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e m We would like to prove that certain “naturally defined”
categories C of models (say of first-order theories) are
Motivation “intracta ble” .

m Examples: Posets of finitely generated ideals of rings,
Ordered Ky groups of unit-regular rings, Stone duals of
spectra of abelian lattice-ordered groups, ...and many
other classes.

m A way to define intractability is to state that C is not the
class of models of any infinitary (not just first-order!)
sentence (we'll say elementary).

m Let's suggest a stronger notion of intractability.
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e Vocabulary: v = (Vope, Vrel, ar) with vope N V) = & and
functors ar: Vope U Vel — ordinals (usually) with 0 ¢ ar[vye].

def . "
m ar(s) =0 &= sis a “constant”.

Elementary, m Add to this a large enough set (“alphabet”) of “variables”.

projective
m model for v (or v-structure): A = (A, s)sev,pelv,e With
the interpretations s# defined the usual way.

def .
m Str(v) = category of all v-structures with

v-homomorphisms (it is locally presentable).
m Terms: closure of variables under all functions symbols.

m atomic formulas: s = t, for terms s and t, or
R(te | € € ar(R)) where the t; are terms and R € v,q.
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m Here k and A are “extended cardinals” (oo allowed) with
w< A<k <o0.

m For any vocabulary v, .Z\(v) L Closure of all atomic
v-formulas under disjunctions of < x members (\/,,E;
where card | < k), negation, and existential quantification
over sets of less than A variables ((3X)E with card X < A,
or, in indexed form, E|(>;<;E with card I < ).
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m For any vocabulary v, .Z\(v) L Closure of all atomic
lamentony v-formulas under disjunctions of < x members (\/,,E;
projective where card | < k), negation, and existential quantification
over sets of less than A variables ((3X)E with card X < A,
or, in indexed form, E|(>;<;E with card I < ).

E € Zoo(v), a: free variables (E) — A).

m %, -elementary class:
C = Mody(E) % {A € Str(v) | A |= E} where E is an

Za(v)-sentence.
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Heuristically: a class € of v-structures is

S m projective over %\ (abbrev. PC(.Z,,)) if € = (IX)D
projective where D is % -elementary and 3X is a second-order
quantifier (e.g., 3X C M?, etc.)

m relatively projective over .Z) (abbrev. RPC(.%,)) if
C={M]y | M € D} for some projective class D and
some unary relation symbol U.
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Projective Formally: a class € of v-structures is

classes as

ik m projective over .7, (abbrev. PC(.Z,)) if there are a
functors vocabulary w D v and a sentence E € Z;\(w) such that
C={M]|, | M € Mod(E)}.
ementon m relatively projective over %) (abbrev. RPC(.%,)) if
projective there are a unary predicate symbol U, a vocabulary

w D vU {U}, and a sentence E € .Z,;y(w) such that

€ ={UM|, | M € Mody(E), UM closed under vopc}.
m Hence PC(.Z;)) € RPC(%,). Note that

PC(Zw) S RPC(Z.w) (even on finite structures).

Theorem (W 2021)

Let A\ be an infinite cardinal. Then PC(%») = RPC(Zx))
(in full generality; no restrictions on vocabularies). Moreover,
if A is singular, then PC(Zx)) = PC(Zor+)-
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Examples of “elementary” classes

Projective
classes as

; m Finiteness (of the ambiant universe) is %,
images of 1

accessible
\X/KW(HKHXI')(VX) \X/i<n (x =x).

functors

Elementary,
projective

m Well-foundedness (of the ambiant poset) is -Z,,w,:

(vn<wxn) \X/n<w (Xn+1 % Xn) .

m Torsion-freeness (of a group) is %"

/)(\0<n<w(vx)(x" =1=x=1).
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An example of RPC (that turns out to be PC)

Projective
def

il m C={M=(M,-,1) monoid | (3G group)(M — G)} is,

images of

accessible by definition, RPC(wa)

functors

m Herev = ((é)’ (%)), w = (-,1,U) for a unary predicate U,

— the required E states that the given w-structure is a group

projective (so “UC is v-closed in G" means that U interprets a
submonoid of G).

m By Malcev's work, € = {M | (Vn < w)(M |= E,)} for an
effectively constructed sequence (E, | n < w) of
quasi-identities over v, not reducible to any finite subset.
Thus € is £, .,-elementary.

m In fact,
€ ={M | (3 group structure G on M)(3f: M — G)} is
PC(Z.w)-
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Other examples

Projective

classes as . - d f . .
' m For a unital ring R, Id. R = (V, 0)-semilattice of all

images of
sccessble finitely generated two-sided ideals of R. Let
def

functors
€ = {ldc R | R unital ring}.

m For an Abelian ¢-group G, Idc G 4 |attice of all principal

Elementary,
Y def

projective (-ideals of G. Let € = {ld. G | G Abelian ¢-group}.

m For a commutative unital ring A, ®(A) Stone dual of
the real spectrum of A (it is a bounded distributive
lattice). Let C & {®(A) | A commutative unital ring}.

m All those classes are PC(.%,,w).

m Observe that they are all defined as images of functors.

m We will see that none of those classes is co-PC( L)
(i.e., complement of a PC(Z5u0))-
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Accessible categories and functors

Let A\ be a regular cardinal.

m A category S is A-accessible if it has all A-directed colimits
and it has a \-directed colimit-dense subset 8, consisting
of A-presentable objects.

m One can then take 8T = Pres) 8, “the” set of all
A-presentable objects in 8 (up to isomorphism).

m A functor ®: 8§ — T is A-continuous if it preserves
A-directed colimits. If 8 and T are both A-accessible
categories, we say that ® is a A-accessible functor.

m There are many examples: Str(v), quasivarieties. . .
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e A-continuous functor ®: 8 — Str(v), that can be taken
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faithful, with im ® % {M | (35 € ObS)(M = &(5))} = €.

Theorem (W 2021)
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images of
accessible

functors Let A be a regular cardinal, let v be a vocabulary such
that vope is A-ary, and let € be an RPC(Z») class of
v-structures. Then there are a A-accessible category 8§ and a

e A-continuous functor ®: 8 — Str(v), that can be taken
def

faithful, with im ® % {M | (35 € ObS)(M = &(5))} = €.

Theorem (W 2021)

Let A be a regular cardinal, let v be a A-ary vocabulary, let §
be a A-accessible category, and let ®: § — Str(v) be a
A-accessible functor. Then im ® is PC(Zx)).

The assumptions that vgpe, or v, be A-ary, cannot be dispensed
with (counterexamples with idempotence, emptiness).

12/22 12/22



Infinitely deep languages

Projecti . . - .
S m Idea: extend %, in such a way that infinite alternations
images of

accessible of quantifiers be enabled.

functors

Tuuri's
Interpolation
Theorem

13/22 13/22



Infinitely deep languages

Projective

classes as m Idea: extend %) in such a way that infinite alternations

images of

accessible of quantifiers be enabled.

functers m Game formula (of Gale-Stewart kind): OXE(X) is
(VXo)(Ein)(VXQ) e E(Xo,Xl,Xg, . )

Tuuri's
Interpolation
Theorem

13/22 13/22



Infinitely deep languages

Projective

classes as m Idea: extend %) in such a way that infinite alternations

R of quantifiers be enabled.

functors m Game formula (of Gale-Stewart kind): OXE(X) is
(VXo)(Ein)(VXQ) e E(Xo,Xl, X2y ... )

m Can be interpreted via a game with two players, ¥V (who
plays all x2,) and 3 (who plays all x2,+1). Hence V (resp.,

Tuss 3) wins iff E(xo, x1, x2,...) (resp., =E(xo, x1, x2, . ..)).

Interpolation
Theorem

13/22 13/22



Projective
classes as
images of
accessible
functors

Tuuri's
Interpolation
Theorem

Infinitely deep languages
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Infinitely deep languages

Projective

classes as Idea: extend % in such a way that infinite alternations

R of quantifiers be enabled.

functors m Game formula (of Gale-Stewart kind): OXE(X) is
(VXo)(Ein)(VXQ) e E(Xo,Xl, X2y ... )

m Can be interpreted via a game with two players, ¥V (who
plays all x2,) and 3 (who plays all x2,+1). Hence V (resp.,

Tt on 3) wins iff E(xo, x1, x2,...) (resp., =E(xo, x1, x2, . ..)).

[lecer m The game above has “clock” w.

m The "“infinitely deep language” .#,;\(v) contains more
general formulas than the OXE(X) above, now clocked by
posets which are simultaneously trees and
meet-semilattices, in which every node has < k upper

covers and every branch has length a successor < \.

13/22 13/22



Infinitely deep languages

Projective

classes as Idea: extend % in such a way that infinite alternations

i of quantifiers be enabled.

functors m Game formula (of Gale-Stewart kind): OXE(X) is
(VXo)(Ein)(VXQ) e E(Xo,Xl, X2y ... )

m Can be interpreted via a game with two players, ¥V (who
plays all x2,) and 3 (who plays all x2,+1). Hence V (resp.,

Tt on 3) wins iff E(xo, x1, X2, ... ) (resp., =E(xo, x1, X2, . ..)).

[lecer m The game above has “clock” w.

m The "“infinitely deep language” .#,;\(v) contains more
general formulas than the OXE(X) above, now clocked by
posets which are simultaneously trees and
meet-semilattices, in which every node has < k upper
covers and every branch has length a successor < \.

m Satisfaction of an .#,;)(v)-statement is expressed via the
existence of a winning strategy in the associated game.
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images of
accessible
functors

Tuuri's
Interpolation
Theorem

Tuuri’s Interpolation Theorem

Theorem (Tuuri 1992)

Let k be a regular cardinal, let v be a k-ary vocabulary, set

& sup{k® | @ < k}, and let E and F be .Z, +,(v)-sentences

such that the conjunction E A F has no v-model. Then there
exists an .4+ (v)-sentence G, with vocabulary the intersection
of the vocabularies of E and F, such that = (E = G) and

= (F= ~G).
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Theorem (Tuuri 1992)

Let k be a regular cardinal, let v be a k-ary vocabulary, set

& sup{k® | @ < k}, and let E and F be .Z, +,(v)-sentences

such that the conjunction E A F has no v-model. Then there
exists an .4+ (v)-sentence G, with vocabulary the intersection
of the vocabularies of E and F, such that = (E = G) and

= (F= ~G).

m Here, ~G denotes the sentence obtained by
interchanging \/ and A\, 3 and ¥, A and —A in the
expression of G by a tree-clocked game; it implies the
usual negation =G (which, however, is no longer an
M \+\-sentence).
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Tuuri’s Interpolation Theorem

Theorem (Tuuri 1992)

Let k be a regular cardinal, let v be a k-ary vocabulary, set

& sup{k® | @ < k}, and let E and F be .Z, +,(v)-sentences

such that the conjunction E A F has no v-model. Then there
exists an .4+ (v)-sentence G, with vocabulary the intersection
of the vocabularies of E and F, such that = (E = G) and

= (F= ~G).

m Here, ~G denotes the sentence obtained by
interchanging \/ and A\, 3 and ¥, A and —A in the
expression of G by a tree-clocked game; it implies the
usual negation =G (which, however, is no longer an
M \+\-sentence).

m By a 1971 counterexample due to Malitz, .#,+) cannot be

replaced by £ in the statement of Tuuri's Theorem.
14/22 14/22



Projective and co-projective

Projective
classes as
images of
accessible
functors

Corollary

Let v be a vocabulary. Then for all classes A and B of
v-structures, if A is PC( L), B is co-PC( L), and

A C B, then there exists an ..~ (v)-sentence G such that
A € Mod,(G) C B.

Tuuri's
Interpolation
Theorem
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Projective and co-projective

Corollary

Let v be a vocabulary. Then for all classes A and B of
v-structures, if A is PC( L), B is co-PC( L), and

A C B, then there exists an ..~ (v)-sentence G such that
A € Mod,(G) C B.

Corollary

In order to prove that a PC( %) class C of v-structures is
not co-PC( L), it suffices to prove that C is not
Moooo(V)-definable.
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Projective and co-projective

Corollary

Let v be a vocabulary. Then for all classes A and B of
v-structures, if A is PC( L), B is co-PC( L), and

A C B, then there exists an ..~ (v)-sentence G such that
A € Mod,(G) C B.

Corollary

In order to prove that a PC( %) class C of v-structures is
not co-PC( L), it suffices to prove that C is not
Moooo(V)-definable.

But then, what is the advantage of .#...-definable over
PC( %500 )-definable or co-PC( %00 )-definable?
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That's back-and-forth!
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m There are several non-equivalent definitions of
back-and-forth between models (extended to categorical
model theory by Beke and Rosicky in 2018).

Karttunen's
back-and-forth

systems
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That's back-and-forth!

Projective . L.
classes as m There are several non-equivalent definitions of

images of

ol back-and-forth between models (extended to categorical
model theory by Beke and Rosicky in 2018).

Definition (Karttunen 1979)

For a regular cardinal A\, a A-back-and-forth system between
models M and N over a vocabulary v consists of a poset
(5, 9Q), together with a function f — f with domain &, such

SOOI that each : d(f) S r(f) with d(f) < M and r(f) < N, and

back-and-forth . ..
systems the following conditions hold:

HfJdg inn;ﬂies'? Cg

(&, <) is A-inductive;

whenever f € F and x € M (resp., y € N), thereis g € F
such that f C g and x € d(g) (resp., y € r(g)).

We then write M =, N.
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M) versus back-and-forth
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Theorem (Karttunen 1979)

Let A be a regular cardinal and let M and N be structures over

a vocabulary v. If M S, N, then M and N satisfy the same
Moox(V)-sentences.

Karttunen's
back-and-forth
systems
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Theorem (Karttunen 1979)

Let A be a regular cardinal and let M and N be structures over

a vocabulary v. If M S, N, then M and N satisfy the same
Moox(V)-sentences.

sl m Extended by Karttunen to the even more general
back-and-forth

S languages A5o.
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Theorem (Karttunen 1979)

Let A be a regular cardinal and let M and N be structures over
a vocabulary v. If M S, N, then M and N satisfy the same
Moox(V)-sentences.

m Extended by Karttunen to the even more general
languages Aox-

Karttunen's
back-and-forth
systems

m The syntax for 4.,y is far more complex than for .Zy.»,
the semantics are even trickier (not unique!).
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Proposition

In order to prove that a PC( %) class € of v-structures is
not co-PC( Lo ), it suffices to prove that it is not closed
under <, for a suitable regular cardinal .

Karttumen's m Applies to earlier introduced examples Id.(unital rings),
anforth Idc(Abelian ¢-groups), duals of real spectra of
commutative unital rings, and many others: each of those

classes fails to be closed under a suitable <.
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Establishing intractability

Projective

classes as ] By the abOVe,

images of
Proposition

accessible
functors

In order to prove that a PC( %) class € of v-structures is
not co-PC( Lo ), it suffices to prove that it is not closed
under <, for a suitable regular cardinal .

P m Applies to earlier introduced examples Id.(unital rings),
anforth Idc(Abelian ¢-groups), duals of real spectra of

commutative unital rings, and many others: each of those
classes fails to be closed under a suitable <.

m The real trouble is: find a back-and-forth system
F: M=, N with M € € and N ¢ C (where C is the
given class).
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Back-and-forth systems from continuous functors

Projective

clomes 26 m In many examples, such as ®(unital rings) and

images of

mages of ®(Abelian ¢-groups) (where ® =1d.), =\ arises from
functors some A-continuous functor ': [k]™ — € with kK > A.
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Back-and-forth systems from continuous functors

Helpsi m In many examples, such as ®(unital rings) and
R ®(Abelian ¢-groups) (where ® = Id.), =, arises from
functors some \-continuous functor [': [k]™ — € with £ > .
Here, [k]™ denotes the category of all subsets of x with
one-to-one functions. In both examples above, K = AT,
m It is often the case that for X C k with card X < ),
M(X) = ®(T1(Sju | v e X)) (a “condensate”), where:
P is a suitable finite lattice (in both examples above,
P = {0,1}3; also, this method provably fails for arbitrary

Karttunen's

PacIeanarartyy finite bounded posets!);
systems
XEP L (X2 | D C P}
def

|u| = \/ dom u whenever u € X<F;
A S is a non-commutative diagram, indexed by P, such that,
for the given functor ®, the diagram ®(S) is commutative.
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Back-and-forth systems from continuous functors

Helpsi m In many examples, such as ®(unital rings) and
R ®(Abelian ¢-groups) (where ® = Id.), =, arises from
functors some \-continuous functor [': [k]™ — € with £ > .
Here, [k]™ denotes the category of all subsets of x with
one-to-one functions. In both examples above, K = AT,
m It is often the case that for X C k with card X < ),
M(X) = ®(T1(Sju | v e X)) (a “condensate”), where:
P is a suitable finite lattice (in both examples above,
P = {0,1}3; also, this method provably fails for arbitrary

Karttunen's

PacIeanarartyy finite bounded posets!);
systems
XEP L (X2 | D C P}
def

|u| = \/ dom u whenever u € X<F;
4] S is a non-commutative diagram, indexeg by P, such that,
for the given functor ®, the diagram ®(S) is commutative.
m Finding P and Sis usually hard, very much connected to

the algebraic and combinatorial data of the given_problem.
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The diagram S for Id.(Abelian ¢-groups)

Projective
classes as
images of
accessible
functors

Karttunen's
back-and-forth
systems

0<a<ad <2ab>0;c>0.
Ai(a) — A13(d’,¢) viaa— 2.
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A further example with Abelian /-groups

Projective

N m Denote by A the class of all Abelian /-groups, and by Id. A
images of

o the class of all isomorphic copies of Id. G where G € A. It
EEE is PC(%.,w), but, by the above, not co-PC(ZLoo).
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. m Denote by A the class of all Abelian /-groups, and by Id. A
R the class of all isomorphic copies of Id. G where G € A. It
functors is PC(%.,w), but, by the above, not co-PC(ZLoo).
m A bounded distributive lattice D satisfies Plos¢ica’s
Condition if for every a € D and every collection
(m; | i € I) of maximal ideals of |a, |a/(); m; has
cardinality < 2/ (careful with definition of |a/J).
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R the class of all isomorphic copies of Id. G where G € A. It
functors is PC(%.,w), but, by the above, not co-PC(ZLoo).
m A bounded distributive lattice D satisfies Plos¢ica’s
Condition if for every a € D and every collection
(m; | i € I) of maximal ideals of |a, |a/(); m; has
cardinality < 2/ (careful with definition of |a/J).

Theorem (Plo3¢ica 2021)

Karttunen's

back-and-forth . v 0 B
systems Every member of Id. A satisfies Plos¢ica's Condition.
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A further example with Abelian /-groups

Projective

. m Denote by A the class of all Abelian /-groups, and by Id. A
R the class of all isomorphic copies of Id. G where G € A. It
functors is PC(%.,w), but, by the above, not co-PC(ZLoo).
m A bounded distributive lattice D satisfies Plos¢ica’s
Condition if for every a € D and every collection
(m; | i € I) of maximal ideals of |a, |a/(); m; has
cardinality < 2/ (careful with definition of |a/J).

Theorem (Plo%gica 2021)

Karttunen's

back-and-forth . v 0 B
systems Every member of Id. A satisfies Plos¢ica's Condition.

Theorem (W 2022, )

There exists a bounded distributive lattice, of cardinality Ny,
satisfying all known .Z,,,,,, properties of all members of Id. A
together with Plos€ica's Condition, but not in Id. A.
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Thanks for your attention!

Karttunen's
back-and-forth
systems
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