Modular lattices and von Neumann regular rings

Friedrich Wehrung

Université de Caen
LMNO, UMR 6139
Département de Mathématiques
14032 Caen cedex
E-mail: wehrung@math.unicaen.fr
URL: http://www.math.unicaen.fr/~wehrung

Darmstadt 2008
A **projective geometry** is a structure \((P, L, \epsilon) \), where both \(P \) ("points") and \(L \) ("lines") are sets and \(\epsilon \subseteq P \times L \).
A projective geometry is a structure \((P, L, \epsilon)\), where both \(P\) ("points") and \(L\) ("lines") are sets and \(\epsilon \subseteq P \times L\) (write \(p \in \ell\), pronounced "\(\ell\) contains \(p\)" , instead of \((p, \ell) \in \epsilon\)).
Background: projective geometries

A **projective geometry** is a structure \((P, L, \epsilon)\), where both \(P\) ("points") and \(L\) ("lines") are sets and \(\epsilon \subseteq P \times L\) (write \(p \in \ell\), pronounced "\(\ell\) contains \(p\)", instead of \((p, \ell) \in \epsilon\)) and the following axioms are satisfied:

1. Every line contains at least two distinct points;
2. Any two distinct points are contained in exactly one line;
3. The Pasch Axiom (more detail later!).
A **projective geometry** is a structure \((P, L, \epsilon)\), where both \(P\) ("points") and \(L\) ("lines") are sets and \(\epsilon \subseteq P \times L\) (write \(p \in \ell\), pronounced "\(\ell\) contains \(p\)" , instead of \((p, \ell) \in \epsilon\)) and the following axioms are satisfied:

(P1) every line contains at least two distinct points;
A **projective geometry** is a structure \((P, L, \epsilon)\), where both \(P\) ("points") and \(L\) ("lines") are sets and \(\epsilon \subseteq P \times L\) (write \(p \in \ell\), pronounced "\(\ell\) contains \(p\)"), instead of \((p, \ell) \in \epsilon\) and the following axioms are satisfied:

1. **(P1)** every line contains at least two distinct points;
2. **(P2)** any two distinct points are contained in exactly one line;
A projective geometry is a structure \((P, L, \epsilon)\), where both \(P\) ("points") and \(L\) ("lines") are sets and \(\epsilon \subseteq P \times L\) (write \(p \in \ell\), pronounced "\(\ell\) contains \(p\)”, instead of \((p, \ell) \in \epsilon\)) and the following axioms are satisfied:

- \((P1)\) every line contains at least two distinct points;
- \((P2)\) any two distinct points are contained in exactly one line;
- \((P3)\) the Pasch Axiom (more detail later!).
A **projective geometry** is a structure \((P, L, \epsilon)\), where both \(P\) ("points") and \(L\) ("lines") are sets and \(\epsilon \subseteq P \times L\) (write \(p \in \ell\), pronounced "\(\ell\) contains \(p\)"), instead of \((p, \ell) \in \epsilon\) and the following axioms are satisfied:

(P1) every line contains at least two distinct points;
(P2) any two distinct points are contained in exactly one line;
(P3) the Pasch Axiom (more detail later!).

By Axioms (P1) and (P2), lines "are" sets of points:
A **projective geometry** is a structure \((P, L, \epsilon)\), where both \(P\) ("points") and \(L\) ("lines") are sets and \(\epsilon \subseteq P \times L\) (write \(p \in \ell\), pronounced "\(\ell\) contains \(p\)”, instead of \((p, \ell) \in \epsilon\)) and the following axioms are satisfied:

(P1) every line contains at least two distinct points;
(P2) any two distinct points are contained in exactly one line;
(P3) the Pasch Axiom (more detail later!).

By Axioms (P1) and (P2), lines “are” sets of points:

\[
\ell \equiv \{p \in P \mid p \in \ell\},
\]
Background: projective geometries

A **projective geometry** is a structure \((P, L, \epsilon)\), where both \(P\) ("points") and \(L\) ("lines") are sets and \(\epsilon \subseteq P \times L\) (write \(p \in \ell\), pronounced "\(\ell\) contains \(p\)", instead of \((p, \ell) \in \epsilon\)) and the following axioms are satisfied:

(P1) every line contains at least two distinct points;

(P2) any two distinct points are contained in exactly one line;

(P3) the Pasch Axiom (more detail later!).

By Axioms (P1) and (P2), lines "are" sets of points:

\[\ell \mapsto \{p \in P \mid p \in \ell\}, \quad (p \ q) := \text{unique line } \ell \text{ such that } p, q \in \ell, \]
A **projective geometry** is a structure \((P, L, \epsilon)\), where both \(P\) ("points") and \(L\) ("lines") are sets and \(\epsilon \subseteq P \times L\) (write \(p \in \ell\), pronounced "\(\ell\) contains \(p\)"), instead of \((p, \ell) \in \epsilon\) and the following axioms are satisfied:

- **(P1)** every line contains at least two distinct points;
- **(P2)** any two distinct points are contained in exactly one line;
- **(P3)** the Pasch Axiom (more detail later!).

By Axioms (P1) and (P2), lines "are" sets of points:

\[\ell \iff \{ p \in P \mid p \in \ell \}, \quad (p \ q) := \text{unique line } \ell \text{ such that } p, q \in \ell, \]

so write \(p \in \ell\) instead of \(p \in \ell\).
The Pasch Axiom

A triangle is a triple \((p, q, r)\) of distinct points, such that \(p \not\in (q \ r)\), \(q \not\in (p \ r)\), and \(r \not\in (p \ q)\).
A triangle is a triple \((p, q, r)\) of distinct points, such that
\(p \notin (q \, r)\), \(q \notin (p \, r)\), and \(r \notin (p \, q)\).
The Pasch Axiom

A triangle is a triple \((p, q, r)\) of distinct points, such that \(p \notin (q r), q \notin (p r),\) and \(r \notin (p q).\)

The Pasch Axiom

For each triangle \((p, q, r),\)
A **triangle** is a triple \((p, q, r)\) of distinct points, such that \(p \notin (q \ r), \ q \notin (p \ r), \text{ and } r \notin (p \ q)\).

The Pasch Axiom

For each triangle \((p, q, r)\), for all distinct \(x \in (p \ q)\) and \(y \in (q \ r)\),
A **triangle** is a triple \((p, q, r)\) of distinct points, such that \(p \notin (q r), q \notin (p r),\) and \(r \notin (p q)\).

The Pasch Axiom

For each triangle \((p, q, r)\), for all distinct \(x \in (p q)\) and \(y \in (q r)\), \((x y) \cap (p r) \neq \emptyset\).
A triangle is a triple \((p, q, r)\) of distinct points, such that \(p \notin (q r)\), \(q \notin (p r)\), and \(r \notin (p q)\).

The Pasch Axiom

For each triangle \((p, q, r)\), for all distinct \(x \in (p q)\) and \(y \in (q r)\), \((x y) \cap (p r) \neq \emptyset\). ("There are no parallels".)
The Pasch Axiom

A triangle is a triple \((p, q, r)\) of distinct points, such that
\(p \notin (q \ r),\ q \notin (p \ r),\ \text{and}\ r \notin (p \ q)\).

The Pasch Axiom

For each triangle \((p, q, r)\), for all distinct \(x \in (p \ q)\) and
\(y \in (q \ r)\), \((x \ y) \cap (p \ r) \neq \emptyset\). ("There are no parallels".)
The Pasch Axiom

A triangle is a triple \((p, q, r)\) of distinct points, such that
\(p \notin (q, r)\), \(q \notin (p, r)\), and \(r \notin (p, q)\).

The Pasch Axiom

For each triangle \((p, q, r)\), for all distinct \(x \in (p, q)\) and \(y \in (q, r)\), \((x, y) \cap (p, r) \neq \emptyset\). ("There are no parallels".)
A triangle is a triple \((p, q, r)\) of distinct points, such that \(p \notin (q, r)\), \(q \notin (p, r)\), and \(r \notin (p, q)\).

The Pasch Axiom

For each triangle \((p, q, r)\), for all distinct \(x \in (p, q)\) and \(y \in (q, r)\), \((x, y) \cap (p, r) \neq \emptyset\). ("There are no parallels").

![Diagram of the Pasch Axiom](image)
A subset $X \subseteq P$ is a (projective) **subspace** of P, if
A subset $X \subseteq P$ is a (projective) subspace of P, if $\forall p, q \in X$,
A subset $X \subseteq P$ is a (projective) subspace of P, if $\forall p, q \in X$, $(p \ q) \subseteq X$.
Projective subspaces

A subset $X \subseteq P$ is a (projective) \textbf{subspace} of P, if $\forall p, q \in X$, $(p \ q) \subseteq X$. In particular, \emptyset, P, any singleton $\{p\}$, and any line are subspaces.
A subset $X \subseteq P$ is a (projective) subspace of P, if $\forall p, q \in X$, $(p \circ q) \subseteq X$. In particular, \emptyset, P, any singleton $\{p\}$, and any line are subspaces.

Sub $P := \{ X \mid X$ subspace of $P \}$,
Projective subspaces

A subset $X \subseteq P$ is a (projective) **subspace** of P, if $\forall p, q \in X$, $(p \ q) \subseteq X$. In particular, \emptyset, P, any singleton $\{p\}$, and any line are subspaces.

$\text{Sub} \ P := \{X \mid X \text{ subspace of } P\}$, partially ordered under \subseteq.
Projective subspaces

A subset $X \subseteq P$ is a (projective) **subspace** of P, if $\forall p, q \in X$, $(p \, q) \subseteq X$. In particular, \varnothing, P, any singleton $\{p\}$, and any line are subspaces.

Sub $P := \{X \mid X$ subspace of $P\}$, partially ordered under \subseteq. Any **intersection** of subspaces is a subspace.
A subset $X \subseteq P$ is a (projective) **subspace** of P, if $\forall p, q \in X$, $(p \, q) \subseteq X$. In particular, \emptyset, P, any singleton $\{p\}$, and any line are subspaces.

Sub $P := \{X \mid X$ subspace of $P\}$, partially ordered under \subseteq. Any **intersection** of subspaces is a subspace.

In particular, for any subspaces X and Y of P, one can define
Projective subspaces

A subset $X \subseteq P$ is a (projective) **subspace** of P, if $\forall p, q \in X$, $(p \; q) \subseteq X$. In particular, \emptyset, P, any singleton $\{p\}$, and any line are subspaces.

Sub $P := \{X \mid X \text{ subspace of } P\}$, partially ordered under \subseteq.

Any **intersection** of subspaces is a subspace.

In particular, for any subspaces X and Y of P, one can define

$$X \wedge Y \; (\text{meet}) \; := \; X \cap Y,$$
Projective subspaces

A subset $X \subseteq P$ is a (projective) \textit{subspace} of P, if $\forall p, q \in X$, $(p, q) \subseteq X$. In particular, \emptyset, P, any singleton $\{p\}$, and any line are subspaces.

Sub $P := \{X \mid X \text{ subspace of } P\}$, partially ordered under \subseteq.

Any \textit{intersection} of subspaces is a subspace.

In particular, for any subspaces X and Y of P, one can define

$$X \land Y \text{ (meet)} := X \cap Y,$$

$$X \lor Y \text{ (join)} := \text{least subspace } Z \text{ such that } X \cup Y \subseteq Z.$$
Projective subspaces

A subset \(X \subseteq P \) is a (projective) **subspace** of \(P \), if \(\forall p, q \in X, (p q) \subseteq X \). In particular, \(\emptyset \), \(P \), any singleton \(\{p\} \), and any line are subspaces.

\[\text{Sub } P := \{ X \mid X \text{ subspace of } P \}, \] partially ordered under \(\subseteq \).

Any **intersection** of subspaces is a subspace.

In particular, for any subspaces \(X \) and \(Y \) of \(P \), one can define

\[
X \wedge Y \text{ (meet)} := X \cap Y , \\
X \vee Y \text{ (join)} := \text{least subspace } Z \text{ such that } X \cup Y \subseteq Z .
\]

The structure \((\text{Sub } P, \vee, \wedge)\) (the **subspace lattice** of \(P \)) is a lattice.
Modularity of Sub P

Lattice Theory

Lattice Theory is the study of all structures (L, \lor, \land), where L is a nonempty set and \lor (resp., \land) is the join operation (resp., meet operation) with respect to a (necessarily unique) partial ordering of L. In particular, Sub P is a lattice. It is, in fact, a very special sort of lattice.

Lemma

The lattice Sub P is modular, that is, it satisfies the rule $x \geq z \Rightarrow x \land (y \lor z) = (x \land y) \lor z$ (the modular law).
Lattice Theory

is the study of all structures \((L, \vee, \wedge)\),
Lattice Theory

is the study of all structures \((L, \lor, \land)\), where \(L\) is a nonempty set and
Lattice Theory

is the study of all structures \((L, \lor, \land)\), where \(L\) is a nonempty set and \(\lor\) (resp., \(\land\)) is the join operation (resp., meet operation) with respect to a (necessarily unique) partial ordering of \(L\).
Modularity of Sub P

Lattice Theory

is the study of all structures (L, \vee, \wedge), where L is a nonempty set and \vee (resp., \wedge) is the join operation (resp., meet operation) with respect to a (necessarily unique) partial ordering of L.

In particular, Sub P is a lattice.
Modularity of Sub P

Lattice Theory

is the study of all structures (L, \lor, \land), where L is a nonempty set and \lor (resp., \land) is the join operation (resp., meet operation) with respect to a (necessarily unique) partial ordering of L.

In particular, Sub P is a lattice. It is, in fact, a very special sort of lattice.

Lemma
Modularity of Sub P

Lattice Theory

is the study of all structures (L, \lor, \land), where L is a nonempty set and \lor (resp., \land) is the join operation (resp., meet operation) with respect to a (necessarily unique) partial ordering of L.

In particular, Sub P is a lattice. It is, in fact, a very special sort of lattice.

Lemma

The lattice Sub P is modular, that is, it satisfies the rule
Modularity of Sub P

Lattice Theory

is the study of all structures (L, \lor, \land), where L is a nonempty set and \lor (resp., \land) is the join operation (resp., meet operation) with respect to a (necessarily unique) partial ordering of L.

In particular, Sub P is a lattice. It is, in fact, a very special sort of lattice.

Lemma

The lattice Sub P is modular, that is, it satisfies the rule

$$x \geq z \Rightarrow x \land (y \lor z) = (x \land y) \lor z$$
Modularity of Sub P

Lattice Theory

is the study of all structures (L, \lor, \land), where L is a nonempty set and \lor (resp., \land) is the join operation (resp., meet operation) with respect to a (necessarily unique) partial ordering of L.

In particular, Sub P is a lattice. It is, in fact, a very special sort of lattice.

Lemma

The lattice Sub P is modular, that is, it satisfies the rule

$$ x \geq z \Rightarrow x \land (y \lor z) = (x \land y) \lor z $$

(the modular law).
The modular identity

Setting $x := x \lor z$ (resp., $z := x \land z$),
The modular identity

Setting $x := x \lor z$ (resp., $z := x \land z$), we get two equivalent forms of the modular law,

$$(x \lor z) \land (y \lor z) = (x \lor z) \land y \lor z,$$

$$(x \land y) \lor (x \land z) = x \land (y \lor (x \land z)).$$
The modular identity

Setting \(x \equiv x \lor z \) (resp., \(z \equiv x \land z \)), we get two equivalent forms of the modular law, formulated as identities:
The modular identity

Setting $x := x \lor z$ (resp., $z := x \land z$), we get two equivalent forms of the modular law, formulated as identities:

$$(x \lor z) \land (y \lor z) = ((x \lor z) \land y) \lor z,$$

Each of these identities (defining modularity) is called the modular identity. A lattice L is modular if and only if it does not contain a (lattice-)copy of the lattice N_5 below:
The modular identity

Setting \(x := x \lor z \) (resp., \(z := x \land z \)), we get two equivalent forms of the modular law, formulated as identities:

\[
(x \lor z) \land (y \lor z) = ((x \lor z) \land y) \lor z, \\
(x \land y) \lor (x \land z) = x \land (y \lor (x \land z)).
\]
The modular identity

Setting $x := x ∨ z$ (resp., $z := x ∧ z$), we get two equivalent forms of the modular law, formulated as identities:

\[
(x ∨ z) ∧ (y ∨ z) = ((x ∨ z) ∧ y) ∨ z,
\]
\[
(x ∧ y) ∨ (x ∧ z) = x ∧ (y ∨ (x ∧ z)).
\]

Each of these identities (defining modularity) is called
The modular identity

Setting $x := x \lor z$ (resp., $z := x \land z$), we get two equivalent forms of the modular law, formulated as identities:

\[
(x \lor z) \land (y \lor z) = ((x \lor z) \land y) \lor z,
\]
\[
(x \land y) \lor (x \land z) = x \land (y \lor (x \land z)).
\]

Each of these identities (defining modularity) is called ‘the’ modular identity.
The modular identity

Setting \(x := x \lor z \) (resp., \(z := x \land z \)), we get two equivalent forms of the modular law, formulated as identities:

\[
(x \lor z) \land (y \lor z) = ((x \lor z) \land y) \lor z,
\]

\[
(x \land y) \lor (x \land z) = x \land (y \lor (x \land z)) .
\]

Each of these identities (defining modularity) is called ‘the’ modular identity. A lattice \(L \) is modular if and only if it does not contain a (lattice-)copy of the lattice \(N_5 \) below:
The modular identity

Setting $x := x \lor z$ (resp., $z := x \land z$), we get two equivalent forms of the modular law, formulated as identities:

\[
(x \lor z) \land (y \lor z) = (x \lor z) \land y \lor z, \\
(x \land y) \lor (x \land z) = x \land (y \lor (x \land z)).
\]

Each of these identities (defining modularity) is called ‘the’ modular identity. A lattice L is modular if and only if it does not contain a (lattice-)copy of the lattice N_5 below:
Projective subspace lattices = geomodular lattices

In fact, $\text{Sub } P$ satisfies much more than modularity:
In fact, Sub P satisfies much more than modularity: it is **geomodular** (abbreviation for “geometric and modular”).
Projective subspace lattices = geomodular lattices

In fact, Sub P satisfies much more than modularity: it is geomodular (abbreviation for “geometric and modular”), that is, “algebraic”, “atomistic”, and modular.
Projective subspace lattices = geomodular lattices

In fact, Sub P satisfies much more than modularity: it is geomodular (abbreviation for “geometric and modular”), that is, “algebraic”, “atomistic”, and modular. Geometric lattices are often called matroid lattices.
In fact, $\text{Sub } P$ satisfies much more than modularity: it is **geomodular** (abbreviation for “**geometric** and modular”), that is, “**algebraic**”, “**atomistic**”, and modular. Geometric lattices are often called **matroid** lattices.

Theorem
In fact, Sub P satisfies much more than modularity: it is geomodular (abbreviation for “geometric and modular”), that is, “algebraic”, “atomistic”, and modular. Geometric lattices are often called matroid lattices.

Theorem

A lattice is geomodular if and only if it is isomorphic to Sub P, for some projective geometry P.
In fact, Sub P satisfies much more than modularity: it is geomodular (abbreviation for “geometric and modular”), that is, “algebraic”, “atomistic”, and modular. Geometric lattices are often called matroid lattices.

Theorem

A lattice is geomodular if and only if it is isomorphic to Sub P, for some projective geometry P.

Theorem (G. Birkhoff 1935)
Projective subspace lattices = geomodular lattices

In fact, Sub P satisfies much more than modularity: it is geomodular (abbreviation for “geometric and modular”), that is, “algebraic”, “atomistic”, and modular. Geometric lattices are often called matroid lattices.

Theorem

A lattice is geomodular if and only if it is isomorphic to Sub P, for some projective geometry P.

Theorem (G. Birkhoff 1935)

Every geomodular lattice L is complemented,
Projective subspace lattices = geomodular lattices

In fact, Sub\(P \) satisfies much more than modularity: it is \textbf{geomodular} (abbreviation for “\textit{geometric} and modular”), that is, “\textit{algebraic}”, “\textit{atomistic}”, and modular. Geometric lattices are often called \textbf{matroid} lattices.

\textbf{Theorem}

A lattice is geomodular if and only if it is isomorphic to Sub\(P \), for some projective geometry \(P \).

\textbf{Theorem (G. Birkhoff 1935)}

Every geomodular lattice \(L \) is \textbf{complemented}, that is, for each \(x \in L \), there exists \(y \in L \) such that
In fact, Sub P satisfies much more than modularity: it is geomodular (abbreviation for “geometric and modular”), that is, “algebraic”, “atomistic”, and modular. Geometric lattices are often called matroid lattices.

Theorem

A lattice is geomodular if and only if it is isomorphic to Sub P, for some projective geometry P.

Theorem (G. Birkhoff 1935)

Every geomodular lattice L is complemented, that is, for each $x \in L$, there exists $y \in L$ such that $x \lor y = 1$ (largest element of L) and
In fact, Sub P satisfies much more than modularity: it is **geomodular** (abbreviation for “geometric and modular”), that is, “algebraic”, “atomistic”, and modular. Geometric lattices are often called **matroid** lattices.

Theorem

A lattice is geomodular if and only if it is isomorphic to Sub P, for some projective geometry P.

Theorem (G. Birkhoff 1935)

Every geomodular lattice L is **complemented**, that is, for each $x \in L$, there exists $y \in L$ such that $x \lor y = 1$ (largest element of L) and $x \land y = 0$ (smallest element of L).
Projective subspace lattices = geomodular lattices

In fact, Sub P satisfies much more than modularity: it is geomodular (abbreviation for “geometric and modular”), that is, “algebraic”, “atomistic”, and modular. Geometric lattices are often called matroid lattices.

Theorem

A lattice is geomodular if and only if it is isomorphic to Sub P, for some projective geometry P.

Theorem (G. Birkhoff 1935)

Every geomodular lattice L is complemented, that is, for each $x \in L$, there exists $y \in L$ such that $x \lor y = 1$ (largest element of L) and $x \land y = 0$ (smallest element of L). (Abbreviated $x \oplus y = 1$, and we say that y is a complement of x.)
Desargues’ Rule

Definition

Two triangles \((a_0, a_1, a_2)\) and \((b_0, b_1, b_2)\) are **centrally perspective**, if

- \((a_i a_j) \neq (b_i b_j)\) for all \(i \neq j\), and
- for some point \(p\), all points \(a_i, b_i, p\) are collinear (i.e., on the same line).

We say that \((a_0, a_1, a_2)\) and \((b_0, b_1, b_2)\) are **axially perspective**, if

- the points \(c_0, c_1, c_2\) are collinear, where \((a_1 a_2) \cap (b_1 b_2) = \{c_0\}\) and cyclically.

We say that the projective geometry \(P\) is **Arguesian** (or satisfies Desargues’ Rule), if

- any two centrally perspective triangles are also axially perspective.
Desargues’ Rule

Definition

Two triangles \((a_0, a_1, a_2)\) and \((b_0, b_1, b_2)\) are **centrally perspective**, if \(a_i, a_j \neq b_i, b_j\) for all \(i \neq j\), and
Desargues’ Rule

Definition

Two triangles \((a_0, a_1, a_2)\) and \((b_0, b_1, b_2)\) are centrally perspective, if \((a_i a_j) \neq (b_i b_j)\) for all \(i \neq j\), and for some point \(p\), all points \(a_i, b_i, p\) are collinear (i.e., on the same line).
Desargues’ Rule

Definition

Two triangles \((a_0, a_1, a_2)\) and \((b_0, b_1, b_2)\) are **centrally perspective**, if \((a_i a_j) \neq (b_i b_j)\) for all \(i \neq j\), and for some point \(p\), all points \(a_i, b_i, p\) are collinear (i.e., on the same line).

We say that \((a_0, a_1, a_2)\) and \((b_0, b_1, b_2)\) are **axially perspective**, if...
Definition

Two triangles \((a_0, a_1, a_2)\) and \((b_0, b_1, b_2)\) are \textbf{centrally perspective}, if \((a_i, a_j) \neq (b_i, b_j)\) for all \(i \neq j\), and for some point \(p\), all points \(a_i, b_i, p\) are collinear (i.e., on the same line).

We say that \((a_0, a_1, a_2)\) and \((b_0, b_1, b_2)\) are \textbf{axially perspective}, if the points \(c_0, c_1,\) and \(c_2\) are collinear, where
Desargues’ Rule

Definition

Two triangles \((a_0, a_1, a_2)\) and \((b_0, b_1, b_2)\) are centrally perspective, if \((a_i a_j) \neq (b_i b_j)\) for all \(i \neq j\), and for some point \(p\), all points \(a_i, b_i, p\) are collinear (i.e., on the same line).

We say that \((a_0, a_1, a_2)\) and \((b_0, b_1, b_2)\) are axially perspective, if the points \(c_0, c_1,\) and \(c_2\) are collinear, where \((a_1 a_2) \cap (b_1 b_2) = \{c_0\}\) and cyclically.
Desargues’ Rule

Definition

Two triangles \((a_0, a_1, a_2)\) and \((b_0, b_1, b_2)\) are **centrally perspective**, if \((a_i a_j) \neq (b_i b_j)\) for all \(i \neq j\), and for some point \(p\), all points \(a_i, b_i, p\) are collinear (i.e., on the same line).

We say that \((a_0, a_1, a_2)\) and \((b_0, b_1, b_2)\) are **axially perspective**, if the points \(c_0, c_1,\) and \(c_2\) are collinear, where \((a_1 a_2) \cap (b_1 b_2) = \{c_0\}\) and cyclically.

We say that the projective geometry \(P\) is **Arguesian** (or satisfies **Desargues’ Rule**), if
Desargues’ Rule

Definition

Two triangles \((a_0, a_1, a_2)\) and \((b_0, b_1, b_2)\) are centrally perspective, if \((a_i a_j) \neq (b_i b_j)\) for all \(i \neq j\), and for some point \(p\), all points \(a_i, b_i, p\) are collinear (i.e., on the same line).

We say that \((a_0, a_1, a_2)\) and \((b_0, b_1, b_2)\) are axially perspective, if the points \(c_0, c_1,\) and \(c_2\) are collinear, where \((a_1 a_2) \cap (b_1 b_2) = \{c_0\}\) and cyclically.

We say that the projective geometry \(P\) is Arguesian (or satisfies Desargues’ Rule), if any two centrally perspective triangles are also axially perspective.
Illustrating Desargues’ Rule
Illustrating Desargues’ Rule
The Arguesian identity

Desargues’ identity (M. Schützenberger 1945, B. Jónsson 1953)
The Arguesian identity

Desargues’ identity (M. Schützenberger 1945, B. Jónsson 1953)

<table>
<thead>
<tr>
<th>Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>(z_0 := (x_1 \lor x_2) \land (y_1 \lor y_2),)</td>
</tr>
<tr>
<td>(z_1 := (x_0 \lor x_2) \land (y_0 \lor y_2),)</td>
</tr>
<tr>
<td>(z_2 := (x_0 \lor x_1) \land (y_0 \lor y_1),)</td>
</tr>
<tr>
<td>(z := z_2 \land (z_0 \lor z_1).)</td>
</tr>
</tbody>
</table>
The Arguesian identity

Desargues’ identity (M. Schützenberger 1945, B. Jónsson 1953)

Set

\[z_0 := (x_1 \lor x_2) \land (y_1 \lor y_2), \]
\[z_1 := (x_0 \lor x_2) \land (y_0 \lor y_2), \]
\[z_2 := (x_0 \lor x_1) \land (y_0 \lor y_1), \]
\[z := z_2 \land (z_0 \lor z_1). \]

Desargues’ identity is the lattice-theoretical identity
The Arguesian identity

Desargues’ identity (M. Schützenberger 1945, B. Jónsson 1953)

Set

\[
egin{align*}
z_0 & := (x_1 \lor x_2) \land (y_1 \lor y_2), \\
z_1 & := (x_0 \lor x_2) \land (y_0 \lor y_2), \\
z_2 & := (x_0 \lor x_1) \land (y_0 \lor y_1), \\
z & := z_2 \land (z_0 \lor z_1).
\end{align*}
\]

Desargues’ identity is the lattice-theoretical identity

\[
(x_0 \lor y_0) \land (x_1 \lor y_1) \land (x_2 \lor y_2) \leq (x_0 \land (z \lor x_1)) \lor (y_0 \land (z \lor y_1)).
\]
The Arguesian identity

Desargues’ identity (M. Schützenberger 1945, B. Jónsson 1953)

Set

\[z_0 := (x_1 \lor x_2) \land (y_1 \lor y_2), \]
\[z_1 := (x_0 \lor x_2) \land (y_0 \lor y_2), \]
\[z_2 := (x_0 \lor x_1) \land (y_0 \lor y_1), \]
\[z := z_2 \land (z_0 \lor z_1). \]

Desargues’ identity is the lattice-theoretical identity

\[(x_0 \lor y_0) \land (x_1 \lor y_1) \land (x_2 \lor y_2) \leq (x_0 \land (z \lor x_1)) \lor (y_0 \land (z \lor y_1)). \]

A lattice is Arguesian, if it satisfies Desargues’ identity.
The Arguesian identity

Desargues’ identity (M. Schützenberger 1945, B. Jónsson 1953)

Set

\[z_0 := (x_1 \lor x_2) \land (y_1 \lor y_2), \]
\[z_1 := (x_0 \lor x_2) \land (y_0 \lor y_2), \]
\[z_2 := (x_0 \lor x_1) \land (y_0 \lor y_1), \]
\[z := z_2 \land (z_0 \lor z_1). \]

Desargues’ identity is the lattice-theoretical identity

\[(x_0 \lor y_0) \land (x_1 \lor y_1) \land (x_2 \lor y_2) \leq (x_0 \land (z \lor x_1)) \lor (y_0 \land (z \lor y_1)). \]

A lattice is **Arguesian**, if it satisfies Desargues’ identity.

Every Arguesian lattice is modular, but the converse is false.
Desargues’ Rule versus Desargues’ identity

Theorem (M. Schützenberger 1945, B. Jónsson 1953)
Desargues’ Rule versus Desargues’ identity

Theorem (M. Schützenberger 1945, B. Jónsson 1953)

A geomodular lattice is Arguesian if and only if its associated projective geometry satisfies Desargues’ Rule.
Desargues’ Rule versus Desargues’ identity

Theorem (M. Schützenberger 1945, B. Jónsson 1953)

A geomodular lattice is Arguesian if and only if its associated projective geometry satisfies Desargues’ Rule.

Other classes of Arguesian lattices:
Desargues’ Rule versus Desargues’ identity

Theorem (M. Schützenberger 1945, B. Jónsson 1953)

A geomodular lattice is Arguesian if and only if its associated projective geometry satisfies Desargues’ Rule.

Other classes of Arguesian lattices:

- The normal subgroup lattice $\text{NSub } G$ of any group G.
Desargues’ Rule versus Desargues’ identity

Theorem (M. Schützenberger 1945, B. Jónsson 1953)

A geomodular lattice is Arguesian if and only if its associated projective geometry satisfies Desargues’ Rule.

Other classes of Arguesian lattices:

- The normal subgroup lattice $\text{NSub } G$ of any group G.
- The submodule lattice $\text{Sub } M$ of any module M.
Desargues’ Rule versus Desargues’ identity

Theorem (M. Schützenberger 1945, B. Jónsson 1953)
A geomodular lattice is Arguesian if and only if its associated projective geometry satisfies Desargues’ Rule.

Other classes of Arguesian lattices:
- The normal subgroup lattice $\text{NSub } G$ of any group G.
- The submodule lattice $\text{Sub } M$ of any module M.
- (more general) Any lattice of permuting equivalence relations on a given set. (Note: ‘Arguesian’ is then not the end of the story...)
Fundamental examples of geomodular lattices
(projective spaces)

(1) The two-element lattice $2 := \{0, 1\}$,
Fundamental examples of geomodular lattices (projective spaces)

(1) The two-element lattice $2 := \{0, 1\}$, the lattice M_κ of length two and κ atoms (for a cardinal κ),
Fundamental examples of geomodular lattices (projective spaces)

(1) The two-element lattice \(\mathbb{2} := \{0, 1\} \), the lattice \(M_\kappa \) of length two and \(\kappa \) atoms (for a cardinal \(\kappa \)).
Fundamental examples of geomodular lattices (projective spaces)

(1) The two-element lattice $\mathbf{2} := \{0, 1\}$, the lattice M_{κ} of length two and κ atoms (for a cardinal κ),

(2) the lattice $\text{Sub } V$ of all subspaces of a vector space V of dimension ≥ 3 (over any division ring),
Fundamental examples of geomodular lattices (projective spaces)

(1) The two-element lattice $2 := \{0, 1\}$, the lattice M_κ of length two and κ atoms (for a cardinal κ),

(2) the lattice $\text{Sub} \ V$ of all subspaces of a vector space V of dimension ≥ 3 (over any division ring),

(3) \textit{and the non-Arguesian projective planes}!
The Coordinatization Theorem for projective geometries (Von Staudt 19th Century, O. Veblen and W. H. Young 1910, von Neumann 1936)
The Coordinatization Theorem for projective geometries (Von Staudt 19th Century, O. Veblen and W. H. Young 1910, von Neumann 1936)

Every geomodular lattice is isomorphic to a product $\prod_{i \in I} L_i$, where each L_i is isomorphic to one of the types (1)–(3) above.
The Coordinatization Theorem for projective geometries (Von Staudt 19th Century, O. Veblen and W. H. Young 1910, von Neumann 1936)

Every geomodular lattice is isomorphic to a product \(\prod_{i \in I} L_i \), where each \(L_i \) is isomorphic to one of the types (1)–(3) above.

The decomposition above is unique.
Frink’s Embedding Theorem

Complemented modular lattice (CML):

Modular lattices and von Neumann regular rings

Projective geometries

Geomodular lattices

Desargues

Coord. P.S.

CMLs

Applications
Frink’s Embedding Theorem

Complemented modular lattice (CML): Modular lattice with 0, 1, and $(\forall x)(\exists y)(x \oplus y = 1)$.
Frink’s Embedding Theorem

Complemented modular lattice (CML): Modular lattice with 0, 1, and $(\forall x)(\exists y)(x \oplus y = 1)$.

Frink’s Embedding Theorem (O. Frink 1946)
Frink’s Embedding Theorem

Complemented modular lattice (CML): Modular lattice with 0, 1, and \((\forall x)(\exists y)(x \oplus y = 1)\).

Frink’s Embedding Theorem (O. Frink 1946)

Every CML \(L\) embeds into some geomodular lattice \(\overline{L}\),
Frink’s Embedding Theorem

Complemented modular lattice (CML): Modular lattice with 0, 1, and $(\forall x)(\exists y)(x \oplus y = 1)$.

Frink’s Embedding Theorem (O. Frink 1946)

Every CML L embeds into some geomodular lattice \overline{L}, with the same 0 and 1 as L.
Complemented modular lattice (CML): Modular lattice with 0, 1, and \((\forall x)(\exists y)(x \oplus y = 1)\).

Frink’s Embedding Theorem (O. Frink 1946)

Every CML \(L\) embeds into some geomodular lattice \(\overline{L}\), with the same 0 and 1 as \(L\).

Furthermore, one can assume that \(\overline{L}\) satisfies the same lattice-theoretical identities as \(L\) (B. Jónsson 1954).
Complemented modular lattice (CML): Modular lattice with 0, 1, and \((\forall x)(\exists y)(x \oplus y = 1)\).

Frink's Embedding Theorem (O. Frink 1946)

Every CML \(L\) embeds into some geomodular lattice \(\overline{L}\), with the same 0 and 1 as \(L\).

Furthermore, one can assume that \(\overline{L}\) satisfies the same lattice-theoretical identities as \(L\) (B. Jónsson 1954). (e.g., the Arguesian identity).
Frink’s Embedding Theorem

Complemented modular lattice (CML): Modular lattice with 0, 1, and \((\forall x)(\exists y)(x \oplus y = 1)\).

Frink’s Embedding Theorem (O. Frink 1946)

Every CML \(L\) embeds into some geomodular lattice \(\overline{L}\), with the same 0 and 1 as \(L\).

Furthermore, one can assume that \(\overline{L}\) satisfies the same lattice-theoretical identities as \(L\) (B. Jónsson 1954). (e.g., the Arguesian identity).

Easiest example of a (finite) Arguesian lattice that cannot be embedded into any CML (C. Herrmann and A. Huhn 1975):

\[
\text{Sub}\left(\left(\mathbb{Z}/4\mathbb{Z}\right)^3\right),
\]
Frink’s Embedding Theorem

Complemented modular lattice (CML): Modular lattice with 0, 1, and \((\forall x)(\exists y)(x \oplus y = 1)\).

Frink’s Embedding Theorem (O. Frink 1946)

Every CML \(L\) embeds into some geomodular lattice \(\overline{L}\), with the same 0 and 1 as \(L\).

Furthermore, one can assume that \(\overline{L}\) satisfies the same lattice-theoretical identities as \(L\) (B. Jónsson 1954). (e.g., the Arguesian identity).

Easiest example of a (finite) Arguesian lattice that cannot be embedded into any CML (C. Herrmann and A. Huhn 1975):

\[\text{Sub}\left((\mathbb{Z}/4\mathbb{Z})^3\right), \text{ the subgroup lattice of } (\mathbb{Z}/4\mathbb{Z})^3.\]
Von Neumann frames

Definition

Elements a, b in a modular lattice L with 0 are perspective with axis c (notation $a \sim c b$), if $a \oplus c = b \oplus c$.

Elements a_0, \ldots, a_{n-1} are independent, if $a_k \land \bigvee_{i < k} a_i = 0$, for each $k < n$.

An n-frame is a system $((a_i | 0 \leq i < n), (c_i | 1 \leq i < n))$, where $((a_i | 0 \leq i < n)$ is independent and $a_0 \sim c_i a_i$ for $1 \leq i < n$.

The frame is — spanning, if $1 = \bigvee_{i < n} a_i$, — large, if every element of L is a finite join of elements perspective to parts of a_0.

(Hence spanning \Rightarrow large).

Modular lattices and von Neumann regular rings
Projective geometries
Geomodular lattices
Desargues
Coord. P.S.
CMLs
Applications
Von Neumann frames

Definition

Elements a, b in a modular lattice L with 0 are **perspective with axis** c (notation $a \sim_c b$), if $a \oplus c = b \oplus c$.
Von Neumann frames

Definition

Elements a, b in a modular lattice L with 0 are perspective with axis c (notation $a \sim_c b$), if $a \oplus c = b \oplus c$. Elements a_0, ..., a_{n-1} are independent, if
Von Neumann frames

Definition

Elements a, b in a modular lattice L with 0 are perspective with axis c (notation $a \sim_c b$), if $a \oplus c = b \oplus c$. Elements a_0, \ldots, a_{n-1} are independent, if

$$a_k \wedge \bigvee_{i<k} a_i = 0, \quad \text{for each } k < n.$$
Von Neumann frames

Definition

Elements \(a, b\) in a modular lattice \(L\) with 0 are perspective with axis \(c\) (notation \(a \sim_c b\)), if \(a \oplus c = b \oplus c\). Elements \(a_0, \ldots, a_{n-1}\) are independent, if

\[
a_k \land \bigvee_{i<k} a_i = 0, \quad \text{for each } k < n.
\]

An \(n\)-frame is a system \(((a_i \mid 0 \leq i < n), (c_i \mid 1 \leq i < n))\),
Von Neumann frames

Definition

Elements a, b in a modular lattice L with 0 are perspective with axis c (notation $a \sim_c b$), if $a \oplus c = b \oplus c$. Elements a_0, \ldots, a_{n-1} are independent, if

$$a_k \wedge \bigvee_{i<k} a_i = 0, \quad \text{for each } k < n.$$

An n-frame is a system $((a_i \mid 0 \leq i < n), (c_i \mid 1 \leq i < n))$, where $(a_i \mid 0 \leq i < n)$ is independent and $a_0 \sim_{c_i} a_i$ for $1 \leq i < n$.

Von Neumann frames

Definition

Elements a, b in a modular lattice L with 0 are perspective with axis c (notation $a \sim_c b$), if $a \oplus c = b \oplus c$. Elements a_0, \ldots, a_{n-1} are independent, if

$$a_k \land \bigvee_{i < k} a_i = 0,$$

for each $k < n$.

An n-frame is a system $((a_i \mid 0 \leq i < n), (c_i \mid 1 \leq i < n))$, where $(a_i \mid 0 \leq i < n)$ is independent and $a_0 \sim_{c_i} a_i$ for $1 \leq i < n$. The frame is
Von Neumann frames

Definition

Elements \(a, b\) in a modular lattice \(L\) with 0 are perspective with axis \(c\) (notation \(a \sim_c b\)), if \(a \oplus c = b \oplus c\). Elements \(a_0, \ldots, a_{n-1}\) are independent, if

\[a_k \land \bigvee_{i < k} a_i = 0, \quad \text{for each } k < n. \]

An \(n\)-frame is a system \(((a_i \mid 0 \leq i < n), (c_i \mid 1 \leq i < n))\), where \((a_i \mid 0 \leq i < n)\) is independent and \(a_0 \sim_{c_i} a_i\) for \(1 \leq i < n\). The frame is

— spanning, if \(1 = \bigvee_{i < n} a_i\).
Von Neumann frames

Definition

Elements a, b in a modular lattice L with 0 are perspective with axis c (notation $a \sim_c b$), if $a \oplus c = b \oplus c$. Elements a_0, \ldots, a_{n-1} are independent, if

$$a_k \land \bigvee_{i<k} a_i = 0,$$

for each $k < n$.

An n-frame is a system $((a_i \mid 0 \leq i < n), (c_i \mid 1 \leq i < n))$, where $(a_i \mid 0 \leq i < n)$ is independent and $a_0 \sim_{c_i} a_i$ for $1 \leq i < n$. The frame is

- spanning, if $1 = \bigvee_{i<n} a_i$,
- large, if every element of L is a finite join of elements perspective to parts of a_0.

Von Neumann frames

Definition

Elements a, b in a modular lattice L with 0 are **perspective with axis** c (notation $a \sim_c b$), if $a \oplus c = b \oplus c$. Elements a_0, \ldots, a_{n-1} are **independent**, if

$$a_k \land \bigvee_{i < k} a_i = 0, \quad \text{for each } k < n.$$

An **n-frame** is a system $((a_i \mid 0 \leq i < n), (c_i \mid 1 \leq i < n))$, where $(a_i \mid 0 \leq i < n)$ is independent and $a_0 \sim_{c_i} a_i$ for $1 \leq i < n$. The frame is

- **spanning**, if $1 = \bigvee_{i < n} a_i$,
- **large**, if every element of L is a finite join of elements perspective to parts of a_0. (*Hence spanning \Rightarrow large).*
Von Neumann regular rings

Definition

A ring (associative, not necessarily unital) R is regular (in von Neumann's sense), if it satisfies $(\forall x)(\exists y)(xyx = x)$.

Example: the endomorphism ring of a vector space (or even a semisimple module) is regular.

One can then prove that $L(R) := \{x \in R | x \in R\}$ is a sublattice of the lattice Id_R of all right ideals of R; in particular, it is modular.

More can be proved:
A ring (associative, not necessarily unital) R is **regular** (in von Neumann’s sense), if it satisfies
Von Neumann regular rings

Definition

A ring (associative, not necessarily unital) R is **regular** (in von Neumann’s sense), if it satisfies

$$(\forall x)(\exists y)(xyx = x).$$
Von Neumann regular rings

Definition

A ring (associative, not necessarily unital) R is regular (in von Neumann’s sense), if it satisfies

$$(\forall x)(\exists y)(xyx = x).$$

Example: the endomorphism ring of a vector space (or even a semisimple module) is regular.
Von Neumann regular rings

Definition

A ring (associative, not necessarily unital) R is **regular** (in von Neumann’s sense), if it satisfies

\[(\forall x)(\exists y)(xyx = x).\]

Example: the endomorphism ring of a vector space (or even a semisimple module) is regular.

One can then prove that $\mathbb{L}(R) := \{xR \mid x \in R\}$ is a sublattice of the lattice $\text{Id } R_R$ of all right ideals of R;
Von Neumann regular rings

Definition

A ring (associative, not necessarily unital) \(R \) is **regular** (in von Neumann’s sense), if it satisfies

\[
(\forall x)(\exists y)(xyx = x).
\]

Example: the endomorphism ring of a vector space (or even a semisimple module) is regular.

One can then prove that \(\mathbb{L}(R) := \{xR \mid x \in R\} \) is a sublattice of the lattice \(\text{Id} R_R \) of all right ideals of \(R \); in particular, it is modular.
Von Neumann regular rings

Definition

A ring (associative, not necessarily unital) R is regular (in von Neumann’s sense), if it satisfies

\[(\forall x)(\exists y)(yx) = x.\]

Example: the endomorphism ring of a vector space (or even a semisimple module) is regular.

One can then prove that $\mathbb{L}(R) := \{xR \mid x \in R\}$ is a sublattice of the lattice $\text{Id} R_R$ of all right ideals of R; in particular, it is modular. More can be proved:
Coordinatizable lattices

Theorem (Von Neumann 1936, Fryer and Halperin 1954)

The lattice $L(R)$ is modular, and also sectionally complemented, the latter meaning that $(\forall x \leq y)(\exists z)(x \oplus z = y)$. In particular, $L(R)$ is complemented modular if (and only if) R is unital. (For modular lattices, complemented \iff sectionally complemented with unit.)

Definition

A lattice is coordinatizable, if it is isomorphic to $L(R)$, for some regular ring R. The easiest example of non-coordinatizable CML is M_7.

Modular lattices and von Neumann regular rings

Projective geometries

Geomodular lattices

Desargues

Coord. P.S.

CMLs

Applications
Theorem (Von Neumann 1936, Fryer and Halperin 1954)

The lattice \(\mathbb{L}(R) \) is modular, and also sectionally complemented, the latter meaning that

\[
\forall x \leq y \exists z (x \oplus z = y).
\]

In particular, \(\mathbb{L}(R) \) is complemented modular if (and only if) \(R \) is unital. (For modular lattices, complemented \(\iff \) sectionally complemented with unit.)
Theorem (Von Neumann 1936, Fryer and Halperin 1954)

The lattice $\mathbb{L}(R)$ is modular, and also \textbf{sectionally complemented}, the latter meaning that

$$\forall x \leq y (\exists z) (x \oplus z = y).$$
Coordinatizable lattices

Theorem (Von Neumann 1936, Fryer and Halperin 1954)

The lattice $\mathbb{L}(R)$ is modular, and also sectionally complemented, the latter meaning that

$$(\forall x \leq y)(\exists z)(x \oplus z = y).$$

In particular, $\mathbb{L}(R)$ is complemented modular if (and only if) R is unital. (*For modular lattices, complemented \iff sectionally complemented with unit.*)
Coordinatizable lattices

Theorem (Von Neumann 1936, Fryer and Halperin 1954)

The lattice \(\mathbb{L}(R) \) is modular, and also sectionally complemented, the latter meaning that

\[
(\forall x \leq y)(\exists z)(x \oplus z = y).
\]

In particular, \(\mathbb{L}(R) \) is complemented modular if (and only if) \(R \) is unital. (For modular lattices, complemented \(\iff\) sectionally complemented with unit.)

Definition
Theorem (Von Neumann 1936, Fryer and Halperin 1954)

The lattice $\mathbb{L}(R)$ is modular, and also sectionally complemented, the latter meaning that

$$\forall x \leq y \exists z (x \oplus z = y).$$

In particular, $\mathbb{L}(R)$ is complemented modular if (and only if) R is unital. *(For modular lattices, complemented \iff sectionally complemented with unit.)*

Definition

A lattice is coordinatizable, if it is isomorphic to $\mathbb{L}(R)$, for some regular ring R.
Coordinatizable lattices

Theorem (Von Neumann 1936, Fryer and Halperin 1954)

The lattice $\mathbb{L}(R)$ is modular, and also sectionally complemented, the latter meaning that

$$(\forall x \leq y)(\exists z)(x \oplus z = y).$$

In particular, $\mathbb{L}(R)$ is complemented modular if (and only if) R is unital. (*For modular lattices, complemented \iff sectionally complemented with unit.*)

Definition

A lattice is coordinatizable, if it is isomorphic to $\mathbb{L}(R)$, for some regular ring R.

The easiest example of non-coordinatizable CML is M_7.
Coordinatization of CMLs

Von Neumann’s Coordinatization Theorem

If a CML has a spanning n-frame, with $n \geq 4$, then it is coordinatizable.

Improved by B. Jónsson in 1960: Jónsson’s Coordinatization Theorem

If a CML has a large 4-frame, or it is Arguesian and it has a large 3-frame, then it is coordinatizable.

A much more transparent proof of Jónsson’s Coordinatization Theorem has recently been found by C. Herrmann.
Coordinatization of CMLs

Von Neumann’s Coordinatization Theorem

If a CML has a spanning n-frame, with $n \geq 4$, then it is coordinatizable.
Coordinatization of CMLs

Von Neumann’s Coordinatization Theorem

If a CML has a spanning n-frame, with $n \geq 4$, then it is coordinatizable.

Improved by B. Jónsson in 1960:
Coordinatization of CMLs

Von Neumann’s Coordinatization Theorem
If a CML has a spanning n-frame, with $n \geq 4$, then it is coordinatizable.

Improved by B. Jónsson in 1960:

Jónsson’s Coordinatization Theorem
Coordinatization of CMLs

Von Neumann’s Coordinatization Theorem

If a CML has a spanning n-frame, with $n \geq 4$, then it is coordinatizable.

Improved by B. Jónsson in 1960:

Jónsson’s Coordinatization Theorem

If a CML has a large 4-frame, or it is Arguesian and it has a large 3-frame, then it is coordinatizable.
Coordinatization of CMLs

Von Neumann’s Coordinatization Theorem
If a CML has a spanning n-frame, with $n \geq 4$, then it is coordinatizable.

Improved by B. Jónsson in 1960:

Jónsson’s Coordinatization Theorem
If a CML has a large 4-frame, or it is Arguesian and it has a large 3-frame, then it is coordinatizable.

A much more transparent proof of Jónsson’s Coordinatization Theorem has recently been found by C. Herrmann.
Both von Neumann’s condition and Jónsson’s condition can be expressed by first-order axioms. Nevertheless,
Both von Neumann’s condition and Jónsson’s condition can be expressed by first-order axioms. Nevertheless, The class of all coordinatizable CMLs is not first-order (FW 2006).
Both von Neumann’s condition and Jónsson’s condition can be expressed by first-order axioms. Nevertheless, the class of all coordinatizable CMLs is not first-order (FW 2006).

Von Neumann’s condition requires the lattice have a unit, while Jónsson’s does not.
Both von Neumann’s condition and Jónsson’s condition can be expressed by first-order axioms. Nevertheless, the class of all coordinatizable CMLs is not first-order (FW 2006).

Von Neumann’s condition requires the lattice have a unit, while Jónsson’s does not. Nevertheless, Jónsson’s Coordinatization Theorem is stated for lattices with unit.
Both von Neumann’s condition and Jónsson’s condition can be expressed by first-order axioms. Nevertheless, the class of all coordinatizable CMLs is not first-order (FW 2006).

Von Neumann’s condition requires the lattice have a unit, while Jónsson’s does not. Nevertheless, Jónsson’s Coordinatization Theorem is stated for lattices with unit.

For sectionally complemented modular lattices without unit, Jónsson’s result extends to the countable case (B. Jónsson 1962)…
Both von Neumann’s condition and Jónsson’s condition can be expressed by first-order axioms. Nevertheless, The class of all coordinatizable CMLs is not first-order (FW 2006). Von Neumann’s condition requires the lattice have a unit, while Jónsson’s does not. Nevertheless, Jónsson’s Coordinatization Theorem is stated for lattices with unit. For sectionally complemented modular lattices without unit, Jónsson’s result extends to the countable case (B. Jónsson 1962) . . . but not to the general case (FW 2008, counterexample of cardinality \aleph_1).
Both von Neumann’s condition and Jónsson’s condition can be expressed by first-order axioms. Nevertheless, the class of all coordinatizable CMLs is not first-order (FW 2006).

Von Neumann’s condition requires the lattice have a unit, while Jónsson’s does not. Nevertheless, Jónsson’s Coordinatization Theorem is stated for lattices with unit.

For sectionally complemented modular lattices without unit, Jónsson’s result extends to the countable case (B. Jónsson 1962) . . . but not to the general case (FW 2008, counterexample of cardinality \aleph_1).

The proof of the latter counterexample involves Banaschewski functions (first used in 1957, in the theory of totally ordered abelian groups), and larders (P. Gillibert and FW, 2008; a tool of categorical nature).
Applications to lattice-theoretical problems

Most important tool: von Neumann n-frames.
Applications to lattice-theoretical problems

Most important tool: von Neumann n-frames.

Theorem (R. Freese 1979)

There exists a lattice identity that holds in all finite modular lattices but not in every modular lattice.

(Analogue for the class of all lattices does not hold!)

Improved later by C. Herrmann:

Theorem (C. Herrmann 1984)

There exists a lattice identity that holds in all Arguesian lattices of finite length but not in every Arguesian lattice.

The set of all identities satisfied by all finite modular lattices is not generated by any finite subset.
Applications to lattice-theoretical problems

Most important tool: von Neumann n-frames.

Theorem (R. Freese 1979)

There exists a lattice identity that holds in all finite modular lattices but not in every modular lattice.
Applications to lattice-theoretical problems

Most important tool: von Neumann n-frames.

Theorem (R. Freese 1979)

There exists a lattice identity that holds in all finite modular lattices but not in every modular lattice.

(Analogue for the class of all lattices does not hold!)
Applications to lattice-theoretical problems

Most important tool: von Neumann n-frames.

Theorem (R. Freese 1979)

There exists a lattice identity that holds in all finite modular lattices but not in every modular lattice.

(Analogue for the class of all lattices does not hold!)

Improved later by C. Herrmann:
Applications to lattice-theoretical problems

Most important tool: von Neumann n-frames.

Theorem (R. Freese 1979)

There exists a lattice identity that holds in all finite modular lattices but not in every modular lattice.

(Analogue for the class of all lattices does not hold!)

Improved later by C. Herrmann:

Theorem (C. Herrmann 1984)
Applications to lattice-theoretical problems

Most important tool: von Neumann n-frames.

Theorem (R. Freese 1979)

There exists a lattice identity that holds in all finite modular lattices but not in every modular lattice.

(Analogue for the class of all lattices does not hold!)
Improved later by C. Herrmann:

Theorem (C. Herrmann 1984)

There exists a lattice identity that holds in all Arguesian lattices of finite length but not in every Arguesian lattice.
Applications to lattice-theoretical problems

Most important tool: von Neumann n-frames.

Theorem (R. Freese 1979)

There exists a lattice identity that holds in all finite modular lattices but not in every modular lattice.

Analogue for the class of all lattices does not hold!

Improved later by C. Herrmann:

Theorem (C. Herrmann 1984)

- There exists a lattice identity that holds in all Arguesian lattices of finite length but not in every Arguesian lattice.
- The set of all identities satisfied by all finite modular lattices is not generated by any finite subset.
Word problem for modular lattices

Theorem (C. Herrmann 1983)

The word problem for free modular lattices on four generators is recursively unsolvable. The corresponding statement with 'five' instead of 'four' was proved by R. Freese in 1980.

The free modular lattice on three generators is finite, with 28 elements (R. Dedekind 1900)—so one can’t go down to ‘three’.

Remark

The word problem for all lattices is solvable in polynomial time. The word problem for all distributive lattices is \textit{NP}-complete.
Theorem (C. Herrmann 1983)

The word problem for free modular lattices on four generators is recursively unsolvable.
Theorem (C. Herrmann 1983)

The word problem for free modular lattices on four generators is recursively unsolvable.

The corresponding statement with ‘five’ instead of ‘four’ was proved by R. Freese in 1980.
Theorem (C. Herrmann 1983)

The word problem for free modular lattices on four generators is recursively unsolvable.

The corresponding statement with ‘five’ instead of ‘four’ was proved by R. Freese in 1980. The free modular lattice on three generators is finite, with 28 elements (R. Dedekind 1900)—so one can’t go down to ‘three’.
Theorem (C. Herrmann 1983)

The word problem for free modular lattices on four generators is recursively unsolvable.

The corresponding statement with ‘five’ instead of ‘four’ was proved by R. Freese in 1980.

The free modular lattice on three generators is finite, with 28 elements (R. Dedekind 1900)—so one can’t go down to ‘three’.

Remark
Theorem (C. Herrmann 1983)

The word problem for free modular lattices on four generators is recursively unsolvable.

The corresponding statement with ‘five’ instead of ‘four’ was proved by R. Freese in 1980.
The free modular lattice on three generators is finite, with 28 elements (R. Dedekind 1900)—so one can’t go down to ‘three’.

Remark

- The word problem for all lattices is solvable in polynomial time.
Theorem (C. Herrmann 1983)

The word problem for free modular lattices on four generators is recursively unsolvable.

The corresponding statement with ‘five’ instead of ‘four’ was proved by R. Freese in 1980. The free modular lattice on three generators is finite, with 28 elements (R. Dedekind 1900)—so one can’t go down to ‘three’.

Remark

- The word problem for all lattices is solvable in polynomial time.
- The word problem for all distributive lattices is \textbf{NP}-complete.
Most basic open problems are still unsolved!
Most basic open problems are still unsolved!
For example,
Open problems

Most basic open problems are still unsolved!
For example,

Problem
Most basic open problems are still unsolved! For example,

Problem

If a lattice L embeds into some CML, is this also the case for all homomorphic images of L?
Another problem...

The following problem has a strong lattice-theoretical content.
The following problem has a strong lattice-theoretical content.

Problem (Separativity Conjecture, K. R. Goodearl 1995)

Let R be a (unital) regular ring. Denote by $V(R)$ the commutative monoid of all isomorphism types of finitely generated projective right R-modules. Is $V(R)$ separative, that is, does it satisfy the following statement:

\[(\forall x, y)(2x = 2y = x + y \Rightarrow x = y)\]

The problem above is also open for C*-algebras of real rank zero, and even for general (Warfield) exchange rings.
Another problem...

The following problem has a strong lattice-theoretical content.

Problem (Separativity Conjecture, K. R. Goodearl 1995)

Let R be a (unital) regular ring.
Another problem...

The following problem has a strong lattice-theoretical content.

Problem (Separativity Conjecture, K. R. Goodearl 1995)

Let R be a (unital) regular ring. Denote by $\mathcal{V}(R)$ the commutative monoid of all isomorphism types of finitely generated projective right R-modules.
Another problem...

The following problem has a strong lattice-theoretical content.

Problem (Separativity Conjecture, K. R. Goodearl 1995)

Let R be a (unital) regular ring. Denote by $\mathcal{V}(R)$ the commutative monoid of all isomorphism types of finitely generated projective right R-modules. Is $\mathcal{V}(R)$ separative, that is, does it satisfy the following statement:
Another problem...

The following problem has a strong lattice-theoretical content.

Problem (Separativity Conjecture, K. R. Goodearl 1995)

Let R be a (unital) regular ring. Denote by $\mathcal{V}(R)$ the commutative monoid of all isomorphism types of finitely generated projective right R-modules. Is $\mathcal{V}(R)$ separative, that is, does it satisfy the following statement:

$$(\forall x, y)(2x = 2y = x + y \Rightarrow x = y)$$
The following problem has a strong lattice-theoretical content.

Problem (Separativity Conjecture, K. R. Goodearl 1995)

Let R be a (unital) regular ring. Denote by $\mathcal{V}(R)$ the commutative monoid of all isomorphism types of finitely generated projective right R-modules. Is $\mathcal{V}(R)$ separative, that is, does it satisfy the following statement:

$$(\forall x, y)(2x = 2y = x + y \Rightarrow x = y)$$

The problem above is also open for C^*-algebras of real rank zero, and even for general (Warfield) exchange rings.
A **variety** is the class of all structures (here, lattices) that satisfy a given set of identities.
A **variety** is the class of all structures (here, lattices) that satisfy a given set of identities. For example, \mathcal{L} is the variety of all lattices, \mathcal{M} is the variety of all modular lattices, \mathcal{N}_5 is the variety generated by N_5, ...
Variety is the spice of life

A **variety** is the class of all structures (here, lattices) that satisfy a given set of identities. For example, \mathcal{L} is the variety of all lattices, \mathcal{M} is the variety of all modular lattices, \mathcal{N}_5 is the variety generated by N_5, ... Partial picture of the lattice of all varieties of lattices:
A **variety** is the class of all structures (here, lattices) that satisfy a given set of identities. For example, \(\mathcal{L} \) is the variety of all lattices, \(\mathcal{M} \) is the variety of all modular lattices, \(\mathcal{N}_5 \) is the variety generated by \(N_5 \),... Partial picture of the lattice of all varieties of lattices: