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Background: projective geometries

A projective geometry is a structure (P, L, ε), where both P
(“points”) and L (“lines”) are sets and ε ⊆ P × L

(write p ε `,
pronounced “` contains p”, instead of (p, `) ∈ ε) and the
following axioms are satisfied:

(P1) every line contains at least two distinct points;

(P2) any two distinct points are contained in exactly one line;

(P3) the Pasch Axiom (more detail later!).

By Axioms (P1) and (P2), lines “are” sets of points:

` � {p ∈ P | p ε `} , (p q) := unique line ` such that p, q ε ` ,

so write p ∈ ` instead of p ε `.
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The Pasch Axiom

A triangle is a triple (p, q, r) of distinct points, such that
p /∈ (q r), q /∈ (p r), and r /∈ (p q).

The Pasch Axiom

For each triangle (p, q, r), for all distinct x ∈ (p q) and
y ∈ (q r), (x y) ∩ (p r) 6= ∅.(“There are no parallels”.)
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Projective subspaces

A subset X ⊆ P is a (projective) subspace of P, if

∀p, q ∈ X ,
(p q) ⊆ X . In particular, ∅, P, any singleton {p}, and any line
are subspaces.
Sub P := {X | X subspace of P}, partially ordered under ⊆.
Any intersection of subspaces is a subspace.
In particular, for any subspaces X and Y of P, one can define

X ∧ Y (meet) := X ∩ Y ,

X ∨ Y (join) := least subspace Z such that X ∪ Y ⊆ Z .

The structure (Sub P,∨,∧) (the subspace lattice of P) is a
lattice.
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Modularity of Sub P

Lattice Theory

is the study of all structures (L,∨,∧), where L is a nonempty
set and ∨ (resp., ∧) is the join operation (resp., meet
operation) with respect to a (necessarily unique) partial
ordering of L.

In particular, Sub P is a lattice. It is, in fact, a very special sort
of lattice.

Lemma

The lattice Sub P is modular, that is, it satisfies the rule

x ≥ z ⇒ x ∧ (y ∨ z) = (x ∧ y) ∨ z

(the modular law).
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operation) with respect to a (necessarily unique) partial
ordering of L.

In particular, Sub P is a lattice. It is, in fact, a very special sort
of lattice.

Lemma

The lattice Sub P is modular, that is, it satisfies the rule

x ≥ z ⇒ x ∧ (y ∨ z) = (x ∧ y) ∨ z
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The modular identity

Setting x := x ∨ z (resp., z := x ∧ z),

we get two equivalent
forms of the modular law, formulated as identities:

(x ∨ z) ∧ (y ∨ z) =
(
(x ∨ z) ∧ y

)
∨ z ,

(x ∧ y) ∨ (x ∧ z) = x ∧
(
y ∨ (x ∧ z)

)
.

Each of these identities (defining modularity) is called ‘the’
modular identity. A lattice L is modular if and only if it does
not contain a (lattice-)copy of the lattice N5 below:



Modular
lattices and

von Neumann
regular rings

Projective
geometries

Geomodular
lattices

Desargues

Coord. P.S.

CMLs

Applications

The modular identity

Setting x := x ∨ z (resp., z := x ∧ z), we get two equivalent
forms of the modular law,

formulated as identities:

(x ∨ z) ∧ (y ∨ z) =
(
(x ∨ z) ∧ y

)
∨ z ,

(x ∧ y) ∨ (x ∧ z) = x ∧
(
y ∨ (x ∧ z)

)
.

Each of these identities (defining modularity) is called ‘the’
modular identity. A lattice L is modular if and only if it does
not contain a (lattice-)copy of the lattice N5 below:



Modular
lattices and

von Neumann
regular rings

Projective
geometries

Geomodular
lattices

Desargues

Coord. P.S.

CMLs

Applications

The modular identity

Setting x := x ∨ z (resp., z := x ∧ z), we get two equivalent
forms of the modular law, formulated as identities:

(x ∨ z) ∧ (y ∨ z) =
(
(x ∨ z) ∧ y

)
∨ z ,

(x ∧ y) ∨ (x ∧ z) = x ∧
(
y ∨ (x ∧ z)

)
.

Each of these identities (defining modularity) is called ‘the’
modular identity. A lattice L is modular if and only if it does
not contain a (lattice-)copy of the lattice N5 below:



Modular
lattices and

von Neumann
regular rings

Projective
geometries

Geomodular
lattices

Desargues

Coord. P.S.

CMLs

Applications

The modular identity

Setting x := x ∨ z (resp., z := x ∧ z), we get two equivalent
forms of the modular law, formulated as identities:

(x ∨ z) ∧ (y ∨ z) =
(
(x ∨ z) ∧ y

)
∨ z ,

(x ∧ y) ∨ (x ∧ z) = x ∧
(
y ∨ (x ∧ z)

)
.

Each of these identities (defining modularity) is called ‘the’
modular identity. A lattice L is modular if and only if it does
not contain a (lattice-)copy of the lattice N5 below:



Modular
lattices and

von Neumann
regular rings

Projective
geometries

Geomodular
lattices

Desargues

Coord. P.S.

CMLs

Applications

The modular identity

Setting x := x ∨ z (resp., z := x ∧ z), we get two equivalent
forms of the modular law, formulated as identities:

(x ∨ z) ∧ (y ∨ z) =
(
(x ∨ z) ∧ y

)
∨ z ,

(x ∧ y) ∨ (x ∧ z) = x ∧
(
y ∨ (x ∧ z)

)
.

Each of these identities (defining modularity) is called ‘the’
modular identity. A lattice L is modular if and only if it does
not contain a (lattice-)copy of the lattice N5 below:



Modular
lattices and

von Neumann
regular rings

Projective
geometries

Geomodular
lattices

Desargues

Coord. P.S.

CMLs

Applications

The modular identity

Setting x := x ∨ z (resp., z := x ∧ z), we get two equivalent
forms of the modular law, formulated as identities:

(x ∨ z) ∧ (y ∨ z) =
(
(x ∨ z) ∧ y

)
∨ z ,

(x ∧ y) ∨ (x ∧ z) = x ∧
(
y ∨ (x ∧ z)

)
.

Each of these identities (defining modularity) is called

‘the’
modular identity. A lattice L is modular if and only if it does
not contain a (lattice-)copy of the lattice N5 below:



Modular
lattices and

von Neumann
regular rings

Projective
geometries

Geomodular
lattices

Desargues

Coord. P.S.

CMLs

Applications

The modular identity

Setting x := x ∨ z (resp., z := x ∧ z), we get two equivalent
forms of the modular law, formulated as identities:

(x ∨ z) ∧ (y ∨ z) =
(
(x ∨ z) ∧ y

)
∨ z ,

(x ∧ y) ∨ (x ∧ z) = x ∧
(
y ∨ (x ∧ z)

)
.

Each of these identities (defining modularity) is called ‘the’
modular identity.

A lattice L is modular if and only if it does
not contain a (lattice-)copy of the lattice N5 below:



Modular
lattices and

von Neumann
regular rings

Projective
geometries

Geomodular
lattices

Desargues

Coord. P.S.

CMLs

Applications

The modular identity

Setting x := x ∨ z (resp., z := x ∧ z), we get two equivalent
forms of the modular law, formulated as identities:

(x ∨ z) ∧ (y ∨ z) =
(
(x ∨ z) ∧ y

)
∨ z ,

(x ∧ y) ∨ (x ∧ z) = x ∧
(
y ∨ (x ∧ z)

)
.

Each of these identities (defining modularity) is called ‘the’
modular identity. A lattice L is modular if and only if it does
not contain a (lattice-)copy of the lattice N5 below:



Modular
lattices and

von Neumann
regular rings

Projective
geometries

Geomodular
lattices

Desargues

Coord. P.S.

CMLs

Applications

The modular identity

Setting x := x ∨ z (resp., z := x ∧ z), we get two equivalent
forms of the modular law, formulated as identities:

(x ∨ z) ∧ (y ∨ z) =
(
(x ∨ z) ∧ y

)
∨ z ,

(x ∧ y) ∨ (x ∧ z) = x ∧
(
y ∨ (x ∧ z)

)
.

Each of these identities (defining modularity) is called ‘the’
modular identity. A lattice L is modular if and only if it does
not contain a (lattice-)copy of the lattice N5 below:



Modular
lattices and

von Neumann
regular rings

Projective
geometries

Geomodular
lattices

Desargues

Coord. P.S.

CMLs

Applications

Projective subspace lattices = geomodular lattices

In fact, Sub P satisfies much more than modularity:

it is
geomodular (abbreviation for “geometric and modular”), that
is, “algebraic”, “atomistic”, and modular. Geometric lattices
are often called matroid lattices.

Theorem

A lattice is geomodular if and only if it is isomorphic to Sub P,
for some projective geometry P.

Theorem (G. Birkhoff 1935)

Every geomodular lattice L is complemented, that is, for each
x ∈ L, there exists y ∈ L such that x ∨ y = 1 (largest element
of L) and x ∧ y = 0 (smallest element of L). (Abbreviated
x ⊕ y = 1, and we say that y is a complement of x .)
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Desargues’ Rule

Definition

Two triangles (a0, a1, a2) and (b0, b1, b2) are centrally
perspective, if

(ai aj) 6= (bi bj) for all i 6= j , and for some
point p, all points ai , bi , p are collinear (i.e., on the same line).

We say that (a0, a1, a2) and (b0, b1, b2) are axially perspective,
if the points c0, c1, and c2 are collinear, where
(a1 a2) ∩ (b1 b2) = {c0} and cyclically.

We say that the projective geometry P is Arguesian (or satisfies
Desargues’ Rule), if any two centrally perspective triangles are
also axially perspective.
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The Arguesian identity

Desargues’ identity (M. Schützenberger 1945, B. Jónsson 1953)

Set

z0 := (x1 ∨ x2) ∧ (y1 ∨ y2) ,

z1 := (x0 ∨ x2) ∧ (y0 ∨ y2) ,

z2 := (x0 ∨ x1) ∧ (y0 ∨ y1) ,

z := z2 ∧ (z0 ∨ z1) .

Desargues’ identity is the lattice-theoretical identity

(x0∨y0)∧ (x1∨y1)∧ (x2∨y2) ≤
(
x0∧ (z ∨x1)

)
∨
(
y0∧ (z ∨y1)

)
.

A lattice is Arguesian, if it satisfies Desargues’ identity.
Every Arguesian lattice is modular, but the converse is false.
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z0 := (x1 ∨ x2) ∧ (y1 ∨ y2) ,

z1 := (x0 ∨ x2) ∧ (y0 ∨ y2) ,

z2 := (x0 ∨ x1) ∧ (y0 ∨ y1) ,

z := z2 ∧ (z0 ∨ z1) .

Desargues’ identity is the lattice-theoretical identity

(x0∨y0)∧ (x1∨y1)∧ (x2∨y2) ≤
(
x0∧ (z ∨x1)

)
∨
(
y0∧ (z ∨y1)

)
.

A lattice is Arguesian, if it satisfies Desargues’ identity.
Every Arguesian lattice is modular, but the converse is false.
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Desargues’ Rule versus Desargues’ identity

Theorem (M. Schützenberger 1945, B. Jónsson 1953)

A geomodular lattice is Arguesian if and only if its associated
projective geometry satisfies Desargues’ Rule.

Other classes of Arguesian lattices:

The normal subgroup lattice NSub G of any group G .

The submodule lattice Sub M of any module M.

(more general) Any lattice of permuting equivalence
relations on a given set. (Note: ‘Arguesian’ is then not the
end of the story. . . )
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Fundamental examples of geomodular lattices
(projective spaces)

(1) The two-element lattice 2 := {0, 1},

the lattice Mκ of
length two and κ atoms (for a cardinal κ),

(2) the lattice Sub V of all subspaces of a vector space V of
dimension ≥ 3 (over any division ring),

(3) . . . and the non-Arguesian projective planes!
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The Coordinatization Theorem for projective
geometries

The Coordinatization Theorem for projective geometries (Von
Staudt 19th Century, O. Veblen and W. H. Young 1910,
von Neumann 1936)

Every geomodular lattice is isomorphic to a product
∏

i∈I Li ,
where each Li is isomorphic to one of the types (1)–(3) above.

The decomposition above is unique.
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Frink’s Embedding Theorem

Complemented modular lattice (CML):

Modular lattice
with 0, 1, and (∀x)(∃y)(x ⊕ y = 1).

Frink’s Embedding Theorem (O. Frink 1946)

Every CML L embeds into some geomodular lattice L, with the
same 0 and 1 as L.

Furthermore, one can assume that L satisfies the same
lattice-theoretical identities as L (B. Jónsson 1954). (e.g., the
Arguesian identity).
Easiest example of a (finite) Arguesian lattice that cannot be
embedded into any CML (C. Herrmann and A. Huhn 1975):

Sub
(
(Z/4Z)3

)
, the subgroup lattice of (Z/4Z)3 .
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Von Neumann frames

Definition

Elements a, b in a modular lattice L with 0 are perspective
with axis c (notation a ∼c b), if a⊕ c = b ⊕ c . Elements a0,
. . . , an−1 are independent, if

ak ∧
∨
i<k

ai = 0 , for each k < n .

An n-frame is a system ((ai | 0 ≤ i < n), (ci | 1 ≤ i < n)),
where (ai | 0 ≤ i < n) is independent and a0 ∼ci ai for
1 ≤ i < n. The frame is

— spanning, if 1 =
∨

i<n ai ,

— large, if every element of L is a finite join of elements
perspective to parts of a0 . (Hence spanning ⇒large).
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perspective to parts of a0 . (Hence spanning ⇒large).
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Von Neumann regular rings

Definition

A ring (associative, not necessarily unital) R is regular (in von
Neumann’s sense), if it satisfies

(∀x)(∃y)(xyx = x) .

Example: the endomorphism ring of a vector space (or even a
semisimple module) is regular.
One can then prove that L(R) := {xR | x ∈ R} is a sublattice
of the lattice Id RR of all right ideals of R; in particular, it is
modular. More can be proved:
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Coordinatizable lattices

Theorem (Von Neumann 1936, Fryer and Halperin 1954)

The lattice L(R) is modular, and also sectionally
complemented, the latter meaning that

(∀x ≤ y)(∃z)(x ⊕ z = y) .

In particular, L(R) is complemented modular if (and only if) R
is unital. (For modular lattices, complemented⇐⇒sectionally
complemented with unit.)

Definition

A lattice is coordinatizable, if it is isomorphic to L(R), for
some regular ring R.

The easiest example of non-coordinatizable CML is M7.
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Coordinatization of CMLs

Von Neumann’s Coordinatization Theorem

If a CML has a spanning n-frame, with n ≥ 4, then it is
coordinatizable.

Improved by B. Jónsson in 1960:

Jónsson’s Coordinatization Theorem

If a CML has a large 4-frame, or it is Arguesian and it has a
large 3-frame, then it is coordinatizable.

A much more transparent proof of Jónsson’s Coordinatization
Theorem has recently been found by C. Herrmann.
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Coordinatization of CMLs (cont’d)

Both von Neumann’s condition and Jónsson’s condition can be
expressed by first-order axioms. Nevertheless,

The class of all coordinatizable CMLs is not first-order (FW
2006).
Von Neumann’s condition requires the lattice have a unit, while
Jónsson’s does not. Nevertheless, Jónsson’s Coordinatization
Theorem is stated for lattices with unit.
For sectionally complemented modular lattices without unit,
Jónsson’s result extends to the countable case (B. Jónsson
1962). . . but not to the general case (FW 2008,
counterexample of cardinality ℵ1).
The proof of the latter counterexample involves Banaschewski
functions (first used in 1957, in the theory of totally ordered
abelian groups), and larders (P. Gillibert and FW, 2008; a tool
of categorical nature).
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Applications to lattice-theoretical problems

Most important tool: von Neumann n-frames.

Theorem (R. Freese 1979)

There exists a lattice identity that holds in all finite modular
lattices but not in every modular lattice.

(Analogue for the class of all lattices does not hold!)
Improved later by C. Herrmann:

Theorem (C. Herrmann 1984)

There exists a lattice identity that holds in all Arguesian
lattices of finite length but not in every Arguesian lattice.

The set of all identities satisfied by all finite modular
lattices is not generated by any finite subset.
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Word problem for modular lattices

Theorem (C. Herrmann 1983)

The word problem for free modular lattices on four generators
is recursively unsolvable.

The corresponding statement with ‘five’ instead of ‘four’ was
proved by R. Freese in 1980.
The free modular lattice on three generators is finite, with 28
elements (R. Dedekind 1900)—so one can’t go down to ‘three’.

Remark

The word problem for all lattices is solvable in polynomial
time.

The word problem for all distributive lattices is
NP-complete.



Modular
lattices and

von Neumann
regular rings

Projective
geometries

Geomodular
lattices

Desargues

Coord. P.S.

CMLs

Applications

Word problem for modular lattices

Theorem (C. Herrmann 1983)

The word problem for free modular lattices on four generators
is recursively unsolvable.

The corresponding statement with ‘five’ instead of ‘four’ was
proved by R. Freese in 1980.
The free modular lattice on three generators is finite, with 28
elements (R. Dedekind 1900)—so one can’t go down to ‘three’.

Remark

The word problem for all lattices is solvable in polynomial
time.

The word problem for all distributive lattices is
NP-complete.



Modular
lattices and

von Neumann
regular rings

Projective
geometries

Geomodular
lattices

Desargues

Coord. P.S.

CMLs

Applications

Word problem for modular lattices

Theorem (C. Herrmann 1983)

The word problem for free modular lattices on four generators
is recursively unsolvable.

The corresponding statement with ‘five’ instead of ‘four’ was
proved by R. Freese in 1980.

The free modular lattice on three generators is finite, with 28
elements (R. Dedekind 1900)—so one can’t go down to ‘three’.

Remark

The word problem for all lattices is solvable in polynomial
time.

The word problem for all distributive lattices is
NP-complete.



Modular
lattices and

von Neumann
regular rings

Projective
geometries

Geomodular
lattices

Desargues

Coord. P.S.

CMLs

Applications

Word problem for modular lattices

Theorem (C. Herrmann 1983)

The word problem for free modular lattices on four generators
is recursively unsolvable.

The corresponding statement with ‘five’ instead of ‘four’ was
proved by R. Freese in 1980.
The free modular lattice on three generators is finite, with 28
elements (R. Dedekind 1900)—so one can’t go down to ‘three’.

Remark

The word problem for all lattices is solvable in polynomial
time.

The word problem for all distributive lattices is
NP-complete.



Modular
lattices and

von Neumann
regular rings

Projective
geometries

Geomodular
lattices

Desargues

Coord. P.S.

CMLs

Applications

Word problem for modular lattices

Theorem (C. Herrmann 1983)

The word problem for free modular lattices on four generators
is recursively unsolvable.

The corresponding statement with ‘five’ instead of ‘four’ was
proved by R. Freese in 1980.
The free modular lattice on three generators is finite, with 28
elements (R. Dedekind 1900)—so one can’t go down to ‘three’.

Remark

The word problem for all lattices is solvable in polynomial
time.

The word problem for all distributive lattices is
NP-complete.



Modular
lattices and

von Neumann
regular rings

Projective
geometries

Geomodular
lattices

Desargues

Coord. P.S.

CMLs

Applications

Word problem for modular lattices

Theorem (C. Herrmann 1983)

The word problem for free modular lattices on four generators
is recursively unsolvable.

The corresponding statement with ‘five’ instead of ‘four’ was
proved by R. Freese in 1980.
The free modular lattice on three generators is finite, with 28
elements (R. Dedekind 1900)—so one can’t go down to ‘three’.

Remark

The word problem for all lattices is solvable in polynomial
time.

The word problem for all distributive lattices is
NP-complete.



Modular
lattices and

von Neumann
regular rings

Projective
geometries

Geomodular
lattices

Desargues

Coord. P.S.

CMLs

Applications

Word problem for modular lattices

Theorem (C. Herrmann 1983)

The word problem for free modular lattices on four generators
is recursively unsolvable.

The corresponding statement with ‘five’ instead of ‘four’ was
proved by R. Freese in 1980.
The free modular lattice on three generators is finite, with 28
elements (R. Dedekind 1900)—so one can’t go down to ‘three’.

Remark

The word problem for all lattices is solvable in polynomial
time.

The word problem for all distributive lattices is
NP-complete.



Modular
lattices and

von Neumann
regular rings

Projective
geometries

Geomodular
lattices

Desargues

Coord. P.S.

CMLs

Applications

Open problems

Most basic open problems are still unsolved!

For example,

Problem

If a lattice L embeds into some CML, is this also the case for
all homomorphic images of L?
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Another problem. . .

The following problem has a strong lattice-theoretical content.

Problem (Separativity Conjecture, K. R. Goodearl 1995)

Let R be a (unital) regular ring. Denote by V(R) the
commutative monoid of all isomorphism types of finitely
generated projective right R-modules. Is V(R) separative, that
is, does it satisfy the following statement:

(∀x , y)(2x = 2y = x + y ⇒ x = y)

The problem above is also open for C*-algebras of real rank
zero, and even for general (Warfield) exchange rings.
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Variety is the spice of life

A variety is the class of all structures (here, lattices) that
satisfy a given set of identities.

For example, L is the variety of
all lattices, M is the variety of all modular lattices, N5 is the
variety generated by N5,. . . Partial picture of the lattice of all
varieties of lattices:
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