Projective classes as images of accessible functors

Motivation

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems

Projective classes as images of accessible functors

Friedrich Wehrung

Université de Caen LMNO, CNRS UMR 6139 Département de Mathématiques 14032 Caen cedex E-mail: friedrich.wehrung01@unicaen.fr URL: http://wehrungf.users.lmno.cnrs.fr

March 2022

References

Projective classes as images of accessible functors

- 1 J. Adámek and J. Rosický, Locally Presentable and Accessible Categories, London Mathematical Society Lecture Notes Series 189, Cambridge University Press, Cambridge, 1994.
- 2 P. Gillibert and F. Wehrung, From Objects to Diagrams for Ranges of Functors, Springer Lecture Notes 2029, Springer, Heidelberg, 2011.
- 3 F. Wehrung, From non-commutative diagrams to anti-elementary classes, J. Math. Logic **21**, no. 2 (2021), 2150011.
- 4 F. Wehrung, *Projective classes as images of accessible* functors, J. Logic Comput. 33, no. 1 (January 2023), 90-135.
- 5 References [2,3,4] above can be downloaded from https://wehrungf.users.lmno.cnrs.fr/pubs.html .

Projective classes as images of accessible functors

Motivation

Elementary

Tuuri's Interpolation

Karttunen's back-and-fort systems ■ We would like to prove that certain "naturally defined" categories C of models (say of first-order theories) are "intractable".

Projective classes as images of accessible functors

Motivation

Elementary, proiective

Tuuri's Interpolation Theorem

Karttunen's back-and-fortl systems ■ We would like to prove that certain "naturally defined" categories C of models (say of first-order theories) are "intractable".

Examples:

Projective classes as images of accessible functors

Motivation

Elementary projective

Tuuri's Interpolation Theorem

- We would like to prove that certain "naturally defined" categories C of models (say of first-order theories) are "intractable".
- Examples: Posets of finitely generated ideals of rings,

Projective classes as images of accessible functors

Motivation

Elementary projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth

- We would like to prove that certain "naturally defined" categories C of models (say of first-order theories) are "intractable".
- **Examples:** Posets of finitely generated ideals of rings, Ordered K_0 groups of unit-regular rings,

Projective classes as images of accessible functors

Motivation

Elementary projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth

- We would like to prove that certain "naturally defined" categories \mathcal{C} of models (say of first-order theories) are "intractable".
- Examples: Posets of finitely generated ideals of rings,
 Ordered K₀ groups of unit-regular rings, Stone duals of spectra of abelian lattice-ordered groups,

Projective classes as images of accessible functors

Motivation

Elementary projective

Tuuri's Interpolation Theorem

- We would like to prove that certain "naturally defined" categories C of models (say of first-order theories) are "intractable".
- **Examples:** Posets of finitely generated ideals of rings, Ordered K_0 groups of unit-regular rings, Stone duals of spectra of abelian lattice-ordered groups, ... and many other classes.

Projective classes as images of accessible functors

Motivation

Elementary projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth

- We would like to prove that certain "naturally defined" categories \mathcal{C} of models (say of first-order theories) are "intractable".
- Examples: Posets of finitely generated ideals of rings, Ordered K₀ groups of unit-regular rings, Stone duals of spectra of abelian lattice-ordered groups, ... and many other classes.
- A way to define intractability is to state that C is not the class of models of any infinitary (not just first-order!) sentence (we'll say elementary).

Projective classes as images of accessible functors

Motivation

Elementary projective

Tuuri's Interpolation Theorem

- We would like to prove that certain "naturally defined" categories C of models (say of first-order theories) are "intractable".
- Examples: Posets of finitely generated ideals of rings, Ordered K₀ groups of unit-regular rings, Stone duals of spectra of abelian lattice-ordered groups, ... and many other classes.
- A way to define intractability is to state that C is not the class of models of any infinitary (not just first-order!) sentence (we'll say elementary).
- Let's suggest a stronger notion of intractability.

Projective classes as images of accessible functors

Motivation

Elementary, projective

Tuuri's Interpolation

Karttunen's back-and-forth systems ■ Vocabulary: $\mathbf{v} = (\mathbf{v}_{\mathrm{ope}}, \mathbf{v}_{\mathrm{rel}}, \mathsf{ar})$ with $\mathbf{v}_{\mathrm{ope}} \cap \mathbf{v}_{\mathrm{rel}} = \varnothing$ and $\mathsf{ar} \colon \mathbf{v}_{\mathrm{ope}} \cup \mathbf{v}_{\mathrm{rel}} \to \mathsf{ordinals}$ (usually) with $0 \notin \mathsf{ar}[\mathbf{v}_{\mathrm{rel}}]$.

Projective classes as images of accessible functors

Motivation

Elementary, projective

Tuuri's Interpolation Theorem

- Vocabulary: $\mathbf{v} = (\mathbf{v}_{\mathrm{ope}}, \mathbf{v}_{\mathrm{rel}}, \mathsf{ar})$ with $\mathbf{v}_{\mathrm{ope}} \cap \mathbf{v}_{\mathrm{rel}} = \varnothing$ and $\mathsf{ar} \colon \mathbf{v}_{\mathrm{ope}} \cup \mathbf{v}_{\mathrm{rel}} \to \mathsf{ordinals}$ (usually) with $0 \notin \mathsf{ar}[\mathbf{v}_{\mathrm{rel}}]$.
- \blacksquare ar $(s) = 0 \stackrel{\text{def}}{\Longleftrightarrow} s$ is a "constant".

Projective classes as images of accessible functors

Motivation

Elementary, projective

Tuuri's Interpolation Theorem

- Vocabulary: $\mathbf{v} = (\mathbf{v}_{\mathrm{ope}}, \mathbf{v}_{\mathrm{rel}}, \mathsf{ar})$ with $\mathbf{v}_{\mathrm{ope}} \cap \mathbf{v}_{\mathrm{rel}} = \varnothing$ and $\mathsf{ar} \colon \mathbf{v}_{\mathrm{ope}} \cup \mathbf{v}_{\mathrm{rel}} \to \mathsf{ordinals}$ (usually) with $0 \notin \mathsf{ar}[\mathbf{v}_{\mathrm{rel}}]$.
- \blacksquare ar(s) = 0 $\stackrel{\text{def}}{\Longleftrightarrow}$ s is a "constant".
- Add to this a large enough set ("alphabet") of "variables".

Projective classes as images of accessible functors

Motivatio

Elementary, projective

Tuuri's Interpolation Theorem

- Vocabulary: $\mathbf{v} = (\mathbf{v}_{\mathrm{ope}}, \mathbf{v}_{\mathrm{rel}}, \mathsf{ar})$ with $\mathbf{v}_{\mathrm{ope}} \cap \mathbf{v}_{\mathrm{rel}} = \varnothing$ and $\mathsf{ar} \colon \mathbf{v}_{\mathrm{ope}} \cup \mathbf{v}_{\mathrm{rel}} \to \mathsf{ordinals}$ (usually) with $0 \notin \mathsf{ar}[\mathbf{v}_{\mathrm{rel}}]$.
- \blacksquare ar $(s) = 0 \stackrel{\text{def}}{\Longleftrightarrow} s$ is a "constant".
- Add to this a large enough set ("alphabet") of "variables".
- model for \mathbf{v} (or \mathbf{v} -structure): $\mathbf{A} = (A, s^{\mathbf{A}})_{s \in \mathbf{v}_{\mathrm{ope}} \cup \mathbf{v}_{\mathrm{rel}}}$, with the interpretations $s^{\mathbf{A}}$ defined the usual way.

Projective classes as images of accessible functors

Motivatio

Elementary, projective

Tuuri's Interpolation Theorem

- Vocabulary: $\mathbf{v} = (\mathbf{v}_{\mathrm{ope}}, \mathbf{v}_{\mathrm{rel}}, \mathsf{ar})$ with $\mathbf{v}_{\mathrm{ope}} \cap \mathbf{v}_{\mathrm{rel}} = \varnothing$ and $\mathsf{ar} : \mathbf{v}_{\mathrm{ope}} \cup \mathbf{v}_{\mathrm{rel}} \to \mathsf{ordinals}$ (usually) with $0 \notin \mathsf{ar}[\mathbf{v}_{\mathrm{rel}}]$.
- \blacksquare ar $(s) = 0 \stackrel{\text{def}}{\Longleftrightarrow} s$ is a "constant".
- Add to this a large enough set ("alphabet") of "variables".
- model for \mathbf{v} (or \mathbf{v} -structure): $\mathbf{A} = (A, s^{\mathbf{A}})_{s \in \mathbf{v}_{\mathrm{ope}} \cup \mathbf{v}_{\mathrm{rel}}}$, with the interpretations $s^{\mathbf{A}}$ defined the usual way.
- Str(v)
 ^{def} = category of all v-structures with v-homomorphisms (it is locally presentable).

Projective classes as images of accessible functors

Motivatio

Elementary, projective

Tuuri's Interpolation Theorem

- Vocabulary: $\mathbf{v} = (\mathbf{v}_{\mathrm{ope}}, \mathbf{v}_{\mathrm{rel}}, \mathsf{ar})$ with $\mathbf{v}_{\mathrm{ope}} \cap \mathbf{v}_{\mathrm{rel}} = \varnothing$ and $\mathsf{ar} : \mathbf{v}_{\mathrm{ope}} \cup \mathbf{v}_{\mathrm{rel}} \to \mathsf{ordinals}$ (usually) with $0 \notin \mathsf{ar}[\mathbf{v}_{\mathrm{rel}}]$.
- \blacksquare ar $(s) = 0 \stackrel{\text{def}}{\Longleftrightarrow} s$ is a "constant".
- Add to this a large enough set ("alphabet") of "variables".
- model for \mathbf{v} (or \mathbf{v} -structure): $\mathbf{A} = (A, s^{\mathbf{A}})_{s \in \mathbf{v}_{\mathrm{ope}} \cup \mathbf{v}_{\mathrm{rel}}}$, with the interpretations $s^{\mathbf{A}}$ defined the usual way.
- Str(v)
 ^{def} = category of all v-structures with v-homomorphisms (it is locally presentable).
- Terms: closure of variables under all functions symbols.

Projective classes as images of accessible functors

Motivatio

Elementary, projective

Tuuri's Interpolation Theorem

- Vocabulary: $\mathbf{v} = (\mathbf{v}_{\mathrm{ope}}, \mathbf{v}_{\mathrm{rel}}, \mathsf{ar})$ with $\mathbf{v}_{\mathrm{ope}} \cap \mathbf{v}_{\mathrm{rel}} = \varnothing$ and $\mathsf{ar} : \mathbf{v}_{\mathrm{ope}} \cup \mathbf{v}_{\mathrm{rel}} \to \mathsf{ordinals}$ (usually) with $0 \notin \mathsf{ar}[\mathbf{v}_{\mathrm{rel}}]$.
- \blacksquare ar $(s) = 0 \stackrel{\text{def}}{\Longleftrightarrow} s$ is a "constant".
- Add to this a large enough set ("alphabet") of "variables".
- model for \mathbf{v} (or \mathbf{v} -structure): $\mathbf{A} = (A, s^{\mathbf{A}})_{s \in \mathbf{v}_{\mathrm{ope}} \cup \mathbf{v}_{\mathrm{rel}}}$, with the interpretations $s^{\mathbf{A}}$ defined the usual way.
- Str(v) ^{def} = category of all v-structures with v-homomorphisms (it is locally presentable).
- Terms: closure of variables under all functions symbols.
- **atomic formulas**: s = t, for terms s and t, or $R(t_{\xi} \mid \xi \in \operatorname{ar}(R))$ where the t_{ξ} are terms and $R \in \mathbf{v}_{\mathrm{rel}}$.

Projective classes as images of accessible functors

Motivation

Elementary, projective

Tuuri's Interpolatio

Karttunen's back-and-fort systems ■ Here κ and λ are "extended cardinals" (∞ allowed) with $\omega < \lambda < \kappa < \infty$.

Projective classes as images of accessible functors

Motivatio

Elementary, projective

Tuuri's Interpolatior Theorem

Karttunen's back-and-forth

- Here κ and λ are "extended cardinals" (∞ allowed) with $\omega < \lambda < \kappa < \infty$.
- For any vocabulary \mathbf{v} , $\mathscr{L}_{\kappa\lambda}(\mathbf{v}) \stackrel{\mathrm{def}}{=}$ closure of all atomic \mathbf{v} -formulas under disjunctions of $<\kappa$ members $(\bigvee_{i\in I}\mathsf{E}_i$ where card $I<\kappa$), negation, and existential quantification over sets of less than λ variables $((\exists \mathsf{X})\mathsf{E}$ with card $\mathsf{X}<\lambda$, or, in indexed form, $\exists \vec{\mathsf{X}} \mathsf{E}$ with card $I<\lambda$).

Projective classes as images of accessible functors

Motivatio

Elementary, projective

Tuuri's Interpolatior Theorem

- Here κ and λ are "extended cardinals" (∞ allowed) with $\omega < \lambda < \kappa < \infty$.
- For any vocabulary \mathbf{v} , $\mathscr{L}_{\kappa\lambda}(\mathbf{v}) \stackrel{\mathrm{def}}{=}$ closure of all atomic \mathbf{v} -formulas under disjunctions of $<\kappa$ members $(\bigvee_{i\in I}\mathsf{E}_i)$ where card $I<\kappa$, negation, and existential quantification over sets of less than λ variables $((\exists \mathsf{X})\mathsf{E})$ with card $\mathsf{X}<\lambda$, or, in indexed form, $\exists \vec{\mathsf{x}} \mathsf{E}$ with card $I<\lambda$.
- Satisfaction $\mathbf{A} \models \mathsf{E}(\vec{a})$ defined as usual (\mathbf{A} is a \mathbf{v} -structure, $\mathsf{E} \in \mathscr{L}_{\infty\infty}(\mathbf{v})$, \vec{a} : free variables (E) $\to A$).

Projective classes as images of accessible functors

Motivatio

Elementary, projective

Tuuri's Interpolation Theorem

- Here κ and λ are "extended cardinals" (∞ allowed) with $\omega < \lambda < \kappa < \infty$.
- For any vocabulary \mathbf{v} , $\mathscr{L}_{\kappa\lambda}(\mathbf{v}) \stackrel{\mathrm{def}}{=}$ closure of all atomic \mathbf{v} -formulas under disjunctions of $<\kappa$ members $(\bigvee_{i\in I}\mathsf{E}_i)$ where card $I<\kappa$, negation, and existential quantification over sets of less than λ variables $((\exists \mathsf{X})\mathsf{E})$ with card $\mathsf{X}<\lambda$, or, in indexed form, $\exists \vec{\mathsf{x}} \mathsf{E}$ with card $I<\lambda$.
- Satisfaction $\mathbf{A} \models \mathsf{E}(\vec{a})$ defined as usual (\mathbf{A} is a \mathbf{v} -structure, $\mathsf{E} \in \mathscr{L}_{\infty\infty}(\mathbf{v})$, \vec{a} : free variables (E) $\to A$).
- $\mathscr{L}_{\kappa\lambda}$ -elementary class: $\mathscr{C} = \mathbf{Mod_v}(\mathsf{E}) \stackrel{\mathrm{def}}{=} \{ \mathbf{A} \in \mathbf{Str}(\mathbf{v}) \mid \mathbf{A} \models \mathsf{E} \}$ where E is an $\mathscr{L}_{\kappa\lambda}(\mathbf{v})$ -sentence.

(Relatively) projective classes

Projective classes as images of accessible functors

Motivation

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems **Heuristically**: a class ${\mathfrak C}$ of **v**-structures is

(Relatively) projective classes

Projective classes as images of accessible functors

Motivatio

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems **Heuristically**: a class ${\mathcal C}$ of **v**-structures is

- projective over $\mathscr{L}_{\kappa\lambda}$ (abbrev. $\operatorname{PC}(\mathscr{L}_{\kappa\lambda})$) if $\mathscr{C} = (\exists X) \mathscr{D}$ where \mathscr{D} is $\mathscr{L}_{\kappa\lambda}$ -elementary and $\exists X$ is a second-order quantifier (e.g., $\exists X \subseteq M^{\alpha}$, etc.)
- relatively projective over $\mathscr{L}_{\kappa\lambda}$ (abbrev. $\operatorname{RPC}(\mathscr{L}_{\kappa\lambda})$) if $\mathscr{C} = \{ \boldsymbol{M} \upharpoonright_{\mathrm{U}} \mid \boldsymbol{M} \in \mathscr{D} \}$ for some projective class \mathscr{D} and some unary relation symbol U .

Formally: a class \mathcal{C} of **v**-structures is

Projective classes as images of accessible functors

Motivatio

Elementary, projective

Tuuri's Interpolation

Karttunen's back-and-forth systems

◆ロト ◆部ト ◆恵ト ◆恵ト 恵 めなべ

Projective classes as images of accessible functors

Motivatio

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems Formally: a class ${\mathfrak C}$ of **v**-structures is

- projective over $\mathcal{L}_{\kappa\lambda}$ (abbrev. $\operatorname{PC}(\mathcal{L}_{\kappa\lambda})$) if there are a vocabulary $\mathbf{w} \supseteq \mathbf{v}$ and a sentence $\mathsf{E} \in \mathcal{L}_{\kappa\lambda}(\mathbf{w})$ such that $\mathcal{C} = \{ \mathbf{M} |_{\mathbf{v}} \mid \mathbf{M} \in \operatorname{\mathsf{Mod}}_{\mathbf{w}}(\mathsf{E}) \}.$
- relatively projective over $\mathscr{L}_{\kappa\lambda}$ (abbrev. $\operatorname{RPC}(\mathscr{L}_{\kappa\lambda})$) if there are a unary predicate symbol U, a vocabulary $\mathbf{w} \supseteq \mathbf{v} \cup \{U\}$, and a sentence $\mathsf{E} \in \mathscr{L}_{\kappa\lambda}(\mathbf{w})$ such that $\mathscr{C} = \{U^M \upharpoonright_{\mathbf{v}} \mid M \in \operatorname{\mathsf{Mod}}_{\mathbf{w}}(\mathsf{E}), \ U^M \text{ closed under } \mathbf{v}_{\mathrm{ope}}\}.$

Projective classes as images of accessible functors

Motivatio

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-fort systems Formally: a class ${\mathfrak C}$ of **v**-structures is

- projective over $\mathcal{L}_{\kappa\lambda}$ (abbrev. $\operatorname{PC}(\mathcal{L}_{\kappa\lambda})$) if there are a vocabulary $\mathbf{w} \supseteq \mathbf{v}$ and a sentence $\mathsf{E} \in \mathcal{L}_{\kappa\lambda}(\mathbf{w})$ such that $\mathcal{C} = \{M|_{\mathbf{v}} \mid M \in \operatorname{\mathsf{Mod}}_{\mathbf{w}}(\mathsf{E})\}.$
- relatively projective over $\mathscr{L}_{\kappa\lambda}$ (abbrev. $\operatorname{RPC}(\mathscr{L}_{\kappa\lambda})$) if there are a unary predicate symbol U, a vocabulary $\mathbf{w} \supseteq \mathbf{v} \cup \{\mathbf{U}\}$, and a sentence $\mathbf{E} \in \mathscr{L}_{\kappa\lambda}(\mathbf{w})$ such that $\mathcal{C} = \{\mathbf{U}^M|_{\mathbf{v}} \mid M \in \operatorname{Mod}_{\mathbf{w}}(\mathbf{E}), \ \mathbf{U}^M \text{ closed under } \mathbf{v}_{\mathrm{ope}}\}.$
- Hence $PC(\mathcal{L}_{\kappa\lambda}) \subseteq RPC(\mathcal{L}_{\kappa\lambda})$. Note that $PC(\mathcal{L}_{\omega\omega}) \subsetneq RPC(\mathcal{L}_{\omega\omega})$ (even on finite structures).

Projective classes as images of accessible functors

Motivatio

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-fortl systems Formally: a class ${\mathfrak C}$ of **v**-structures is

- projective over $\mathcal{L}_{\kappa\lambda}$ (abbrev. $\operatorname{PC}(\mathcal{L}_{\kappa\lambda})$) if there are a vocabulary $\mathbf{w} \supseteq \mathbf{v}$ and a sentence $\mathsf{E} \in \mathcal{L}_{\kappa\lambda}(\mathbf{w})$ such that $\mathcal{C} = \{ M \upharpoonright_{\mathbf{v}} \mid M \in \operatorname{\mathsf{Mod}}_{\mathbf{w}}(\mathsf{E}) \}.$
- relatively projective over $\mathscr{L}_{\kappa\lambda}$ (abbrev. $\operatorname{RPC}(\mathscr{L}_{\kappa\lambda})$) if there are a unary predicate symbol U, a vocabulary $\mathbf{w} \supseteq \mathbf{v} \cup \{U\}$, and a sentence $\mathsf{E} \in \mathscr{L}_{\kappa\lambda}(\mathbf{w})$ such that $\mathscr{C} = \{U^M|_{\mathbf{v}} \mid M \in \operatorname{\mathsf{Mod}}_{\mathbf{w}}(\mathsf{E}), \ U^M \text{ closed under } \mathbf{v}_{\mathrm{ope}}\}.$
- Hence $PC(\mathcal{L}_{\kappa\lambda}) \subseteq RPC(\mathcal{L}_{\kappa\lambda})$. Note that $PC(\mathcal{L}_{\omega\omega}) \subsetneq RPC(\mathcal{L}_{\omega\omega})$ (even on finite structures).

Theorem (W 2021)

Let λ be an infinite cardinal. Then $\mathrm{PC}(\mathscr{L}_{\infty\lambda}) = \mathrm{RPC}(\mathscr{L}_{\infty\lambda})$ (in full generality; no restrictions on vocabularies). Moreover, if λ is singular, then $\mathrm{PC}(\mathscr{L}_{\infty\lambda}) = \mathrm{PC}(\mathscr{L}_{\infty\lambda^+})$.

Examples of "elementary" classes

Projective classes as images of accessible functors

Motivation

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-fortl systems ■ Finiteness (of the ambiant universe) is $\mathcal{L}_{\omega_1\omega}$:

$$W_{n<\omega}(\exists_{i< n}x_i)(\forall x) W_{i< n}(x=x_i).$$

Examples of "elementary" classes

Projective classes as images of accessible functors

Motivation

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems ■ Finiteness (of the ambiant universe) is $\mathscr{L}_{\omega_1\omega}$:

■ Well-foundedness (of the ambiant poset) is $\mathscr{L}_{\omega_1\omega_1}$:

$$(\forall_{n<\omega}x_n)$$
 $\bigvee_{n<\omega}(x_{n+1} \not< x_n)$.

Examples of "elementary" classes

Projective classes as images of accessible functors

Motivatio

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems ■ Finiteness (of the ambiant universe) is $\mathcal{L}_{\omega_1\omega}$:

■ Well-foundedness (of the ambiant poset) is $\mathcal{L}_{\omega_1\omega_1}$:

$$(\forall_{n<\omega}x_n)$$
 $\bigvee_{n<\omega}(x_{n+1} \not< x_n)$.

■ Torsion-freeness (of a group) is $\mathcal{L}_{\omega_1\omega}$:

$$\bigwedge_{0 < n < \omega} (\forall x) (x^n = 1 \Rightarrow x = 1).$$

Projective classes as images of accessible functors

• $\mathcal{C} \stackrel{\text{def}}{=} \{ \boldsymbol{M} = (M, \cdot, 1) \text{ monoid } | (\exists \boldsymbol{G} \text{ group})(\boldsymbol{M} \hookrightarrow \boldsymbol{G}) \} \text{ is, by definition, } \mathrm{RPC}(\mathcal{L}_{\omega\omega}).$

Motivation

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-fortl systems

Projective classes as images of accessible functors

Motivation

Elementary, projective

Tuuri's Interpolation Theorem

- $\mathcal{C} \stackrel{\text{def}}{=} \{ \boldsymbol{M} = (M, \cdot, 1) \text{ monoid } | (\exists \boldsymbol{G} \text{ group})(\boldsymbol{M} \hookrightarrow \boldsymbol{G}) \} \text{ is,}$ by definition, $\text{RPC}(\mathcal{L}_{\omega\omega})$.
- Here $\mathbf{v} = (\cdot, 1)$, $\mathbf{w} = (\cdot, 1, \mathbf{U})$ for a unary predicate \mathbf{U} , the required \mathbf{E} states that the given \mathbf{w} -structure is a group (so " $\mathbf{U}^{\mathbf{G}}$ is \mathbf{v} -closed in \mathbf{G} " means that \mathbf{U} interprets a submonoid of \mathbf{G}).

Projective classes as images of accessible functors

Motivation

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems ■ $\mathcal{C} \stackrel{\text{def}}{=} \{ \boldsymbol{M} = (M, \cdot, 1) \text{ monoid } | (\exists \boldsymbol{G} \text{ group})(\boldsymbol{M} \hookrightarrow \boldsymbol{G}) \} \text{ is,}$ by definition, $\text{RPC}(\mathscr{L}_{\omega\omega})$.

- Here $\mathbf{v} = (\cdot, 1)$, $\mathbf{w} = (\cdot, 1, \mathbf{U})$ for a unary predicate \mathbf{U} , the required \mathbf{E} states that the given \mathbf{w} -structure is a group (so " $\mathbf{U}^{\mathbf{G}}$ is \mathbf{v} -closed in \mathbf{G} " means that \mathbf{U} interprets a submonoid of \mathbf{G}).
- By Mal'cev's work, $\mathcal{C} = \{ \boldsymbol{M} \mid (\forall n < \omega) (\boldsymbol{M} \models \mathsf{E}_n) \}$ for an effectively constructed sequence $(\mathsf{E}_n \mid n < \omega)$ of quasi-identities over \boldsymbol{v} , not reducible to any finite subset.

Projective classes as images of accessible functors

Motivatio

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems • $\mathcal{C} \stackrel{\text{def}}{=} \{ \boldsymbol{M} = (M, \cdot, 1) \text{ monoid } | (\exists \boldsymbol{G} \text{ group})(\boldsymbol{M} \hookrightarrow \boldsymbol{G}) \} \text{ is,}$ by definition, $\text{RPC}(\mathcal{L}_{\omega\omega})$.

- Here $\mathbf{v} = (\begin{subarray}{c} \cdot, \ 1\\ (2) \ (0) \end{subarray}$, $\mathbf{w} = (\cdot, 1, \mathbf{U})$ for a unary predicate \mathbf{U} , the required \mathbf{E} states that the given \mathbf{w} -structure is a group (so " $\mathbf{U}^{\boldsymbol{G}}$ is \mathbf{v} -closed in \boldsymbol{G} " means that \mathbf{U} interprets a submonoid of \boldsymbol{G}).
- By Mal′cev's work, $\mathcal{C} = \{ \boldsymbol{M} \mid (\forall n < \omega) (\boldsymbol{M} \models \mathsf{E}_n) \}$ for an effectively constructed sequence $(\mathsf{E}_n \mid n < \omega)$ of quasi-identities over \boldsymbol{v} , not reducible to any finite subset. Thus \mathcal{C} is $\mathcal{L}_{\omega_1\omega}$ -elementary.

Projective classes as images of accessible functors

Motivatio

Elementary, projective

Tuuri's Interpolation Theorem

- $\mathcal{C} \stackrel{\text{def}}{=} \{ \boldsymbol{M} = (M, \cdot, 1) \text{ monoid } | (\exists \boldsymbol{G} \text{ group})(\boldsymbol{M} \hookrightarrow \boldsymbol{G}) \} \text{ is,}$ by definition, $\text{RPC}(\mathcal{L}_{\omega\omega})$.
- Here $\mathbf{v} = (\cdot, 1)$, $\mathbf{w} = (\cdot, 1, \mathbf{U})$ for a unary predicate \mathbf{U} , the required \mathbf{E} states that the given \mathbf{w} -structure is a group (so " $\mathbf{U}^{\mathbf{G}}$ is \mathbf{v} -closed in \mathbf{G} " means that \mathbf{U} interprets a submonoid of \mathbf{G}).
- By Mal′cev's work, $\mathcal{C} = \{ \boldsymbol{M} \mid (\forall n < \omega) (\boldsymbol{M} \models \mathsf{E}_n) \}$ for an effectively constructed sequence $(\mathsf{E}_n \mid n < \omega)$ of quasi-identities over \boldsymbol{v} , not reducible to any finite subset. Thus \mathcal{C} is $\mathcal{L}_{\omega_1\omega}$ -elementary.
- In fact, $\mathcal{C} = \{ \mathbf{M} \mid (\exists \text{ group structure } \mathbf{G} \text{ on } \mathbf{M})(\exists f : \mathbf{M} \hookrightarrow \mathbf{G}) \}$ is $\mathrm{PC}(\mathcal{L}_{u(u)})$.

Other examples

Projective classes as images of accessible functors

Motivation

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems ■ For a unital ring R, $\operatorname{Id}_{c} R \stackrel{\operatorname{def}}{=} (\lor, 0)$ -semilattice of all finitely generated two-sided ideals of R. Let $\mathcal{C} \stackrel{\operatorname{def}}{=} \{\operatorname{Id}_{c} R \mid R \text{ unital ring}\}.$

Projective classes as images of accessible functors

Motivation

Elementary, projective

Tuuri's Interpolation Theorem

- For a unital ring R, $\operatorname{Id}_{c} R \stackrel{\operatorname{def}}{=} (\vee, 0)$ -semilattice of all finitely generated two-sided ideals of R. Let $\mathcal{C} \stackrel{\operatorname{def}}{=} \{\operatorname{Id}_{c} R \mid R \text{ unital ring}\}.$
- For an Abelian ℓ -group G, $\operatorname{Id}_{\mathsf{c}} G \stackrel{\operatorname{def}}{=} \operatorname{lattice}$ of all principal ℓ -ideals of G. Let $\mathfrak{C} \stackrel{\operatorname{def}}{=} \{\operatorname{Id}_{\mathsf{c}} G \mid G \text{ Abelian } \ell\text{-group}\}$.

Projective classes as images of accessible functors

Motivatio

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems

- For a unital ring R, $\operatorname{Id}_{c} R \stackrel{\operatorname{def}}{=} (\lor, 0)$ -semilattice of all finitely generated two-sided ideals of R. Let $\mathcal{C} \stackrel{\operatorname{def}}{=} \{\operatorname{Id}_{c} R \mid R \text{ unital ring}\}.$
- For an Abelian ℓ -group G, $\operatorname{Id}_{\mathsf{c}} G \stackrel{\operatorname{def}}{=} \operatorname{lattice}$ of all principal ℓ -ideals of G. Let $\mathfrak{C} \stackrel{\operatorname{def}}{=} \{\operatorname{Id}_{\mathsf{c}} G \mid G \text{ Abelian } \ell\text{-group}\}.$
- For a commutative unital ring A, $\Phi(A) \stackrel{\text{def}}{=} \mathsf{Stone}$ dual of the real spectrum of A (it is a bounded distributive lattice). Let $\mathfrak{C} \stackrel{\text{def}}{=} \{\Phi(A) \mid A \text{ commutative unital ring}\}$.

Projective classes as images of accessible functors

Motivatio

Elementary, projective

Tuuri's Interpolation Theorem

- For a unital ring R, $\operatorname{Id}_{c} R \stackrel{\operatorname{def}}{=} (\lor, 0)$ -semilattice of all finitely generated two-sided ideals of R. Let $\mathcal{C} \stackrel{\operatorname{def}}{=} \{\operatorname{Id}_{c} R \mid R \text{ unital ring}\}.$
- For an Abelian ℓ -group G, $\operatorname{Id}_{\mathsf{c}} G \stackrel{\operatorname{def}}{=} \operatorname{lattice}$ of all principal ℓ -ideals of G. Let $\mathfrak{C} \stackrel{\operatorname{def}}{=} \{\operatorname{Id}_{\mathsf{c}} G \mid G \text{ Abelian } \ell\text{-group}\}.$
- For a commutative unital ring A, $\Phi(A) \stackrel{\text{def}}{=} \mathsf{Stone}$ dual of the real spectrum of A (it is a bounded distributive lattice). Let $\mathfrak{C} \stackrel{\text{def}}{=} \{\Phi(A) \mid A \text{ commutative unital ring}\}$.
- All those classes are $PC(\mathcal{L}_{\omega_1\omega})$.

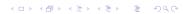
Projective classes as images of accessible functors

Motivatio

Elementary, projective

Tuuri's Interpolation Theorem

- For a unital ring R, $\operatorname{Id}_{c} R \stackrel{\operatorname{def}}{=} (\lor, 0)$ -semilattice of all finitely generated two-sided ideals of R. Let $\mathcal{C} \stackrel{\operatorname{def}}{=} \{\operatorname{Id}_{c} R \mid R \text{ unital ring}\}.$
- For an Abelian ℓ -group G, $\operatorname{Id}_{\mathsf{c}} G \stackrel{\operatorname{def}}{=} \operatorname{lattice}$ of all principal ℓ -ideals of G. Let $\mathfrak{C} \stackrel{\operatorname{def}}{=} \{\operatorname{Id}_{\mathsf{c}} G \mid G \text{ Abelian } \ell\text{-group}\}.$
- For a commutative unital ring A, $\Phi(A) \stackrel{\text{def}}{=} \mathsf{Stone}$ dual of the real spectrum of A (it is a bounded distributive lattice). Let $\mathfrak{C} \stackrel{\text{def}}{=} \{\Phi(A) \mid A \text{ commutative unital ring}\}$.
- All those classes are $PC(\mathscr{L}_{\omega_1\omega})$.
- Observe that they are all defined as images of functors.



Projective classes as images of accessible functors

Motivatio

Elementary, projective

Tuuri's Interpolation Theorem

- For a unital ring R, $\operatorname{Id}_{c} R \stackrel{\operatorname{def}}{=} (\lor, 0)$ -semilattice of all finitely generated two-sided ideals of R. Let $\mathcal{C} \stackrel{\operatorname{def}}{=} \{\operatorname{Id}_{c} R \mid R \text{ unital ring}\}.$
- For an Abelian ℓ -group G, $\operatorname{Id}_{\mathsf{c}} G \stackrel{\operatorname{def}}{=} \operatorname{lattice}$ of all principal ℓ -ideals of G. Let $\mathfrak{C} \stackrel{\operatorname{def}}{=} \{\operatorname{Id}_{\mathsf{c}} G \mid G \text{ Abelian } \ell\text{-group}\}.$
- For a commutative unital ring A, $\Phi(A) \stackrel{\text{def}}{=} \mathsf{Stone}$ dual of the real spectrum of A (it is a bounded distributive lattice). Let $\mathfrak{C} \stackrel{\text{def}}{=} \{\Phi(A) \mid A \text{ commutative unital ring}\}$.
- All those classes are $PC(\mathscr{L}_{\omega_1\omega})$.
- Observe that they are all defined as images of functors.
- We will see that none of those classes is $\operatorname{co-PC}(\mathscr{L}_{\infty\infty})$ (i.e., complement of a $\operatorname{PC}(\mathscr{L}_{\infty\infty})$).

Projective classes as images of accessible functors

Let λ be a regular cardinal.

Motivation

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-fortl systems

Projective classes as images of accessible functors

Motivatio

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth Let λ be a regular cardinal.

■ A category \mathcal{S} is λ -accessible if it has all λ -directed colimits and it has a λ -directed colimit-dense subset \mathcal{S}^{\dagger} , consisting of λ -presentable objects.

Projective classes as images of accessible functors

Motivatio

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth Let λ be a regular cardinal.

- A category S is λ -accessible if it has all λ -directed colimits and it has a λ -directed colimit-dense subset S^{\dagger} , consisting of λ -presentable objects.
- One can then take $S^{\dagger} = \mathbf{Pres}_{\lambda} S$, "the" set of all λ -presentable objects in S (up to isomorphism).

Projective classes as images of accessible functors

Motivatio

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-fortl systems Let λ be a regular cardinal.

- A category S is λ -accessible if it has all λ -directed colimits and it has a λ -directed colimit-dense subset S^{\dagger} , consisting of λ -presentable objects.
- One can then take $S^{\dagger} = \mathbf{Pres}_{\lambda} S$, "the" set of all λ -presentable objects in S (up to isomorphism).
- A functor $\Phi \colon S \to \mathfrak{T}$ is λ -continuous if it preserves λ -directed colimits. If S and \mathfrak{T} are both λ -accessible categories, we say that Φ is a λ -accessible functor.

Projective classes as images of accessible functors

Motivatio

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems Let λ be a regular cardinal.

- A category S is λ -accessible if it has all λ -directed colimits and it has a λ -directed colimit-dense subset S^{\dagger} , consisting of λ -presentable objects.
- One can then take $S^{\dagger} = \mathbf{Pres}_{\lambda} S$, "the" set of all λ -presentable objects in S (up to isomorphism).
- A functor $\Phi \colon S \to \mathcal{T}$ is λ -continuous if it preserves λ -directed colimits. If S and \mathcal{T} are both λ -accessible categories, we say that Φ is a λ -accessible functor.
- There are many examples: **Str(v)**, quasivarieties. . .

PC versus accessible

Projective classes as images of accessible functors

Motivatio

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems

Theorem (W 2021)

Let λ be a regular cardinal, let \mathbf{v} be a vocabulary such that $\mathbf{v}_{\mathrm{ope}}$ is λ -ary, and let $\mathcal C$ be an $\mathrm{RPC}(\mathscr L_{\infty\lambda})$ class of \mathbf{v} -structures. Then there are a λ -accessible category $\mathcal S$ and a λ -continuous functor $\Phi \colon \mathcal S \to \mathbf{Str}(\mathbf{v})$, that can be taken faithful, with im $\Phi \stackrel{\mathrm{def}}{=} \{ \mathbf{M} \mid (\exists S \in \mathrm{Ob}\, \mathcal S) (\mathbf{M} \cong \Phi(S)) \} = \mathcal C$.

PC versus accessible

Projective classes as images of accessible functors

Motivatio

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-fortl systems

Theorem (W 2021)

Let λ be a regular cardinal, let \mathbf{v} be a vocabulary such that $\mathbf{v}_{\mathrm{ope}}$ is λ -ary, and let $\mathfrak C$ be an $\mathrm{RPC}(\mathscr L_{\infty\lambda})$ class of \mathbf{v} -structures. Then there are a λ -accessible category $\mathcal S$ and a λ -continuous functor $\Phi \colon \mathcal S \to \mathbf{Str}(\mathbf{v})$, that can be taken faithful, with im $\Phi \stackrel{\mathrm{def}}{=} \{ \mathbf{M} \mid (\exists S \in \mathrm{Ob}\, \mathcal S)(\mathbf{M} \cong \Phi(S)) \} = \mathfrak C.$

Theorem (W 2021)

Let λ be a regular cardinal, let \mathbf{v} be a λ -ary vocabulary, let \mathcal{S} be a λ -accessible category, and let $\Phi \colon \mathcal{S} \to \mathbf{Str}(\mathbf{v})$ be a λ -accessible functor. Then im Φ is $\mathrm{PC}(\mathcal{L}_{\infty\lambda})$.

PC versus accessible

Projective classes as images of accessible functors

Motivatio

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-fort systems

Theorem (W 2021)

Let λ be a regular cardinal, let \mathbf{v} be a vocabulary such that $\mathbf{v}_{\mathrm{ope}}$ is λ -ary, and let $\mathcal C$ be an $\mathrm{RPC}(\mathscr L_{\infty\lambda})$ class of \mathbf{v} -structures. Then there are a λ -accessible category $\mathcal S$ and a λ -continuous functor $\Phi \colon \mathcal S \to \mathbf{Str}(\mathbf{v})$, that can be taken faithful, with im $\Phi \stackrel{\mathrm{def}}{=} \{ \mathbf{M} \mid (\exists S \in \mathrm{Ob}\, \mathcal S)(\mathbf{M} \cong \Phi(S)) \} = \mathcal C.$

Theorem (W 2021)

Let λ be a regular cardinal, let \mathbf{v} be a λ -ary vocabulary, let \mathcal{S} be a λ -accessible category, and let $\Phi \colon \mathcal{S} \to \mathbf{Str}(\mathbf{v})$ be a λ -accessible functor. Then im Φ is $\mathrm{PC}(\mathcal{L}_{\infty\lambda})$.

The assumptions that $\mathbf{v}_{\mathrm{ope}}$, or \mathbf{v} , be λ -ary, cannot be dispensed with (counterexamples with idempotence, emptiness).

Projective classes as images of accessible functors

■ Idea: extend $\mathcal{L}_{\kappa\lambda}$ in such a way that infinite alternations of quantifiers be enabled.

Motivation

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth

Projective classes as images of accessible functors

Motivatio

projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth • Idea: extend $\mathcal{L}_{\kappa\lambda}$ in such a way that infinite alternations of quantifiers be enabled.

■ Game formula (of Gale-Stewart kind): $\exists \vec{x} \, \mathsf{E}(\vec{x})$ is $(\forall x_0)(\exists x_1)(\forall x_2) \cdots \mathsf{E}(x_0, x_1, x_2, \dots)$.

Projective classes as images of accessible functors

Motivatio

Elementary projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth ■ Idea: extend $\mathcal{L}_{\kappa\lambda}$ in such a way that infinite alternations of quantifiers be enabled.

- Game formula (of Gale-Stewart kind): $\exists \vec{x} \, \mathsf{E}(\vec{x})$ is $(\forall x_0)(\exists x_1)(\forall x_2) \cdots \mathsf{E}(x_0, x_1, x_2, \dots)$.
- Can be interpreted *via* a game with two players, \forall (who plays all x_{2n}) and \exists (who plays all x_{2n+1}). Hence \forall (resp., \exists) wins iff $\mathsf{E}(x_0, x_1, x_2, \dots)$ (resp., $\neg \mathsf{E}(x_0, x_1, x_2, \dots)$).

Projective classes as images of accessible functors

Motivatio

Elementary projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems • Idea: extend $\mathcal{L}_{\kappa\lambda}$ in such a way that infinite alternations of quantifiers be enabled.

- Game formula (of Gale-Stewart kind): $\exists \vec{x} \, \mathsf{E}(\vec{x})$ is $(\forall x_0)(\exists x_1)(\forall x_2) \cdots \mathsf{E}(x_0, x_1, x_2, \dots)$.
- Can be interpreted *via* a game with two players, \forall (who plays all x_{2n}) and \exists (who plays all x_{2n+1}). Hence \forall (resp., \exists) wins iff $\mathsf{E}(x_0, x_1, x_2, \dots)$ (resp., $\neg \mathsf{E}(x_0, x_1, x_2, \dots)$).
- The game above has "clock" ω .

Projective classes as images of accessible functors

Motivatio

Elementary projective

Tuuri's Interpolation Theorem

Karttunen's back-and-fort systems • Idea: extend $\mathcal{L}_{\kappa\lambda}$ in such a way that infinite alternations of quantifiers be enabled.

- Game formula (of Gale-Stewart kind): $\exists \vec{x} \, \mathsf{E}(\vec{x})$ is $(\forall x_0)(\exists x_1)(\forall x_2) \cdots \mathsf{E}(x_0, x_1, x_2, \dots)$.
- Can be interpreted *via* a game with two players, \forall (who plays all x_{2n}) and \exists (who plays all x_{2n+1}). Hence \forall (resp., \exists) wins iff $\mathsf{E}(x_0,x_1,x_2,\dots)$ (resp., $\neg\mathsf{E}(x_0,x_1,x_2,\dots)$).
- The game above has "clock" ω .
- The "infinitely deep language" $\mathcal{M}_{\kappa\lambda}(\mathbf{v})$ contains more general formulas than the $\exists \vec{x} \, \mathsf{E}(\vec{x})$ above, now clocked by posets which are simultaneously trees and meet-semilattices, in which every node has $<\kappa$ upper covers and every branch has length a successor $<\lambda$.

Projective classes as images of accessible functors

Tuuri's Interpolation Theorem

- Idea: extend $\mathcal{L}_{\kappa\lambda}$ in such a way that infinite alternations of quantifiers be enabled.
- Game formula (of Gale-Stewart kind): $\exists \vec{x} E(\vec{x})$ is $(\forall x_0)(\exists x_1)(\forall x_2)\cdots E(x_0, x_1, x_2, \dots).$
- \blacksquare Can be interpreted *via* a game with two players, \forall (who plays all x_{2n}) and \exists (who plays all x_{2n+1}). Hence \forall (resp., \exists) wins iff $E(x_0, x_1, x_2, ...)$ (resp., $\neg E(x_0, x_1, x_2, ...)$).
- The game above has "clock" ω .
- The "infinitely deep language" $\mathcal{M}_{\kappa\lambda}(\mathbf{v})$ contains more general formulas than the $\partial \vec{x} E(\vec{x})$ above, now clocked by posets which are simultaneously trees and meet-semilattices, in which every node has $< \kappa$ upper covers and every branch has length a successor $< \lambda$.
- Satisfaction of an $\mathcal{M}_{\kappa\lambda}(\mathbf{v})$ -statement is expressed *via* the existence of a winning strategy in the associated game.

Tuuri's Interpolation Theorem

Projective classes as images of accessible functors

Motivatio

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth Theorem (Tuuri 1992)

Let κ be a regular cardinal, let \mathbf{v} be a κ -ary vocabulary, set $\lambda \stackrel{\mathrm{def}}{=} \sup\{\kappa^{\alpha} \mid \alpha < \kappa\}$, and let E and F be $\mathscr{L}_{\kappa^{+}\kappa}(\mathbf{v})$ -sentences such that the conjunction $\mathsf{E} \wedge \mathsf{F}$ has no \mathbf{v} -model. Then there exists an $\mathscr{M}_{\lambda^{+}\lambda}(\mathbf{v})$ -sentence G, with vocabulary the intersection of the vocabularies of E and F, such that $\models (\mathsf{E} \Rightarrow \mathsf{G})$ and $\models (\mathsf{F} \Rightarrow \sim \mathsf{G})$.

Tuuri's Interpolation Theorem

Projective classes as images of accessible functors

Motivatio

Elementary projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth

Theorem (Tuuri 1992)

Let κ be a regular cardinal, let \mathbf{v} be a κ -ary vocabulary, set $\lambda \stackrel{\mathrm{def}}{=} \sup\{\kappa^{\alpha} \mid \alpha < \kappa\}$, and let E and F be $\mathscr{L}_{\kappa^{+}\kappa}(\mathbf{v})$ -sentences such that the conjunction E \wedge F has no \mathbf{v} -model. Then there exists an $\mathscr{M}_{\lambda^{+}\lambda}(\mathbf{v})$ -sentence G, with vocabulary the intersection of the vocabularies of E and F, such that \models (E \Rightarrow G) and \models (F \Rightarrow \sim G).

■ Here, \sim G denotes the sentence obtained by interchanging \bigvee and \bigwedge , \exists and \forall , A and \neg A in the expression of G by a tree-clocked game; it implies the usual negation \neg G (which, however, is no longer an $\mathcal{M}_{\lambda+\lambda}$ -sentence).

Tuuri's Interpolation Theorem

Projective classes as images of accessible functors

Motivatio

projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems

Theorem (Tuuri 1992)

Let κ be a regular cardinal, let \mathbf{v} be a κ -ary vocabulary, set $\lambda \stackrel{\mathrm{def}}{=} \sup\{\kappa^{\alpha} \mid \alpha < \kappa\}$, and let E and F be $\mathscr{L}_{\kappa^{+}\kappa}(\mathbf{v})$ -sentences such that the conjunction E \wedge F has no \mathbf{v} -model. Then there exists an $\mathscr{M}_{\lambda^{+}\lambda}(\mathbf{v})$ -sentence G, with vocabulary the intersection of the vocabularies of E and F, such that \models (E \Rightarrow G) and \models (F \Rightarrow \sim G).

- Here, \sim G denotes the sentence obtained by interchanging \bigvee and \bigwedge , \exists and \forall , A and \neg A in the expression of G by a tree-clocked game; it implies the usual negation \neg G (which, however, is no longer an $\mathcal{M}_{\lambda+\lambda}$ -sentence).
- By a 1971 counterexample due to Malitz, $\mathcal{M}_{\lambda^+\lambda}$ cannot be replaced by $\mathcal{L}_{\infty\infty}$ in the statement of Tuuri's Theorem.

Projective and co-projective

Projective classes as images of accessible functors

Motivatio

Elementary projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth

Corollary

Let \mathbf{v} be a vocabulary. Then for all classes \mathcal{A} and \mathcal{B} of \mathbf{v} -structures, if \mathcal{A} is $\mathrm{PC}(\mathscr{L}_{\infty\infty})$, \mathcal{B} is $\mathrm{co\text{-}PC}(\mathscr{L}_{\infty\infty})$, and $\mathcal{A}\subseteq\mathcal{B}$, then there exists an $\mathscr{M}_{\infty\infty}(\mathbf{v})$ -sentence G such that $\mathcal{A}\subseteq \mathbf{Mod}_{\mathbf{v}}(G)\subseteq\mathcal{B}$.

Projective and co-projective

Projective classes as images of accessible functors

Motivatio

Elementary projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth

Corollary

Let $\mathbf v$ be a vocabulary. Then for all classes $\mathcal A$ and $\mathcal B$ of $\mathbf v$ -structures, if $\mathcal A$ is $\mathrm{PC}(\mathscr L_{\infty\infty})$, $\mathcal B$ is $\mathrm{co\text{-}PC}(\mathscr L_{\infty\infty})$, and $\mathcal A\subseteq \mathcal B$, then there exists an $\mathscr M_{\infty\infty}(\mathbf v)$ -sentence G such that $\mathcal A\subseteq \mathbf{Mod_v}(G)\subseteq \mathcal B$.

Corollary

In order to prove that a $PC(\mathcal{L}_{\infty\infty})$ class \mathcal{C} of **v**-structures is not $\text{co-PC}(\mathcal{L}_{\infty\infty})$, it suffices to prove that \mathcal{C} is not $\mathcal{M}_{\infty\infty}(\mathbf{v})$ -definable.

Projective and co-projective

Projective classes as images of accessible functors

Motivatio

Elementary projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth

Corollary

Let \mathbf{v} be a vocabulary. Then for all classes \mathcal{A} and \mathcal{B} of \mathbf{v} -structures, if \mathcal{A} is $\mathrm{PC}(\mathscr{L}_{\infty\infty})$, \mathcal{B} is co- $\mathrm{PC}(\mathscr{L}_{\infty\infty})$, and $\mathcal{A}\subseteq\mathcal{B}$, then there exists an $\mathscr{M}_{\infty\infty}(\mathbf{v})$ -sentence G such that $\mathcal{A}\subseteq \mathbf{Mod}_{\mathbf{v}}(G)\subseteq\mathcal{B}$.

Corollary

In order to prove that a $PC(\mathscr{L}_{\infty\infty})$ class \mathscr{C} of **v**-structures is not $\operatorname{co-PC}(\mathscr{L}_{\infty\infty})$, it suffices to prove that \mathscr{C} is not $\mathscr{M}_{\infty\infty}(\mathbf{v})$ -definable.

But then, what is the advantage of $\mathcal{M}_{\infty\infty}$ -definable over $PC(\mathcal{L}_{\infty\infty})$ -definable or $co-PC(\mathcal{L}_{\infty\infty})$ -definable?

That's back-and-forth!

Projective classes as images of accessible functors

Motivation

Elementary projective

Tuuri's Interpolation

Karttunen's back-and-forth systems There are several non-equivalent definitions of back-and-forth between models (extended to categorical model theory by Beke and Rosický in 2018).

That's back-and-forth!

Projective classes as images of accessible functors

Karttunen's

systems

There are several non-equivalent definitions of back-and-forth between models (extended to categorical model theory by Beke and Rosický in 2018).

Definition (Karttunen 1979)

For a regular cardinal λ , a λ -back-and-forth system between models M and N over a vocabulary \mathbf{v} consists of a poset (\mathcal{F}, \preceq) , together with a function $f \mapsto \overline{f}$ with domain \mathcal{F} , such that each $\overline{f} : \mathbf{d}(f) \stackrel{\cong}{\to} \mathbf{r}(f)$ with $\mathbf{d}(f) \leqslant M$ and $\mathbf{r}(f) \leqslant N$, and the following conditions hold:

- 1 $f \leq g$ implies $\overline{f} \subseteq \overline{g}$;
- **2** (\mathfrak{F}, \preceq) is λ -inductive;
- whenever $f \in \mathcal{F}$ and $x \in M$ (resp., $y \in N$), there is $g \in \mathcal{F}$ such that $f \subseteq g$ and $x \in \mathbf{d}(g)$ (resp., $y \in \mathbf{r}(g)$).

We then write $\mathbf{M} \leftrightarrows_{\lambda} \mathbf{N}$.

←□ → ←□ → ←□ → ←□ → ←□

$\mathcal{M}_{\infty\lambda}$ versus back-and-forth

Projective classes as images of accessible functors

Theorem (Karttunen 1979)

Let λ be a regular cardinal and let \boldsymbol{M} and \boldsymbol{N} be structures over a vocabulary \boldsymbol{v} . If $\boldsymbol{M} \hookrightarrow_{\lambda} \boldsymbol{N}$, then \boldsymbol{M} and \boldsymbol{N} satisfy the same $\mathcal{M}_{\infty\lambda}(\boldsymbol{v})$ -sentences.

Elementary, projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems

$\mathcal{M}_{\infty\lambda}$ versus back-and-forth

Projective classes as images of accessible functors

Theorem (Karttunen 1979)

Let λ be a regular cardinal and let \boldsymbol{M} and \boldsymbol{N} be structures over a vocabulary \mathbf{v} . If $\boldsymbol{M} \leftrightarrows_{\lambda} \boldsymbol{N}$, then \boldsymbol{M} and \boldsymbol{N} satisfy the same $\mathcal{M}_{\infty\lambda}(\mathbf{v})$ -sentences.

■ Extended by Karttunen to the even more general languages $\mathcal{N}_{\infty\lambda}$.

Flementary

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems

$\mathcal{M}_{\infty\lambda}$ versus back-and-forth

Projective classes as images of accessible functors

Karttunen's back-and-forth

systems

Theorem (Karttunen 1979)

Let λ be a regular cardinal and let M and N be structures over a vocabulary **v**. If $\mathbf{M} \leftrightarrows_{\lambda} \mathbf{N}$, then \mathbf{M} and \mathbf{N} satisfy the same $\mathcal{M}_{\infty\lambda}(\mathbf{v})$ -sentences.

- Extended by Karttunen to the even more general languages $\mathcal{N}_{\infty\lambda}$.
- The syntax for $\mathcal{N}_{\infty\lambda}$ is far more complex than for $\mathcal{M}_{\infty\lambda}$, the semantics are even trickier (not unique!).

Projective classes as images of accessible functors

By the above,

Motivation

Elementary, projective

Tuuri's

Interpolation Theorem

Karttunen's back-and-forth systems

Projective classes as images of accessible functors

By the above,

Proposition

In order to prove that a $PC(\mathscr{L}_{\infty\infty})$ class \mathscr{C} of **v**-structures is not co- $PC(\mathscr{L}_{\infty\infty})$, it suffices to prove that it is not closed under $\leftrightarrows_{\lambda}$ for a suitable regular cardinal λ .

Elementary

Tuuri's

Interpolation Theorem

Karttunen's back-and-forth systems

Projective classes as images of accessible functors

By the above,

Proposition

In order to prove that a $PC(\mathscr{L}_{\infty\infty})$ class \mathfrak{C} of **v**-structures is not co- $PC(\mathscr{L}_{\infty\infty})$, it suffices to prove that it is not closed under $\leftrightarrows_{\lambda}$ for a suitable regular cardinal λ .

■ Applies to earlier introduced examples $Id_c(unital\ rings)$, $Id_c(Abelian\ \ell$ -groups), duals of real spectra of commutative unital rings, and many others: each of those classes fails to be closed under a suitable $\leftrightarrows_{\lambda}$.

_.

Elementary

Tuuri's Interpolation Theorem

Projective classes as images of accessible functors

Karttunen's back-and-forth

systems

By the above.

Proposition

In order to prove that a $PC(\mathscr{L}_{\infty\infty})$ class \mathscr{C} of **v**-structures is not co-PC($\mathscr{L}_{\infty\infty}$), it suffices to prove that it is not closed under $\leftrightarrows_{\lambda}$ for a suitable regular cardinal λ .

- - Applies to earlier introduced examples Id_c(unital rings), $Id_c(Abelian \ell$ -groups), duals of real spectra of commutative unital rings, and many others: each of those classes fails to be closed under a suitable $\leftrightarrows_{\lambda}$.
 - The real trouble is: find a back-and-forth system $\mathfrak{F}: \mathbf{M} \leftrightarrows_{\lambda} \mathbf{N}$ with $\mathbf{M} \in \mathfrak{C}$ and $\mathbf{N} \notin \mathfrak{C}$ (where \mathfrak{C} is the given class).

Projective classes as images of accessible functors

Motivation

Elementary projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems ■ In many examples, such as $\Phi(\text{unital rings})$ and $\Phi(\text{Abelian } \ell\text{-groups})$ (where $\Phi = \mathsf{Id_c}$), $\leftrightarrows_{\lambda}$ arises from some λ -continuous functor $\Gamma : [\kappa]^{\mathrm{inj}} \to \mathfrak{C}$ with $\kappa \ge \lambda$.

Projective classes as images of accessible functors

Motivatio

Elementary projective

Tuuri's Interpolatior Theorem

Karttunen's back-and-forth systems ■ In many examples, such as $\Phi(\text{unital rings})$ and $\Phi(\text{Abelian }\ell\text{-groups})$ (where $\Phi=\text{Id}_c$), \leftrightarrows_λ arises from some λ -continuous functor $\Gamma\colon [\kappa]^{\text{inj}}\to \mathcal{C}$ with $\kappa\ge\lambda$. Here, $[\kappa]^{\text{inj}}$ denotes the category of all subsets of κ with one-to-one functions.

Projective classes as images of accessible functors

Motivatio

Elementary projective

Tuuri's Interpolatior Theorem

Karttunen's back-and-forth systems ■ In many examples, such as $\Phi(\text{unital rings})$ and $\Phi(\text{Abelian }\ell\text{-groups})$ (where $\Phi=\text{Id}_c$), \leftrightarrows_λ arises from some λ -continuous functor $\Gamma\colon [\kappa]^{\text{inj}}\to \mathfrak{C}$ with $\kappa\ge\lambda$. Here, $[\kappa]^{\text{inj}}$ denotes the category of all subsets of κ with one-to-one functions. In both examples above, $\kappa=\lambda^{++}$.

Projective classes as images of accessible functors

Motivatio

projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems ■ In many examples, such as $\Phi(\text{unital rings})$ and $\Phi(\text{Abelian }\ell\text{-groups})$ (where $\Phi=\text{Id}_c$), \leftrightarrows_λ arises from some λ -continuous functor $\Gamma\colon [\kappa]^{\text{inj}}\to \mathfrak{C}$ with $\kappa\ge\lambda$. Here, $[\kappa]^{\text{inj}}$ denotes the category of all subsets of κ with one-to-one functions. In both examples above, $\kappa=\lambda^{++}$.

- It is often the case that for $X \subseteq \kappa$ with card $X < \lambda$, $\Gamma(X) = \Phi(\prod (S_{|u|} \mid u \in X^{\subseteq P}))$ (a "condensate"), where:
 - 1 P is a suitable finite lattice (in both examples above, $P = \{0,1\}^3$; also, this method provably fails for arbitrary finite bounded posets!);

 - $|u| \stackrel{\text{def}}{=} \bigvee \text{dom } u \text{ whenever } u \in X^{\subseteq P};$
 - 4 \vec{S} is a non-commutative diagram, indexed by P, such that, for the given functor Φ , the diagram $\Phi(\vec{S})$ is commutative.

Projective classes as images of accessible functors

Motivatio

Tuuri's

Interpolation Theorem

Karttunen's back-and-forth systems

- In many examples, such as $\Phi(\text{unital rings})$ and $\Phi(\text{Abelian }\ell\text{-groups})$ (where $\Phi=\text{Id}_c$), \leftrightarrows_λ arises from some λ -continuous functor $\Gamma\colon [\kappa]^{\text{inj}}\to \mathcal{C}$ with $\kappa\ge\lambda$. Here, $[\kappa]^{\text{inj}}$ denotes the category of all subsets of κ with one-to-one functions. In both examples above, $\kappa=\lambda^{++}$.
- It is often the case that for $X \subseteq \kappa$ with card $X < \lambda$, $\Gamma(X) = \Phi(\prod (S_{|u|} \mid u \in X^{\subseteq P}))$ (a "condensate"), where:
 - **1** P is a suitable finite lattice (in both examples above, $P = \{0,1\}^3$; also, this method provably fails for arbitrary finite bounded posets!);
 - $Z^{\subseteq P} \stackrel{\mathrm{def}}{=} \bigcup \{X^D \mid D \subseteq P\};$
 - $|u| \stackrel{\text{def}}{=} \bigvee \text{dom } u \text{ whenever } u \in X^{\subseteq P};$
 - 4 \vec{S} is a non-commutative diagram, indexed by P, such that, for the given functor Φ , the diagram $\Phi(\vec{S})$ is commutative.
- Finding P and \vec{S} is usually hard, very much connected to the algebraic and combinatorial data of the given problem.

The diagram \vec{S} for Id_c(Abelian ℓ -groups)

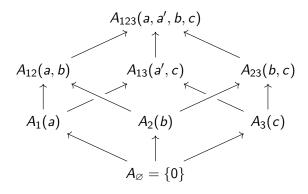
Projective classes as images of accessible functors

Motivatio

Elementa

Tuuri's Interpolation

Theorem



$$0 \le a \le a' \le 2a$$
; $b \ge 0$; $c \ge 0$.
 $A_1(a) \to A_{13}(a', c)$ via $a \mapsto a'$.

A further example with Abelian ℓ -groups

Projective classes as images of accessible functors

Motivation

Elementary

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems ■ Denote by \mathcal{A} the class of all Abelian ℓ -groups, and by $\mathrm{Id}_{\mathsf{c}}\,\mathcal{A}$ the class of all isomorphic copies of $\mathrm{Id}_{\mathsf{c}}\,\mathcal{G}$ where $\mathcal{G} \in \mathcal{A}$. It is $\mathrm{PC}(\mathscr{L}_{\omega_1\omega})$, but, by the above, not $\mathrm{co}\text{-PC}(\mathscr{L}_{\infty\infty})$.

A further example with Abelian ℓ-groups

Projective classes as images of accessible functors

Motivation

Elementary projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems

- Denote by \mathcal{A} the class of all Abelian ℓ -groups, and by $\operatorname{Id}_{\operatorname{c}} \mathcal{A}$ the class of all isomorphic copies of $\operatorname{Id}_{\operatorname{c}} \mathcal{G}$ where $\mathcal{G} \in \mathcal{A}$. It is $\operatorname{PC}(\mathcal{L}_{\omega_1\omega})$, but, by the above, not $\operatorname{co-PC}(\mathcal{L}_{\infty\infty})$.
- A bounded distributive lattice D satisfies Ploščica's Condition if for every $a \in D$ and every collection $(\mathfrak{m}_i \mid i \in I)$ of maximal ideals of $\downarrow a$, $\downarrow a/\bigcap_i \mathfrak{m}_i$ has cardinality $\leq 2^{\operatorname{card} I}$ (careful with definition of $\downarrow a/J$).

A further example with Abelian ℓ-groups

Projective classes as images of accessible functors

Motivatio

projective

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems ■ Denote by \mathcal{A} the class of all Abelian ℓ -groups, and by $\operatorname{Id}_{\mathsf{c}} \mathcal{A}$ the class of all isomorphic copies of $\operatorname{Id}_{\mathsf{c}} \mathcal{G}$ where $\mathcal{G} \in \mathcal{A}$. It is $\operatorname{PC}(\mathscr{L}_{\omega_1\omega})$, but, by the above, not $\operatorname{co-PC}(\mathscr{L}_{\infty\infty})$.

A bounded distributive lattice D satisfies Ploščica's Condition if for every $a \in D$ and every collection $(\mathfrak{m}_i \mid i \in I)$ of maximal ideals of $\downarrow a$, $\downarrow a/\bigcap_i \mathfrak{m}_i$ has cardinality $< 2^{\operatorname{card} I}$ (careful with definition of $\downarrow a/J$).

Theorem (Ploščica 2021)

Every member of $Id_c A$ satisfies Ploščica's Condition.

A further example with Abelian ℓ -groups

Projective classes as images of accessible functors

Motivatio

Tuuri's Interpolation Theorem

Karttunen's back-and-forth systems ■ Denote by \mathcal{A} the class of all Abelian ℓ -groups, and by $\mathrm{Id}_{\mathsf{c}}\,\mathcal{A}$ the class of all isomorphic copies of $\mathrm{Id}_{\mathsf{c}}\,G$ where $G \in \mathcal{A}$. It is $\mathrm{PC}(\mathscr{L}_{\omega_1\omega})$, but, by the above, not $\mathrm{co\text{-}PC}(\mathscr{L}_{\infty\infty})$.

■ A bounded distributive lattice D satisfies Ploščica's Condition if for every $a \in D$ and every collection $(\mathfrak{m}_i \mid i \in I)$ of maximal ideals of $\downarrow a$, $\downarrow a/\bigcap_i \mathfrak{m}_i$ has cardinality $\leq 2^{\operatorname{card} I}$ (careful with definition of $\downarrow a/J$).

Theorem (Ploščica 2021)

Every member of $Id_c A$ satisfies Ploščica's Condition.

Theorem (W 2022, under a fragment of GCH)

There exists a bounded distributive lattice, of cardinality \aleph_4 , satisfying all known $\mathscr{L}_{\omega_1\omega_1}$ properties of all members of $\operatorname{Id}_{\operatorname{c}} \mathscr{A}$ together with Ploščica's Condition, but not in $\operatorname{Id}_{\operatorname{c}} \mathscr{A}$.

Projective classes as images of accessible functors

Motivation

Elementary,

Tuuri's Interpolation

Theorem

Karttunen's back-and-forth systems Thanks for your attention!