∧ y) = x .

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) ;

x ∧ ¬x = 0 ; x ∨ ¬x = 1 .
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Boolean algebras ↔ Boolean rings

x + y = (x ∨ y) ∧ ¬(x ∧ y), x · y = x ∧ y .

The transformations (0, 1,+, ·) � (0, 1,∨,∧,¬) are
mutually inverse.

The concepts of Boolean algebra and Boolean ring are
thus equivalent.

Fundamental example: let us fix a set E .

The set of all subsets of E is a Boolean algebra (resp., a
Boolean ring), with

0 = ∅ (empty set); 1 = E (“full” set); X ∨ Y = X ∪ Y
(union), X · Y = X ∧ Y = X ∩ Y (intersection),
¬X = E \ X (complement);
X + Y = (X ∪ Y ) \ (X ∩ Y ) (symmetric difference).
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Robbins algebras

Identities:

(x ∨ y) ∨ z = x ∨ (y ∨ z) ;

x ∨ y = y ∨ x ;

¬(¬(x ∨ y) + ¬(x ∨ ¬y)) = x .

Every Boolean algebra is a Robbins algebra (exercise).

The problem of the converse was stated by Herbert
Robbins in 1933.
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Solution of the Robbins conjecture

There were many unsuccessful attempts from a number of
mathematicians, including Huntington, Robbins, Tarski.

The problem was finally solved (positively) in 1996 by
William McCune (December 1953 – May 2011), who
created for that purpose the software EQP.

Further building on EQP, McCune developed the
automatic prover / counterexample builder Prover9-Mace4
(see http://www.cs.unm.edu/~mccune/mace4/).

http://www.cs.unm.edu/~mccune/mace4/
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Theorem (Santocanale and W. 2014)

There exists an identity, on the operations ∨ (join) and ∧
(meet), that holds in all permutohedra P(n) (i.e., in all
permutation lattices), but that does not hold in all (finite)
lattices.

This identity does not hold in all lattices (L,∨,∧):

in fact,
it holds in all lattices with up to 3,337 elements, and it
fails in a 3,338-element lattice.

This identity could, in principle, be written explicitly.
However, it would then fill a book.
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A mystery

Tautology: statement true everywhere (e.g., “
x ∗ y = x ∗ y ”, “ x = y or x 6= y ”, etc.)

Set x ∗ y = x3 + y2, for all integers (or real numbers, the
problem is equivalent) x and y .

Does there exist a non-tautological identity, satisfied by
that operation ∗ ? (As far as I know, this problem was
stated by Harvey Friedman in 1986, and it is still open; see
also Roger Tian’s 2009 arXiv preprint,
https://arxiv.org/abs/0910.1571)

Example of attempt: x ∗ y = x3 + y2 is not identical to
y ∗ x = x2 + y3. Hence, the identity x ∗ y = y ∗ x does
not hold.

https://arxiv.org/abs/0910.1571
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Thanks for your attention!
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