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General problem

We are given categories A and B, together with a functor
Φ: A→ B.

We wish to “describe” the range of Φ (i.e.,

rng Φ
def
= {B | (∃A)(B ∼= Φ(A))}).

Is rng Φ “tractable”?

Tractability usually understood in logical sense: typically,
describability via a class of (possibly infinitary) first-order
sentences.

We show how to prove that many “natural” functor ranges
are intractable in the above sense.
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Examples illustrating tractability

Torsion-free groups are tractable within groups:

(∀x)(xn = 1⇒ x = 1) , n = 1, 2, 3, . . .

(describability by a first-order theory).

Torsion groups are also tractable within groups:

(∀x)
∨∨

n∈N
(xn = 1)

(describability by a single Lω1ω sentence).

Refinement monoids are tractable within commutative
monoids (again via a single first-order sentence):

(∀a0, a1, b0, b1)
(
a0 + a1 = b0 + b1 ⇒ (∃c00, c01, c10, c11)

(a0 = c00 + c01 & a1 = c10 + c11 &

b0 = c00 + c10 & b1 = c01 + c11)
)
.
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Infinitary languages

Let Σ be a first-order language: collection of symbols of
relations and functions, each given with an arity
(possibly 0 for functions). Example: ( 0

(0)
, 1

(0)
, +

(2)
, ·

(2)
, ≤

(2)
)

(“language of partially ordered unital rings”).

terms are formal compositions of function symbols of Σ,
evaluated at variables (e.g., x + 1, x · y , and so on).

Atomic formulas are the R~t, where R is a relation symbol
of Σ and ~t is a sequence of terms with length the arity
of R, or s = t for terms s and t.

First-order formulas are obtained by closing atomic
formulas under finite conjunctions / disjunctions,
negations, and ∃ / ∀ quantifiers.

For infinite cardinals with κ ≥ λ, Lκλ is defined similarly,
with conjunctions / disjunctions of less than κ formulas
and quantifiers over strings of less than λ variables.
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Examples

Finiteness can be expressed by a single Lω1ω sentence:∨∨
n<ω

(
∃(xi )i<n

)
(∀x)

∨∨
i<n

(x = xi ) .

Countability can be expressed by a single Lω1ω1 sentence:(
∃(xi )i<ω

)
(∀x)

∨∨
i<ω

(x = xi ) .

Similar for well-foundedness:(
∀(xi )i<ω

)(∧∧
i<ω

(xi+1 ≤ xi )⇒
∨∨

i<ω
(xi+1 = xi )

)
.

Archimedean property (for partially ordered Abelian
groups) can be expressed by an Lω1ω sentence:

(∀x , y)
(∧∧

n<ω
(nx ≤ y)⇒ x ≤ 0

)
.
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A categorical statement implying elementarity

For any set Ω, Pinj(Ω) denotes the category of all subsets
of Ω with one-to-one functions.

For any first-order language Σ, StrΣ denotes the class of
all Σ-structures.

A map f : A→ B between Σ-structures is an
L∞λ-elementary embedding if A |= ϕ(~a)⇔ B |= ϕ(f ~a)
whenever ϕ ∈ L∞λ and ~a is a list of parameters from A.

Proposition (W 2019)

Let λ be an infinite regular cardinal, let Σ be a first-order
language, let Ω be a set, and let Γ: Pinj(Ω)→ StrΣ be a
λ-continuous functor. Then for every f : X � Y in Pinj(Ω)
with cardX ≥ λ, Γ(f ) is an L∞λ-elementary embedding
from Γ(X ) into Γ(Y ).
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Anti-elementarity

Definition

A class C of objects, in a category S, is anti-elementary if there
are arbitrarily large cardinals λ < κ with λ-continuous functors
Γ: Pinj(κ)→ S such that Γ(λ) ∈ C and Γ(κ) /∈ C .

If S consists of Σ-structures, then, by the Proposition
above, Γ(λ) is an L∞λ-elementary submodel of Γ(κ).

In particular, C is not closed under L∞λ-elementary
equivalence; hence it is not the class of models of any
class of L∞λ-sentences.

We shall outline a method making it possible to establish
anti-elementarity for many classes. Those classes will
always be ranges of functors.
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A few useful categories

DLat0
def
= category of all distributive lattices with zero,

with 0-lattice homomorphisms.

SLat0
def
= category of all (∨, 0)-semilattices, with

(∨, 0)-homomorphisms.

CMon
def
= category of all commutative monoids with

monoid homomorphisms.
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Functors for which the method works

Theorem (W 2019)

The ranges of the following functors are all anti-elementary:

1 Csc : G→ DLat0, G 7→ lattice of all order-convex
`-subgroups of the `-group G ; for any class G of `-groups
containing all Archimedean ones.

2 Idc : R→ SLat0, R 7→ semilattice of all finitely generated
two-sided ideals of R, for many classes R of unital rings,
including all unital regular rings and all unital rings.

3 V : R→ CMon, R 7→ nonstable K0-theory V(R) of R, for
many classes R of unital rings, including all unital regular
rings and all C*-algebras of real rank zero.
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General (categorical) method

We are given a functor Φ: A→ B. We want to prove that
the range of Φ is anti-elementary.

We assume that there are a poset P of a certain kind
(typically a finite lattice) and a (necessarily

non-commutative) P-indexed diagram ~A in A, such that

1 Φ~AI (now a P I -indexed diagram) is a commutative

diagram for every set I (we say that ~A is Φ-commutative);

2 There is no commutative P-indexed diagram ~X in A such
that Φ~A ∼= Φ~X .

Theorem (W 2019)
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Outline of the construction

We are given the poset P (say a lattice with 0) and the
non-commutative diagram ~A as above.

For any large enough infinite regular cardinal λ, we need
to find a cardinal κ > λ and a λ-continuous functor
Γ: Pinj(κ)→ B such that Γ(λ) ∈ rng Φ and Γ(κ) /∈ rng Φ.

There is an explicit description of that functor Γ, namely

Γ(U)
def
= F(P〈U〉)⊗λΦ ~A for every set U.

Easy part of that description:

P〈U〉 def=
{

(a, x) | a ∈ P , x : X → U , X finite , a =
∨

X
}
,

with (a, x) ≤ (b, y) iff a ≤ b and y extends x , and
additional map ∂ : P〈U〉 → P, (a, x) 7→ a.

Owing to an additional property of P〈U〉 (we say that it is
a “pseudo join-semilattice”), we say that (P〈U〉, ∂) is said
to be a norm-covering of P
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P-scaled Boolean algebras

For a norm-covering ∂ : X → P (i.e., a pseudo
join-semilattice X together with an order-preserving map
∂ : X → P), construct a structure F(X ).

This structure is a Boolean algebra B, augmented by a
P-indexed collection of ideals of B satisfying certain
conditions. We called such structures P-scaled Boolean
algebras (Gillibert and Wehrung, Springer LNM 2029,
2011).

Formally, a structure B = (B, (B(p) | p ∈ P)) is a
P-scaled Boolean algebra if B is a Boolean algebra,
each B(p) is an ideal of B, 1 ∈

∨
p∈P B(p), and for all

p, q ∈ P, B(p) ∩ B(q) =
∨

r≥p,q B
(r) (

∨
within IdB).

The category BoolP , of all P-scaled Boolean algebras with
morphisms defined as Boolean algebra homomorphisms
ϕ : A→ B with each ϕ[A(p)] ⊆ B(p), is ω-accessible.
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F(X ) in more detail

Norm-covering: X is a “pseudo join-semilattice” and
∂ : X → P is order-preserving.

F(X ) is the Boolean algebra defined by generators ũ, for
u ∈ X , and relations 1 =

∨
w∈X w̃ , ũ ∧ ṽ =

∨
w≥u,v w̃ ;

those are finite joins, because X is a pseudo
join-semilattice.

For each p ∈ P, F(X )(p) is the ideal of F(X ) generated by
{ũ | p ≤ ∂u}.

Then F(X )
def
= (F(X ), (F(X )(p) | p ∈ P)) is a P-scaled

Boolean algebra.
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Box condensates: A � ~S

For simplicity’s sake, suppose that P is a finite poset.

Let A =
(
A, (A(p) | p ∈ P)

)
be a P-scaled Boolean

algebra. For any a ∈ UltA (:= ultrafilter space of A),
there is a largest p ∈ P such that a ∩ A(p) 6= ∅; denote it
by |a|A.

For any family ~S = (Sp | p ∈ P) in a category S, with
enough products, we set

A � ~S
def
=
∏

(S|a|A | a ∈ UltA) (a box condensate of ~S).

Can we extend this to a functor − � ~S (in case ~S is a
diagram — so there are transition morphisms Sp → Sq)?

The problem is that for our needs, the diagram ~S may not
be commutative: that is, ~S(p, q) may not be a singleton
(for p ≤ q in P).
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Condensates: A⊗λΦ ~S

Now we fix a category T and a functor Φ: S→ T.

Let P be a poset, let ~S be a (not necessarily commutative)
P-indexed diagram in S, and let λ be an infinite regular
cardinal. We assume that ~S is Φ-commutative (i.e., Φ~S I is
a commutative diagram for every set I ).

For a morphism ϕ : A→ B in BoolP , ϕ� ~S can be
defined as a nonempty set of morphisms A � ~S → B � ~S
(not necessarily a singleton).

However, since ~S is Φ-commutative, Φ
(
ϕ� ~S

)
is a

singleton.

We denote this singleton by ϕ⊗λΦ ~S if A and B are both
λ-small.

In general, we complete under λ-directed colimits:
A⊗λΦ ~S = lim−→(U ⊗λΦ ~S | U ≤ A λ-small). A⊗λΦ ~S is a

Φ-condensate of ~S .
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defined as a nonempty set of morphisms A � ~S → B � ~S
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is a

singleton.
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The Boosting Lemma

Now back to the functor Γ (with λ a given infinite regular
cardinal).

Context: Φ: A→ B is a functor (with enough products
and colimits. . . ), ~A is a Φ-commutative P-indexed
diagram in A such that ∀~X P-indexed commutative
diagram in A, Φ~A 6∼= Φ~X .

Γ(U)
def
= F(P〈U〉)⊗λΦ ~A. Hence, if cardU < λ, then

Γ(U) = Φ
(
F(P〈U〉) � ~A

)
∈ rng Φ.

The Boosting Lemma (W 2019)

Under quite general conditions, Γ(λ) ∈ rng Φ as well.
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The Armature Lemma and CLL

By using (Ramsey-like) infinite combinatorial properties of the
poset P, we can extend Gillibert and Wehrung’s original
Armature Lemma and CLL, thus obtaining:

Theorem (W 2019)

Under quite general conditions and if P is a finite lattice, there
exists κ > λ such that Γ(κ) /∈ rng Φ. In particular, rng Φ is
anti-elementary.

If P has order-dimension n and λ = ℵα , then one can take
κ = ℵα+n−1 .

For most examples under discussion,
P = P[3] = {∅, 1, 2, 3, 12, 13, 23, 123}.
It has order-dimension 3, thus one can take κ = ℵα+2 .
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The functor V

For any ring R, V(R) (“nonstable K0-theory of R”) is the
set of Murray - von Neumann equivalence classes of all
idempotent matrices over R, with addition defined by

[a] + [b]
def
=
[(a 0

0 b

)]
.

It is a commutative monoid, conical
(x + y = 0⇒ x = y = 0) as a rule.

V extends naturally to a functor, from the category of all
rings with ring homomorphisms to the category CMon of
all commutative monoids with monoid homomorphisms.
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The diagrams ~D and ~Rk

On Z+: e(x)
def
= (x , x), s(x , y)

def
= (y , x), p(x , y)

def
= x + y .

On any field k: e(x)
def
= (x , x), s(x , y)

def
= (y , x),

h(x , y)
def
=

(
x 0
0 y

)
.

Z+ M2(k)

(Z+)2 (Z+)2 (Z+)2 k2 k2 k2

(Z+)2 (Z+)2 (Z+)2 k2 k2 k2

Z+ k

p
p

p
h

h
h

s s

e
e

e e
e

e
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Basic properties of ~D and ~Rk

~D is a commutative diagram of commutative monoids with
order-unit (use canonical units: 1 for Z+, (1, 1) for (Z+)2).

~Rk is not a commutative diagram (for

(
x 0
0 y

)
6=
(
y 0
0 x

)
as a rule; that is, h ◦ s 6= h).

V(~Rk) ∼= ~D canonically.

In fact, the diagram ~Rk is V-commutative, that is, V
(
~R I
k
)

is a commutative diagram for every set I .

A ring R is V-semiprimitive if [a] ⊥ [b] implies that
ab = 0, for all idempotent matrices a and b over R. Every
semiprimitive exchange ring (thus every von Neumann
regular ring and every C*-algebra of real rank zero) is
V-semiprimitive (W 2013).

There is no commutative diagram R, of V-semiprimitive
rings, such that V(~R) ∼= V(~Rk) (W 2013).
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Anti-elementarity for the functor V

Denote by Ring the category of all unital rings and unital ring
homomorphisms.

Theorem (W 2019)

Let k be a field and let R be a subcategory of Ring such that

1 All objects and arrows of ~Rk belong to R;

2 Every ring in R is V-semiprimitive;

3 R is closed under products within Ring;

4 for all large enough regular cardinals λ, R has all
λ-directed colimits and V preserves those.

Then V(R) is anti-elementary.
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Denote by Ring the category of all unital rings and unital ring
homomorphisms.

Theorem (W 2019)

Let k be a field and let R be a subcategory of Ring such that

1 All objects and arrows of ~Rk belong to R;

2 Every ring in R is V-semiprimitive;

3 R is closed under products within Ring;

4 for all large enough regular cardinals λ, R has all
λ-directed colimits and V preserves those.

Then V(R) is anti-elementary.
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Anti-elementarity for rings (cont’d)

In particular, V(von Neumann regular rings),
V(unit-regular rings), V(C*-algebras of real rank zero) are
all anti-elementary.

For a field k, the category LocMatk of all locally matricial
k-algebras is not closed under countable products
(within Ring). In fact, the sequence (M2n(k) | n ∈ N) has
no product within the category LocMatk.

Hence, the result above does not apply to LocMatk a
priori.

We still know that V(LocMatk) is not closed under
elementary extensions (thus not first-order; combine
Elliott 1976 and W 1998).
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Anti-elementarity for rings (cont’d)
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Anti-elementarity for rings (cont’d)
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Anti-elementarity for rings (cont’d)
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Anti-elementarity for rings (cont’d)

In particular, V(von Neumann regular rings),
V(unit-regular rings), V(C*-algebras of real rank zero) are
all anti-elementary.

For a field k, the category LocMatk of all locally matricial
k-algebras is not closed under countable products
(within Ring). In fact, the sequence (M2n(k) | n ∈ N) has
no product within the category LocMatk.

Hence, the result above does not apply to LocMatk a
priori.

We still know that V(LocMatk) is not closed under
elementary extensions (thus not first-order; combine
Elliott 1976 and W 1998).
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