Projective classes as images of accessible functors

Motivation

Elementary projective

Tuuri's Interpolatior Theorem

Karttunen's back-and-forth systems

Projective classes as images of accessible functors

Friedrich Wehrung

Université de Caen LMNO, CNRS UMR 6139 Département de Mathématiques 14032 Caen cedex *E-mail:* friedrich.wehrung01@unicaen.fr *URL:* http://wehrungf.users.lmno.cnrs.fr

March 2022

・ロト ・ 雪 ト ・ ヨ ト

Sac

References

Projective classes as images of accessible functors

Motivation

Elementary projective

Tuuri's Interpolatior Theorem

Karttunen's back-and-forth systems

- J. Adámek and J. Rosický, Locally Presentable and Accessible Categories, London Mathematical Society Lecture Notes Series 189, Cambridge University Press, Cambridge, 1994.
- P. Gillibert and F. Wehrung, From Objects to Diagrams for Ranges of Functors, Springer Lecture Notes 2029, Springer, Heidelberg, 2011.
- F. Wehrung, From non-commutative diagrams to anti-elementary classes, J. Math. Logic 21, no. 2 (2021), 2150011.
- **4** F. Wehrung, *Projective classes as images of accessible functors*, HAL-03580184.
- 5 References [2,3,4] above can be downloaded from https://wehrungf.users.lmno.cnrs.fr/pubs.html .

Projective classes as images of accessible functors

Motivation

Elementary projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems We would like to prove that certain "naturally defined" categories C of models (say of first-order theories) are "intractable".

A D > A D > A D > A D >

Projective classes as images of accessible functors

Motivation

Elementary projective

Tuuri's Interpolatior Theorem

Karttunen's back-and-forth systems We would like to prove that certain "naturally defined" categories C of models (say of first-order theories) are "intractable".

Examples:

・ロト ・ 雪 ト ・ ヨ ト

Projective classes as images of accessible functors

Motivation

Elementary projective

Tuuri's Interpolatior Theorem

Karttunen's back-and-forth systems

- We would like to prove that certain "naturally defined" categories C of models (say of first-order theories) are "intractable".
- **Examples**: Posets of finitely generated ideals of rings,

・ロト ・ 理ト ・ ヨト ・ ヨト

Projective classes as images of accessible functors

Motivation

Elementary projective

Tuuri's Interpolatior Theorem

Karttunen's back-and-forth systems

- We would like to prove that certain "naturally defined" categories C of models (say of first-order theories) are "intractable".
- Examples: Posets of finitely generated ideals of rings, Ordered K₀ groups of unit-regular rings,

・ロト ・ 理ト ・ ヨト ・ ヨト

Projective classes as images of accessible functors

Motivation

Elementary projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems

- We would like to prove that certain "naturally defined" categories C of models (say of first-order theories) are "intractable".
- Examples: Posets of finitely generated ideals of rings, Ordered K₀ groups of unit-regular rings, Stone duals of spectra of abelian lattice-ordered groups,

化口压 化缩压 化连压 化连压

Projective classes as images of accessible functors

Motivation

Elementary projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems

- We would like to prove that certain "naturally defined" categories C of models (say of first-order theories) are "intractable".
- Examples: Posets of finitely generated ideals of rings, Ordered K₀ groups of unit-regular rings, Stone duals of spectra of abelian lattice-ordered groups, ... and many other classes.

イロト イポト イラト イラト

Projective classes as images of accessible functors

Motivation

Elementary projective

- Tuuri's Interpolation Theorem
- Karttunen's back-and-forth systems

- We would like to prove that certain "naturally defined" categories C of models (say of first-order theories) are "intractable".
- Examples: Posets of finitely generated ideals of rings, Ordered K₀ groups of unit-regular rings, Stone duals of spectra of abelian lattice-ordered groups, ... and many other classes.
- A way to define intractability is to state that C is **not** the class of models of any infinitary (not just first-order!) sentence (we'll say elementary).

Projective classes as images of accessible functors

Motivation

Elementary projective

- Tuuri's Interpolation Theorem
- Karttunen's back-and-forth systems

- We would like to prove that certain "naturally defined" categories C of models (say of first-order theories) are "intractable".
- Examples: Posets of finitely generated ideals of rings, Ordered K₀ groups of unit-regular rings, Stone duals of spectra of abelian lattice-ordered groups, ... and many other classes.
- A way to define intractability is to state that C is not the class of models of any infinitary (not just first-order!) sentence (we'll say elementary).
- Let's suggest a stronger notion of intractability.

Projective classes as images of accessible functors

Motivation

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems • Vocabulary: $\mathbf{v} = (\mathbf{v}_{\mathrm{ope}}, \mathbf{v}_{\mathrm{rel}}, \mathsf{ar})$ with $\mathbf{v}_{\mathrm{ope}} \cap \mathbf{v}_{\mathrm{rel}} = \varnothing$ and ar: $\mathbf{v}_{\mathrm{ope}} \cup \mathbf{v}_{\mathrm{rel}} \rightarrow$ ordinals (usually) with $0 \notin ar[\mathbf{v}_{\mathrm{rel}}]$.

4/21

Projective classes as images of accessible functors

Motivation

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems Vocabulary: v = (v_{ope}, v_{rel}, ar) with v_{ope} ∩ v_{rel} = Ø and ar: v_{ope} ∪ v_{rel} → ordinals (usually) with 0 ∉ ar[v_{rel}].
 ar(s) = 0 def / s is a "constant".

Projective classes as images of accessible functors

Motivation

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems

- Vocabulary: $\mathbf{v} = (\mathbf{v}_{ope}, \mathbf{v}_{rel}, ar)$ with $\mathbf{v}_{ope} \cap \mathbf{v}_{rel} = \emptyset$ and $ar: \mathbf{v}_{ope} \cup \mathbf{v}_{rel} \rightarrow \text{ordinals (usually) with } 0 \notin ar[\mathbf{v}_{rel}].$
- $\operatorname{ar}(s) = 0 \stackrel{\operatorname{def}}{\longleftrightarrow} s$ is a "constant".
- Add to this a large enough set ("alphabet") of "variables".

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Projective classes as images of accessible functors

Motivation

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems

- Vocabulary: $\mathbf{v} = (\mathbf{v}_{\mathrm{ope}}, \mathbf{v}_{\mathrm{rel}}, \mathsf{ar})$ with $\mathbf{v}_{\mathrm{ope}} \cap \mathbf{v}_{\mathrm{rel}} = \emptyset$ and ar: $\mathbf{v}_{\mathrm{ope}} \cup \mathbf{v}_{\mathrm{rel}} \rightarrow$ ordinals (usually) with $0 \notin ar[\mathbf{v}_{\mathrm{rel}}]$.
- $\operatorname{ar}(s) = 0 \stackrel{\operatorname{def}}{\iff} s$ is a "constant".
- Add to this a large enough set ("alphabet") of "variables".
- **model for v** (or **v**-structure): $\mathbf{A} = (A, s^{\mathbf{A}})_{s \in \mathbf{v}_{ope} \cup \mathbf{v}_{rel}}$, with the interpretations $s^{\mathbf{A}}$ defined the usual way.

Projective classes as images of accessible functors

Motivation

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems

- Vocabulary: $\mathbf{v} = (\mathbf{v}_{\mathrm{ope}}, \mathbf{v}_{\mathrm{rel}}, \mathsf{ar})$ with $\mathbf{v}_{\mathrm{ope}} \cap \mathbf{v}_{\mathrm{rel}} = \emptyset$ and ar: $\mathbf{v}_{\mathrm{ope}} \cup \mathbf{v}_{\mathrm{rel}} \rightarrow$ ordinals (usually) with $0 \notin \mathsf{ar}[\mathbf{v}_{\mathrm{rel}}]$.
- $\operatorname{ar}(s) = 0 \stackrel{\operatorname{def}}{\iff} s$ is a "constant".
- Add to this a large enough set ("alphabet") of "variables".
- **model for v** (or **v**-structure): $\mathbf{A} = (A, s^{\mathbf{A}})_{s \in \mathbf{v}_{ope} \cup \mathbf{v}_{rel}}$, with the interpretations $s^{\mathbf{A}}$ defined the usual way.
- Str(v) ^{def} = category of all v-structures with v-homomorphisms (it is locally presentable).

▲日 ▶ ▲圖 ▶ ★ 国 ▶ ★ 国 ▶ 二 国

Projective classes as images of accessible functors

Motivation

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems

- Vocabulary: $\mathbf{v} = (\mathbf{v}_{\mathrm{ope}}, \mathbf{v}_{\mathrm{rel}}, \mathsf{ar})$ with $\mathbf{v}_{\mathrm{ope}} \cap \mathbf{v}_{\mathrm{rel}} = \emptyset$ and ar: $\mathbf{v}_{\mathrm{ope}} \cup \mathbf{v}_{\mathrm{rel}} \rightarrow$ ordinals (usually) with $0 \notin \mathrm{ar}[\mathbf{v}_{\mathrm{rel}}]$.
- $\operatorname{ar}(s) = 0 \stackrel{\operatorname{def}}{\iff} s$ is a "constant".
- Add to this a large enough set ("alphabet") of "variables".
- **model for v** (or **v**-structure): $\mathbf{A} = (A, s^{\mathbf{A}})_{s \in \mathbf{v}_{ope} \cup \mathbf{v}_{rel}}$, with the interpretations $s^{\mathbf{A}}$ defined the usual way.
- Str(v) ^{def} = category of all v-structures with v-homomorphisms (it is locally presentable).
- **Terms**: closure of variables under all functions symbols.

Projective classes as images of accessible functors

Motivation

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems

- Vocabulary: $\mathbf{v} = (\mathbf{v}_{\mathrm{ope}}, \mathbf{v}_{\mathrm{rel}}, \mathsf{ar})$ with $\mathbf{v}_{\mathrm{ope}} \cap \mathbf{v}_{\mathrm{rel}} = \varnothing$ and ar: $\mathbf{v}_{\mathrm{ope}} \cup \mathbf{v}_{\mathrm{rel}} \rightarrow$ ordinals (usually) with $0 \notin ar[\mathbf{v}_{\mathrm{rel}}]$.
- $\operatorname{ar}(s) = 0 \stackrel{\operatorname{def}}{\iff} s$ is a "constant".
- Add to this a large enough set ("alphabet") of "variables".
- **model for v** (or **v**-structure): $\mathbf{A} = (A, s^{\mathbf{A}})_{s \in \mathbf{v}_{ope} \cup \mathbf{v}_{rel}}$, with the interpretations $s^{\mathbf{A}}$ defined the usual way.
- Str(v) ^{def} = category of all v-structures with v-homomorphisms (it is locally presentable).
- **Terms**: closure of variables under all functions symbols.
- atomic formulas: s = t, for terms s and t, or $R(t_{\xi} | \xi \in ar(R))$ where the t_{ξ} are terms and $R \in \mathbf{v}_{rel}$.

Projective classes as images of accessible functors

Motivation

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems

• Here κ and λ are "extended cardinals" (∞ allowed) with $\omega \leq \lambda \leq \kappa \leq \infty$.

イロト イポト イヨト イヨト 二日

590

Projective classes as images of accessible functors

Motivation

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems • Here κ and λ are "extended cardinals" (∞ allowed) with $\omega \leq \lambda \leq \kappa \leq \infty$.

• For any vocabulary \mathbf{v} , $\mathscr{L}_{\kappa\lambda}(\mathbf{v}) \stackrel{\text{def}}{=} \text{closure of all atomic}$ \mathbf{v} -formulas under disjunctions of $< \kappa$ members ($\bigvee_{i \in I} E_i$ where card $I < \kappa$), negation, and existential quantification over sets of less than λ variables (($\exists X$)E with card $X < \lambda$, or, in indexed form, $\exists \vec{x} E$ with card $I < \lambda$).

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Projective classes as images of accessible functors

Motivation

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems • Here κ and λ are "extended cardinals" (∞ allowed) with $\omega \leq \lambda \leq \kappa \leq \infty$.

- For any vocabulary \mathbf{v} , $\mathscr{L}_{\kappa\lambda}(\mathbf{v}) \stackrel{\text{def}}{=} \text{closure of all atomic}$ \mathbf{v} -formulas under disjunctions of $< \kappa$ members ($\bigvee_{i \in I} \mathbf{E}_i$ where card $I < \kappa$), negation, and existential quantification over sets of less than λ variables (($\exists X$)E with card $X < \lambda$, or, in indexed form, $\exists \vec{x} \in with \text{ card } I < \lambda$).
- Satisfaction $A \models E(\vec{a})$ defined as usual (A is a v-structure, $E \in \mathscr{L}_{\infty\infty}(v)$, \vec{a} : free variables (E) $\rightarrow A$).

Projective classes as images of accessible functors

Motivation

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems

- Here κ and λ are "extended cardinals" (∞ allowed) with $\omega \leq \lambda \leq \kappa \leq \infty$.
- For any vocabulary \mathbf{v} , $\mathscr{L}_{\kappa\lambda}(\mathbf{v}) \stackrel{\text{def}}{=} \text{closure of all atomic}$ \mathbf{v} -formulas under disjunctions of $< \kappa$ members ($\bigvee_{i \in I} \mathbf{E}_i$ where card $I < \kappa$), negation, and existential quantification over sets of less than λ variables (($\exists X$)E with card $X < \lambda$, or, in indexed form, $\exists \vec{x} \in with \text{ card } I < \lambda$).
- Satisfaction $A \models E(\vec{a})$ defined as usual (A is a v-structure, $E \in \mathscr{L}_{\infty\infty}(v)$, \vec{a} : free variables (E) $\rightarrow A$).
- $\mathscr{L}_{\kappa\lambda}$ -elementary class:
 - $\begin{array}{l} \mathbb{C} = \mathbf{Mod}_{\mathbf{v}}(\mathsf{E}) \stackrel{\mathrm{def}}{=} \{ \mathbf{A} \in \mathbf{Str}(\mathbf{v}) \mid \mathbf{A} \models \mathsf{E} \} \text{ where } \mathsf{E} \text{ is an } \\ \mathscr{L}_{\kappa\lambda}(\mathbf{v}) \text{-sentence.} \end{array}$

・ロト ・ 雪 ト ・ ヨ ト ・ ヨ ト

Projective
classes as
images of
accessible
functors

Motivation

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems

A class ${\mathfrak C}$ of ${\boldsymbol v}\text{-structures}$ is

Projective classes as images of accessible functors

Motivation

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems

- A class \mathcal{C} of **v**-structures is **projective over** $\mathscr{L}_{\kappa\lambda}$ (abbrev. $PC(\mathscr{L}_{\kappa\lambda})$) if there are a
 - vocabulary $\mathbf{w} \supseteq \mathbf{v}$ and a sentence $\mathsf{E} \in \mathscr{L}_{\kappa\lambda}(\mathbf{w})$ such that $\mathcal{C} = \{\boldsymbol{M} \upharpoonright_{\mathbf{v}} \mid \boldsymbol{M} \in \mathbf{Mod}_{\mathbf{w}}(\mathsf{E})\}.$

■ relatively projective over $\mathscr{L}_{\kappa\lambda}$ (abbrev. RPC($\mathscr{L}_{\kappa\lambda}$)) if there are a unary predicate symbol U, a vocabulary $\mathbf{w} \supseteq \mathbf{v} \cup \{\mathbf{U}\}$, and a sentence $\mathbf{E} \in \mathscr{L}_{\kappa\lambda}(\mathbf{w})$ such that $\mathscr{C} = \{\mathbf{U}^{\mathcal{M}}|_{\mathbf{v}} \mid \mathbf{M} \in \mathbf{Mod}_{\mathbf{w}}(\mathbf{E}), \mathbf{U}^{\mathcal{M}}$ closed under $\mathbf{v}_{ope}\}$.

Projective classes as images of accessible functors

Motivation

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems

A class ${\mathfrak C}$ of **v**-structures is

■ projective over $\mathscr{L}_{\kappa\lambda}$ (abbrev. $PC(\mathscr{L}_{\kappa\lambda})$) if there are a vocabulary $\mathbf{w} \supseteq \mathbf{v}$ and a sentence $\mathsf{E} \in \mathscr{L}_{\kappa\lambda}(\mathbf{w})$ such that $\mathscr{C} = \{\boldsymbol{M} \upharpoonright_{\mathbf{v}} \mid \boldsymbol{M} \in \mathsf{Mod}_{\mathbf{w}}(\mathsf{E})\}.$

■ relatively projective over $\mathscr{L}_{\kappa\lambda}$ (abbrev. $\operatorname{RPC}(\mathscr{L}_{\kappa\lambda})$) if there are a unary predicate symbol U, a vocabulary $\mathbf{w} \supseteq \mathbf{v} \cup \{U\}$, and a sentence $\mathsf{E} \in \mathscr{L}_{\kappa\lambda}(\mathbf{w})$ such that $\mathscr{C} = \{\mathbf{U}^{\mathcal{M}}|_{\mathbf{v}} \mid \mathcal{M} \in \operatorname{Mod}_{\mathbf{w}}(\mathsf{E}), \ \mathbf{U}^{\mathcal{M}}$ closed under $\mathbf{v}_{\operatorname{ope}}\}$.

■ Hence $PC(\mathscr{L}_{\kappa\lambda}) \subseteq RPC(\mathscr{L}_{\kappa\lambda})$. Note that $PC(\mathscr{L}_{\omega\omega}) \subsetneqq RPC(\mathscr{L}_{\omega\omega})$ (even on finite structures).

Projective classes as images of accessible functors

Motivation

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems

A class ${\mathfrak C}$ of **v**-structures is

■ projective over $\mathscr{L}_{\kappa\lambda}$ (abbrev. $PC(\mathscr{L}_{\kappa\lambda})$) if there are a vocabulary $w \supseteq v$ and a sentence $E \in \mathscr{L}_{\kappa\lambda}(w)$ such that $\mathcal{C} = \{M \upharpoonright_{v} \mid M \in Mod_{w}(E)\}.$

■ relatively projective over $\mathscr{L}_{\kappa\lambda}$ (abbrev. RPC($\mathscr{L}_{\kappa\lambda}$)) if there are a unary predicate symbol U, a vocabulary $\mathbf{w} \supseteq \mathbf{v} \cup \{U\}$, and a sentence $\mathsf{E} \in \mathscr{L}_{\kappa\lambda}(\mathbf{w})$ such that $\mathscr{C} = \{\mathbf{U}^{\boldsymbol{M}}|_{\mathbf{v}} \mid \boldsymbol{M} \in \mathsf{Mod}_{\mathbf{w}}(\mathsf{E}), \ \mathbf{U}^{\boldsymbol{M}}$ closed under $\mathbf{v}_{\mathrm{ope}}\}$.

■ Hence $PC(\mathscr{L}_{\kappa\lambda}) \subseteq RPC(\mathscr{L}_{\kappa\lambda})$. Note that $PC(\mathscr{L}_{\omega\omega}) \subsetneqq RPC(\mathscr{L}_{\omega\omega})$ (even on finite structures).

Theorem (W 2021)

Let λ be an infinite cardinal. Then $PC(\mathscr{L}_{\infty\lambda}) = RPC(\mathscr{L}_{\infty\lambda})$ (in full generality; no restrictions on vocabularies). Moreover, if λ is singular, then $PC(\mathscr{L}_{\infty\lambda}) = PC(\mathscr{L}_{\infty\lambda^+})$.

Examples of "elementary" classes

Projective classes as images of accessible functors

Motivation

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems • Finiteness (of the ambiant universe) is $\mathscr{L}_{\omega_1\omega}$:

 $\bigvee_{n < \omega} (\exists_{i < n} x_i) (\forall x) \bigvee_{i < n} (x = x_i).$

Examples of "elementary" classes

Projective classes as images of accessible functors

Motivation

Elementary, projective

Tuuri's Interpolatior Theorem

Karttunen's back-and-forth systems **Finiteness** (of the ambiant universe) is $\mathscr{L}_{\omega_1\omega}$:

$$\bigvee_{n<\omega}(\exists_{i< n}x_i)(\forall x)\bigvee_{i< n}(x=x_i).$$

イロト イポト イヨト イヨト 二日

7/21

• Well-foundedness (of the ambiant poset) is $\mathscr{L}_{\omega_1\omega_1}$: $(\forall_{n < \omega} x_n) \bigvee_{n < \omega} (x_{n+1} \not< x_n).$

Examples of "elementary" classes

Projective classes as images of accessible functors

Motivation

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems • Finiteness (of the ambiant universe) is $\mathscr{L}_{\omega_1\omega}$:

$$\bigvee_{n<\omega}(\exists_{i< n}x_i)(\forall x)\bigvee_{i< n}(x=x_i).$$

7/21

Well-foundedness (of the ambiant poset) is L_{ω1ω1}:
 (∀_{n<ω}x_n) W_{n<ω} (x_{n+1} ≮ x_n).

• Torsion-freeness (of a group) is $\mathscr{L}_{\omega_1\omega}$: $\bigwedge_{0 < n < \omega} (\forall x)(x^n = 1 \Rightarrow x = 1).$

An example of RPC (that turns out to be PC)

Projective classes as images of accessible functors

Motivation

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems • $\mathcal{C} \stackrel{\text{def}}{=} \{ \boldsymbol{M} = (\boldsymbol{M}, \cdot, 1) \text{ monoid } | (\exists \boldsymbol{G} \text{ group})(\boldsymbol{M} \hookrightarrow \boldsymbol{G}) \} \text{ is,}$ by definition, $\operatorname{RPC}(\mathscr{L}_{\omega\omega}).$

An example of RPC (that turns out to be $\mathrm{PC})$

Projective classes as images of accessible functors

Motivation

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems • $\mathcal{C} \stackrel{\text{def}}{=} \{ \boldsymbol{M} = (\boldsymbol{M}, \cdot, 1) \text{ monoid } | (\exists \boldsymbol{G} \text{ group})(\boldsymbol{M} \hookrightarrow \boldsymbol{G}) \} \text{ is,}$ by definition, $\operatorname{RPC}(\mathscr{L}_{\omega\omega}).$

■ Here v = (., 1), w = (., 1, U) for a unary predicate U, the required E states that the given w-structure is a group (so "U^G is v-closed in G" means that U interprets a submonoid of G).

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

An example of RPC (that turns out to be $\mathrm{PC})$

Projective classes as images of accessible functors

Motivation

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems • $\mathcal{C} \stackrel{\text{def}}{=} \{ \boldsymbol{M} = (\boldsymbol{M}, \cdot, 1) \text{ monoid } | (\exists \boldsymbol{G} \text{ group})(\boldsymbol{M} \hookrightarrow \boldsymbol{G}) \} \text{ is,}$ by definition, $\operatorname{RPC}(\mathscr{L}_{\omega\omega}).$

- Here v = (·, 1), w = (·, 1, U) for a unary predicate U, the required E states that the given w-structure is a group (so "U^G is v-closed in G" means that U interprets a submonoid of G).
- By Mal'cev's work, C = {M | (∀n < ω)(M ⊨ E_n)} for an effectively constructed sequence (E_n | n < ω) of quasi-identities over v, not reducible to any finite subset.</p>

An example of RPC (that turns out to be PC)

Projective classes as images of accessible functors

Motivation

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems • $\mathcal{C} \stackrel{\text{def}}{=} \{ \boldsymbol{M} = (\boldsymbol{M}, \cdot, 1) \text{ monoid } | (\exists \boldsymbol{G} \text{ group})(\boldsymbol{M} \hookrightarrow \boldsymbol{G}) \} \text{ is,}$ by definition, $\operatorname{RPC}(\mathscr{L}_{\omega\omega}).$

- Here v = (., 1), w = (., 1, U) for a unary predicate U, the required E states that the given w-structure is a group (so "U^G is v-closed in G" means that U interprets a submonoid of G).
- By Mal'cev's work, C = {M | (∀n < ω)(M ⊨ E_n)} for an effectively constructed sequence (E_n | n < ω) of quasi-identities over v, not reducible to any finite subset.</p>
- Nonetheless,

 $\mathcal{C} = \{ \boldsymbol{M} \mid (\exists \text{ group structure } \boldsymbol{G} \text{ on } \boldsymbol{M})(\exists f : \boldsymbol{M} \hookrightarrow \boldsymbol{G}) \} \text{ is } PC(\mathcal{L}_{\omega\omega}).$

(日) (個) (E) (E) (E)

Projective classes as images of accessible functors

Motivation

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems For a unital ring R, Id_c R ^{def} = (∨, 0)-semilattice of all finitely generated two-sided ideals of R. Let C ^{def} {Id_c R | R unital ring}.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Projective classes as images of accessible functors

Motivation

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems For a unital ring R, Id_c R ^{def} = (∨, 0)-semilattice of all finitely generated two-sided ideals of R. Let C ^{def} {Id_c R | R unital ring}.

■ For an Abelian ℓ -group G, $\mathsf{Id}_c G \stackrel{\text{def}}{=}$ lattice of all principal ℓ -ideals of G. Let $\mathcal{C} \stackrel{\text{def}}{=} \{\mathsf{Id}_c G \mid G \text{ Abelian } \ell\text{-group}\}.$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Projective classes as images of accessible functors

Motivation

Elementary, projective

Tuuri's Interpolatior Theorem

Karttunen's back-and-forth systems

- For a unital ring R, Id_c R ^{def} = (∨, 0)-semilattice of all finitely generated two-sided ideals of R. Let
 C ^{def} {Id_c R | R unital ring}.
- For an Abelian ℓ -group G, $Id_c G \stackrel{\text{def}}{=}$ lattice of all principal ℓ -ideals of G. Let $\mathcal{C} \stackrel{\text{def}}{=} \{ Id_c G \mid G \text{ Abelian } \ell\text{-group} \}.$
 - For a commutative unital ring A, Φ(A) ^{def}=Stone dual of the real spectrum of A (it is a bounded distributive lattice). Let C ^{def}= {Φ(A) | A commutative unital ring}.

Projective classes as images of accessible functors

Motivation

Elementary, projective

Tuuri's Interpolatior Theorem

Karttunen's back-and-forth systems

- For a unital ring R, Id_c R ^{def} = (∨, 0)-semilattice of all finitely generated two-sided ideals of R. Let
 C ^{def} {Id_c R | R unital ring}.
- For an Abelian ℓ -group G, $\operatorname{Id}_{c} G \stackrel{\text{def}}{=}$ lattice of all principal ℓ -ideals of G. Let $\mathcal{C} \stackrel{\text{def}}{=} \{\operatorname{Id}_{c} G \mid G \text{ Abelian } \ell$ -group}.
- For a commutative unital ring A, Φ(A) ^{def}=Stone dual of the real spectrum of A (it is a bounded distributive lattice). Let C ^{def}= {Φ(A) | A commutative unital ring}.

9/21

• All those classes are $PC(\mathscr{L}_{\omega_1\omega})$.

Other examples

Projective classes as images of accessible functors

Motivation

Elementary, projective

Tuuri's Interpolatior Theorem

Karttunen's back-and-forth systems

- For a unital ring R, Id_c R ^{def} = (∨, 0)-semilattice of all finitely generated two-sided ideals of R. Let
 C ^{def} {Id_c R | R unital ring}.
- For an Abelian ℓ -group G, $\operatorname{Id}_{c} G \stackrel{\text{def}}{=}$ lattice of all principal ℓ -ideals of G. Let $\mathcal{C} \stackrel{\text{def}}{=} \{\operatorname{Id}_{c} G \mid G \text{ Abelian } \ell$ -group}.
- For a commutative unital ring A, Φ(A) ^{def}=Stone dual of the real spectrum of A (it is a bounded distributive lattice). Let C ^{def}= {Φ(A) | A commutative unital ring}.
- All those classes are $PC(\mathscr{L}_{\omega_1\omega})$.
- Observe that they are all defined as images of functors.

Other examples

Projective classes as images of accessible functors

Motivation

Elementary, projective

Tuuri's Interpolatior Theorem

Karttunen's back-and-forth systems

- For a unital ring R, Id_c R ^{def} = (∨, 0)-semilattice of all finitely generated two-sided ideals of R. Let
 C ^{def} {Id_c R | R unital ring}.
- For an Abelian ℓ -group G, $\operatorname{Id}_{c} G \stackrel{\text{def}}{=}$ lattice of all principal ℓ -ideals of G. Let $\mathcal{C} \stackrel{\text{def}}{=} \{\operatorname{Id}_{c} G \mid G \text{ Abelian } \ell$ -group}.
- For a commutative unital ring A, Φ(A) ^{def}=Stone dual of the real spectrum of A (it is a bounded distributive lattice). Let C ^{def}= {Φ(A) | A commutative unital ring}.
- All those classes are $PC(\mathscr{L}_{\omega_1\omega})$.
- Observe that they are all defined as images of functors.
- We will see that none of those classes is co-PC(L_{∞∞}) (i.e., complement of a PC(L_{∞∞})).

Projective classes as images of accessible functors

Motivation

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems

Let λ be a regular cardinal.

Let λ be a regular cardinal.

Projective classes as images of accessible functors

Motivation

Elementary, projective

Tuuri's Interpolatior Theorem

Karttunen's back-and-forth systems A category S is λ-accessible if it has all λ-directed colimits and it has a λ-directed colimit-dense subset S[†], consisting of λ-presentable objects.

A B + A B +
 A
 B + A B +
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A

Projective classes as images of accessible functors

Motivation

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems Let λ be a regular cardinal.

 A category S is λ-accessible if it has all λ-directed colimits and it has a λ-directed colimit-dense subset S[†], consisting of λ-presentable objects.

10/21

 One can then take S[†] = Pres_λ S, "the" set of all λ-presentable objects in S (up to isomorphism).

Projective classes as images of accessible functors

Motivation

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems

Let λ be a regular cardinal.

- A category S is λ-accessible if it has all λ-directed colimits and it has a λ-directed colimit-dense subset S[†], consisting of λ-presentable objects.
- One can then take S[†] = Pres_λ S, "the" set of all λ-presentable objects in S (up to isomorphism).
- A functor Φ: S → T is λ-continuous if it preserves λ-directed colimits. If S and T are both λ-accessible categories, we say that Φ is a λ-accessible functor.

・ロト ・ 雪 ト ・ ヨ ト

Projective classes as images of accessible functors

Motivation

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems

Let λ be a regular cardinal.

- A category S is λ-accessible if it has all λ-directed colimits and it has a λ-directed colimit-dense subset S[†], consisting of λ-presentable objects.
- One can then take S[†] = Pres_λ S, "the" set of all λ-presentable objects in S (up to isomorphism).
- A functor Φ: S → T is λ-continuous if it preserves λ-directed colimits. If S and T are both λ-accessible categories, we say that Φ is a λ-accessible functor.
- There are many examples: **Str**(**v**), quasivarieties...

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

PC versus accessible

Theorem (W 2021)

Projective classes as images of accessible functors

Motivation

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems Let λ be a regular cardinal, let \mathbf{v} be a vocabulary such that \mathbf{v}_{ope} is λ -ary, and let \mathcal{C} be an $\operatorname{RPC}(\mathscr{L}_{\infty\lambda})$ class of \mathbf{v} -structures. Then there are a λ -accessible category \mathcal{S} and a λ -continuous functor $\Phi \colon \mathcal{S} \to \mathbf{Str}(\mathbf{v})$, that can be taken faithful, with im $\Phi \stackrel{\text{def}}{=} \{ \mathbf{M} \mid (\exists S \in \operatorname{Ob} \mathcal{S}) (\mathbf{M} \cong \Phi(S)) \} = \mathcal{C}.$

PC versus accessible

Projective classes as images of accessible functors

Motivation

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems

Theorem (W 2021) Let λ be a regular cardinal, let \mathbf{v} be a vocabulary such that \mathbf{v}_{ope} is λ -ary, and let \mathcal{C} be an $\text{RPC}(\mathscr{L}_{\infty\lambda})$ class of

v-structures. Then there are a λ -accessible category S and a λ -continuous functor $\Phi: S \to \mathbf{Str}(\mathbf{v})$, that can be taken faithful, with im $\Phi \stackrel{\text{def}}{=} \{ \mathbf{M} \mid (\exists S \in \text{Ob} S) (\mathbf{M} \cong \Phi(S)) \} = \mathbb{C}.$

Theorem (W 2021)

Let λ be a regular cardinal, let \mathbf{v} be a λ -ary vocabulary, let \mathcal{S} be a λ -accessible category, and let $\Phi \colon \mathcal{S} \to \mathbf{Str}(\mathbf{v})$ be a λ -accessible functor. Then im Φ is $\mathrm{PC}(\mathscr{L}_{\infty\lambda})$.

PC versus accessible

Projective classes as images of accessible functors

Motivation

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems

Theorem (W 2021)

Let λ be a regular cardinal, let \mathbf{v} be a vocabulary such that \mathbf{v}_{ope} is λ -ary, and let \mathcal{C} be an $\operatorname{RPC}(\mathscr{L}_{\infty\lambda})$ class of \mathbf{v} -structures. Then there are a λ -accessible category \mathcal{S} and a λ -continuous functor $\Phi: \mathcal{S} \to \mathbf{Str}(\mathbf{v})$, that can be taken faithful, with im $\Phi \stackrel{\text{def}}{=} \{\mathbf{M} \mid (\exists S \in \operatorname{Ob} \mathcal{S})(\mathbf{M} \cong \Phi(S))\} = \mathcal{C}$.

Theorem (W 2021)

Let λ be a regular cardinal, let \mathbf{v} be a λ -ary vocabulary, let δ be a λ -accessible category, and let $\Phi \colon S \to \mathbf{Str}(\mathbf{v})$ be a λ -accessible functor. Then im Φ is $\mathrm{PC}(\mathscr{L}_{\infty\lambda})$.

The assumptions that \mathbf{v}_{ope} , or \mathbf{v} , be λ -ary, cannot be dispensed with (counterexamples with idempotence, emptiness).

Projective classes as images of accessible functors

Motivation

Elementary projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems ■ Idea: extend $\mathscr{L}_{\kappa\lambda}$ in such a way that infinite alternations of quantifiers be enabled.

・ロト ・ 雪 ト ・ ヨ ト

Projective classes as images of accessible functors

Motivation

Elementary projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems

- Idea: extend $\mathscr{L}_{\kappa\lambda}$ in such a way that infinite alternations of quantifiers be enabled.
- Game formula (of Gale-Stewart kind): $\exists \vec{x} \in (\vec{x})$ is $(\forall x_0)(\exists x_1)(\forall x_2) \cdots \in (x_0, x_1, x_2, \dots).$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Projective classes as images of accessible functors

Motivation

Elementary projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems

- Idea: extend $\mathscr{L}_{\kappa\lambda}$ in such a way that infinite alternations of quantifiers be enabled.
- Game formula (of Gale-Stewart kind): $\exists \vec{x} E(\vec{x})$ is $(\forall x_0)(\exists x_1)(\forall x_2) \cdots E(x_0, x_1, x_2, \dots).$
- Can be interpreted via a game with two players, ∀ (who plays all x_{2n}) and ∃ (who plays all x_{2n+1}). Hence ∀ (resp., ∃) wins iff E(x₀, x₁, x₂, ...) (resp., ¬E(x₀, x₁, x₂, ...)).

Projective classes as images of accessible functors

Motivation

Elementary projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems

- Idea: extend $\mathscr{L}_{\kappa\lambda}$ in such a way that infinite alternations of quantifiers be enabled.
- Game formula (of Gale-Stewart kind): $\exists \vec{x} E(\vec{x})$ is $(\forall x_0)(\exists x_1)(\forall x_2)\cdots E(x_0, x_1, x_2, \dots).$
- Can be interpreted via a game with two players, ∀ (who plays all x_{2n}) and ∃ (who plays all x_{2n+1}). Hence ∀ (resp., ∃) wins iff E(x₀, x₁, x₂, ...) (resp., ¬E(x₀, x₁, x₂, ...)).

12/21

• The game above has "clock" ω .

Projective classes as images of accessible functors

Motivation

Elementary projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems ■ Idea: extend $\mathscr{L}_{\kappa\lambda}$ in such a way that infinite alternations of quantifiers be enabled.

- Game formula (of Gale-Stewart kind): $\exists \vec{x} E(\vec{x})$ is $(\forall x_0)(\exists x_1)(\forall x_2) \cdots E(x_0, x_1, x_2, \dots).$
- Can be interpreted via a game with two players, ∀ (who plays all x_{2n}) and ∃ (who plays all x_{2n+1}). Hence ∀ (resp., ∃) wins iff E(x₀, x₁, x₂,...) (resp., ¬E(x₀, x₁, x₂,...)).
 - The game above has "clock" ω .
- The "infinitely deep language" M_{κλ}(**v**) contains more general formulas than the ∂x E(x) above, now clocked by posets which are simultaneously trees and meet-semilattices, in which every node has < κ upper covers and every branch has length a successor < λ.</p>

Projective classes as images of accessible functors

Motivation

Elementary projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems ■ Idea: extend $\mathscr{L}_{\kappa\lambda}$ in such a way that infinite alternations of quantifiers be enabled.

- Game formula (of Gale-Stewart kind): $\exists \vec{x} E(\vec{x})$ is $(\forall x_0)(\exists x_1)(\forall x_2) \cdots E(x_0, x_1, x_2, \dots).$
- Can be interpreted via a game with two players, ∀ (who plays all x_{2n}) and ∃ (who plays all x_{2n+1}). Hence ∀ (resp., ∃) wins iff E(x₀, x₁, x₂,...) (resp., ¬E(x₀, x₁, x₂,...)).
 - The game above has "clock" ω .
- The "infinitely deep language" M_{κλ}(v) contains more general formulas than the ∂x E(x) above, now clocked by posets which are simultaneously trees and meet-semilattices, in which every node has < κ upper covers and every branch has length a successor < λ.</p>
- Satisfaction of an $\mathcal{M}_{\kappa\lambda}(\mathbf{v})$ -statement is expressed via the existence of a winning strategy in the associated game.

Tuuri's Interpolation Theorem

Projective classes as images of accessible functors

Motivation

Elementary projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems

Theorem (Tuuri 1992)

Let κ be a regular cardinal, let \mathbf{v} be a κ -ary vocabulary, set $\lambda \stackrel{\text{def}}{=} \sup\{\kappa^{\alpha} \mid \alpha < \kappa\}$, and let E and F be $\mathscr{L}_{\kappa^{+}\kappa}(\mathbf{v})$ -sentences such that the conjunction E \wedge F has no \mathbf{v} -model. Then there exists an $\mathscr{M}_{\lambda^{+}\lambda}(\mathbf{v})$ -sentence G, with vocabulary the intersection of the vocabularies of E and F, such that \models (E \Rightarrow G) and \models (F $\Rightarrow \sim$ G).

Tuuri's Interpolation Theorem

Projective classes as images of accessible functors

Motivation

Elementary projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems

Theorem (Tuuri 1992)

Let κ be a regular cardinal, let \mathbf{v} be a κ -ary vocabulary, set $\lambda \stackrel{\text{def}}{=} \sup\{\kappa^{\alpha} \mid \alpha < \kappa\}$, and let E and F be $\mathscr{L}_{\kappa^{+}\kappa}(\mathbf{v})$ -sentences such that the conjunction $E \wedge F$ has no \mathbf{v} -model. Then there exists an $\mathscr{M}_{\lambda^{+}\lambda}(\mathbf{v})$ -sentence G, with vocabulary the intersection of the vocabularies of E and F, such that $\models (E \Rightarrow G)$ and $\models (F \Rightarrow \sim G)$.

■ Here, ~G denotes the sentence obtained by interchanging ₩ and Λ, ∃ and ∀, A and ¬A in the expression of G by a tree-clocked game; it implies the usual negation ¬G (which, however, is no longer an M_{λ+λ}-sentence).

・ロト ・ 雪 ト ・ ヨ ト ・ ヨ ト

Tuuri's Interpolation Theorem

Projective classes as images of accessible functors

Motivation

Elementary projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems

Theorem (Tuuri 1992)

Let κ be a regular cardinal, let \mathbf{v} be a κ -ary vocabulary, set $\lambda \stackrel{\text{def}}{=} \sup\{\kappa^{\alpha} \mid \alpha < \kappa\}$, and let E and F be $\mathscr{L}_{\kappa^{+}\kappa}(\mathbf{v})$ -sentences such that the conjunction $E \wedge F$ has no \mathbf{v} -model. Then there exists an $\mathscr{M}_{\lambda^{+}\lambda}(\mathbf{v})$ -sentence G, with vocabulary the intersection of the vocabularies of E and F, such that $\models (E \Rightarrow G)$ and $\models (F \Rightarrow \sim G)$.

- Here, ~G denotes the sentence obtained by interchanging ♥ and ▲, ∃ and ∀, A and ¬A in the expression of G by a tree-clocked game; it implies the usual negation ¬G (which, however, is no longer an *M*_{λ+λ}-sentence).
- By a 1971 counterexample due to Malitz, $\mathcal{M}_{\lambda^+\lambda}$ cannot be replaced by $\mathscr{L}_{\infty\infty}$ in the statement of Tuuri's Theorem.

Projective and co-projective

Projective classes as images of accessible functors

Corollary

Motivation

Elementary projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems Let **v** be a vocabulary. Then for all classes \mathcal{A} and \mathcal{B} of **v**-structures, if \mathcal{A} is $PC(\mathscr{L}_{\infty\infty})$, \mathcal{B} is $co-PC(\mathscr{L}_{\infty\infty})$, and $\mathcal{A} \subseteq \mathcal{B}$, then there exists an $\mathscr{M}_{\infty\infty}(\mathbf{v})$ -sentence G such that $\mathcal{A} \subseteq \mathbf{Mod}_{\mathbf{v}}(\mathsf{G}) \subseteq \mathcal{B}$.

イロト 不得下 イヨト イヨト

のへで 14/21

Projective and co-projective

Projective classes as images of accessible functors

Motivation

Elementary projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems Corollary

Let **v** be a vocabulary. Then for all classes \mathcal{A} and \mathcal{B} of **v**-structures, if \mathcal{A} is $\mathrm{PC}(\mathscr{L}_{\infty\infty})$, \mathcal{B} is $\mathrm{co-PC}(\mathscr{L}_{\infty\infty})$, and $\mathcal{A} \subseteq \mathcal{B}$, then there exists an $\mathscr{M}_{\infty\infty}(\mathbf{v})$ -sentence G such that $\mathcal{A} \subseteq \mathbf{Mod}_{\mathbf{v}}(\mathsf{G}) \subseteq \mathcal{B}$.

Corollary

In order to prove that a $\mathrm{PC}(\mathscr{L}_{\infty\infty})$ class \mathfrak{C} of **v**-structures is not co- $\mathrm{PC}(\mathscr{L}_{\infty\infty})$, it suffices to prove that \mathfrak{C} is not $\mathscr{M}_{\infty\infty}(\mathbf{v})$ -definable.

Projective and co-projective

Projective classes as images of accessible functors

Motivation

Elementary projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems Corollary

Let **v** be a vocabulary. Then for all classes \mathcal{A} and \mathcal{B} of **v**-structures, if \mathcal{A} is $\mathrm{PC}(\mathscr{L}_{\infty\infty})$, \mathcal{B} is $\mathrm{co-PC}(\mathscr{L}_{\infty\infty})$, and $\mathcal{A} \subseteq \mathcal{B}$, then there exists an $\mathscr{M}_{\infty\infty}(\mathbf{v})$ -sentence G such that $\mathcal{A} \subseteq \mathbf{Mod}_{\mathbf{v}}(\mathsf{G}) \subseteq \mathcal{B}$.

Corollary

In order to prove that a $\mathrm{PC}(\mathscr{L}_{\infty\infty})$ class \mathfrak{C} of **v**-structures is not co- $\mathrm{PC}(\mathscr{L}_{\infty\infty})$, it suffices to prove that \mathfrak{C} is not $\mathscr{M}_{\infty\infty}(\mathbf{v})$ -definable.

◆ロト ◆聞 と ◆注 と ◆注 と 一注

nan

14/21

But then, what is the advantage of $\mathscr{M}_{\infty\infty}$ -definable over $\mathrm{PC}(\mathscr{L}_{\infty\infty})$ -definable or $\mathrm{co}\operatorname{PC}(\mathscr{L}_{\infty\infty})$ -definable?

That's back-and-forth!

Projective classes as images of accessible functors

Motivation

Elementary projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems There are several non-equivalent definitions of back-and-forth between models (extended to categorical model theory by Beke and Rosický in 2018).

化口下 化固下 化医下不良下

That's back-and-forth!

Projective classes as images of accessible functors

Motivation

Elementary projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems There are several non-equivalent definitions of back-and-forth between models (extended to categorical model theory by Beke and Rosický in 2018).

Definition (Karttunen 1979)

For a regular cardinal λ , a λ -back-and-forth system between models \boldsymbol{M} and \boldsymbol{N} over a vocabulary \mathbf{v} consists of a poset $(\mathcal{F}, \trianglelefteq)$, together with a function $f \mapsto \overline{f}$ with domain \mathcal{F} , such that each $\overline{f} : \mathbf{d}(f) \stackrel{\cong}{\to} \mathbf{r}(f)$ with $\mathbf{d}(f) \leqslant \boldsymbol{M}$ and $\mathbf{r}(f) \leqslant \boldsymbol{N}$, and the following conditions hold:

1 $f \trianglelefteq g$ implies $\overline{f} \subseteq \overline{g}$; **2** $(\mathcal{F}, \trianglelefteq)$ is λ -inductive; **3** whenever $f \in \mathcal{F}$ and $x \in M$ (resp., $y \in N$), there is $g \in \mathcal{F}$ such that $f \subseteq g$ and $x \in \mathbf{d}(g)$ (resp., $y \in \mathbf{r}(g)$).

We then write $\mathbf{M} \leftrightarrows_{\lambda} \mathbf{N}$.

$\mathscr{M}_{\infty\lambda}$ versus back-and-forth

Projective classes as images of accessible functors

Motivation

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems

Theorem (Karttunen 1979)

Let λ be a regular cardinal and let M and N be structures over a vocabulary \mathbf{v} . If $M \leftrightarrows_{\lambda} N$, then M and N satisfy the same $\mathscr{M}_{\infty\lambda}(\mathbf{v})$ -sentences.

nac

$\mathscr{M}_{\infty\lambda}$ versus back-and-forth

Projective classes as images of accessible functors

Motivation

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems

Theorem (Karttunen 1979)

Let λ be a regular cardinal and let M and N be structures over a vocabulary \mathbf{v} . If $M \leftrightarrows_{\lambda} N$, then M and N satisfy the same $\mathscr{M}_{\infty\lambda}(\mathbf{v})$ -sentences.

nac

16/21

• Extended by Karttunen to the even more general languages $\mathcal{N}_{\infty\lambda}$.

$\mathscr{M}_{\infty\lambda}$ versus back-and-forth

Projective classes as images of accessible functors

Motivation

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems

Theorem (Karttunen 1979)

Let λ be a regular cardinal and let M and N be structures over a vocabulary \mathbf{v} . If $M \leftrightarrows_{\lambda} N$, then M and N satisfy the same $\mathscr{M}_{\infty\lambda}(\mathbf{v})$ -sentences.

- Extended by Karttunen to the even more general languages $\mathcal{N}_{\infty\lambda}$.
- The syntax for 𝒩_{∞λ} is far more complex than for 𝒩_{∞λ}, the semantics are even trickier (not unique!).

Projective classes as images of accessible functors

Motivation

Elementary projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems By the above,

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 のへの 17/21

Projective classes as images of accessible functors

Motivation

Elementary projective

Tuuri's Interpolatior Theorem

Karttunen's back-and-forth systems

By the above,

Proposition

In order to prove that a $PC(\mathscr{L}_{\infty\infty})$ class \mathcal{C} of **v**-structures is not co- $PC(\mathscr{L}_{\infty\infty})$, it suffices to prove that it is not closed under $\leftrightarrows_{\lambda}$ for a suitable regular cardinal λ .

Sac

Projective classes as images of accessible functors

Motivation

Elementary, projective

Tuuri's Interpolatior Theorem

Karttunen's back-and-forth systems

By the above,

Proposition

In order to prove that a $PC(\mathscr{L}_{\infty\infty})$ class \mathfrak{C} of **v**-structures is not co- $PC(\mathscr{L}_{\infty\infty})$, it suffices to prove that it is not closed under $\leftrightarrows_{\lambda}$ for a suitable regular cardinal λ .

 Applies to earlier introduced examples Id_c(unital rings), Id_c(Abelian ℓ-groups), duals of real spectra of commutative unital rings, and many others: each of those classes fails to be closed under a suitable ⇔_λ.

Projective classes as images of accessible functors

Motivation

Elementary projective

Tuuri's Interpolatior Theorem

Karttunen's back-and-forth systems

By the above,

Proposition

In order to prove that a $PC(\mathscr{L}_{\infty\infty})$ class \mathfrak{C} of **v**-structures is not co- $PC(\mathscr{L}_{\infty\infty})$, it suffices to prove that it is not closed under $\leftrightarrows_{\lambda}$ for a suitable regular cardinal λ .

- Applies to earlier introduced examples Id_c(unital rings), Id_c(Abelian ℓ-groups), duals of real spectra of commutative unital rings, and many others: each of those classes fails to be closed under a suitable ⇔_λ.
 - The real trouble is: find a back-and-forth system
 𝒮: 𝕅 ≒_λ ℕ with 𝓜 ∈ 𝔅 and ℕ ∉ 𝔅 (where 𝔅 is the given class).

(日) (個) (E) (E) (E)

Projective classes as images of accessible functors

Motivation

Elementary projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems In many examples, such as Φ(unital rings) and Φ(Abelian ℓ-groups) (where Φ = Id_c), ⇒_λ arises from some λ-continuous functor Γ: [κ]^{inj} → C with κ ≥ λ.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Projective classes as images of accessible functors

Motivation

Elementary projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems In many examples, such as Φ(unital rings) and Φ(Abelian ℓ-groups) (where Φ = Id_c), ⇒_λ arises from some λ-continuous functor Γ: [κ]^{inj} → C with κ ≥ λ. Here, [κ]^{inj} denotes the category of all subsets of κ with one-to-one functions.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Projective classes as images of accessible functors

Motivation

Elementary projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems In many examples, such as Φ(unital rings) and Φ(Abelian ℓ-groups) (where Φ = Id_c), ⇒_λ arises from some λ-continuous functor Γ: [κ]^{inj} → C with κ ≥ λ. Here, [κ]^{inj} denotes the category of all subsets of κ with one-to-one functions. In both examples above, κ = λ⁺⁺.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Projective classes as images of accessible functors

Motivation

Elementary projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems In many examples, such as Φ(unital rings) and Φ(Abelian ℓ-groups) (where Φ = Id_c), ⇒_λ arises from some λ-continuous functor Γ: [κ]^{inj} → C with κ ≥ λ. Here, [κ]^{inj} denotes the category of all subsets of κ with one-to-one functions. In both examples above, κ = λ⁺⁺.
It is often the case that for X ⊆ κ with card X < λ, Γ(X) = Φ(Π(S_{|u|} | u ∈ X^{⊆P})) (a "condensate"), where:
P is a suitable finite lattice (in both examples above,

 $P = \{0, 1\}^3$; also, this method provably fails for arbitrary finite bounded posets!);

$$2 X^{\subseteq P} \stackrel{\text{def}}{=} \bigcup \{ X^D \mid D \subseteq P \};$$

- 3 $|u| \stackrel{\text{def}}{=} \bigvee \text{dom } u \text{ whenever } u \in X^{\subseteq P};$
- **4** \vec{S} is a non-commutative diagram, indexed by *P*, such that, for the given functor Φ , the diagram $\Phi(\vec{S})$ is commutative.

Projective classes as images of accessible functors

Motivation

Elementary projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems In many examples, such as Φ(unital rings) and Φ(Abelian ℓ-groups) (where Φ = Id_c), ⇒_λ arises from some λ-continuous functor Γ: [κ]^{inj} → C with κ ≥ λ. Here, [κ]^{inj} denotes the category of all subsets of κ with one-to-one functions. In both examples above, κ = λ⁺⁺.
It is often the case that for X ⊆ κ with card X < λ, Γ(X) = Φ(Π(S_{|u|} | u ∈ X[⊆]P)) (a "condensate"), where:
P is a suitable finite lattice (in both examples above,

 $P = \{0, 1\}^3$; also, this method provably fails for arbitrary finite bounded posets!);

$$Z X^{\subseteq P} \stackrel{\text{def}}{=} \bigcup \{ X^D \mid D \subseteq P \};$$

- 3 $|u| \stackrel{\text{def}}{=} \bigvee \text{dom } u \text{ whenever } u \in X^{\subseteq P};$
- **4** \vec{S} is a non-commutative diagram, indexed by *P*, such that, for the given functor Φ , the diagram $\Phi(\vec{S})$ is commutative.
- Finding P and S is usually hard, very much connected to the algebraic and combinatorial data of the given problem, or

The diagram \vec{S} for Id_c(Abelian ℓ -groups)

Projective classes as images of accessible functors

Motivation

Elementary projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems ■ Denote by \mathcal{A} the class of all Abelian ℓ -groups, and by Id_c \mathcal{A} the class of all isomorphic copies of Id_c G where $G \in \mathcal{A}$. It is $PC(\mathscr{L}_{\omega_1\omega})$, but, by the above, not co- $PC(\mathscr{L}_{\infty\infty})$.

nac

Projective classes as images of accessible functors

Motivation

Elementary projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems ■ Denote by A the class of all Abelian ℓ-groups, and by Id_c A the class of all isomorphic copies of Id_c G where G ∈ A. It is PC(L_{w1w}), but, by the above, not co-PC(L_{∞∞}).

■ A bounded distributive lattice *D* satisfies Ploščica's Condition if for every $a \in D$ and every collection $(\mathfrak{m}_i \mid i \in I)$ of maximal ideals of $\downarrow a, \downarrow a / \bigcap_i \mathfrak{m}_i$ has cardinality $\leq 2^{\operatorname{card} I}$ (careful with definition of $\downarrow a / J$).

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Projective classes as images of accessible functors

Motivation

Elementary projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems Denote by A the class of all Abelian ℓ-groups, and by Id_c A the class of all isomorphic copies of Id_c G where G ∈ A. It is PC(L_{ω1ω}), but, by the above, not co-PC(L_{∞∞}).

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

20/21

■ A bounded distributive lattice *D* satisfies Ploščica's Condition if for every $a \in D$ and every collection $(\mathfrak{m}_i \mid i \in I)$ of maximal ideals of $\downarrow a, \downarrow a / \bigcap_i \mathfrak{m}_i$ has cardinality $\leq 2^{\operatorname{card} I}$ (careful with definition of $\downarrow a / J$).

Theorem (Ploščica 2021)

Every member of $Id_c A$ satisfies Ploščica's Condition.

Projective classes as images of accessible functors

Motivation

Elementary projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems ■ Denote by A the class of all Abelian l-groups, and by Id_c A the class of all isomorphic copies of Id_c G where G ∈ A. It is PC(L_{ω1ω}), but, by the above, not co-PC(L_{∞∞}).

■ A bounded distributive lattice *D* satisfies Ploščica's Condition if for every $a \in D$ and every collection $(\mathfrak{m}_i \mid i \in I)$ of maximal ideals of $\downarrow a, \downarrow a / \bigcap_i \mathfrak{m}_i$ has cardinality $\leq 2^{\operatorname{card} I}$ (careful with definition of $\downarrow a/J$).

Theorem (Ploščica 2021)

Every member of $Id_c A$ satisfies Ploščica's Condition.

Theorem (W 2022, under a fragment of GCH)

There exists a bounded distributive lattice, of cardinality \aleph_4 , satisfying all known $\mathscr{L}_{\omega_1\omega_1}$ properties of all members of $\operatorname{Id}_c \mathcal{A}$ together with Ploščica's Condition, but not in $\operatorname{Id}_c \mathcal{A}$.

Projective classes as images of accessible functors

Motivation

Elementary projective

Tuuri's Interpolatior Theorem

Karttunen's back-and-forth systems Thanks for your attention!

イロト イヨト イヨト イヨト

Э

900