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We are given categories A and B, together with a functor
Anti- $: A—B.
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m We wish to “describe” the range of ® (i.e.,

mg® I (B | (34)(B = d(A))}).

Is rng ® “tractable”?

Tractability usually understood in logical sense: typically,
describability via a class of (possibly infinitary) first-order
sentences.

m We show how to prove that many “natural” functor ranges
are intractable in the above sense.
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m Torsion groups are also tractable within groups:

(¥x) \)(/neN (x"=1)

(describability by a single £, sentence).
m Refinement monoids are tractable within commutative
monoids (again via a single first-order sentence):

(Vao, a1, bo, b1) (a0 + a1 = bo + b1 = (oo, co1, €10, €11)
(ao =cpo+co1 &ar=cio+cn1 &
bo = coo + c10 & b1 = co1 + c11)) -
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possibly 0 for functions). Example: (0, 1,
Anti- ( ) ((0) (0) (2) (2) (2))
clementarity (“language of partially ordered unital rings").

m terms are formal compositions of function symbols of X,
evaluated at variables (e.g., x + 1, x - y, and so on).

m Atomic formulas are the Rt, where R is a relation symbol
of ¥ and t'is a sequence of terms with length the arity
of R, or s =t for terms s and t.

m First-order formulas are obtained by closing atomic
formulas under finite conjunctions / disjunctions,
negations, and 3 / V quantifiers.

m For infinite cardinals with kK > A, %, is defined similarly,
with conjunctions / disjunctions of less than x formulas
and quantifiers over strings of less than \ variables.
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Anti-
elementarity

m Finiteness can be expressed by a single .Z,,,., sentence:

m Countability can be expressed by a single .Z,,,.,, sentence:

(30x)i< ) () W/ (= x0).

m Similar for well-foundedness:

(V(Xi)i<w) (/X\I.<w(xi+1 < x) = \X/’.<W(Xi+1 = Xi)) :

m Archimedean property (for partially ordered Abelian
groups) can be expressed by an £, sentence:

(Vx,y) (/X\Kw(nx <y)=x< 0) .
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A categorical statement implying elementarity

Anti-
dlmanaiy m For any set Q, Bi,j(Q2) denotes the category of all subsets

St of € with one-to-one functions.

" m For any first-order language X, Str X denotes the class of
elementarity all X-structures.

m A map f: A— B between X-structures is an

Zoa-elementary embedding if A = ¢(3) < B = ¢(f3)
whenever p € £ and J'is a list of parameters from A.

Proposition (W 2019)

Let A be an infinite regular cardinal, let  be a first-order
language, let Q be a set, and let I': Pi,j(Q2) — StrX be a
A-continuous functor. Then for every f: X — Y in Pinj(Q)
with card X > A, I'(f) is an £ x-elementary embedding
from ['(X) into I'(Y).
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functors

A class C of objects, in a category 8, is anti-elementary if there
Anti- are arbitrarily large cardinals A < x with A-continuous functors
clementarty I Pinj(x) — 8 such that F(A) € € and (k) ¢ C.

m If § consists of X-structures, then, by the Proposition
above, ['(A) is an Z,ox-elementary submodel of I'(k).

m In particular, € is not closed under £, \-elementary
equivalence; hence it is not the class of models of any
class of £, )-sentences.

m We shall outline a method making it possible to establish

anti-elementarity for many classes. Those classes will
always be ranges of functors.
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A few useful categories

Anti-
elementarity
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functors

def C : :
m DLaty = category of all distributive lattices with zero,
P-scaled with O-lattice homomorphisms.

Boolean
algebras d f . . .
o m Slaty = category of all (V,0)-semilattices, with

(V,0)-homomorphisms.

def . . .
m CMon = category of all commutative monoids with
monoid homomorphisms.



Functors for which the method works

Anti-
elementarity
for ranges of

functors Theorem (W 2019)

The ranges of the following functors are all anti-elementary:

Csc: § — DLatg, G > lattice of all order-convex
P-scaled
Boolean f-subgroups of the ¢-group G; for any class G of /-groups
algebras o o .
y containing all Archimedean ones.

Idc: R — SlLatg, R+ semilattice of all finitely generated
two-sided ideals of R, for many classes R of unital rings,
including all unital regular rings and all unital rings.

V: R — CMon, R — nonstable Kp-theory V(R) of R, for
many classes R of unital rings, including all unital regular
rings and all C*-algebras of real rank zero.
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General (categorical) method

Anti-
elementarity
for ranges of

functors

m We are given a functor ®: A — B. We want to prove that
the range of ® is anti-elementary.
m We assume that there are a poset P of a certain kind
(typically a finite lattice) and a (necessarily
Bootean non-commutative) P-indexed diagram A'in A, such that

algebras

®A’ (now a P'-indexed diagram) is a commutative
diagram for every set | (we say that A is ®-commutative);

There is no commutative P-indexed diagram X in A such
that PA = O X.

Theorem (W 2019)

Under quite general conditions, the above implies that the
range of ® is anti-elementary.
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e|enf\e"ntti;,;ty We are given the poset P (say a lattice with 0) and the

e non-commutative diagram A as above.

m For any large enough infinite regular cardinal A\, we need
to find a cardinal k > X and a A-continuous functor

o [ Pinj(x) — B such that [(A) € rmg® and (k) ¢ rng ®.

Boolean m There is an explicit description of that functor ', namely
algebras def

F(U) = F(P(U)) ®3 A for every set U.
m Easy part of that description:

P(U) déf{(a,x)yae P, x:X— U, X finite, a:\/x}

with (a,x) < (b,y) iff a < b and y extends x, and
additional map 9: P(U) — P, (a,x) — a.

m Owing to an additional property of P(U) (we say that it is
a "pseudo join-semilattice”), we say that (P(U), 9) is said
to be a norm-covering of P
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Anti- . .
elementarity m For a norm-covering 9: X — P (i.e., a pseudo
for ranges of

functors join-semilattice X together with an order-preserving map
0: X — P), construct a structure F(X).

m This structure is a Boolean algebra B, augmented by a
P-indexed collection of ideals of B satisfying certain

P-scaled

32‘;';22 conditions. We called such structures P-scaled Boolean
algebras (Gillibert and Wehrung, Springer LNM 2029,
2011).

m Formally, a structure B = (B,(B() | pc P))isa
P-scaled Boolean algebra if B is a Boolean algebra,
each B(P) is an ideal of B, 1 € \/ . B(P), and for all
p.ge P, BPNB@ =\ _ B (\/ within Id B).

m The category Boolp, of all P-scaled Boolean algebras with
morphisms defined as Boolean algebra homomorphisms
©: A — B with each ¢[A(P)] C B(P) is w-accessible.
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F(X) in more detail

Anti-
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functors

m Norm-covering: X is a “pseudo join-semilattice” and
0: X — P is order-preserving.

— m F(X) is the Boolean algebra defined by generators &, for

Bockean ue X, and relations 1 = \/, .x W, GTAV=\/

those are finite joins, because X is a pseudo

join-semilattice.

m For each p € P, F(X)() is the ideal of F(X) generated by
{d|p<ou}.

= Then F(X) ¥ (F(X), (F(X)®) | p € P)) is a P-scaled
Boolean algebra.

quvW
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e|enf\e"ntti;,;ty m For simplicity's sake, suppose that P is a finite poset.

e mLet A= (A, (AP | p e P)) be a P-scaled Boolean

algebra. For any a € Ult A (:= ultrafilter space of A),

there is a largest p € P such that an A(P) =# &; denote it

P-scaled by ‘a|A' o

Boclean m For any family S = (S, | p € P) in a category 8, with
enough products, we set

ARSY H(SlalA |a € UltA) (a box condensate of S).

m Can we extend this to a functor _ X § (in case Sisa
diagram — so there are transition morphisms S, — S4)?

m The problem is that for our needs, the diagram S may not
be commutative: that is, §(p, g) may not be a singleton
(for p < qin P).
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clementariy m Now we fix a category T and a functor : § — 7.

for ranges of = . .
i m Let P be a poset, let S be a (not necessarily commutative)

P-indexed diagram in §, and let A be an infinite regular

cardinal. We assume that S is ®-commutative (i.e., ®S’ is

a commutative diagram for every set /).

P-scaled
e m For a morphism ¢: A — B in Boolp, ¢ XIS can be

e defined as a nonempty set of morphisms AKX S+ BKXS
(not necessarily a singleton).

= However, since S is d-commutative, CD go X §) is a
singleton.

m We denote this singleton by ¢ ®j‘> S if A and B are both
A-small.

mIn general we complete under A-directed colimits:
A®g5—|.m(U®g5 | U< A)small). Ay Sis a
®-condensate of S.
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The Boosting Lemma

Anti-
elementarity
for ranges of

functors

Now back to the functor I' (with A a given infinite regular
cardinal).

m Context: : A — B is a functor (with enough products
P-scaled and colimits...), Ais a ®-commutative P-indexed
elzstizs diagram in A such that VX P-indexed commutative
diagram in A, CDE% X,

m [(U) % F(P(U)) ®) A. Hence, if card U < ), then

[(U) = (F(P(U)) R A) € g ®.

The Boosting Lemma (W 2019)

Under quite general conditions, I'(\) € rng ® as well.
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The Armature Lemma and CLL

Anti-
elementarity By using (Ramsey-like) infinite combinatorial properties of the

for ranges of

functors poset P, we can extend Gillibert and Wehrung's original
Armature Lemma and CLL, thus obtaining:

Theorem (W 2019)

P-scaled

oo Under quite general conditions and if P is a finite lattice, there
exists K > A such that (k) ¢ rng ®. In particular, rng ® is
anti-elementary.

m If P has order-dimension n and A = X, then one can take
k= Natn-1.

m For most examples under discussion,
P =%[3] = {2,1,2,3,12,13,23,123}.

m It has order-dimension 3, thus one can take kK = Ny 4o.
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The functor V
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elementarity
for ranges of

Ranctors m For any ring R, V(R) (“nonstable Ko-theory of R") is the
set of Murray - von Neumann equivalence classes of all
idempotent matrices over R, with addition defined by

[a] + [b] & [(g 2)] .

m It is a commutative monoid, conical
(x+y=0=x=y=0)as a rule.

Illustration on
nonstable
Ko-theory

m V extends naturally to a functor, from the category of all
rings with ring homomorphisms to the category CMon of
all commutative monoids with monoid homomorphisms.
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The diagrams D and /-?k

Anti-

: f f f
Rl w On Z7: e(x) & (x,x), s(x.y) © (y.x), p(x.y) € x+.
functors
m On any field k: e(x) o (x,x), s(x,y) o (y,x),

h(x,y) € <3 3)
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The diagrams D and /-?k

Anti- def

e = On Z+: e(x) & (x,x), s(x,y) € (y, ) p(x V)& x4y,

functors
m On any field k: e(x) dof (x,x), S(X,y) = (}/aX):
def (x O
My (k)
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Basic properties of D and ﬁk

Anti- = . . . . . .
dlarerety D is a commutative diagram of commutative monoids with

et order-unit (use canonical units: 1 for Z*, (1,1) for (Z1)>?).

5 - L x 0 y 0
m Ry is not a commutative diagram (for (0 y) #* (O x)

as a rule; that is, hos # h).

m V(Ry) = D canonically.

m In fact, the diagram Ry is V-commutative, that is, V(R/)
is a commutative diagram for every set /.

m A ring R is V-semiprimitive if [a] L [b] implies that
ab = 0, for all idempotent matrices a and b over R. Every
semiprimitive exchange ring (thus every von Neumann
regular ring and every C*-algebra of real rank zero) is
V-semiprimitive (W 2013).

m There is no commutative diagram R, of V-semiprimitive
rings, such that V(R) = V(Ry) (W 2013).
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Anti-elementarity for the functor V

Anti-
elementarity
for ranges of

functors

Denote by Ring the category of all unital rings and unital ring
homomorphisms.

Theorem (W 2019)

Let k be a field and let R be a subcategory of Ring such that
llustration on All objects and arrows of Ry belong to R;
P Every ring in R is V-semiprimitive;
R is closed under products within Ring;
A for all large enough regular cardinals A, R has all
A-directed colimits and V preserves those.
Then V(R) is anti-elementary.
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Anti-elementarity for rings (cont'd)

Anti-
elementarity
for ranges of

functors In particular, V(von Neumann regular rings),
V(unit-regular rings), V(C*-algebras of real rank zero) are
all anti-elementary.

m For a field k, the category LocMaty of all locally matricial
k-algebras is not closed under countable products
llustration on (within Ring). In fact, the sequence (Ma,(k) | n € N) has

nonstable

Ko-theory no product within the category LocMat;,.

m Hence, the result above does not apply to LocMaty a
priori.

m We still know that V(LocMaty) is not closed under

elementary extensions (thus not first-order; combine
Elliott 1976 and W 1998).
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