Hidden identities

Friedrich Wehrung

Université de Caen
LMNO, CNRS UMR 6139
Département de Mathématiques
14032 Caen cedex
E-mail: friedrich.wehrung01@unicaen.fr URL: http://wehrungf.users.Imno.cnrs.fr

$$
\text { December 22, } 2017
$$

"Remarkable identities"

Hidden identities

Basic
examples
Remarkable
identities for
matrices
Identities in
rings
Other
structures

Basic remarkable identities:

"Remarkable identities"

Hidden identities

Basic examples

Remarkable
identities for matrices

Identities in
rings
Other
structures

Basic remarkable identities:

- $(a+b)^{2}=a^{2}+2 a b+b^{2}$

"Remarkable identities"

Hidden identities

Basic examples

Remarkable identities for matrices

Identities in rings

Other structures

Basic remarkable identities:

- $(a+b)^{2}=a^{2}+2 a b+b^{2}$
- $(a-b)^{2}=a^{2}-2 a b+b^{2}$

"Remarkable identities"

Hidden identities

Basic examples

Remarkable
identities for

matrices

Identities in
rings
Other
structures

Basic remarkable identities:

- $(a+b)^{2}=a^{2}+2 a b+b^{2}$
- $(a-b)^{2}=a^{2}-2 a b+b^{2}$
- $(a+b)(a-b)=a^{2}-b^{2}$.

"Remarkable identities"

Hidden identities

Basic remarkable identities:

- $(a+b)^{2}=a^{2}+2 a b+b^{2}$
- $(a-b)^{2}=a^{2}-2 a b+b^{2}$

■ $(a+b)(a-b)=a^{2}-b^{2}$.
Karatsuba identity (To be checked as an exercise!):

"Remarkable identities"

Hidden identities

Basic remarkable identities:
$\square(a+b)^{2}=a^{2}+2 a b+b^{2}$

- $(a-b)^{2}=a^{2}-2 a b+b^{2}$
- $(a+b)(a-b)=a^{2}-b^{2}$.

Karatsuba identity (To be checked as an exercise!): Solves a problem stated in 1952 by Andrey Nikolaevich Kolmogorov (April 25, 1903 - October 20, 1987).

"Remarkable identities"

Hidden identities

Basic remarkable identities:

- $(a+b)^{2}=a^{2}+2 a b+b^{2}$
- $(a-b)^{2}=a^{2}-2 a b+b^{2}$

■ $(a+b)(a-b)=a^{2}-b^{2}$.
Karatsuba identity (To be checked as an exercise!): Solves a problem stated in 1952 by Andrey Nikolaevich Kolmogorov (April 25, 1903 - October 20, 1987).

$$
\begin{aligned}
& \left(100 a_{1}+a_{0}\right)\left(100 b_{1}+b_{0}\right)= \\
& 10,000 a_{1} b_{1}+100\left(\left(a_{0}+a_{1}\right)\left(b_{0}+b_{1}\right)-a_{0} b_{0}-a_{1} b_{1}\right)+a_{0} b_{0}
\end{aligned}
$$

"Remarkable identities"

Hidden identities

Basic remarkable identities:

- $(a+b)^{2}=a^{2}+2 a b+b^{2}$
- $(a-b)^{2}=a^{2}-2 a b+b^{2}$

■ $(a+b)(a-b)=a^{2}-b^{2}$.
Karatsuba identity (To be checked as an exercise!): Solves a problem stated in 1952 by Andrey Nikolaevich Kolmogorov (April 25, 1903 - October 20, 1987).

$$
\begin{aligned}
& \left(100 a_{1}+a_{0}\right)\left(100 b_{1}+b_{0}\right)= \\
& 10,000 a_{1} b_{1}+100\left(\left(a_{0}+a_{1}\right)\left(b_{0}+b_{1}\right)-a_{0} b_{0}-a_{1} b_{1}\right)+a_{0} b_{0}
\end{aligned}
$$

The " 100 " above can be replaced by any B, typically a power of 10 (or of 2).

"Remarkable identities"

Hidden identities

Basic remarkable identities:

- $(a+b)^{2}=a^{2}+2 a b+b^{2}$
- $(a-b)^{2}=a^{2}-2 a b+b^{2}$

■ $(a+b)(a-b)=a^{2}-b^{2}$.
Karatsuba identity (To be checked as an exercise!): Solves a problem stated in 1952 by Andrey Nikolaevich Kolmogorov (April 25, 1903 - October 20, 1987).

$$
\begin{aligned}
& \left(100 a_{1}+a_{0}\right)\left(100 b_{1}+b_{0}\right)= \\
& 10,000 a_{1} b_{1}+100\left(\left(a_{0}+a_{1}\right)\left(b_{0}+b_{1}\right)-a_{0} b_{0}-a_{1} b_{1}\right)+a_{0} b_{0}
\end{aligned}
$$

The " 100 " above can be replaced by any B, typically a power of 10 (or of 2). The " 10,000 " above then becomes B^{2}.

Anatoly Alexeevich Karatsuba (1937-2008)

Hidden identities

Example of use of Karatsuba's identity:

Hidden identities

Basic
examples
Remarkable identities for matrices

Identities in rings

Other
structures
$\left(100 a_{1}+a_{0}\right)\left(100 b_{1}+b_{0}\right)=$
$10,000 a_{1} b_{1}+100\left(\left(a_{0}+a_{1}\right)\left(b_{0}+b_{1}\right)-a_{0} b_{0}-a_{1} b_{1}\right)+a_{0} b_{0}$

Example of use of Karatsuba's identity:

Hidden identities
$2017 \times 8848=$

Example of use of Karatsuba's identity:

Hidden identities

$$
\begin{aligned}
& \left(100 a_{1}+a_{0}\right)\left(100 b_{1}+b_{0}\right)= \\
& 10,000 a_{1} b_{1}+100\left(\left(a_{0}+a_{1}\right)\left(b_{0}+b_{1}\right)-a_{0} b_{0}-a_{1} b_{1}\right)+a_{0} b_{0}
\end{aligned}
$$

Example:

$$
2017 \times 8848=(100 \times \underbrace{20}_{a_{1}}+\underbrace{17}_{a_{0}}) \times(100 \times \underbrace{88}_{b_{1}}+\underbrace{48}_{b_{0}})
$$

Example of use of Karatsuba's identity:

Hidden identities

$$
\begin{aligned}
& \left(100 a_{1}+a_{0}\right)\left(100 b_{1}+b_{0}\right)= \\
& 10,000 a_{1} b_{1}+100\left(\left(a_{0}+a_{1}\right)\left(b_{0}+b_{1}\right)-a_{0} b_{0}-a_{1} b_{1}\right)+a_{0} b_{0}
\end{aligned}
$$

Example:

$$
\begin{aligned}
2017 \times 8848= & (100 \times \underbrace{20}_{a_{1}}+\underbrace{17}_{a_{0}}) \times(100 \times \underbrace{88}_{b_{1}}+\underbrace{48}_{b_{0}}) \\
= & 10,000 \times(\underbrace{20}_{a_{1}} \times \underbrace{88}_{b_{1}})+ \\
& 100 \times(((\underbrace{17+20}_{a_{0}+a_{1}}) \times(\underbrace{48+88}_{b_{0}+b_{1}})) \\
& -\underbrace{17}_{a_{0}} \times \underbrace{48}_{b_{0}}-\underbrace{20}_{a_{1}} \times \underbrace{88}_{b_{1}})+\underbrace{17}_{a_{0}} \times \underbrace{48}_{b_{0}}
\end{aligned}
$$

... Example (cont'd)

Hidden identities

Basic examples

Remarkable identities for matrices

Identities in rings

Other
structures

... Example (cont'd)

Hidden identities

Basic examples

Remarkable identities for matrices

Identities in rings

Other
structures

$$
\begin{aligned}
= & 10,000 \times(20 \times 88)+ \\
& 100 \times(37 \times 136-17 \times 48-20 \times 88)+17 \times 48
\end{aligned}
$$

... Example (cont'd)

Hidden identities

Basic examples

Remarkable identities for matrices

Identities in rings

Other
structures

$$
\begin{aligned}
= & 10,000 \times(20 \times 88)+ \\
& 100 \times(37 \times 136-17 \times 48-20 \times 88)+17 \times 48 \\
= & 17,846,416
\end{aligned}
$$

... Example (cont'd)

Hidden identities

$$
\begin{aligned}
& =10,000 \times(20 \times 88)+ \\
& \quad 100 \times(37 \times 136-17 \times 48-20 \times 88)+17 \times 48 \\
& =17,846,416
\end{aligned}
$$

Remarkable point: this requires only 3 multiplications

... Example (cont'd)

Hidden identities

$$
\begin{aligned}
= & 10,000 \times(20 \times 88)+ \\
& 100 \times(37 \times 136-17 \times 48-20 \times 88)+17 \times 48 \\
= & 17,846,416
\end{aligned}
$$

Remarkable point: this requires only 3 multiplications (i.e., $20 \times 88,17 \times 48,37 \times 136$) instead of the usual 4

... Example (cont'd)

Hidden identities

$$
\begin{aligned}
= & 10,000 \times(20 \times 88)+ \\
& 100 \times(37 \times 136-17 \times 48-20 \times 88)+17 \times 48 \\
= & 17,846,416
\end{aligned}
$$

Remarkable point: this requires only 3 multiplications (i.e., $20 \times 88,17 \times 48,37 \times 136$) instead of the usual 4 (i.e., $20 \times 88,20 \times 48,17 \times 88,17 \times 48)$.

... Example (cont'd)

Hidden identities

$$
\begin{aligned}
& =10,000 \times(20 \times 88)+ \\
& \quad 100 \times(37 \times 136-17 \times 48-20 \times 88)+17 \times 48 \\
& =17,846,416
\end{aligned}
$$

Remarkable point: this requires only 3 multiplications (i.e., $20 \times 88,17 \times 48,37 \times 136$) instead of the usual 4 (i.e., $20 \times 88,20 \times 48,17 \times 88,17 \times 48$).
By using the "divide and conquer" method, this enables to multiply large numbers much faster.

... Example (cont'd)

Hidden identities

$$
\begin{aligned}
= & 10,000 \times(20 \times 88)+ \\
& 100 \times(37 \times 136-17 \times 48-20 \times 88)+17 \times 48 \\
= & 17,846,416
\end{aligned}
$$

Remarkable point: this requires only 3 multiplications (i.e., $20 \times 88,17 \times 48,37 \times 136$) instead of the usual 4 (i.e., $20 \times 88,20 \times 48,17 \times 88,17 \times 48)$.
By using the "divide and conquer" method, this enables to multiply large numbers much faster. For example, with two numbers of $2^{10}=1,024$ digits, $3^{10}=59,048$ multiplications (Karatsuba multiplication) instead of $2^{20}=1,048,576$ (classical multiplication).

... Example (cont'd)

Hidden identities

$$
\begin{aligned}
= & 10,000 \times(20 \times 88)+ \\
& 100 \times(37 \times 136-17 \times 48-20 \times 88)+17 \times 48 \\
= & 17,846,416
\end{aligned}
$$

Remarkable point: this requires only 3 multiplications (i.e., $20 \times 88,17 \times 48,37 \times 136$) instead of the usual 4 (i.e., $20 \times 88,20 \times 48,17 \times 88,17 \times 48$).
By using the "divide and conquer" method, this enables to multiply large numbers much faster. For example, with two numbers of $2^{10}=1,024$ digits, $3^{10}=59,048$ multiplications (Karatsuba multiplication) instead of $2^{20}=1,048,576$ (classical multiplication). There are even faster multiplication algorithms (e.g., FFT), but not so easy to implement.

Extending the validity range of remarkable identities

Hidden identities

Back to remarkable identities:

Extending the validity range of remarkable identities

Hidden identities

Back to remarkable identities:

- $(a+b)^{2}=a^{2}+2 a b+b^{2}$

Extending the validity range of remarkable identities

Hidden identities

Back to remarkable identities:

- $(a+b)^{2}=a^{2}+2 a b+b^{2}$
- $(a-b)^{2}=a^{2}-2 a b+b^{2}$

Extending the validity range of remarkable identities

Hidden identities

Back to remarkable identities:

- $(a+b)^{2}=a^{2}+2 a b+b^{2}$
- $(a-b)^{2}=a^{2}-2 a b+b^{2}$

■ $(a+b)(a-b)=a^{2}-b^{2}$.

Extending the validity range of remarkable identities

Back to remarkable identities:

- $(a+b)^{2}=a^{2}+2 a b+b^{2}$
- $(a-b)^{2}=a^{2}-2 a b+b^{2}$
- $(a+b)(a-b)=a^{2}-b^{2}$.

Valid for any real numbers a and b.

Extending the validity range of remarkable identities

Hidden identities

Back to remarkable identities:

- $(a+b)^{2}=a^{2}+2 a b+b^{2}$
- $(a-b)^{2}=a^{2}-2 a b+b^{2}$
- $(a+b)(a-b)=a^{2}-b^{2}$.

Valid for any real numbers a and b. How about more general objects?

Matrices

Hidden identities

- 2×2 matrices: Arrays of numbers of the form $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.

Matrices

Hidden identities

- 2×2 matrices: Arrays of numbers of the form $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.
- Addition defined by

Remarkable identities for matrices

Identities in
rings
Other
structures

$$
\left(\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right)+\left(\begin{array}{ll}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right)=
$$

Matrices

Hidden identities
$\square 2 \times 2$ matrices: Arrays of numbers of the form $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.

- Addition defined by

Remarkable identities for matrices

Identities in rings

Other
structures

$$
\left(\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right)+\left(\begin{array}{ll}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right)=\left(\begin{array}{ll}
a_{1}+a_{2} & b_{1}+b_{2} \\
c_{1}+c_{2} & d_{1}+d_{2}
\end{array}\right) .
$$

Matrices

Hidden identities

- 2×2 matrices: Arrays of numbers of the form $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.
- Addition defined by

$$
\left(\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right)+\left(\begin{array}{ll}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right)=\left(\begin{array}{ll}
a_{1}+a_{2} & b_{1}+b_{2} \\
c_{1}+c_{2} & d_{1}+d_{2}
\end{array}\right) .
$$

- Multiplication defined by

$$
\left(\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right) \cdot\left(\begin{array}{ll}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right)=
$$

Matrices

Hidden identities

- 2×2 matrices: Arrays of numbers of the form $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.
- Addition defined by

$$
\left(\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right)+\left(\begin{array}{ll}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right)=\left(\begin{array}{ll}
a_{1}+a_{2} & b_{1}+b_{2} \\
c_{1}+c_{2} & d_{1}+d_{2}
\end{array}\right)
$$

- Multiplication defined by

$$
\left(\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right) \cdot\left(\begin{array}{ll}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right)=\left(\begin{array}{ll}
a_{1} a_{2}+b_{1} c_{2} & a_{1} b_{2}+b_{1} d_{2} \\
c_{1} a_{2}+d_{1} c_{2} & c_{1} b_{2}+d_{1} d_{2}
\end{array}\right) .
$$

The zero and the unit for matrices

Hidden identities

Basic

examples
Remarkable identities for matrices

- The zero matrix is $\mathbf{0}=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$.

The zero and the unit for matrices

Hidden

- The zero matrix is $\mathbf{0}=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$.
$\square\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)+\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)+\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.

The zero and the unit for matrices

Hidden

- The zero matrix is $\mathbf{0}=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$.
$\square\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)+\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)+\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.
- The unit matrix is $\mathbf{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.

The zero and the unit for matrices

Hidden

- The zero matrix is $\mathbf{0}=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$.
$\square\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)+\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)+\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.
- The unit matrix is $\mathbf{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
$\square\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \cdot\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \cdot\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.

Checking remarkable identities on matrices

Hidden identities

Basic

examples
Remarkable
identities for matrices

Example:

Checking remarkable identities on matrices

Hidden identities

Basic

examples
Remarkable identities for matrices

Identities in
rings
Other
structures

$$
\text { Example: } a=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), b=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) .
$$

Checking remarkable identities on matrices

Hidden identities

Basic

examples
Remarkable identities for matrices

Identities in
rings
Other
structures

Example: $a=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), b=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$.
$(a+b)^{2}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)^{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$;

Checking remarkable identities on matrices

Hidden identities

Basic

examples
Remarkable identities for matrices

Identities in
rings
Other
structures

Example: $a=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), b=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$.
$(a+b)^{2}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)^{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) ; a^{2}+2 a b+b^{2}=\left(\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right)$.

Checking remarkable identities on matrices

Hidden identities

Basic

examples
Remarkable identities for matrices

Identities in
rings
Other
structures

Example: $a=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), b=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$.
$(a+b)^{2}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)^{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) ; a^{2}+2 a b+b^{2}=\left(\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right)$.
For this example, $(a+b)^{2} \neq a^{2}+2 a b+b^{2}$.

Checking remarkable identities on matrices

Hidden identities

Example: $a=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), b=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$.
$(a+b)^{2}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)^{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) ; a^{2}+2 a b+b^{2}=\left(\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right)$.
For this example, $(a+b)^{2} \neq a^{2}+2 a b+b^{2}$. Similarly, $(a-b)^{2} \neq a^{2}-2 a b+b^{2}$ and $(a+b)(a-b) \neq a^{2}-b^{2}$.

What's the problem?

Hidden identities

- Computing $(a+b)^{2}$, for arbitrary matrices a and b :

What's the problem?

Hidden identities

- Computing $(a+b)^{2}$, for arbitrary matrices a and b :

Remarkable identities for matrices

Identities in rings

Other
structures

$$
(a+b)^{2}=(a+b)(a+b)
$$

What's the problem?

Hidden identities

- Computing $(a+b)^{2}$, for arbitrary matrices a and b :

Remarkable identities for matrices

Identities in rings

Other
structures

$$
\begin{aligned}
(a+b)^{2} & =(a+b)(a+b) \\
& =a(a+b)+b(a+b)
\end{aligned}
$$

What's the problem?

Hidden identities

- Computing $(a+b)^{2}$, for arbitrary matrices a and b :

Remarkable identities for matrices

Identities in rings

Other
structures

$$
\begin{aligned}
(a+b)^{2} & =(a+b)(a+b) \\
& =a(a+b)+b(a+b) \\
& =a^{2}+a b+b a+b^{2}
\end{aligned}
$$

What's the problem?

Hidden identities

- Computing $(a+b)^{2}$, for arbitrary matrices a and b :

Remarkable identities for matrices

Identities in
rings
Other
structures

$$
\begin{aligned}
(a+b)^{2} & =(a+b)(a+b) \\
& =a(a+b)+b(a+b) \\
& =a^{2}+a b+b a+b^{2}
\end{aligned}
$$

$$
\text { (as opposed to } a^{2}+\underline{2 a b}+b^{2} \text {). }
$$

What's the problem?

Hidden identities

- Computing $(a+b)^{2}$, for arbitrary matrices a and b :

$$
\begin{aligned}
(a+b)^{2} & =(a+b)(a+b) \\
& =a(a+b)+b(a+b) \\
& =a^{2}+\underline{a b+b a}+b^{2}
\end{aligned}
$$

$$
\text { (as opposed to } \left.a^{2}+\underline{2 a b}+b^{2}\right) .
$$

■ Hence the problem boils down to $a b \neq b a$.

Validity range

Hidden identities

- Hence, for matrices a and $b, "(a+b)^{2}=a^{2}+2 a b+b^{2}$ " is equivalent to " $a b=b a$ ".

Validity range

Hidden identities

- Hence, for matrices a and $b, "(a+b)^{2}=a^{2}+2 a b+b^{2}$ " is equivalent to " $a b=b a$ ".
■ Similarly, each of the other two remarkable identities, $(a-b)^{2}=a^{2}-2 a b+b^{2}$, and $(a+b)(a-b)=a^{2}-b^{2}$, is also equivalent to $a b=b a$.

Validity range

Hidden identities

■ Hence, for matrices a and $b, "(a+b)^{2}=a^{2}+2 a b+b^{2}$ " is equivalent to " $a b=b a$ ".
■ Similarly, each of the other two remarkable identities, $(a-b)^{2}=a^{2}-2 a b+b^{2}$, and $(a+b)(a-b)=a^{2}-b^{2}$, is also equivalent to $a b=b a$.

- For $a=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ and $b=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$ (previous example), we obtain $a b=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ and $b a=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$.

Validity range

Hidden identities

■ Hence, for matrices a and $b, "(a+b)^{2}=a^{2}+2 a b+b^{2}$ " is equivalent to " $a b=b a$ ".
■ Similarly, each of the other two remarkable identities, $(a-b)^{2}=a^{2}-2 a b+b^{2}$, and $(a+b)(a-b)=a^{2}-b^{2}$, is also equivalent to $a b=b a$.

- For $a=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ and $b=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$ (previous example), we obtain $a b=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ and $b a=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$.
- The argument above is valid in any ring.

Rings

Hidden identities

Basic
examples
Remarkable
identities for

matrices

Identities in rings

Other
structures

Defining identities for (unital) rings:

Rings

Hidden identities

Remarkable

 identities for matricesIdentities in rings

Defining identities for (unital) rings:
$(x+y)+z=x+(y+z) \quad$ (associativity of +$) ;$

Rings

Hidden identities

Remarkable identities for matrices

Identities in rings

Defining identities for (unital) rings:

$$
\begin{aligned}
(x+y)+z & =x+(y+z) & & \text { (associativity of }+) ; \\
x+y & =y+x & & \text { (commutativity of }+
\end{aligned}
$$

Rings

Hidden identities

Defining identities for (unital) rings:

$$
\begin{aligned}
(x+y)+z & =x+(y+z) & & (\text { associativity of }+) ; \\
x+y & =y+x & & (\text { commutativity of }+) ; \\
x+0 & =0+x=x & & (0 \text { is neutral pour }+) ;
\end{aligned}
$$

Rings

Hidden identities

Defining identities for (unital) rings:

$$
\begin{aligned}
(x+y)+z & =x+(y+z) & & (\text { associativity of }+) ; \\
x+y & =y+x & & (\text { commutativity of }+) ; \\
x+0 & =0+x=x & & (0 \text { is neutral pour }+) ; \\
x+(-x) & =(-x)+x=0 & & (-x \text { is the opposite of } x) ;
\end{aligned}
$$

Rings

Hidden identities

Defining identities for (unital) rings:

$$
\begin{aligned}
(x+y)+z & =x+(y+z) & & (\text { associativity of }+) ; \\
x+y & =y+x & & (\text { commutativity of }+) ; \\
x+0 & =0+x=x & & (0 \text { is neutral pour }+) ; \\
x+(-x) & =(-x)+x=0 & & (-x \text { is the opposite of } x) ; \\
(x \cdot y) \cdot z & =x \cdot(y \cdot z) & & (\text { associativity of } \cdot) ;
\end{aligned}
$$

Rings

Hidden identities

Defining identities for (unital) rings:

$$
\begin{aligned}
(x+y)+z & =x+(y+z) & & (\text { associativity of }+) ; \\
x+y & =y+x & & (\text { commutativity of }+) ; \\
x+0 & =0+x=x & & (0 \text { is neutral pour }+) ; \\
x+(-x) & =(-x)+x=0 & & (-x \text { is the opposite of } x) ; \\
(x \cdot y) \cdot z & =x \cdot(y \cdot z) & & \text { (associativity of } \cdot) ; \\
x \cdot(y+z) & =(x \cdot y)+(x \cdot z) & & \text { (left distributivity); }
\end{aligned}
$$

Rings

Hidden identities

Defining identities for (unital) rings:

$$
\begin{aligned}
(x+y)+z & =x+(y+z) & & (\text { associativity of }+) ; \\
x+y & =y+x & & (\text { commutativity of }+) ; \\
x+0 & =0+x=x & & (0 \text { is neutral pour }+) ; \\
x+(-x) & =(-x)+x=0 & & (-x \text { is the opposite of } x) ; \\
(x \cdot y) \cdot z & =x \cdot(y \cdot z) & & (\text { associativity of } \cdot) ; \\
x \cdot(y+z) & =(x \cdot y)+(x \cdot z) & & \text { (left distributivity); } \\
(x+y) \cdot z & =(x \cdot z)+(y \cdot z) & & \text { (right distributivity); }
\end{aligned}
$$

Rings

Hidden identities

Defining identities for (unital) rings:

$$
\begin{aligned}
(x+y)+z & =x+(y+z) & & (\text { associativity of }+) ; \\
x+y & =y+x & & (\text { commutativity of }+) ; \\
x+0 & =0+x=x & & (0 \text { is neutral pour }+) ; \\
x+(-x) & =(-x)+x=0 & & (-x \text { is the opposite of } x) ; \\
(x \cdot y) \cdot z & =x \cdot(y \cdot z) & & (\text { associativity of } \cdot) ; \\
x \cdot(y+z) & =(x \cdot y)+(x \cdot z) & & \text { (left distributivity); } \\
(x+y) \cdot z & =(x \cdot z)+(y \cdot z) & & \text { (right distributivity); } \\
x \cdot 1 & =1 \cdot x=x & & (1 \text { is neutral for } \cdot) .
\end{aligned}
$$

Rings

Hidden identities

Defining identities for (unital) rings:

$$
\begin{aligned}
(x+y)+z & =x+(y+z) & & (\text { associativity of }+) ; \\
x+y & =y+x & & (\text { commutativity of }+) ; \\
x+0 & =0+x=x & & (0 \text { is neutral pour }+) ; \\
x+(-x) & =(-x)+x=0 & & (-x \text { is the opposite of } x) ; \\
(x \cdot y) \cdot z & =x \cdot(y \cdot z) & & (\text { associativity of } \cdot) ; \\
x \cdot(y+z) & =(x \cdot y)+(x \cdot z) & & \text { (left distributivity); } \\
(x+y) \cdot z & =(x \cdot z)+(y \cdot z) & & \text { (right distributivity); } \\
x \cdot 1 & =1 \cdot x=x & & (1 \text { is neutral for } \cdot) .
\end{aligned}
$$

The identity $x \cdot y=y \cdot x$ (commutativity of \cdot) defines commutative rings.

Identities for rings of 2×2 matrices, not valid in all rings:

Hidden identities

■ The easiest:

Identities for rings of 2×2 matrices, not valid in all rings:

Hidden identities

- The easiest:

$$
(a b-b a)^{2} c=c(a b-b a)^{2} .
$$

Remarkable

 identities for matricesIdentities in rings

Identities for rings of 2×2 matrices, not valid in all rings:

Hidden identities

Remarkable

 identities for matricesIdentities in rings

Other
structures

■ The easiest:
$(a b-b a)^{2} c=c(a b-b a)^{2}$.
■ The one with smallest degree (Amitsur-Levitzki, 1950):

Identities for rings of 2×2 matrices, not valid in all rings:

Hidden identities

- The easiest:

$$
(a b-b a)^{2} c=c(a b-b a)^{2} .
$$

■ The one with smallest degree (Amitsur-Levitzki, 1950):

$$
\begin{aligned}
& a b c d-b a c d-a b d c+b a d c-a c b d+c a b d \\
& +a c d b-c a d b+a d b c-d a b c-a d c b+d a c b \\
& +c d a b-c d b a-d c a b+d c b a-b d a c+b d c a \\
& +d b a c-d b c a+b c a d-b c d a-c b a d+c b d a \\
& =0
\end{aligned}
$$

An identity for all $n \times n$ matrices:

Hidden identities

■ The Amitsur-Levitzki identity for $n \times n$ matrices:

$$
\sum_{\sigma \in \mathfrak{S}_{2 n}} \operatorname{sgn}(\sigma) a_{\sigma(1)} \cdots a_{\sigma(2 n)}=0
$$

An identity for all $n \times n$ matrices:

Hidden identities

- The Amitsur-Levitzki identity for $n \times n$ matrices:

$$
\sum_{\sigma \in \mathfrak{S}_{2 n}} \operatorname{sgn}(\sigma) a_{\sigma(1)} \cdots a_{\sigma(2 n)}=0
$$

(here, $\operatorname{sgn}(\sigma)$ denotes the "signature" of the permutation σ),

An identity for all $n \times n$ matrices:

Hidden identities

- The Amitsur-Levitzki identity for $n \times n$ matrices:

$$
\sum_{\sigma \in \mathfrak{S}_{2 n}} \operatorname{sgn}(\sigma) a_{\sigma(1)} \cdots a_{\sigma(2 n)}=0
$$

(here, $\operatorname{sgn}(\sigma)$ denotes the "signature" of the permutation σ), for all $n \times n$ real matrices $a_{1}, \ldots, a_{2 n}$.

An identity for all $n \times n$ matrices:

■ The Amitsur-Levitzki identity for $n \times n$ matrices:

$$
\sum_{\sigma \in \mathfrak{S}_{2 n}} \operatorname{sgn}(\sigma) a_{\sigma(1)} \cdots a_{\sigma(2 n)}=0
$$

(here, $\operatorname{sgn}(\sigma)$ denotes the "signature" of the permutation σ), for all $n \times n$ real matrices $a_{1}, \ldots, a_{2 n}$.

■ Remark: If an identity holds in all real matrix rings (of arbitrary dimension), then it holds in all rings.

An identity for all $n \times n$ matrices:

■ The Amitsur-Levitzki identity for $n \times n$ matrices:

$$
\sum_{\sigma \in \mathfrak{S}_{2 n}} \operatorname{sgn}(\sigma) a_{\sigma(1)} \cdots a_{\sigma(2 n)}=0
$$

(here, $\operatorname{sgn}(\sigma)$ denotes the "signature" of the permutation σ), for all $n \times n$ real matrices $a_{1}, \ldots, a_{2 n}$.
■ Remark: If an identity holds in all real matrix rings (of arbitrary dimension), then it holds in all rings. This implies that "there is no version of the Amitsur-Levitzki identity that holds for all n ".

Permutation lattices ("permutohedra") on 2, 3, and 4 letters

Hidden identities
examples
Remarkable identities for matrices

Identities in rings

Other

structures

If n is the number of inversions of σ (height of σ in the permutohedron), then $\operatorname{sgn}(\sigma)=1$ if n is even, -1 if n is odd.

Boolean rings

Hidden identities

Basic

examples
Remarkable
identities for matrices

Identities in rings

Other
structures

- Integers, reals, complex numbers all form commutative rings.

Boolean rings

Hidden identities

Basic

examples
Remarkable identities for matrices

Identities in rings

Other
structures

- Integers, reals, complex numbers all form commutative rings.
- 2×2 real matrices form a non commutative ring.

Boolean rings

Hidden identities

■ Integers, reals, complex numbers all form commutative rings.

- 2×2 real matrices form a non commutative ring.
- The system of identities [rings with $x \cdot x=x$ (abbreviated $\left.x^{2}=x\right)$] defines

Boolean rings

Hidden identities

■ Integers, reals, complex numbers all form commutative rings.

- 2×2 real matrices form a non commutative ring.
- The system of identities [rings with $x \cdot x=x$ (abbreviated $\left.x^{2}=x\right)$] defines Boolean rings

Boolean rings

Hidden identities

■ Integers, reals, complex numbers all form commutative rings.

- 2×2 real matrices form a non commutative ring.
- The system of identities [rings with $x \cdot x=x$ (abbreviated $x^{2}=x$)] defines Boolean rings (important in logic and probability theory).

Boolean rings

Hidden identities

■ Integers, reals, complex numbers all form commutative rings.

- 2×2 real matrices form a non commutative ring.
- The system of identities [rings with $x \cdot x=x$ (abbreviated $x^{2}=x$)] defines Boolean rings (important in logic and probability theory).
- Every Boolean ring is commutative.

Boolean rings

Hidden identities

■ Integers, reals, complex numbers all form commutative rings.

- 2×2 real matrices form a non commutative ring.
- The system of identities [rings with $x \cdot x=x$ (abbreviated $x^{2}=x$)] defines Boolean rings (important in logic and probability theory).
■ Every Boolean ring is commutative. (Proof: $x^{2}=x \cdot x=x$, thus $4 x=x^{2}+x \cdot x+x \cdot x+x^{2}=(x+x)^{2}=x+x=2 x$, which yields $2 x=0$; then $x+y=(x+y)^{2}=x+x \cdot y+y \cdot x+y$ yields $x \cdot y+y \cdot x=0$; however, $x \cdot y+x \cdot y=0$, thus $x \cdot y=y \cdot x)$.

Boolean rings

Hidden identities

- Integers, reals, complex numbers all form commutative rings.
- 2×2 real matrices form a non commutative ring.
- The system of identities [rings with $x \cdot x=x$ (abbreviated $x^{2}=x$)] defines Boolean rings (important in logic and probability theory).
■ Every Boolean ring is commutative. (Proof: $x^{2}=x \cdot x=x$, thus $4 x=x^{2}+x \cdot x+x \cdot x+x^{2}=(x+x)^{2}=x+x=2 x$, which yields $2 x=0$; then $x+y=(x+y)^{2}=x+x \cdot y+y \cdot x+y$ yields $x \cdot y+y \cdot x=0$; however, $x \cdot y+x \cdot y=0$, thus $x \cdot y=y \cdot x)$.
■ In fact, for every positive integer n, every ring satisfying the identity $x^{n}=x$ is commutative (difficult result!).

Boolean rings \rightarrow Boolean algebras

Hidden identities

- In any Boolean ring $\left(x^{2}=x\right)$, set

Basic

examples
Remarkable
identities for
matrices
Identities in
rings
Other
structures

Boolean rings \rightarrow Boolean algebras

Hidden identities

- In any Boolean ring $\left(x^{2}=x\right)$, set

$$
x \vee y=x+y+x \cdot y, x \wedge y=x \cdot y, \neg x=1+x
$$

Boolean rings \rightarrow Boolean algebras

Hidden identities

Basic
examples
Remarkable
identities for matrices

Identities in
rings
Other
structures

- In any Boolean ring $\left(x^{2}=x\right)$, set

$$
x \vee y=x+y+x \cdot y, x \wedge y=x \cdot y, \neg x=1+x
$$

■ Boolean algebras:

Boolean rings \rightarrow Boolean algebras

Hidden identities

■ In any Boolean ring $\left(x^{2}=x\right)$, set

$$
x \vee y=x+y+x \cdot y, x \wedge y=x \cdot y, \neg x=1+x
$$

■ Boolean algebras:

$$
\begin{aligned}
& \text { (lattices) }\left\{\begin{array}{l}
(x \vee y) \vee z=x \vee(y \vee z) ; \\
x \vee y=y \vee x ; \\
x \vee x=x ; \\
(x \wedge y) \wedge z=x \wedge(y \wedge z) ; \\
x \wedge y=y \wedge x ; \\
x \wedge x=x ; \\
x \wedge(x \vee y)=x \vee(x \wedge y)=x . \\
x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z) ; \\
x \wedge \neg x=0 ; x \vee \neg x=1 .
\end{array}\right. \\
& x,
\end{aligned}
$$

Boolean algebras \leftrightarrow Boolean rings

Hidden identities

$$
■ x+y=(x \vee y) \wedge \neg(x \wedge y), x \cdot y=x \wedge y
$$

examples
Remarkable
identities for
matrices
Identities in
rings
Other
structures

Boolean algebras \leftrightarrow Boolean rings

Hidden identities
$\square x+y=(x \vee y) \wedge \neg(x \wedge y), x \cdot y=x \wedge y$.

- The transformations $(0,1,+, \cdot) \leftrightharpoons(0,1, \vee, \wedge, \neg)$ are mutually inverse.

Boolean algebras \leftrightarrow Boolean rings

Hidden identities
$\square x+y=(x \vee y) \wedge \neg(x \wedge y), x \cdot y=x \wedge y$.

- The transformations $(0,1,+, \cdot) \leftrightharpoons(0,1, \vee, \wedge, \neg)$ are mutually inverse.
- The concepts of Boolean algebra and Boolean ring are thus equivalent.

Boolean algebras \leftrightarrow Boolean rings

Hidden identities
$\square x+y=(x \vee y) \wedge \neg(x \wedge y), x \cdot y=x \wedge y$.
■ The transformations $(0,1,+, \cdot) \leftrightharpoons(0,1, \vee, \wedge, \neg)$ are mutually inverse.

- The concepts of Boolean algebra and Boolean ring are thus equivalent.
■ Fundamental example: let us fix a set E.

Boolean algebras \leftrightarrow Boolean rings

$\square x+y=(x \vee y) \wedge \neg(x \wedge y), x \cdot y=x \wedge y$.
■ The transformations $(0,1,+, \cdot) \leftrightharpoons(0,1, \vee, \wedge, \neg)$ are mutually inverse.

- The concepts of Boolean algebra and Boolean ring are thus equivalent.
■ Fundamental example: let us fix a set E.
■ The set of all subsets of E is a Boolean algebra (resp., a Boolean ring), with

Boolean algebras \leftrightarrow Boolean rings

$■ x+y=(x \vee y) \wedge \neg(x \wedge y), x \cdot y=x \wedge y$.
■ The transformations $(0,1,+, \cdot) \leftrightharpoons(0,1, \vee, \wedge, \neg)$ are mutually inverse.

- The concepts of Boolean algebra and Boolean ring are thus equivalent.
■ Fundamental example: let us fix a set E.
- The set of all subsets of E is a Boolean algebra (resp., a Boolean ring), with

■ $0=\varnothing$ (empty set); $1=E$ ("full" set); $X \vee Y=X \cup Y$ (union), $X \cdot Y=X \wedge Y=X \cap Y$ (intersection), $\neg X=E \backslash X$ (complement);

Boolean algebras \leftrightarrow Boolean rings

$■ x+y=(x \vee y) \wedge \neg(x \wedge y), x \cdot y=x \wedge y$.
■ The transformations $(0,1,+, \cdot) \leftrightharpoons(0,1, \vee, \wedge, \neg)$ are mutually inverse.

- The concepts of Boolean algebra and Boolean ring are thus equivalent.
■ Fundamental example: let us fix a set E.
■ The set of all subsets of E is a Boolean algebra (resp., a Boolean ring), with

■ $0=\varnothing$ (empty set); $1=E$ ("full" set); $X \vee Y=X \cup Y$ (union), $X \cdot Y=X \wedge Y=X \cap Y$ (intersection), $\neg X=E \backslash X$ (complement);
■ $X+Y=(X \cup Y) \backslash(X \cap Y)$ (symmetric difference).

Robbins algebras

Hidden identities
examples
Remarkable
identities for
matrices
Identities in
rings
Other

- Identities:

Robbins algebras

Hidden identities

Basic
examples
Remarkable
identities for matrices

Identities in
rings
Other
structures

- Identities:

$$
\begin{aligned}
(x \vee y) \vee z & =x \vee(y \vee z) ; \\
x \vee y & =y \vee x ; \\
\neg(\neg(x \vee y)+\neg(x \vee \neg y)) & =x .
\end{aligned}
$$

■ Every Boolean algebra is a Robbins algebra (exercise).

Robbins algebras

Hidden identities

Basic
examples
Remarkable
identities for matrices

Identities in
rings
Other
structures

- Identities:

$$
\begin{aligned}
(x \vee y) \vee z & =x \vee(y \vee z) ; \\
x \vee y & =y \vee x ; \\
\neg(\neg(x \vee y)+\neg(x \vee \neg y)) & =x .
\end{aligned}
$$

■ Every Boolean algebra is a Robbins algebra (exercise).

- The problem of the converse was stated by Herbert Robbins in 1933.

Solution of the Robbins conjecture

Hidden identities

- There were many unsuccessful attempts from a number of mathematicians, including Huntington, Robbins, Tarski.

Solution of the Robbins conjecture

Hidden identities

Basic
examples
Remarkable identities for matrices

Identities in rings
Other

- There were many unsuccessful attempts from a number of mathematicians, including Huntington, Robbins, Tarski.
- The problem was finally solved (positively) in 1996 by William McCune (December 1953 - May 2011), who created for that purpose the software EQP.

Solution of the Robbins conjecture

Hidden identities

Basic examples Remarkable identities for matrices

- There were many unsuccessful attempts from a number of mathematicians, including Huntington, Robbins, Tarski.
■ The problem was finally solved (positively) in 1996 by William McCune (December 1953 - May 2011), who created for that purpose the software EQP.
- Further building on EQP, McCune developed the automatic prover / counterexample builder Prover9-Mace4 (see http://www.cs.unm.edu/~mccune/mace4/).

Solution of the Robbins conjecture

Hidden identities

- There were many unsuccessful attempts from a number of mathematicians, including Huntington, Robbins, Tarski.
■ The problem was finally solved (positively) in 1996 by William McCune (December 1953 - May 2011), who created for that purpose the software EQP.
- Further building on EQP, McCune developed the automatic prover / counterexample builder Prover9-Mace4 (see http://www.cs.unm.edu/~mccune/mace4/).

The permutohedron on 5 letters

Hidden identities

Basic

examples

Remarkable

identities for

 matricesIdentities in rings

Other

The permutohedron on 6 letters

Hidden identities

The permutohedron on 7 letters

Hidden identities

Hidden identities

Basic examples

Remarkable identities for matrices

Identities in rings

Other structures

Theorem (Santocanale and W. 2014)

There exists an identity, on the operations \vee (join) and \wedge (meet), that holds in all permutohedra $\mathrm{P}(n)$ (i.e., in all permutation lattices), but that does not hold in all (finite) lattices.

■ This identity does not hold in all lattices (L, \vee, \wedge) :

Theorem (Santocanale and W. 2014)

There exists an identity, on the operations \vee (join) and \wedge (meet), that holds in all permutohedra $\mathrm{P}(n)$ (i.e., in all permutation lattices), but that does not hold in all (finite) lattices.

■ This identity does not hold in all lattices (L, \vee, \wedge) : in fact, it holds in all lattices with up to 3,337 elements, and it fails in a 3,338-element lattice.

Theorem (Santocanale and W. 2014)

■ This identity does not hold in all lattices (L, \vee, \wedge) : in fact, it holds in all lattices with up to 3,337 elements, and it fails in a 3,338-element lattice.

- This identity could, in principle, be written explicitly. However, it would then fill a book.

A mystery

Hidden identities

Basic
examples
Remarkable
identities for
matrices
Identities in
rings
Other
structures

- Tautology: statement true everywhere (e.g., $x * y=x * y ", " x=y$ or $x \neq y "$, etc.)

A mystery

Hidden identities

- Tautology: statement true everywhere (e.g., $x * y=x * y ", " x=y$ or $x \neq y "$, etc.)
- Set $x * y=x^{3}+y^{2}$, for all integers (or real numbers, the problem is equivalent) x and y.

A mystery

Hidden identities

■ Tautology: statement true everywhere (e.g., $x * y=x * y ", " x=y$ or $x \neq y "$, etc.)
■ Set $x * y=x^{3}+y^{2}$, for all integers (or real numbers, the problem is equivalent) x and y.
■ Does there exist a non-tautological identity, satisfied by that operation $*$? (As far as I know, this problem was stated by Harvey Friedman in 1986, and it is still open; see also Roger Tian's 2009 arXiv preprint, https://arxiv.org/abs/0910.1571)

A mystery

■ Tautology: statement true everywhere (e.g., $x * y=x * y ", " x=y$ or $x \neq y "$, etc.)

- Set $x * y=x^{3}+y^{2}$, for all integers (or real numbers, the problem is equivalent) x and y.
■ Does there exist a non-tautological identity, satisfied by that operation $*$? (As far as I know, this problem was stated by Harvey Friedman in 1986, and it is still open; see also Roger Tian's 2009 arXiv preprint, https://arxiv.org/abs/0910.1571)
■ Example of attempt: $x * y=x^{3}+y^{2}$ is not identical to $y * x=x^{2}+y^{3}$. Hence, the identity $x * y=y * x$ does not hold.

Hidden identities

Basic examples

Remarkable identities for matrices

Identities in rings

Other
structures

Thanks for your attention!

