Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable *K*₀-theory

Anti-elementarity for ranges of functors

Friedrich Wehrung

Université de Caen LMNO, CNRS UMR 6139 Département de Mathématiques 14032 Caen cedex *E-mail:* friedrich.wehrung01@unicaen.fr *URL:* http://wehrungf.users.lmno.cnrs.fr

September 2019

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Main references

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable *K*₀-theory

- P. Gillibert and F. Wehrung, From Objects to Diagrams for Ranges of Functors, Lecture Notes in Mathematics, vol. 2029, Springer, Heidelberg, 2011.
- F. Wehrung, From non-commutative diagrams to anti-elementary classes, hal-02000602, preprint, 2019

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable *K*₀-theory • We are given categories \mathcal{A} and \mathcal{B} , together with a functor $\Phi \colon A \to B$.

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable *K*₀-theory • We are given categories \mathcal{A} and \mathcal{B} , together with a functor $\Phi \colon A \to B$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• We wish to "describe" the range of Φ (i.e., rng $\Phi \stackrel{\text{def}}{=} \{B \mid (\exists A)(B \cong \Phi(A))\}\}$.

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable *K*₀-theory • We are given categories \mathcal{A} and \mathcal{B} , together with a functor $\Phi \colon A \to B$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- We wish to "describe" the range of Φ (i.e., rng $\Phi \stackrel{\text{def}}{=} \{B \mid (\exists A)(B \cong \Phi(A))\}\}$.
- Is rng Φ "tractable" ?

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable K₀-theory

- We are given categories \mathcal{A} and \mathcal{B} , together with a functor $\Phi \colon A \to B$.
- We wish to "describe" the range of Φ (i.e., rng $\Phi \stackrel{\text{def}}{=} \{B \mid (\exists A)(B \cong \Phi(A))\}\}$.
- Is rng Φ "tractable" ?
- Tractability usually understood in logical sense: typically, describability via a class of (possibly infinitary) first-order sentences.

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable K₀-theory

- We are given categories \mathcal{A} and \mathcal{B} , together with a functor $\Phi \colon A \to B$.
- We wish to "describe" the range of Φ (i.e., rng $\Phi \stackrel{\text{def}}{=} \{B \mid (\exists A)(B \cong \Phi(A))\}\}$.
- Is rng Φ "tractable" ?
- Tractability usually understood in logical sense: typically, describability via a class of (possibly infinitary) first-order sentences.
- We show how to prove that many "natural" functor ranges are intractable in the above sense.

Examples illustrating tractability

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable *K*₀-theory Torsion-free groups are tractable within groups:

$$(\forall x)(x^n = 1 \Rightarrow x = 1), \quad n = 1, 2, 3, \dots$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

(describability by a first-order theory).

Examples illustrating tractability

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable *K*₀-theory Torsion-free groups are tractable within groups:

$$(\forall x)(x^n = 1 \Rightarrow x = 1), \quad n = 1, 2, 3, \dots$$

(describability by a first-order theory).

Torsion groups are also tractable within groups:

$$(\forall x) \bigvee_{n \in \mathbb{N}} (x^n = 1)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

(describability by a single $\mathscr{L}_{\omega_1\omega}$ sentence).

Examples illustrating tractability

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable *K*₀-theory Torsion-free groups are tractable within groups:

$$(\forall x)(x^n = 1 \Rightarrow x = 1), \quad n = 1, 2, 3, \dots$$

(describability by a first-order theory).

Torsion groups are also tractable within groups:

$$(\forall x) \bigvee_{n \in \mathbb{N}} (x^n = 1)$$

(describability by a single $\mathscr{L}_{\omega_1\omega}$ sentence).

Refinement monoids are tractable within commutative monoids (again via a single first-order sentence):

$$egin{aligned} &(orall a_0, a_1, b_0, b_1)ig(a_0 + a_1 = b_0 + b_1 \Rightarrow (\exists c_{00}, c_{01}, c_{10}, c_{11})\ &(a_0 = c_{00} + c_{01} \& a_1 = c_{10} + c_{11} \&\ &b_0 = c_{00} + c_{10} \& b_1 = c_{01} + c_{11})ig)\,. \end{aligned}$$

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable *K*₀-theory Let Σ be a first-order language: collection of symbols of relations and functions, each given with an arity (possibly 0 for functions). *Example*: (0, 1, +, ·, ≤) (0) (0) (2) (2) (2) (2)
 ("language of partially ordered unital rings").

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable K_0 -theory

- Let Σ be a first-order language: collection of symbols of relations and functions, each given with an arity (possibly 0 for functions). *Example*: (0, 1, +, ·, <) (0) (0) (2) (2) (2) (2)
 ("language of partially ordered unital rings").
- terms are formal compositions of function symbols of Σ, evaluated at variables (e.g., x + 1, x · y, and so on).

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable K₀-theory • terms are formal compositions of function symbols of Σ , evaluated at variables (e.g., x + 1, $x \cdot y$, and so on).

• Atomic formulas are the $R\vec{t}$, where R is a relation symbol of Σ and \vec{t} is a sequence of terms with length the arity of R, or s = t for terms s and t.

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable *K*₀-theory • Let Σ be a first-order language: collection of symbols of relations and functions, each given with an arity (possibly 0 for functions). *Example*: $\begin{pmatrix} 0 & 1 & + & \cdot \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 & + & \cdot \\ 0 & 0 & 2 \end{pmatrix}$

("language of partially ordered unital rings").

- terms are formal compositions of function symbols of Σ, evaluated at variables (e.g., x + 1, x · y, and so on).
- Atomic formulas are the $R\vec{t}$, where R is a relation symbol of Σ and \vec{t} is a sequence of terms with length the arity of R, or s = t for terms s and t.

■ First-order formulas are obtained by closing atomic formulas under finite conjunctions / disjunctions, negations, and ∃ / ∀ quantifiers.

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable K_0 -theory

• Let Σ be a first-order language: collection of symbols of relations and functions, each given with an arity (possibly 0 for functions). *Example*: $\begin{pmatrix} 0 & 1 & + & \cdot \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 & + & \cdot \\ 0 & 0 & 2 \end{pmatrix}$

("language of partially ordered unital rings").

- terms are formal compositions of function symbols of Σ, evaluated at variables (e.g., x + 1, x · y, and so on).
- Atomic formulas are the $R\vec{t}$, where R is a relation symbol of Σ and \vec{t} is a sequence of terms with length the arity of R, or s = t for terms s and t.
- First-order formulas are obtained by closing atomic formulas under finite conjunctions / disjunctions, negations, and ∃ / ∀ quantifiers.
- For infinite cardinals with $\kappa \ge \lambda$, $\mathscr{L}_{\kappa\lambda}$ is defined similarly, with conjunctions / disjunctions of less than κ formulas and quantifiers over strings of less than λ variables.

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable *K*₀-theory • Finiteness can be expressed by a single $\mathscr{L}_{\omega_1\omega}$ sentence: $\bigvee_{n < \omega} (\exists (x_i)_{i < n}) (\forall x) \bigvee_{i < n} (x = x_i).$

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable K_0 -theory

• Finiteness can be expressed by a single $\mathscr{L}_{\omega_1\omega}$ sentence: $\bigvee_{n < \omega} \left(\exists (x_i)_{i < n} \right) (\forall x) \bigvee_{i < n} (x = x_i).$

• Countability can be expressed by a single $\mathscr{L}_{\omega_1\omega_1}$ sentence: $(\exists (x_i)_{i < \omega}) (\forall x) \bigvee_{i < \omega} (x = x_i).$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable K₀-theory • Finiteness can be expressed by a single $\mathscr{L}_{\omega_1\omega}$ sentence: $\bigvee_{n < \omega} (\exists (x_i)_{i < n}) (\forall x) \bigvee_{i < n} (x = x_i).$

• Countability can be expressed by a single $\mathscr{L}_{\omega_1\omega_1}$ sentence: $(\exists (x_i)_{i < \omega}) (\forall x) \bigvee_{i < \omega} (x = x_i).$

Similar for well-foundedness:

$$(\forall (x_i)_{i<\omega}) (\bigwedge_{i<\omega} (x_{i+1} \leq x_i) \Rightarrow \bigvee_{i<\omega} (x_{i+1} = x_i)).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable *K*₀-theory • Finiteness can be expressed by a single $\mathscr{L}_{\omega_1\omega}$ sentence: $\bigvee_{n < \omega} (\exists (x_i)_{i < n}) (\forall x) \bigvee_{i < n} (x = x_i).$

• Countability can be expressed by a single $\mathscr{L}_{\omega_1\omega_1}$ sentence: $(\exists (x_i)_{i < \omega}) (\forall x) \bigvee_{i < \omega} (x = x_i).$

Similar for well-foundedness:

$$(\forall (x_i)_{i<\omega}) \left(\bigwedge_{i<\omega} (x_{i+1} \leq x_i) \Rightarrow \bigvee_{i<\omega} (x_{i+1} = x_i) \right).$$

Archimedean property (for partially ordered Abelian groups) can be expressed by an ℒ_{ω1ω} sentence:

$$(\forall x, y) \left(\bigwedge_{n < \omega} (nx \le y) \Rightarrow x \le 0 \right).$$

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable K_0 -theory

For any set Ω, 𝔅_{inj}(Ω) denotes the category of all subsets of Ω with one-to-one functions.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable *K*₀-theory

- For any set Ω, 𝔅_{inj}(Ω) denotes the category of all subsets of Ω with one-to-one functions.
- For any first-order language Σ, Str Σ denotes the class of all Σ-structures.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable K₀-theory

- For any set Ω, 𝔅_{inj}(Ω) denotes the category of all subsets of Ω with one-to-one functions.
- For any first-order language Σ, Str Σ denotes the class of all Σ-structures.
- A map $f: A \to B$ between Σ -structures is an $\mathscr{L}_{\infty\lambda}$ -elementary embedding if $A \models \varphi(\vec{a}) \Leftrightarrow B \models \varphi(f\vec{a})$ whenever $\varphi \in \mathscr{L}_{\infty\lambda}$ and \vec{a} is a list of parameters from A.

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable *K*₀-theory

- For any set Ω , $\mathfrak{P}_{inj}(\Omega)$ denotes the category of all subsets of Ω with one-to-one functions.
- For any first-order language Σ, Str Σ denotes the class of all Σ-structures.
- A map $f: A \to B$ between Σ -structures is an $\mathscr{L}_{\infty\lambda}$ -elementary embedding if $A \models \varphi(\vec{a}) \Leftrightarrow B \models \varphi(f\vec{a})$ whenever $\varphi \in \mathscr{L}_{\infty\lambda}$ and \vec{a} is a list of parameters from A.

Proposition (W 2019)

Let λ be an infinite regular cardinal, let Σ be a first-order language, let Ω be a set, and let $\Gamma: \mathfrak{P}_{inj}(\Omega) \to \operatorname{Str} \Sigma$ be a λ -continuous functor. Then for every $f: X \to Y$ in $\mathfrak{P}_{inj}(\Omega)$ with card $X \ge \lambda$, $\Gamma(f)$ is an $\mathscr{L}_{\infty\lambda}$ -elementary embedding from $\Gamma(X)$ into $\Gamma(Y)$.

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable *K*₀-theory

Definition

A class \mathcal{C} of objects, in a category \mathcal{S} , is anti-elementary if there are arbitrarily large cardinals $\lambda < \kappa$ with λ -continuous functors $\Gamma: \mathfrak{P}_{inj}(\kappa) \to \mathcal{S}$ such that $\Gamma(\lambda) \in \mathcal{C}$ and $\Gamma(\kappa) \notin \mathcal{C}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable *K*₀-theory

Definition

A class \mathcal{C} of objects, in a category \mathcal{S} , is anti-elementary if there are arbitrarily large cardinals $\lambda < \kappa$ with λ -continuous functors $\Gamma: \mathfrak{P}_{inj}(\kappa) \to \mathcal{S}$ such that $\Gamma(\lambda) \in \mathcal{C}$ and $\Gamma(\kappa) \notin \mathcal{C}$.

If S consists of Σ-structures, then, by the Proposition above, Γ(λ) is an ℒ_{∞λ}-elementary submodel of Γ(κ).

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable *K*₀-theory

Definition

A class \mathcal{C} of objects, in a category \mathcal{S} , is anti-elementary if there are arbitrarily large cardinals $\lambda < \kappa$ with λ -continuous functors $\Gamma: \mathfrak{P}_{inj}(\kappa) \to \mathcal{S}$ such that $\Gamma(\lambda) \in \mathcal{C}$ and $\Gamma(\kappa) \notin \mathcal{C}$.

- If S consists of Σ-structures, then, by the Proposition above, Γ(λ) is an L_{∞λ}-elementary submodel of Γ(κ).
- In particular, C is not closed under L_{∞λ}-elementary equivalence;

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable *K*₀-theory

Definition

A class \mathcal{C} of objects, in a category \mathcal{S} , is anti-elementary if there are arbitrarily large cardinals $\lambda < \kappa$ with λ -continuous functors $\Gamma: \mathfrak{P}_{inj}(\kappa) \to \mathcal{S}$ such that $\Gamma(\lambda) \in \mathcal{C}$ and $\Gamma(\kappa) \notin \mathcal{C}$.

- If S consists of Σ-structures, then, by the Proposition above, Γ(λ) is an L_{∞λ}-elementary submodel of Γ(κ).
- In particular, C is not closed under L_{∞λ}-elementary equivalence; hence it is not the class of models of any class of L_{∞λ}-sentences.

Antielementarity for ranges of functors

Antielementarity

- P-scaled Boolean algebras
- Illustration on nonstable *K*₀-theory

Definition

A class \mathcal{C} of objects, in a category \mathcal{S} , is anti-elementary if there are arbitrarily large cardinals $\lambda < \kappa$ with λ -continuous functors $\Gamma: \mathfrak{P}_{inj}(\kappa) \to \mathcal{S}$ such that $\Gamma(\lambda) \in \mathcal{C}$ and $\Gamma(\kappa) \notin \mathcal{C}$.

- If S consists of Σ-structures, then, by the Proposition above, Γ(λ) is an ℒ_{∞λ}-elementary submodel of Γ(κ).
- In particular, C is not closed under L_{∞λ}-elementary equivalence; hence it is not the class of models of any class of L_{∞λ}-sentences.
- We shall outline a method making it possible to establish anti-elementarity for many classes.

Antielementarity for ranges of functors

Antielementarity

- P-scaled Boolean algebras
- Illustration on nonstable *K*₀-theory

Definition

A class \mathcal{C} of objects, in a category \mathcal{S} , is anti-elementary if there are arbitrarily large cardinals $\lambda < \kappa$ with λ -continuous functors $\Gamma: \mathfrak{P}_{inj}(\kappa) \to \mathcal{S}$ such that $\Gamma(\lambda) \in \mathcal{C}$ and $\Gamma(\kappa) \notin \mathcal{C}$.

- If S consists of Σ-structures, then, by the Proposition above, Γ(λ) is an L_{∞λ}-elementary submodel of Γ(κ).
- In particular, C is not closed under L_{∞λ}-elementary equivalence; hence it is not the class of models of any class of L_{∞λ}-sentences.
- We shall outline a method making it possible to establish anti-elementarity for many classes. Those classes will always be ranges of functors.

A few useful categories

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable *K*₀-theory DLat₀ def = category of all distributive lattices with zero, with 0-lattice homomorphisms.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A few useful categories

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable K₀-theory ■ DLat₀ ^{def} = category of all distributive lattices with zero, with 0-lattice homomorphisms.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

SLat₀ $\stackrel{\text{def}}{=}$ category of all (\lor , 0)-semilattices, with (\lor , 0)-homomorphisms.

A few useful categories

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable *K*₀-theory

- DLat₀ ^{def} = category of all distributive lattices with zero, with 0-lattice homomorphisms.
- **SLat**₀ $\stackrel{\text{def}}{=}$ category of all (\lor , 0)-semilattices, with (\lor , 0)-homomorphisms.
- CMon ^{def} = category of all commutative monoids with monoid homomorphisms.

Functors for which the method works

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable K₀-theory Theorem (W 2019)

The ranges of the following functors are all anti-elementary:

- I Cs_c: G → DLat₀, G → lattice of all order-convex ℓ-subgroups of the ℓ-group G; for any class G of ℓ-groups containing all Archimedean ones.
- 2 Id_c: R → SLat₀, R → semilattice of all finitely generated two-sided ideals of R, for many classes R of unital rings, including all unital regular rings and all unital rings.
- S V: R → CMon, R → nonstable K₀-theory V(R) of R, for many classes R of unital rings, including all unital regular rings and all C*-algebras of real rank zero.

General (categorical) method

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable *K*₀-theory We are given a functor Φ: A → B. We want to prove that the range of Φ is anti-elementary.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

General (categorical) method

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable *K*₀-theory

- We are given a functor Φ: A → B. We want to prove that the range of Φ is anti-elementary.
- We assume that there are a poset P of a certain kind (typically a finite lattice) and a (necessarily non-commutative) P-indexed diagram A in A, such that

General (categorical) method

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable *K*₀-theory

- We are given a functor $\Phi: \mathcal{A} \to \mathcal{B}$. We want to prove that the range of Φ is anti-elementary.
- We assume that there are a poset P of a certain kind (typically a finite lattice) and a (necessarily non-commutative) P-indexed diagram A in A, such that
 - 1 $\Phi \vec{A}'$ (now a P'-indexed diagram) is a commutative diagram for every set I (we say that \vec{A} is Φ -commutative);
 - 2 There is no commutative *P*-indexed diagram \vec{X} in \mathcal{A} such that $\Phi \vec{A} \cong \Phi \vec{X}$.

General (categorical) method

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable K_0 -theory

- We are given a functor Φ: A → B. We want to prove that the range of Φ is anti-elementary.
- We assume that there are a poset P of a certain kind (typically a finite lattice) and a (necessarily non-commutative) P-indexed diagram A in A, such that
 - **1** $\Phi \vec{A}^{I}$ (now a P^{I} -indexed diagram) is a commutative diagram for every set *I* (we say that \vec{A} is Φ -commutative);
 - 2 There is no commutative *P*-indexed diagram \vec{X} in \mathcal{A} such that $\Phi \vec{A} \cong \Phi \vec{X}$.

Theorem (W 2019)

Under quite general conditions, the above implies that the range of Φ is anti-elementary.

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration or nonstable K₀-theory • We are given the poset P (say a lattice with 0) and the non-commutative diagram \vec{A} as above.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable *K*₀-theory

- We are given the poset P (say a lattice with 0) and the non-commutative diagram \vec{A} as above.
- For any large enough infinite regular cardinal λ, we need to find a cardinal κ > λ and a λ-continuous functor
 - $\Gamma \colon \mathfrak{P}_{\mathrm{inj}}(\kappa) \to \mathfrak{B}$ such that $\Gamma(\lambda) \in \operatorname{rng} \Phi$ and $\Gamma(\kappa) \notin \operatorname{rng} \Phi$.

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable *K*₀-theory

- We are given the poset P (say a lattice with 0) and the non-commutative diagram \vec{A} as above.
- For any large enough infinite regular cardinal λ , we need to find a cardinal $\kappa > \lambda$ and a λ -continuous functor
 - $\Gamma \colon \mathfrak{P}_{inj}(\kappa) \to \mathcal{B}$ such that $\Gamma(\lambda) \in \operatorname{rng} \Phi$ and $\Gamma(\kappa) \notin \operatorname{rng} \Phi$.

• There is an explicit description of that functor Γ , namely $\Gamma(U) \stackrel{\text{def}}{=} \mathbf{F}(P\langle U \rangle) \otimes_{\Phi}^{\lambda} \vec{A}$ for every set U.

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable *K*₀-theory • We are given the poset P (say a lattice with 0) and the non-commutative diagram \vec{A} as above.

- For any large enough infinite regular cardinal λ , we need to find a cardinal $\kappa > \lambda$ and a λ -continuous functor
 - $\Gamma \colon \mathfrak{P}_{inj}(\kappa) \to \mathfrak{B}$ such that $\Gamma(\lambda) \in \operatorname{rng} \Phi$ and $\Gamma(\kappa) \notin \operatorname{rng} \Phi$.
- There is an explicit description of that functor Γ , namely $\Gamma(U) \stackrel{\text{def}}{=} \mathbf{F}(P\langle U \rangle) \otimes_{\Phi}^{\lambda} \vec{A}$ for every set U.
- Easy part of that description:

 $P\langle U \rangle \stackrel{\text{def}}{=} \left\{ (a, x) \mid a \in P, \ x \colon X \to U, \ X \text{ finite}, \ a = \bigvee X \right\}$

with $(a, x) \leq (b, y)$ iff $a \leq b$ and y extends x, and additional map $\partial : P \langle U \rangle \rightarrow P$, $(a, x) \mapsto a$.

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable K_0 -theory

• We are given the poset P (say a lattice with 0) and the non-commutative diagram \vec{A} as above.

- For any large enough infinite regular cardinal λ , we need to find a cardinal $\kappa > \lambda$ and a λ -continuous functor
 - $\Gamma: \mathfrak{P}_{inj}(\kappa) \to \mathcal{B}$ such that $\Gamma(\lambda) \in \operatorname{rng} \Phi$ and $\Gamma(\kappa) \notin \operatorname{rng} \Phi$.
- There is an explicit description of that functor Γ , namely $\Gamma(U) \stackrel{\text{def}}{=} \mathbf{F}(P\langle U \rangle) \otimes_{\Phi}^{\lambda} \vec{A}$ for every set U.
- Easy part of that description:

 $P\langle U \rangle \stackrel{\text{def}}{=} \left\{ (a, x) \mid a \in P, \ x \colon X \to U, \ X \text{ finite}, \ a = \bigvee X \right\}$

with $(a, x) \leq (b, y)$ iff $a \leq b$ and y extends x, and additional map $\partial : P \langle U \rangle \rightarrow P$, $(a, x) \mapsto a$.

• Owing to an additional property of $P\langle U \rangle$ (we say that it is a "pseudo join-semilattice"), we say that $(P\langle U \rangle, \partial)$ is said to be a norm-covering of P

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable K_0 -theory

■ For a norm-covering ∂: X → P (i.e., a pseudo join-semilattice X together with an order-preserving map ∂: X → P), construct a structure F(X).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable K₀-theory

- For a norm-covering ∂: X → P (i.e., a pseudo join-semilattice X together with an order-preserving map ∂: X → P), construct a structure F(X).
- This structure is a Boolean algebra B, augmented by a P-indexed collection of ideals of B satisfying certain conditions.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable K₀-theory ■ For a norm-covering ∂: X → P (i.e., a pseudo join-semilattice X together with an order-preserving map ∂: X → P), construct a structure F(X).

This structure is a Boolean algebra B, augmented by a P-indexed collection of ideals of B satisfying certain conditions. We called such structures P-scaled Boolean algebras (Gillibert and Wehrung, Springer LNM 2029, 2011).

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable *K*₀-theory ■ For a norm-covering ∂: X → P (i.e., a pseudo join-semilattice X together with an order-preserving map ∂: X → P), construct a structure F(X).

- This structure is a Boolean algebra B, augmented by a P-indexed collection of ideals of B satisfying certain conditions. We called such structures P-scaled Boolean algebras (Gillibert and Wehrung, Springer LNM 2029, 2011).
- Formally, a structure $\boldsymbol{B} = (B, (B^{(p)} | p \in P))$ is a *P*-scaled Boolean algebra if *B* is a Boolean algebra, each $B^{(p)}$ is an ideal of *B*, $1 \in \bigvee_{p \in P} B^{(p)}$, and for all $p, q \in P$, $B^{(p)} \cap B^{(q)} = \bigvee_{r \ge p,q} B^{(r)}$

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable K₀-theory ■ For a norm-covering ∂: X → P (i.e., a pseudo join-semilattice X together with an order-preserving map ∂: X → P), construct a structure F(X).

- This structure is a Boolean algebra B, augmented by a P-indexed collection of ideals of B satisfying certain conditions. We called such structures P-scaled Boolean algebras (Gillibert and Wehrung, Springer LNM 2029, 2011).
- Formally, a structure $B = (B, (B^{(p)} | p \in P))$ is a *P*-scaled Boolean algebra if *B* is a Boolean algebra, each $B^{(p)}$ is an ideal of *B*, $1 \in \bigvee_{p \in P} B^{(p)}$, and for all $p, q \in P, B^{(p)} \cap B^{(q)} = \bigvee_{r \ge p,q} B^{(r)}$ (\bigvee within Id *B*).

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable K₀-theory ■ For a norm-covering ∂: X → P (i.e., a pseudo join-semilattice X together with an order-preserving map ∂: X → P), construct a structure F(X).

- This structure is a Boolean algebra B, augmented by a P-indexed collection of ideals of B satisfying certain conditions. We called such structures P-scaled Boolean algebras (Gillibert and Wehrung, Springer LNM 2029, 2011).
- Formally, a structure $B = (B, (B^{(p)} | p \in P))$ is a *P*-scaled Boolean algebra if *B* is a Boolean algebra, each $B^{(p)}$ is an ideal of *B*, $1 \in \bigvee_{p \in P} B^{(p)}$, and for all $p, q \in P, B^{(p)} \cap B^{(q)} = \bigvee_{r \ge p, q} B^{(r)}$ (\bigvee within Id *B*).
- The category Bool_P, of all P-scaled Boolean algebras with morphisms defined as Boolean algebra homomorphisms φ: A → B with each φ[A^(p)] ⊆ B^(p), is ω-accessible.

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable K_0 -theory

Norm-covering: X is a "pseudo join-semilattice" and $\partial: X \rightarrow P$ is order-preserving.

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable K₀-theory

- Norm-covering: X is a "pseudo join-semilattice" and $\partial: X \to P$ is order-preserving.
- F(X) is the Boolean algebra defined by generators ũ, for u ∈ X, and relations 1 = V_{w∈X} w̃, ũ ∧ ṽ = V_{w≥u,v} w̃; those are finite joins, because X is a pseudo join-semilattice.

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable K₀-theory

- Norm-covering: X is a "pseudo join-semilattice" and $\partial: X \to P$ is order-preserving.
- F(X) is the Boolean algebra defined by generators ũ, for u ∈ X, and relations 1 = V_{w∈X} ῶ, ũ ∧ ῦ = V_{w≥u,v} ῶ; those are finite joins, because X is a pseudo join-semilattice.
- For each $p \in P$, $F(X)^{(p)}$ is the ideal of F(X) generated by $\{\tilde{u} \mid p \leq \partial u\}.$

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable *K*₀-theory

- Norm-covering: X is a "pseudo join-semilattice" and $\partial: X \to P$ is order-preserving.
- F(X) is the Boolean algebra defined by generators ũ, for u ∈ X, and relations 1 = V_{w∈X} w̃, ũ ∧ ṽ = V_{w≥u,v} w̃; those are finite joins, because X is a pseudo join-semilattice.
- For each $p \in P$, $F(X)^{(p)}$ is the ideal of F(X) generated by $\{\tilde{u} \mid p \leq \partial u\}.$

■ Then $\mathbf{F}(X) \stackrel{\text{def}}{=} (F(X), (F(X)^{(p)} | p \in P))$ is a *P*-scaled Boolean algebra.

Box condensates: $A \boxtimes \vec{S}$

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration or nonstable K₀-theory • For simplicity's sake, suppose that *P* is a finite poset.

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Box condensates: $oldsymbol{A}oxtimesec{S}$

by $|\mathfrak{a}|_{\boldsymbol{\Delta}}$.

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable *K*₀-theory For simplicity's sake, suppose that P is a finite poset.
Let A = (A, (A^(p) | p ∈ P)) be a P-scaled Boolean algebra. For any a ∈ Ult A (:= ultrafilter space of A), there is a largest p ∈ P such that a ∩ A^(p) ≠ Ø; denote it

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Box condensates: $\mathbf{A} \boxtimes \vec{S}$

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable *K*₀-theory • For simplicity's sake, suppose that *P* is a finite poset.

- Let A = (A, (A^(p) | p ∈ P)) be a P-scaled Boolean algebra. For any a ∈ Ult A (:= ultrafilter space of A), there is a largest p ∈ P such that a ∩ A^(p) ≠ Ø; denote it by |a|_A.
- For any family $\vec{S} = (S_p \mid p \in P)$ in a category S, with enough products, we set

 $\mathbf{A}\boxtimes \vec{S}\stackrel{\mathrm{def}}{=}\prod(S_{|\mathfrak{a}|_{\mathbf{A}}}\mid \mathfrak{a}\in\mathsf{Ult}\,A)\quad(\mathsf{a}\text{ box condensate of }\vec{S}).$

Box condensates: $\mathbf{A} \boxtimes \vec{S}$

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable *K*₀-theory • For simplicity's sake, suppose that *P* is a finite poset.

- Let A = (A, (A^(p) | p ∈ P)) be a P-scaled Boolean algebra. For any a ∈ Ult A (:= ultrafilter space of A), there is a largest p ∈ P such that a ∩ A^(p) ≠ Ø; denote it by |a|_A.
- For any family $\vec{S} = (S_p \mid p \in P)$ in a category S, with enough products, we set

 $\mathbf{A}\boxtimes \vec{S}\stackrel{\mathrm{def}}{=}\prod(S_{|\mathfrak{a}|_{\mathbf{A}}}\mid \mathfrak{a}\in\mathsf{Ult}\,A)\quad(\mathsf{a}\text{ box condensate of }\vec{S}).$

• Can we extend this to a functor $_\boxtimes \vec{S}$ (in case \vec{S} is a diagram — so there are transition morphisms $S_p \to S_q$)?

Box condensates: $\mathbf{A} \boxtimes \vec{S}$

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable *K*₀-theory • For simplicity's sake, suppose that *P* is a finite poset.

- Let A = (A, (A^(p) | p ∈ P)) be a P-scaled Boolean algebra. For any a ∈ Ult A (:= ultrafilter space of A), there is a largest p ∈ P such that a ∩ A^(p) ≠ Ø; denote it by |a|_A.
- For any family $\vec{S} = (S_p \mid p \in P)$ in a category S, with enough products, we set

 $\mathbf{A}\boxtimes \vec{S}\stackrel{\mathrm{def}}{=}\prod(S_{|\mathfrak{a}|_{\mathbf{A}}}\mid \mathfrak{a}\in\mathsf{Ult}\,A)\quad(\mathsf{a}\text{ box condensate of }\vec{S}).$

- Can we extend this to a functor $_{-} \boxtimes \vec{S}$ (in case \vec{S} is a diagram so there are transition morphisms $S_p \to S_q$)?
- The problem is that for our needs, the diagram S may not be commutative: that is, S(p, q) may not be a singleton (for p ≤ q in P).

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration or nonstable K₀-theory • Now we fix a category \mathfrak{T} and a functor $\Phi \colon \mathfrak{S} \to \mathfrak{T}$.

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable *K*₀-theory

- Now we fix a category \mathfrak{T} and a functor $\Phi \colon \mathfrak{S} \to \mathfrak{T}$.
- Let P be a poset, let S be a (not necessarily commutative) P-indexed diagram in S, and let λ be an infinite regular cardinal.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable *K*₀-theory • Now we fix a category \mathfrak{T} and a functor $\Phi \colon \mathfrak{S} \to \mathfrak{T}$.

Let P be a poset, let S be a (not necessarily commutative) P-indexed diagram in S, and let λ be an infinite regular cardinal. We assume that S is Φ-commutative (i.e., ΦS^I is a commutative diagram for every set I).

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable *K*₀-theory Now we fix a category \mathfrak{T} and a functor $\Phi \colon \mathfrak{S} \to \mathfrak{T}$.

- Let *P* be a poset, let \vec{S} be a (not necessarily commutative) *P*-indexed diagram in *S*, and let λ be an infinite regular cardinal. We assume that \vec{S} is Φ -commutative (i.e., $\Phi \vec{S}^{I}$ is a commutative diagram for every set *I*).
- For a morphism φ: A → B in Bool_P, φ ⊠ S ⊂ can be defined as a nonempty set of morphisms A ⊠ S → B ⊠ S (not necessarily a singleton).

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable K_0 -theory

Now we fix a category \mathfrak{T} and a functor $\Phi \colon \mathfrak{S} \to \mathfrak{T}$.

- Let P be a poset, let S be a (not necessarily commutative) P-indexed diagram in S, and let λ be an infinite regular cardinal. We assume that S is Φ-commutative (i.e., ΦS^I is a commutative diagram for every set I).
- For a morphism φ: A → B in Bool_P, φ ⊠ S ⊂ can be defined as a nonempty set of morphisms A ⊠ S → B ⊠ S (not necessarily a singleton).

• However, since \vec{S} is Φ -commutative, $\Phi(\varphi \boxtimes \vec{S})$ is a singleton.

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable *K*₀-theory Now we fix a category \mathfrak{T} and a functor $\Phi\colon \mathfrak{S}\to \mathfrak{T}.$

- Let P be a poset, let S be a (not necessarily commutative)
 P-indexed diagram in S, and let λ be an infinite regular cardinal. We assume that S is Φ-commutative (i.e., ΦS' is a commutative diagram for every set I).
- For a morphism φ: A → B in Bool_P, φ ⊠ S ⊂ can be defined as a nonempty set of morphisms A ⊠ S → B ⊠ S (not necessarily a singleton).
- However, since \vec{S} is Φ -commutative, $\Phi(\varphi \boxtimes \vec{S})$ is a singleton.
- We denote this singleton by $\varphi \otimes_{\Phi}^{\lambda} \vec{S}$ if **A** and **B** are both λ -small.

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable K₀-theory Now we fix a category \mathfrak{T} and a functor $\Phi \colon \mathfrak{S} \to \mathfrak{T}$.

- Let P be a poset, let S be a (not necessarily commutative) P-indexed diagram in S, and let λ be an infinite regular cardinal. We assume that S is Φ-commutative (i.e., ΦS^I is a commutative diagram for every set I).
- For a morphism φ: A → B in Bool_P, φ ⊠ S ⊂ can be defined as a nonempty set of morphisms A ⊠ S → B ⊠ S (not necessarily a singleton).
- However, since \vec{S} is Φ -commutative, $\Phi(\varphi \boxtimes \vec{S})$ is a singleton.
- We denote this singleton by $\varphi \otimes_{\Phi}^{\lambda} \vec{S}$ if **A** and **B** are both λ -small.

In general, we complete under λ -directed colimits: $\mathbf{A} \otimes_{\Phi}^{\lambda} \vec{S} = \varinjlim (\mathbf{U} \otimes_{\Phi}^{\lambda} \vec{S} | \mathbf{U} \leq \mathbf{A} \lambda$ -small).

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable *K*₀-theory Now we fix a category \mathfrak{T} and a functor $\Phi \colon \mathfrak{S} \to \mathfrak{T}$.

- Let P be a poset, let S be a (not necessarily commutative) P-indexed diagram in S, and let λ be an infinite regular cardinal. We assume that S is Φ-commutative (i.e., ΦS^I is a commutative diagram for every set I).
- For a morphism φ: A → B in Bool_P, φ ⊠ S ⊂ can be defined as a nonempty set of morphisms A ⊠ S → B ⊠ S (not necessarily a singleton).
- However, since \vec{S} is Φ -commutative, $\Phi(\varphi \boxtimes \vec{S})$ is a singleton.
- We denote this singleton by $\varphi \otimes_{\Phi}^{\lambda} \vec{S}$ if **A** and **B** are both λ -small.

In general, we complete under λ -directed colimits: $\mathbf{A} \otimes_{\Phi}^{\lambda} \vec{S} = \varinjlim (\mathbf{U} \otimes_{\Phi}^{\lambda} \vec{S} | \mathbf{U} \leq \mathbf{A} \lambda$ -small). $\mathbf{A} \otimes_{\Phi}^{\lambda} \vec{S}$ is a Φ -condensate of \vec{S} .

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable *K*₀-theory

Now back to the functor Γ (with λ a given infinite regular cardinal).

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable K₀-theory

- Now back to the functor Γ (with λ a given infinite regular cardinal).
- Context: Φ: A → B is a functor (with enough products and colimits...), A is a Φ-commutative P-indexed diagram in A such that ∀X P-indexed commutative diagram in A, ΦA ≇ ΦX.

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable *K*₀-theory

- Now back to the functor Γ (with λ a given infinite regular cardinal).
- Context: Φ: A → B is a functor (with enough products and colimits...), A is a Φ-commutative P-indexed diagram in A such that ∀X P-indexed commutative diagram in A, ΦA ≇ ΦX.
- $\Gamma(U) \stackrel{\text{def}}{=} \mathbf{F}(P\langle U \rangle) \otimes_{\Phi}^{\lambda} \vec{A}$. Hence, if card $U < \lambda$, then $\Gamma(U) = \Phi(\mathbf{F}(P\langle U \rangle) \boxtimes \vec{A}) \in \operatorname{rng} \Phi$.

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable K₀-theory

- Now back to the functor Γ (with λ a given infinite regular cardinal).
- Context: Φ: A → B is a functor (with enough products and colimits...), A is a Φ-commutative P-indexed diagram in A such that ∀X P-indexed commutative diagram in A, ΦA ≇ ΦX.
- $\Gamma(U) \stackrel{\text{def}}{=} \mathbf{F}(P\langle U \rangle) \otimes_{\Phi}^{\lambda} \vec{A}$. Hence, if card $U < \lambda$, then $\Gamma(U) = \Phi(\mathbf{F}(P\langle U \rangle) \boxtimes \vec{A}) \in \operatorname{rng} \Phi$.

The Boosting Lemma (W 2019)

Under quite general conditions, $\Gamma(\lambda) \in \operatorname{rng} \Phi$ as well.

The Armature Lemma and CLL

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable *K*₀-theory By using (Ramsey-like) infinite combinatorial properties of the poset *P*, we can extend Gillibert and Wehrung's original Armature Lemma and CLL, thus obtaining:

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

The Armature Lemma and CLL

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable *K*0-theory By using (Ramsey-like) infinite combinatorial properties of the poset *P*, we can extend Gillibert and Wehrung's original Armature Lemma and CLL, thus obtaining:

Theorem (W 2019)

Under quite general conditions and if *P* is a finite lattice, there exists $\kappa > \lambda$ such that $\Gamma(\kappa) \notin \operatorname{rng} \Phi$. In particular, $\operatorname{rng} \Phi$ is anti-elementary.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The Armature Lemma and CLL

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable K₀-theory By using (Ramsey-like) infinite combinatorial properties of the poset *P*, we can extend Gillibert and Wehrung's original Armature Lemma and CLL, thus obtaining:

Theorem (W 2019)

Under quite general conditions and if *P* is a finite lattice, there exists $\kappa > \lambda$ such that $\Gamma(\kappa) \notin \operatorname{rng} \Phi$. In particular, $\operatorname{rng} \Phi$ is anti-elementary.

If P has order-dimension n and $\lambda = \aleph_{\alpha}$, then one can take $\kappa = \aleph_{\alpha+n-1}$.

The Armature Lemma and CLL

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable K₀-theory By using (Ramsey-like) infinite combinatorial properties of the poset *P*, we can extend Gillibert and Wehrung's original Armature Lemma and CLL, thus obtaining:

Theorem (W 2019)

Under quite general conditions and if *P* is a finite lattice, there exists $\kappa > \lambda$ such that $\Gamma(\kappa) \notin \operatorname{rng} \Phi$. In particular, $\operatorname{rng} \Phi$ is anti-elementary.

If P has order-dimension n and $\lambda = \aleph_{\alpha}$, then one can take $\kappa = \aleph_{\alpha+n-1}$.

For most examples under discussion, $P = \mathfrak{P}[3] = \{ \varnothing, 1, 2, 3, 12, 13, 23, 123 \}.$

The Armature Lemma and CLL

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable K₀-theory By using (Ramsey-like) infinite combinatorial properties of the poset *P*, we can extend Gillibert and Wehrung's original Armature Lemma and CLL, thus obtaining:

Theorem (W 2019)

Under quite general conditions and if *P* is a finite lattice, there exists $\kappa > \lambda$ such that $\Gamma(\kappa) \notin \operatorname{rng} \Phi$. In particular, $\operatorname{rng} \Phi$ is anti-elementary.

If P has order-dimension n and $\lambda = \aleph_{\alpha}$, then one can take $\kappa = \aleph_{\alpha+n-1}$.

For most examples under discussion, $P = \mathfrak{P}[3] = \{ \varnothing, 1, 2, 3, 12, 13, 23, 123 \}.$

It has order-dimension 3, thus one can take $\kappa = leph_{lpha+2}$.

The functor V

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable K₀-theory ■ For any ring *R*, V(*R*) ("nonstable *K*₀-theory of *R*") is the set of Murray - von Neumann equivalence classes of all idempotent matrices over *R*, with addition defined by

$$[a] + [b] \stackrel{\text{def}}{=} \begin{bmatrix} \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \end{bmatrix}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The functor V

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable K₀-theory ■ For any ring *R*, V(*R*) ("nonstable *K*₀-theory of *R*") is the set of Murray - von Neumann equivalence classes of all idempotent matrices over *R*, with addition defined by

$$[a] + [b] \stackrel{\mathrm{def}}{=} \left[\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}
ight].$$

• It is a commutative monoid, conical $(\mathbf{x} + \mathbf{y} = 0 \Rightarrow \mathbf{x} = \mathbf{y} = 0)$ as a rule.

The functor V

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable K₀-theory ■ For any ring *R*, V(*R*) ("nonstable *K*₀-theory of *R*") is the set of Murray - von Neumann equivalence classes of all idempotent matrices over *R*, with addition defined by

$$[a] + [b] \stackrel{\mathrm{def}}{=} \begin{bmatrix} \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \end{bmatrix}.$$

- It is a commutative monoid, conical $(\mathbf{x} + \mathbf{y} = 0 \Rightarrow \mathbf{x} = \mathbf{y} = 0)$ as a rule.
- V extends naturally to a functor, from the category of all rings with ring homomorphisms to the category CMon of all commutative monoids with monoid homomorphisms.

The diagrams \vec{D} and \vec{R}_{\Bbbk}

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable *K*₀-theory

• On
$$\mathbb{Z}^+$$
: $\boldsymbol{e}(x) \stackrel{\text{def}}{=} (x, x)$, $\boldsymbol{s}(x, y) \stackrel{\text{def}}{=} (y, x)$, $\boldsymbol{p}(x, y) \stackrel{\text{def}}{=} x + y$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The diagrams \vec{D} and \vec{R}_{\Bbbk}

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable K_0 -theory

• On
$$\mathbb{Z}^+$$
: $\boldsymbol{e}(x) \stackrel{\text{def}}{=} (x, x)$, $\boldsymbol{s}(x, y) \stackrel{\text{def}}{=} (y, x)$, $\boldsymbol{p}(x, y) \stackrel{\text{def}}{=} x + y$.
• On any field \mathbb{k} : $\boldsymbol{e}(x) \stackrel{\text{def}}{=} (x, x)$, $\boldsymbol{s}(x, y) \stackrel{\text{def}}{=} (y, x)$,
 $h(x, y) \stackrel{\text{def}}{=} \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The diagrams \vec{D} and \vec{R}_{\Bbbk}

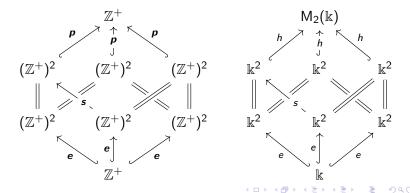
Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable K_0 -theory

• On
$$\mathbb{Z}^+$$
: $\boldsymbol{e}(x) \stackrel{\text{def}}{=} (x, x)$, $\boldsymbol{s}(x, y) \stackrel{\text{def}}{=} (y, x)$, $\boldsymbol{p}(x, y) \stackrel{\text{def}}{=} x + y$.
• On any field \mathbb{k} : $\boldsymbol{e}(x) \stackrel{\text{def}}{=} (x, x)$, $\boldsymbol{s}(x, y) \stackrel{\text{def}}{=} (y, x)$,
 $h(x, y) \stackrel{\text{def}}{=} \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix}$.



Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable *K*₀-theory ■ D is a commutative diagram of commutative monoids with order-unit (use canonical units: 1 for Z⁺, (1, 1) for (Z⁺)²).

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable *K*₀-theory

- \vec{D} is a commutative diagram of commutative monoids with order-unit (use canonical units: 1 for \mathbb{Z}^+ , (1,1) for $(\mathbb{Z}^+)^2$).
- $\vec{R}_{\mathbb{k}}$ is not a commutative diagram (for $\begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} \neq \begin{pmatrix} y & 0 \\ 0 & x \end{pmatrix}$ as a rule; that is, $h \circ s \neq h$).

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable *K*₀-theory

- \vec{D} is a commutative diagram of commutative monoids with order-unit (use canonical units: 1 for \mathbb{Z}^+ , (1,1) for $(\mathbb{Z}^+)^2$).
- \vec{R}_{\Bbbk} is not a commutative diagram (for $\begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} \neq \begin{pmatrix} y & 0 \\ 0 & x \end{pmatrix}$ as a rule; that is, $h \circ s \neq h$).

• $V(\vec{R}_{\Bbbk}) \cong \vec{D}$ canonically.

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable K₀-theory

- \vec{D} is a commutative diagram of commutative monoids with order-unit (use canonical units: 1 for \mathbb{Z}^+ , (1,1) for $(\mathbb{Z}^+)^2$).
- \vec{R}_{k} is not a commutative diagram (for $\begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} \neq \begin{pmatrix} y & 0 \\ 0 & x \end{pmatrix}$ as a rule; that is, $h \circ s \neq h$).
- $V(\vec{R}_{\Bbbk}) \cong \vec{D}$ canonically.
- In fact, the diagram \vec{R}_{\Bbbk} is V-commutative, that is, $V(\vec{R}_{\Bbbk}^{I})$ is a commutative diagram for every set *I*.

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable *K*₀-theory

- \vec{D} is a commutative diagram of commutative monoids with order-unit (use canonical units: 1 for \mathbb{Z}^+ , (1, 1) for $(\mathbb{Z}^+)^2$).
- \vec{R}_{k} is not a commutative diagram (for $\begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} \neq \begin{pmatrix} y & 0 \\ 0 & x \end{pmatrix}$ as a rule; that is, $h \circ s \neq h$).
- $V(\vec{R}_{\Bbbk}) \cong \vec{D}$ canonically.
- In fact, the diagram \vec{R}_{\Bbbk} is V-commutative, that is, $V(\vec{R}_{\Bbbk}^{I})$ is a commutative diagram for every set *I*.

A ring R is V-semiprimitive if [a] ⊥ [b] implies that ab = 0, for all idempotent matrices a and b over R.

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable K₀-theory

- \vec{D} is a commutative diagram of commutative monoids with order-unit (use canonical units: 1 for \mathbb{Z}^+ , (1,1) for $(\mathbb{Z}^+)^2$).
- \vec{R}_{k} is not a commutative diagram (for $\begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} \neq \begin{pmatrix} y & 0 \\ 0 & x \end{pmatrix}$ as a rule; that is, $h \circ s \neq h$).
- $V(\vec{R}_{\Bbbk}) \cong \vec{D}$ canonically.
- In fact, the diagram \vec{R}_{\Bbbk} is V-commutative, that is, $V(\vec{R}_{\Bbbk}^{I})$ is a commutative diagram for every set *I*.
- A ring R is V-semiprimitive if [a] ⊥ [b] implies that ab = 0, for all idempotent matrices a and b over R. Every semiprimitive exchange ring (thus every von Neumann regular ring and every C*-algebra of real rank zero) is V-semiprimitive (W 2013).

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable *K*₀-theory

- \vec{D} is a commutative diagram of commutative monoids with order-unit (use canonical units: 1 for \mathbb{Z}^+ , (1,1) for $(\mathbb{Z}^+)^2$).
- \vec{R}_{k} is not a commutative diagram (for $\begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} \neq \begin{pmatrix} y & 0 \\ 0 & x \end{pmatrix}$ as a rule; that is, $h \circ s \neq h$).
- $V(\vec{R}_{\Bbbk}) \cong \vec{D}$ canonically.
- In fact, the diagram \vec{R}_{\Bbbk} is V-commutative, that is, $V(\vec{R}_{\Bbbk}^{I})$ is a commutative diagram for every set *I*.
- A ring R is V-semiprimitive if [a] ⊥ [b] implies that ab = 0, for all idempotent matrices a and b over R. Every semiprimitive exchange ring (thus every von Neumann regular ring and every C*-algebra of real rank zero) is V-semiprimitive (W 2013).
- There is no commutative diagram R, of V-semiprimitive rings, such that $V(\vec{R}) \cong V(\vec{R}_{k})$ (W 2013).

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable *K*₀-theory Denote by **Ring** the category of all unital rings and unital ring homomorphisms.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable *K*₀-theory Denote by **Ring** the category of all unital rings and unital ring homomorphisms.

Theorem (W 2019)

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable K_0 -theory

Denote by **Ring** the category of all unital rings and unital ring homomorphisms.

Theorem (W 2019)

Let \Bbbk be a field and let ${\mathcal R}$ be a subcategory of ${\pmb{\mathsf{Ring}}}$ such that

- **1** All objects and arrows of \vec{R}_{k} belong to \Re ;
- **2** Every ring in \mathcal{R} is V-semiprimitive;
- **3** \mathcal{R} is closed under products within **Ring**;
- for all large enough regular cardinals λ, R has all λ-directed colimits and V preserves those.

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable K_0 -theory

Denote by **Ring** the category of all unital rings and unital ring homomorphisms.

Theorem (W 2019)

Let \Bbbk be a field and let ${\mathcal R}$ be a subcategory of ${\pmb{\mathsf{Ring}}}$ such that

- **1** All objects and arrows of \vec{R}_{\Bbbk} belong to \Re ;
- **2** Every ring in \mathcal{R} is V-semiprimitive;
- **3** \mathcal{R} is closed under products within **Ring**;
- for all large enough regular cardinals λ, R has all λ-directed colimits and V preserves those.

Then $V(\mathcal{R})$ is anti-elementary.

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable K₀-theory In particular, V(von Neumann regular rings), V(unit-regular rings), V(C*-algebras of real rank zero) are all anti-elementary.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable K₀-theory

- In particular, V(von Neumann regular rings), V(unit-regular rings), V(C*-algebras of real rank zero) are all anti-elementary.
- For a field k, the category LocMat_k of all locally matricial k-algebras is not closed under countable products (within Ring).

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable K₀-theory

- In particular, V(von Neumann regular rings), V(unit-regular rings), V(C*-algebras of real rank zero) are all anti-elementary.
- For a field k, the category LocMat_k of all locally matricial k-algebras is not closed under countable products (within Ring). In fact, the sequence (M_{2n}(k) | n ∈ N) has no product within the category LocMat_k.

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable K_0 -theory

- In particular, V(von Neumann regular rings), V(unit-regular rings), V(C*-algebras of real rank zero) are all anti-elementary.
- For a field k, the category LocMat_k of all locally matricial k-algebras is not closed under countable products (within Ring). In fact, the sequence (M_{2n}(k) | n ∈ N) has no product within the category LocMat_k.

■ Hence, the result above does not apply to **LocMat**_k *a priori*.

Antielementarity for ranges of functors

Antielementarity

P-scaled Boolean algebras

Illustration on nonstable K_0 -theory

- In particular, V(von Neumann regular rings), V(unit-regular rings), V(C*-algebras of real rank zero) are all anti-elementary.
- For a field k, the category LocMat_k of all locally matricial k-algebras is not closed under countable products (within Ring). In fact, the sequence (M_{2n}(k) | n ∈ N) has no product within the category LocMat_k.
- Hence, the result above does not apply to **LocMat**_k *a priori*.
- We still know that V(**LocMat**_k) is not closed under elementary extensions (thus not first-order; combine Elliott 1976 and W 1998).