Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets Large free sets versus *k*-ladders: combinatorial issues raised by "From lifting objects to lifting diagrams"

Friedrich Wehrung

Université de Caen LMNO, UMR 6139 Département de Mathématiques 14032 Caen cedex *E-mail:* wehrung@math.unicaen.fr *URL:* http://www.math.unicaen.fr/~wehrung Most of the results discussed here obtained with **Pierre Gillibert**.

June 2-6, 2010

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets ■ Denote by Con_c A the (∨, 0)-semilattice of all compact (i.e., finitely generated) congruences of an (universal) algebra A.

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets Denote by Con_c A the (∨, 0)-semilattice of all compact (i.e., finitely generated) congruences of an (universal) algebra A.

A (∨, 0)-semilattice S is distributive if for all a, b, c ∈ S, if c ≤ a ∨ b then there are x ≤ a and y ≤ b such that

$$c = x \vee y$$
.

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets Denote by Con_c A the (∨, 0)-semilattice of all compact (i.e., finitely generated) congruences of an (universal) algebra A.

A (∨,0)-semilattice S is distributive if for all a, b, c ∈ S, if c ≤ a ∨ b then there are x ≤ a and y ≤ b such that

- $c = x \vee y$.
- Equivalently, Id *S* is a distributive lattice.

Lifters, free sets, ladders

The Con_c functor

- k-ladders
- Critical points
- From lifting objects to lifting diagrams
- λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets

- Denote by Con_c A the (∨, 0)-semilattice of all compact (i.e., finitely generated) congruences of an (universal) algebra A.
- A (∨,0)-semilattice S is distributive if for all a, b, c ∈ S, if c ≤ a ∨ b then there are x ≤ a and y ≤ b such that

$$c = x \vee y$$
.

- Equivalently, Id *S* is a distributive lattice.
- In particular, every Boolean semilattice is distributive.

Lifters, free sets, ladders

The Con_c functor

- k-ladders
- Critical points
- From lifting objects to lifting diagrams
- λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets

- Denote by Con_c A the (∨, 0)-semilattice of all compact (i.e., finitely generated) congruences of an (universal) algebra A.
- A (∨, 0)-semilattice S is distributive if for all a, b, c ∈ S, if c ≤ a ∨ b then there are x ≤ a and y ≤ b such that

- $c = x \vee y$.
- Equivalently, Id *S* is a distributive lattice.
- In particular, every Boolean semilattice is distributive.
- Let \mathcal{V} be a variety of algebras.

Lifters, free sets, ladders

The Con_c functor

- k-ladders
- Critical points
- From lifting objects to lifting diagrams
- λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets

- Denote by Con_c A the (∨, 0)-semilattice of all compact (i.e., finitely generated) congruences of an (universal) algebra A.
- A (∨, 0)-semilattice S is distributive if for all a, b, c ∈ S, if c ≤ a ∨ b then there are x ≤ a and y ≤ b such that
 - $c = x \vee y.$
- Equivalently, Id *S* is a distributive lattice.
- In particular, every Boolean semilattice is distributive.
- Let \mathcal{V} be a variety of algebras.
- Assume that every finite Boolean semilattice S is isomorphic to Con_c A for some A ∈ V (we say that S can be lifted in V, or that it is representable in V)

Lifters, free sets, ladders

The Con_c functor

- k-ladders
- Critical points
- From lifting objects to lifting diagrams
- λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets

- Denote by Con_c A the (∨, 0)-semilattice of all compact (i.e., finitely generated) congruences of an (universal) algebra A.
- A (∨, 0)-semilattice S is distributive if for all a, b, c ∈ S, if c ≤ a ∨ b then there are x ≤ a and y ≤ b such that

 $c = x \vee y$.

- Equivalently, Id *S* is a distributive lattice.
- In particular, every Boolean semilattice is distributive.
- Let \mathcal{V} be a variety of algebras.
- Assume that every finite Boolean semilattice S is isomorphic to Con_c A for some A ∈ V (we say that S can be lifted in V, or that it is representable in V) (more assumptions coming).

Lifters, free sets, ladders

The Con_c functor

- k-ladders
- Critical points
- From lifting objects to lifting diagrams
- λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets

- Denote by Con_c A the (∨, 0)-semilattice of all compact (i.e., finitely generated) congruences of an (universal) algebra A.
- A (\lor , 0)-semilattice S is distributive if for all $a, b, c \in S$, if $c \leq a \lor b$ then there are $x \leq a$ and $y \leq b$ such that

 $c = x \vee y$.

- Equivalently, Id *S* is a distributive lattice.
- In particular, every Boolean semilattice is distributive.
- Let \mathcal{V} be a variety of algebras.
- Assume that every finite Boolean semilattice S is isomorphic to Con_c A for some A ∈ V (we say that S can be lifted in V, or that it is representable in V) (more assumptions coming).
- We would like to prove that every countable distributive (∨,0)-semilattice can be lifted in 𝔅.

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets Without additional assumptions, this can't be done (e.g., let V be the variety of all distributive lattices).

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets Without additional assumptions, this can't be done (e.g., let V be the variety of all distributive lattices).

Now suppose that for each A ∈ V, each finite Boolean semilattice S, every (∨, 0)-homomorphism φ: Con_c A → S is (up to iso) of the form Con_c f: Con_c A → Con_c B, for some B ∈ V and some homomorphism f: A → B.

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets Without additional assumptions, this can't be done (e.g., let ν be the variety of all distributive lattices).

Now suppose that for each A ∈ V, each finite Boolean semilattice S, every (∨, 0)-homomorphism φ: Con_c A → S is (up to iso) of the form Con_c f: Con_c A → Con_c B, for some B ∈ V and some homomorphism f: A → B.
 Important observation: Con_c is a (quite nice) functor.

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets Without additional assumptions, this can't be done (e.g., let ν be the variety of all distributive lattices).

Now suppose that for each A ∈ V, each finite Boolean semilattice S, every (∨, 0)-homomorphism φ: Con_c A → S is (up to iso) of the form Con_c f: Con_c A → Con_c B, for some B ∈ V and some homomorphism f: A → B.
 Important observation: Con_c is a (quite nice) functor. (one-dimensional amalgamation property for Con_c).

Lifters, free sets, ladders

The Con_c functor

- k-ladders
- Critical points
- From lifting objects to lifting diagrams
- λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets

- Without additional assumptions, this can't be done (e.g., let V be the variety of all distributive lattices).
- Now suppose that for each A ∈ V, each finite Boolean semilattice S, every (∨, 0)-homomorphism φ: Con_c A → S is (up to iso) of the form Con_c f: Con_c A → Con_c B, for some B ∈ V and some homomorphism f: A → B.
 Important observation: Con_c is a (quite nice) functor. (one-dimensional amalgamation property for Con_c).

Now write $S = \lim_{m \to \infty} S_n$, with all S_n Boolean (Bulman-Fleming and McDowell, 1978).

Lifters, free sets, ladders

The Con_c functor

- k-ladders
- Critical points
- From lifting objects to lifting diagrams
- λ -lifters
- $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets

- Without additional assumptions, this can't be done (e.g., let V be the variety of all distributive lattices).
- Now suppose that for each A ∈ V, each finite Boolean semilattice S, every (∨, 0)-homomorphism φ: Con_c A → S is (up to iso) of the form Con_c f: Con_c A → Con_c B, for some B ∈ V and some homomorphism f: A → B.
 Important observation: Con_c is a (quite nice) functor. (one-dimensional amalgamation property for Con_c).
- Now write $S = \lim_{m \to n < \omega} S_n$, with all S_n Boolean (Bulman-Fleming and McDowell, 1978).
- Suppose $S_n \cong \operatorname{Con}_{c} A_n$. By the assumption above, represent the transition map $S_n \to S_{n+1}$ as $\operatorname{Con}_{c} f_n$, for some $f_n \colon A_n \to A_{n+1}$.

Lifters, free sets, ladders

The Con_c functor

- k-ladders
- Critical points
- From lifting objects to lifting diagrams
- λ -lifters
- $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets Without additional assumptions, this can't be done (e.g., let V be the variety of all distributive lattices).

- Now suppose that for each A ∈ V, each finite Boolean semilattice S, every (∨, 0)-homomorphism φ: Con_c A → S is (up to iso) of the form Con_c f: Con_c A → Con_c B, for some B ∈ V and some homomorphism f: A → B.
 Important observation: Con_c is a (quite nice) functor. (one-dimensional amalgamation property for Con_c).
- Now write $S = \lim_{m \to n < \omega} S_n$, with all S_n Boolean (Bulman-Fleming and McDowell, 1978).
- Suppose $S_n \cong \operatorname{Con}_{c} A_n$. By the assumption above, represent the transition map $S_n \to S_{n+1}$ as $\operatorname{Con}_{c} f_n$, for some $f_n \colon A_n \to A_{n+1}$.
- Let $A = \lim_{m \to \infty} A_n$. Then $\operatorname{Con}_{c} A \cong S$.

The Con_c functor

- k-ladders
- Critical points
- From lifting objects to lifting diagrams
- λ -lifters
- $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets How to extend this to larger cardinalities?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Example for \aleph_1 instructive.

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets How to extend this to larger cardinalities?

• Example for \aleph_1 instructive.

1-dimensional amalgamation no longer sufficient.

Lifters, free sets, ladders

The Con_c functor

- k-ladders
- Critical points
- From lifting objects to lifting diagrams
- λ -lifters
- $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets

- How to extend this to larger cardinalities?
- Example for \aleph_1 instructive.
- 1-dimensional amalgamation no longer sufficient.
- 2-dimensional amalgamation property necessary.

Lifters, free sets, ladders

The Con_c functor

- k-ladders
- Critical points
- From lifting objects to lifting diagrams
- λ -lifters
- $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets

- How to extend this to larger cardinalities?
- Example for \aleph_1 instructive.
- 1-dimensional amalgamation no longer sufficient.
- 2-dimensional amalgamation property necessary.
- ... Remaining question: what plays the role of
 - $\omega = \{0, 1, 2, \dots\}$ (index poset of a direct system)?

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets • A poset *P* is lower finite if $P \downarrow p := \{x \in P \mid x \le p\}$ is finite $\forall p \in P$.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Lifters, free sets, ladders

- The Con_c functor
- k-ladders
- Critical points
- From lifting objects to lifting diagrams
- λ -lifters
- $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets

- A poset *P* is lower finite if $P \downarrow p := \{x \in P \mid x \le p\}$ is finite $\forall p \in P$.
- For a positive integer k, a k-ladder is a lower finite lattice where every element has $\leq k$ lower covers.

Lifters, free sets, ladders

- The Con_c functor
- k-ladders
- Critical points
- From lifting objects to lifting diagrams
- λ -lifters

$$(\kappa, <\lambda) \rightsquigarrow F$$

Calculating Kuratowski indexes of finite posets

- A poset *P* is lower finite if $P \downarrow p := \{x \in P \mid x \le p\}$ is finite $\forall p \in P$.
- For a positive integer k, a k-ladder is a lower finite lattice where every element has $\leq k$ lower covers.

Theorem (Ditor 1984)

Lifters, free sets, ladders

- The Con_c functor
- k-ladders
- Critical points
- From lifting objects to lifting diagrams
- λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets

- A poset *P* is lower finite if $P \downarrow p := \{x \in P \mid x \le p\}$ is finite $\forall p \in P$.
- For a positive integer k, a k-ladder is a lower finite lattice where every element has $\leq k$ lower covers.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem (Ditor 1984)

(i) Every k-ladder has cardinality $\leq \aleph_{k-1}$.

Lifters, free sets, ladders

The Con_c functor

k-ladders

- Critical points
- From lifting objects to lifting diagrams
- λ -lifters
- $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets

- A poset *P* is lower finite if $P \downarrow p := \{x \in P \mid x \le p\}$ is finite $\forall p \in P$.
- For a positive integer k, a k-ladder is a lower finite lattice where every element has $\leq k$ lower covers.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem (Ditor 1984)

- (i) Every k-ladder has cardinality $\leq \aleph_{k-1}$.
- (ii) There exists a 2-ladder of cardinality \aleph_1 .

Lifters, free sets, ladders

The Con_c functor

k-ladders

- Critical points
- From lifting objects to lifting diagrams
- λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets

- A poset *P* is lower finite if $P \downarrow p := \{x \in P \mid x \le p\}$ is finite $\forall p \in P$.
- For a positive integer k, a k-ladder is a lower finite lattice where every element has $\leq k$ lower covers.

Theorem (Ditor 1984)

- (i) Every k-ladder has cardinality $\leq \aleph_{k-1}$.
- (ii) There exists a 2-ladder of cardinality \aleph_1 .

Observe that the 1-ladders are exactly the finite chains together with $\omega = \{0, 1, 2, \dots\}$.

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets Idea of proof of (ii): $F = \bigcup_{\alpha < \omega_1} F_{\alpha}$. Start with $F_0 := \{0\}$. Suppose F_{α} constructed.

The Con_c functor

k-ladders

Critical points

```
From lifting
objects to
lifting
diagrams
```

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow I$

 F_{α}

Calculating Kuratowski indexes of finite posets Idea of proof of (ii): $F = \bigcup_{\alpha < \omega_1} F_{\alpha}$. Start with $F_0 := \{0\}$. Suppose F_{α} constructed.

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

```
From lifting
objects to
lifting
diagrams
```

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow$

Calculating Kuratowski indexes of finite posets Idea of proof of (ii): $F = \bigcup_{\alpha < \omega_1} F_{\alpha}$. Start with $F_0 := \{0\}$. Suppose F_{α} constructed.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \sim$

Calculating Kuratowski indexes of finite posets Idea of proof of (ii): $F = \bigcup_{\alpha < \omega_1} F_{\alpha}$. Start with $F_0 := \{0\}$. Suppose F_{α} constructed.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

F_α x0-----0x'

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \sim$

Calculating Kuratowski indexes of finite posets Idea of proof of (ii): $F = \bigcup_{\alpha < \omega_1} F_{\alpha}$. Start with $F_0 := \{0\}$. Suppose F_{α} constructed. F_{α} ... and that's $F_{\alpha+1}$

he Conc nctor Theorem Indeders ritical points rom lifting ojects to ting agrams -lifters $\kappa, <\lambda) \rightarrow P$ alculating uratowski dexes of nite posets	Lifters, free sets, ladders
Hadders ritical points rom lifting ojects to ting agrams -lifters $\epsilon, <\lambda) \sim P$ alculating uratowski dexes of nite posets	The Con _c functor
ritical points from lifting jojetts to ting agrams -lifters $\kappa, <\lambda) \sim P$ alculating uratowski dexes of nite posets	k-ladders
from lifting ojects to ting agrams -lifters $\varsigma, <\lambda) \rightarrow P$ alculating uratowski dexes of nite posets	Critical points
-lifters $arsigma,<\lambda) \sim P$ alculating uratowski dexes of nite posets	From lifting objects to lifting diagrams
$c, <\lambda) \sim P$ alculating uratowski dexes of nite posets	λ -lifters
alculating uratowski dexes of iite posets	$(\kappa, <\lambda) \rightsquigarrow P$
	Calculating Kuratowski indexes of finite posets

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets

Theorem

Every distributive ($\lor,0)\text{-semilattice}$ of cardinality \aleph_1 is isomorphic to

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets

Theorem

Every distributive ($\lor,0)\text{-semilattice}$ of cardinality \aleph_1 is isomorphic to

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

■ Con_c *L* for some lattice *L* (Huhn 1989),

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets

Theorem

Every distributive ($\lor,0)\text{-semilattice}$ of cardinality \aleph_1 is isomorphic to

- Con_c L for some lattice L (Huhn 1989),
- the normal subgroup lattice of some group, or the submodule lattice of some module (Růžička, Tůma, and W., 2007).
A few applications of 2-ladders

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets

Theorem

Every distributive ($\lor,0)\text{-semilattice}$ of cardinality \aleph_1 is isomorphic to

- Con_c *L* for some lattice *L* (Huhn 1989),
- the normal subgroup lattice of some group, or the submodule lattice of some module (Růžička, Tůma, and W., 2007).

In both results above, the \aleph_1 bound is optimal (different methods).

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets

Problem (Ditor 1984)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets

Problem (Ditor 1984)

Does there exist a 3-ladder of cardinality \aleph_2 ?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets

Problem (Ditor 1984)

Does there exist a 3-ladder of cardinality \aleph_2 ?

Theorem (W. 2008)

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets

Problem (Ditor 1984)

Does there exist a 3-ladder of cardinality \aleph_2 ?

Theorem (W. 2008)

Suppose that either $MA(\aleph_1)$ holds or there exists a gap-1 morass. Then there exists a 3-ladder of cardinality \aleph_2 .

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets

Problem (Ditor 1984)

Does there exist a 3-ladder of cardinality \aleph_2 ?

Theorem (W. 2008)

Suppose that either MA(\aleph_1) holds or there exists a gap-1 morass. Then there exists a 3-ladder of cardinality \aleph_2 .

Gap-1 morasses exist in L[A] for any $A \subseteq \omega_1$; hence, if there is no gap-1 morass, then ω_2 is inaccessible in L.

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets

Problem (Ditor 1984)

Does there exist a 3-ladder of cardinality \aleph_2 ?

Theorem (W. 2008)

Suppose that either $MA(\aleph_1)$ holds or there exists a gap-1 morass. Then there exists a 3-ladder of cardinality \aleph_2 .

Gap-1 morasses exist in L[A] for any $A \subseteq \omega_1$; hence, if there is no gap-1 morass, then ω_2 is inaccessible in L.

Corollary

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets

Problem (Ditor 1984)

Does there exist a 3-ladder of cardinality \aleph_2 ?

Theorem (W. 2008)

Suppose that either $MA(\aleph_1)$ holds or there exists a gap-1 morass. Then there exists a 3-ladder of cardinality \aleph_2 .

Gap-1 morasses exist in L[A] for any $A \subseteq \omega_1$; hence, if there is no gap-1 morass, then ω_2 is inaccessible in L.

Corollary

If there is no 3-ladder of cardinality \aleph_2 , then ω_2 is inaccessible in **L**.

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets

Problem (Ditor 1984)

Does there exist a 3-ladder of cardinality \aleph_2 ?

Theorem (W. 2008)

Suppose that either MA(\aleph_1) holds or there exists a gap-1 morass. Then there exists a 3-ladder of cardinality \aleph_2 .

Gap-1 morasses exist in L[A] for any $A \subseteq \omega_1$; hence, if there is no gap-1 morass, then ω_2 is inaccessible in L.

Corollary

If there is no 3-ladder of cardinality \aleph_2 , then ω_2 is inaccessible in **L**.

On the other hand, 3-dimensional amalgamation fails in any variety with a nontrivial member.

Lifters, free sets, ladders

- The Con_c functor
- k-ladders

Critical points

- From lifting objects to lifting diagrams
- λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets Set Con_c 𝔅 := {S | (∃A ∈ 𝔅)(S ≅ Con_c A)}, for any class 𝔅 of algebras.

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Lifters, free sets, ladders

- The Con_c functor
- k-ladders

Critical points

- From lifting objects to lifting diagrams
- λ -lifters
- $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets Set $\operatorname{Con}_{c} \mathcal{V} := \{ S \mid (\exists A \in \mathcal{V}) (S \cong \operatorname{Con}_{c} A) \}$, for any class \mathcal{V} of algebras.

• Critical point crit(\mathcal{A} ; \mathcal{B}), for classes \mathcal{A} and \mathcal{B} of algebras: least possible cardinality of a member of $(Con_c \mathcal{A}) \setminus (Con_c \mathcal{B})$ (and ∞ if $Con_c \mathcal{A} \subseteq Con_c \mathcal{B}$).

Lifters, free sets, ladders

- The Con_c functor
- k-ladders

Critical points

- From lifting objects to lifting diagrams
- λ -lifters

$$(\kappa, <\lambda) \rightsquigarrow P$$

Calculating Kuratowski indexes of finite posets Set $\operatorname{Con}_{c} \mathcal{V} := \{ S \mid (\exists A \in \mathcal{V}) (S \cong \operatorname{Con}_{c} A) \}$, for any class \mathcal{V} of algebras.

• Critical point crit(\mathcal{A} ; \mathcal{B}), for classes \mathcal{A} and \mathcal{B} of algebras: least possible cardinality of a member of $(Con_c \mathcal{A}) \setminus (Con_c \mathcal{B})$ (and ∞ if $Con_c \mathcal{A} \subseteq Con_c \mathcal{B}$).

Theorem (Gillibert 2007)

Lifters, free sets, ladders

- The Con_c functor
- k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets Set $\operatorname{Con}_{c} \mathcal{V} := \{ S \mid (\exists A \in \mathcal{V}) (S \cong \operatorname{Con}_{c} A) \}$, for any class \mathcal{V} of algebras.

 Critical point crit(A; B), for classes A and B of algebras: least possible cardinality of a member of (Con_c A) \ (Con_c B) (and ∞ if Con_c A ⊆ Con_c B).

Theorem (Gillibert 2007)

Let \mathcal{A} and \mathcal{B} be varieties of algebras, with \mathcal{A} locally finite and \mathcal{B} finitely generated congruence-distributive. If $\operatorname{Con}_{c} \mathcal{A} \not\subseteq \operatorname{Con}_{c} \mathcal{B}$, then $\operatorname{crit}(\mathcal{A}; \mathcal{B}) < \aleph_{\omega}$.

Lifters, free sets, ladders

- The Con_c functor
- k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets Set $\operatorname{Con}_{c} \mathcal{V} := \{ S \mid (\exists A \in \mathcal{V}) (S \cong \operatorname{Con}_{c} A) \}$, for any class \mathcal{V} of algebras.

 Critical point crit(A; B), for classes A and B of algebras: least possible cardinality of a member of (Con_c A) \ (Con_c B) (and ∞ if Con_c A ⊆ Con_c B).

Theorem (Gillibert 2007)

Let \mathcal{A} and \mathcal{B} be varieties of algebras, with \mathcal{A} locally finite and \mathcal{B} finitely generated congruence-distributive. If $\mathsf{Con}_{\mathsf{c}} \mathcal{A} \not\subseteq \mathsf{Con}_{\mathsf{c}} \mathcal{B}$, then $\mathsf{crit}(\mathcal{A}; \mathcal{B}) < \aleph_{\omega}$.

Theorem (Gillibert 2009)

Lifters, free sets, ladders

- The Con_c functor
- k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets Set $\operatorname{Con}_{c} \mathcal{V} := \{ S \mid (\exists A \in \mathcal{V}) (S \cong \operatorname{Con}_{c} A) \}$, for any class \mathcal{V} of algebras.

 Critical point crit(A; B), for classes A and B of algebras: least possible cardinality of a member of (Con_c A) \ (Con_c B) (and ∞ if Con_c A ⊆ Con_c B).

Theorem (Gillibert 2007)

Let \mathcal{A} and \mathcal{B} be varieties of algebras, with \mathcal{A} locally finite and \mathcal{B} finitely generated congruence-distributive. If $\operatorname{Con}_{c} \mathcal{A} \not\subseteq \operatorname{Con}_{c} \mathcal{B}$, then $\operatorname{crit}(\mathcal{A}; \mathcal{B}) < \aleph_{\omega}$.

Theorem (Gillibert 2009)

Let \mathcal{A} and \mathcal{B} be varieties of lattices such that every simple member of \mathcal{B} has a prime interval. If $\mathcal{A} \not\subseteq \mathcal{B}$ and $\mathcal{A} \not\subseteq \mathcal{B}^{dual}$, then $\operatorname{Con}_{c} \mathcal{A} \not\subseteq \operatorname{Con}_{c} \mathcal{B}$ and $\operatorname{crit}(\mathcal{A}; \mathcal{B}) \leq \aleph_{2}$. The bound \aleph_{2} is optimal.

Lifters, free sets, ladders	
	Question
Critical points	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets

Question

Are there varieties \mathcal{A} and \mathcal{B} , on finite similarity types, such that $\operatorname{crit}(\mathcal{A}; \mathcal{B}) = \aleph_3$?

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets

Question

Are there varieties \mathcal{A} and \mathcal{B} , on finite similarity types, such that $\operatorname{crit}(\mathcal{A}; \mathcal{B}) = \aleph_3$?

Formally related to the existence problem of 3-ladders of cardinality \aleph_2 ...

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets

Question

Are there varieties \mathcal{A} and \mathcal{B} , on finite similarity types, such that $\operatorname{crit}(\mathcal{A}; \mathcal{B}) = \aleph_3$?

Formally related to the existence problem of 3-ladders of cardinality \aleph_2 ... On the other hand, 3-dimensional amalgamation fails! What to think?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets

- Using the chain ω makes critical points $\geq \aleph_1$.
- Using 2-ladders of cardinality ℵ₁ makes critical points ≥ ℵ₂.

Lifters, free sets, ladders

- The Con_c functor
- k-ladders
- Critical points
- From lifting objects to lifting diagrams
- λ -lifters
- $(\kappa, <\lambda) \rightsquigarrow P$
- Calculating Kuratowski indexes of finite posets

- Using the chain ω makes critical points $\geq \aleph_1$.
- Using 2-ladders of cardinality ℵ₁ makes critical points ≥ ℵ₂.
- Maybe some day, 3-ladders of cardinality ℵ₂ will help finding a critical point ℵ₃...

Lifters, free sets, ladders

- The Con_c functor
- k-ladders
- Critical points
- From lifting objects to lifting diagrams
- λ -lifters
- $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets

- Using the chain ω makes critical points $\geq \aleph_1$.
- Using 2-ladders of cardinality ℵ₁ makes critical points ≥ ℵ₂.
- Maybe some day, 3-ladders of cardinality ℵ₂ will help finding a critical point ℵ₃...

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

■But what makes critical points small?

Lifters, free sets, ladders

- The Con_c functor
- k-ladders
- Critical points
- From lifting objects to lifting diagrams
- λ -lifters
- $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets

- Using the chain ω makes critical points $\geq \aleph_1$.
- Using 2-ladders of cardinality ℵ₁ makes critical points ≥ ℵ₂.
- Maybe some day, 3-ladders of cardinality ℵ₂ will help finding a critical point ℵ₃...

-But what makes critical points small?
- Goto category theory...

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets We are given categories \mathcal{A} , \mathcal{B} , \mathcal{S} together with functors $\Phi: \mathcal{A} \to \mathcal{S}$ and $\Psi: \mathcal{B} \to \mathcal{S}$.

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets We are given categories \mathcal{A} , \mathcal{B} , \mathcal{S} together with functors $\Phi: \mathcal{A} \to \mathcal{S}$ and $\Psi: \mathcal{B} \to \mathcal{S}$. We are trying to find a functor $\Gamma: \mathcal{A} \to \mathcal{B}$ such that $\Phi(\mathcal{A}) \cong \Psi\Gamma(\mathcal{A})$, naturally in \mathcal{A} , for "many" (ideally, all) $\mathcal{A} \in \mathcal{A}$.

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 $\lambda ext{-lifters}$

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets We are given categories \mathcal{A} , \mathcal{B} , \mathcal{S} together with functors $\Phi: \mathcal{A} \to \mathcal{S}$ and $\Psi: \mathcal{B} \to \mathcal{S}$. We are trying to find a functor $\Gamma: \mathcal{A} \to \mathcal{B}$ such that $\Phi(\mathcal{A}) \cong \Psi\Gamma(\mathcal{A})$, naturally in \mathcal{A} , for "many" (ideally, all) $\mathcal{A} \in \mathcal{A}$.

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets We are given categories \mathcal{A} , \mathcal{B} , \mathcal{S} together with functors $\Phi: \mathcal{A} \to \mathcal{S}$ and $\Psi: \mathcal{B} \to \mathcal{S}$. We are trying to find a functor $\Gamma: \mathcal{A} \to \mathcal{B}$ such that $\Phi(\mathcal{A}) \cong \Psi\Gamma(\mathcal{A})$, naturally in \mathcal{A} , for "many" (ideally, all) $\mathcal{A} \in \mathcal{A}$.

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets We are given categories \mathcal{A} , \mathcal{B} , \mathcal{S} together with functors $\Phi: \mathcal{A} \to \mathcal{S}$ and $\Psi: \mathcal{B} \to \mathcal{S}$. We are trying to find a functor $\Gamma: \mathcal{A} \to \mathcal{B}$ such that $\Phi(\mathcal{A}) \cong \Psi\Gamma(\mathcal{A})$, naturally in \mathcal{A} , for "many" (ideally, all) $\mathcal{A} \in \mathcal{A}$.

Hence we need an assumption of the form "for many $A \in \mathcal{A}$, there exists $B \in \mathcal{B}$ such that $\Phi(A) \cong \Psi(B)$ ".

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets We are given categories \mathcal{A} , \mathcal{B} , \mathcal{S} together with functors $\Phi: \mathcal{A} \to \mathcal{S}$ and $\Psi: \mathcal{B} \to \mathcal{S}$. We are trying to find a functor $\Gamma: \mathcal{A} \to \mathcal{B}$ such that $\Phi(\mathcal{A}) \cong \Psi\Gamma(\mathcal{A})$, naturally in \mathcal{A} , for "many" (ideally, all) $\mathcal{A} \in \mathcal{A}$.

Hence we need an assumption of the form "for many $A \in \mathcal{A}$, there exists $B \in \mathcal{B}$ such that $\Phi(A) \cong \Psi(B)$ ". Ask for $\Gamma: A \mapsto B$ to be a functor (at least on a large enough subcategory of \mathcal{A}).

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets

CLL Theorem (Gillibert and W., 2008)

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のへ⊙

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets

CLL Theorem (Gillibert and W., 2008)

In the context above, suppose that

(For many
$$A \in \mathcal{A}$$
) $(\exists B \in \mathcal{B})(\Phi(A) \cong \Psi(B))$.

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets

CLL Theorem (Gillibert and W., 2008)

In the context above, suppose that

(For many
$$A \in \mathcal{A}$$
) $(\exists B \in \mathcal{B})(\Phi(A) \cong \Psi(B))$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Suppose that the categorical settings are nice (larders...)

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets

CLL Theorem (Gillibert and W., 2008)

In the context above, suppose that

(For many
$$A \in \mathcal{A}$$
) $(\exists B \in \mathcal{B})(\Phi(A) \cong \Psi(B))$.

Suppose that the categorical settings are nice (larders...) and let P be a nice poset. Then

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets

CLL Theorem (Gillibert and W., 2008)

In the context above, suppose that

(For many
$$A \in \mathcal{A}$$
) $(\exists B \in \mathcal{B})(\Phi(A) \cong \Psi(B))$.

Suppose that the categorical settings are nice (larders...) and let P be a nice poset. Then

(For many $A \in \mathcal{A}^{P}$) $(\exists B \in \mathcal{B}^{P})(\Phi(A) \cong \Psi(B))$.

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets

CLL Theorem (Gillibert and W., 2008)

In the context above, suppose that

(For many
$$A \in \mathcal{A}$$
) $(\exists B \in \mathcal{B})(\Phi(A) \cong \Psi(B))$.

Suppose that the categorical settings are nice (larders...) and let P be a nice poset. Then

(For many
$$A \in \mathcal{A}^{P}$$
) $(\exists B \in \mathfrak{B}^{P})(\Phi(A) \cong \Psi(B))$.

That is, if Ψ lifts many objects, then it lifts many (*P*-indexed) diagrams.
From lifting objects to lifting diagrams

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets

CLL Theorem (Gillibert and W., 2008)

In the context above, suppose that

(For many
$$A \in \mathcal{A}$$
) $(\exists B \in \mathcal{B})(\Phi(A) \cong \Psi(B))$.

Suppose that the categorical settings are nice (larders...) and let P be a nice poset. Then

(For many $A \in \mathcal{A}^{P}$) $(\exists B \in \mathfrak{B}^{P})(\Phi(A) \cong \Psi(B))$.

That is, if Ψ lifts many objects, then it lifts many (*P*-indexed) diagrams. CLL turns diagram counterexamples to object counterexamples.

From lifting objects to lifting diagrams

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets

CLL Theorem (Gillibert and W., 2008)

In the context above, suppose that

(For many
$$A \in \mathcal{A}$$
) $(\exists B \in \mathcal{B})(\Phi(A) \cong \Psi(B))$.

Suppose that the categorical settings are nice (larders...) and let P be a nice poset. Then

(For many $A \in \mathcal{A}^{P}$) $(\exists B \in \mathfrak{B}^{P})(\Phi(A) \cong \Psi(B))$.

That is, if Ψ lifts many objects, then it lifts many (*P*-indexed) diagrams.

CLL turns diagram counterexamples to object counterexamples. For critical points, Φ and Ψ are both Con_c.

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets For a subset X in a poset P, denote by ∇X the set of all minimal elements of $P \Uparrow X := \{p \in P \mid X \le p\}.$

Lifters, free sets, ladders

- The Con_c functor
- k-ladders
- Critical points
- From lifting objects to lifting diagrams
- λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets For a subset X in a poset P, denote by ∇X the set of all minimal elements of $P \uparrow X := \{ p \in P \mid X \leq p \}.$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Say that X is \bigtriangledown -closed if $\bigtriangledown Y \subseteq X$, $\forall Y \subseteq X$ finite.

Lifters, free sets, ladders

- The Con_c functor
- k-ladders
- Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets For a subset X in a poset P, denote by ∇X the set of all minimal elements of $P \uparrow X := \{p \in P \mid X \leq p\}.$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

Say that X is \bigtriangledown -closed if $\bigtriangledown Y \subseteq X$, $\forall Y \subseteq X$ finite.

Definition (Gillibert and W., 2008)

Lifters, free sets, ladders

- The Con_c functor
- k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets For a subset X in a poset P, denote by ∇X the set of all minimal elements of $P \uparrow X := \{p \in P \mid X \leq p\}.$

イロト 不得 トイヨト イヨト

3

Say that X is \bigtriangledown -closed if $\bigtriangledown Y \subseteq X$, $\forall Y \subseteq X$ finite.

Definition (Gillibert and W., 2008)

A poset P is

Lifters, free sets, ladders

- The Con_c functor
- k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets

- For a subset X in a poset P, denote by $\bigtriangledown X$ the set of all minimal elements of $P \Uparrow X := \{p \in P \mid X \le p\}.$
- Say that X is \bigtriangledown -closed if $\bigtriangledown Y \subseteq X$, $\forall Y \subseteq X$ finite.

Definition (Gillibert and W., 2008)

A poset P is

 a pseudo join-semilattice if P ↑ X is a finitely generated upper subset, ∀X ⊆ P finite;

Lifters, free sets, ladders

- The Con_c functor
- k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets

- For a subset X in a poset P, denote by
 ¬X the set of all minimal elements of P
 ↑ X := {p ∈ P | X ≤ p}.
- Say that X is \bigtriangledown -closed if $\bigtriangledown Y \subseteq X$, $\forall Y \subseteq X$ finite.

Definition (Gillibert and W., 2008)

- A poset P is
 - a pseudo join-semilattice if P ↑ X is a finitely generated upper subset, ∀X ⊆ P finite;
 - supported if it is a pseudo join-semilattice and the ¬-closure of any finite subset of P is finite (sometimes such a P is called mub-complete);

Lifters, free sets, ladders

- The Con_c functor
- k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets

- For a subset X in a poset P, denote by
 ¬X the set of all minimal elements of P
 ↑ X := {p ∈ P | X ≤ p}.
- Say that X is \bigtriangledown -closed if $\bigtriangledown Y \subseteq X$, $\forall Y \subseteq X$ finite.

Definition (Gillibert and W., 2008)

- A poset P is
 - a pseudo join-semilattice if P ↑ X is a finitely generated upper subset, ∀X ⊆ P finite;
 - supported if it is a pseudo join-semilattice and the ¬-closure of any finite subset of P is finite (sometimes such a P is called mub-complete);
 - an almost join-semilattice if it is a pseudo join-semilattice and P↓ a is a join-semilattice ∀a ∈ P.

Examples (pseudo join-semilattice, etc.)

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets ■ almost join-semilattice ⇒ supported ⇒ pseudo join-semilattice.

Examples (pseudo join-semilattice, etc.)

Lifters, free sets, ladders

- The Con_c functor
- k-ladders
- Critical points
- From lifting objects to lifting diagrams
- λ -lifters
- $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets

- almost join-semilattice \Rightarrow supported \Rightarrow pseudo join-semilattice.
- The following posets separate the three classes (and the leftmost one is not a pseudo join-semilattice):

Examples (pseudo join-semilattice, etc.)

Lifters, free sets, ladders

- The Con_c functor
- k-ladders
- Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets

- almost join-semilattice ⇒ supported ⇒ pseudo join-semilattice.
- The following posets separate the three classes (and the leftmost one is not a pseudo join-semilattice):

Norm-coverings, sharp ideals

- The Con_c functor
- k-ladders
- Critical points
- From lifting objects to lifting diagrams

$\lambda\text{-lifters}$

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets A norm-covering of a poset P is a pseudo join-semilattice X, together with an isotone map ∂: X → P.

Norm-coverings, sharp ideals

Lifters, free sets, ladders

- The Con_c functor
- k-ladders
- Critical points
- From lifting objects to lifting diagrams

$\lambda\text{-lifters}$

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets

- A norm-covering of a poset P is a pseudo join-semilattice X, together with an isotone map ∂: X → P.
- An ideal (i.e., a nonempty, upward directed, lower subset)
 x of X is sharp if {∂x | x ∈ x} has a largest element, then denoted by ∂x.

Norm-coverings, sharp ideals

Lifters, free sets, ladders

- The Con_c functor
- k-ladders
- Critical points
- From lifting objects to lifting diagrams

$\lambda\text{-lifters}$

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets

- A norm-covering of a poset P is a pseudo join-semilattice X, together with an isotone map ∂: X → P.
- An ideal (i.e., a nonempty, upward directed, lower subset)
 x of X is sharp if {∂x | x ∈ x} has a largest element, then denoted by ∂x.

■ Then set X⁼ := {x ∈ X | ∂x not maximal}, for every set X of sharp ideals.

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 $\lambda\text{-lifters}$

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets The posets *P* involved in the statement of CLL are those for which there exists a λ -lifter. Here, λ may be thought of as an upper bound for the sizes of the diagram data, while the cardinality of *X* may be thought as an upper bound for the sizes of the object data.

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

$\lambda\text{-lifters}$

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets The posets *P* involved in the statement of CLL are those for which there exists a λ -lifter. Here, λ may be thought of as an upper bound for the sizes of the diagram data, while the cardinality of *X* may be thought as an upper bound for the sizes of the object data.

Definition (Gillibert and W. 2008)

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets The posets *P* involved in the statement of CLL are those for which there exists a λ -lifter. Here, λ may be thought of as an upper bound for the sizes of the diagram data, while the cardinality of *X* may be thought as an upper bound for the sizes of the object data.

Definition (Gillibert and W. 2008)

For an infinite cardinal λ , a λ -lifter of a poset P is a pair (X, \mathbf{X}) , where X is a norm-covering of P, \mathbf{X} is a set of sharp ideals of X, and

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets The posets *P* involved in the statement of CLL are those for which there exists a λ -lifter. Here, λ may be thought of as an upper bound for the sizes of the diagram data, while the cardinality of *X* may be thought as an upper bound for the sizes of the object data.

Definition (Gillibert and W. 2008)

For an infinite cardinal λ , a λ -lifter of a poset P is a pair (X, \mathbf{X}) , where X is a norm-covering of P, \mathbf{X} is a set of sharp ideals of X, and

(i) Every principal ideal of $\mathbf{X}^{=}$ has cardinality $< cf(\lambda)$.

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets The posets *P* involved in the statement of CLL are those for which there exists a λ -lifter. Here, λ may be thought of as an upper bound for the sizes of the diagram data, while the cardinality of *X* may be thought as an upper bound for the sizes of the object data.

Definition (Gillibert and W. 2008)

For an infinite cardinal λ , a λ -lifter of a poset P is a pair (X, \mathbf{X}) , where X is a norm-covering of P, \mathbf{X} is a set of sharp ideals of X, and

- (i) Every principal ideal of $\mathbf{X}^{=}$ has cardinality $< cf(\lambda)$.
- (ii) For every map S: X⁼ → [X]^{<λ} there exists an isotone section σ of ∂ such that Sσ(a) ∩ σ(b) ⊆ σ(a) for all a < b in P.

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets The posets *P* involved in the statement of CLL are those for which there exists a λ -lifter. Here, λ may be thought of as an upper bound for the sizes of the diagram data, while the cardinality of *X* may be thought as an upper bound for the sizes of the object data.

Definition (Gillibert and W. 2008)

For an infinite cardinal λ , a λ -lifter of a poset P is a pair (X, \mathbf{X}) , where X is a norm-covering of P, \mathbf{X} is a set of sharp ideals of X, and

- (i) Every principal ideal of $\mathbf{X}^{=}$ has cardinality $< cf(\lambda)$.
- (ii) For every map S: X⁼ → [X]^{<λ} there exists an isotone section σ of ∂ such that Sσ(a) ∩ σ(b) ⊆ σ(a) for all a < b in P.
- (iii) If $\lambda = \aleph_0$, then X is supported.

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets A severe restriction about the shape of *P* is that If *P* has a λ -lifter, then it is an almost join-semilattice. More precisely,

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets A severe restriction about the shape of *P* is that If *P* has a λ -lifter, then it is an almost join-semilattice. More precisely,

(日)、

3

Theorem (Gillibert and W., 2008)

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets A severe restriction about the shape of *P* is that If *P* has a λ -lifter, then it is an almost join-semilattice. More precisely,

Theorem (Gillibert and W., 2008)

Let λ be an infinite cardinal and let (X, \mathbf{X}) be a λ -lifter of a poset P. Put $\kappa := \operatorname{card} \mathbf{X}$. Then the following statements hold:

(日)、

э.

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 $\lambda\text{-lifters}$

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets A severe restriction about the shape of *P* is that If *P* has a λ -lifter, then it is an almost join-semilattice. More precisely,

Theorem (Gillibert and W., 2008)

Let λ be an infinite cardinal and let (X, \mathbf{X}) be a λ -lifter of a poset P. Put $\kappa := \operatorname{card} \mathbf{X}$. Then the following statements hold:

・ロト ・ 雪 ト ・ ヨ ト

3

(i) *P* is a disjoint union of finitely many almost join-semilattices with zero.

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets A severe restriction about the shape of *P* is that If *P* has a λ -lifter, then it is an almost join-semilattice. More precisely,

Theorem (Gillibert and W., 2008)

Let λ be an infinite cardinal and let (X, \mathbf{X}) be a λ -lifter of a poset P. Put $\kappa := \operatorname{card} \mathbf{X}$. Then the following statements hold:

- (i) *P* is a disjoint union of finitely many almost join-semilattices with zero.
- (ii) For every isotone map $F: [\kappa]^{< cf(\lambda)} \to [\kappa]^{<\lambda}$, there exists a one-to-one map $\sigma: P \to \kappa$ such that

 $(\forall a < b \text{ in } P)(F\sigma(P \downarrow a) \cap \sigma(P \downarrow b) \subseteq \sigma(P \downarrow a)).$

	These posets are too heavy
Lifters, free sets, ladders	
The Con _c functor	In particular, none of the following posets has a lifter:
k-ladders	
Critical points	
From lifting objects to lifting diagrams	
λ -lifters	
$(\kappa, <\lambda) \rightsquigarrow P$	
Calculating Kuratowski indexes of finite posets	

◆□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶

These posets are too heavy... Lifters. free sets, ladders In particular, none of the following posets has a lifter: λ -lifters

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 $\lambda\text{-lifters}$

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets

Theorem (Gillibert + W. 2010)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

$\lambda\text{-lifters}$

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets

Theorem (Gillibert + W. 2010)

Let λ be an infinite cardinal such that

$$(\forall \mu < \mathsf{cf}(\lambda))(\mu^{\aleph_0} < \lambda)$$
.

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 $\lambda\text{-lifters}$

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets

Theorem (Gillibert + W. 2010)

Let λ be an infinite cardinal such that

$$(\forall \mu < \mathsf{cf}(\lambda))(\mu^{leph_0} < \lambda)$$
.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

If a poset has a λ -lifter, then it is well-founded.

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

$\lambda\text{-lifters}$

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets

Theorem (Gillibert + W. 2010)

Let λ be an infinite cardinal such that

$$(\forall \mu < \mathsf{cf}(\lambda))(\mu^{leph_0} < \lambda)$$
.

If a poset has a λ -lifter, then it is well-founded.

The poset $(\omega + 1)^{dual}$:

 $0>1>2>\cdots>\omega\,.$

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 $\lambda\text{-lifters}$

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets

Theorem (Gillibert + W. 2010)

Let λ be an infinite cardinal such that

$$(\forall \mu < \mathsf{cf}(\lambda)) (\mu^{\aleph_0} < \lambda)$$
.

If a poset has a λ -lifter, then it is well-founded.

The poset $(\omega + 1)^{dual}$:

$$0>1>2>\cdots>\omega\,.$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Corollary

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

$\lambda\text{-lifters}$

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets

Theorem (Gillibert + W. 2010)

Let λ be an infinite cardinal such that

$$(orall \mu < \mathsf{cf}(\lambda)) ig(\mu^{leph_0} < \lambda ig)$$
 .

If a poset has a λ -lifter, then it is well-founded.

The poset $(\omega + 1)^{dual}$:

 $0>1>2>\cdots>\omega\,.$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Corollary

 $(\omega+1)^{\mathrm{dual}}$ has no $(2^{\aleph_0})^+$ -lifter.

A question about liftability of infinite posets

A question about liftability of infinite posets

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

$\lambda\text{-lifters}$

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets

Question

Let λ be an infinite cardinal. Does $(\omega + 1)^{dual}$ have a λ -lifter?
Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

$\lambda\text{-lifters}$

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets

Question

Let λ be an infinite cardinal. Does $(\omega + 1)^{dual}$ have a λ -lifter?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

For $\lambda := \aleph_1$, this is related to the following question:

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

$\lambda\text{-lifters}$

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets

Question

Let λ be an infinite cardinal. Does $(\omega + 1)^{dual}$ have a λ -lifter?

For $\lambda := \aleph_1$, this is related to the following question:

Question

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

$\lambda\text{-lifters}$

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets

Question

Let λ be an infinite cardinal. Does $(\omega + 1)^{dual}$ have a λ -lifter?

For $\lambda := \aleph_1$, this is related to the following question:

Question

Does there exist a cardinal κ such that for every isotone $f: [\kappa]^{\leq \aleph_0} \to [\kappa]^{\leq \aleph_0}$, there exists a sequence $(\xi_n \mid n < \omega)$ of elements of κ such that $\xi_n \notin f(\{\xi_k \mid k > n\})$ for each $n < \omega$?

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets

Question

Let λ be an infinite cardinal. Does $(\omega + 1)^{dual}$ have a λ -lifter?

For $\lambda := \aleph_1$, this is related to the following question:

Question

Does there exist a cardinal κ such that for every isotone $f: [\kappa]^{\leq \aleph_0} \to [\kappa]^{\leq \aleph_0}$, there exists a sequence $(\xi_n \mid n < \omega)$ of elements of κ such that $\xi_n \notin f(\{\xi_k \mid k > n\})$ for each $n < \omega$?

If "isotone" is removed from the assumptions above, then the answer to the corresponding question is easily seen to be negative.

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets The following uses 1998 results from Kearnes and Szendrei on commutator theory.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem (Tůma and W., 2006)

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 $\lambda\text{-lifters}$

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets The following uses 1998 results from Kearnes and Szendrei on commutator theory.

Theorem (Tůma and W., 2006)

There exists a diagram, indexed by a finite poset P, of finite Boolean semilattices and $(\lor, 0)$ -embeddings, which cannot be lifted, with respect to the Con_c functor, in any variety satisfying a nontrivial congruence identity.

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets The following uses 1998 results from Kearnes and Szendrei on commutator theory.

Theorem (Tůma and W., 2006)

There exists a diagram, indexed by a finite poset P, of finite Boolean semilattices and $(\lor, 0)$ -embeddings, which cannot be lifted, with respect to the Con_c functor, in any variety satisfying a nontrivial congruence identity.

In particular, this diagram cannot be lifted by lattices, majority algebras, groups, modules, etc.

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets The following uses 1998 results from Kearnes and Szendrei on commutator theory.

Theorem (Tůma and W., 2006)

There exists a diagram, indexed by a finite poset P, of finite Boolean semilattices and $(\lor, 0)$ -embeddings, which cannot be lifted, with respect to the Con_c functor, in any variety satisfying a nontrivial congruence identity.

- In particular, this diagram cannot be lifted by lattices, majority algebras, groups, modules, etc.
- Nevertheless, it can be lifted by groupoids.

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets This diagram has the following form:

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへ⊙

- The Con_c functor
- k-ladders
- Critical points
- From lifting objects to lifting diagrams

$\lambda\text{-lifters}$

```
(\kappa, <\lambda) \rightsquigarrow F
```

Calculating Kuratowski indexes of finite posets Its underlying poset does not have any lifter (because it is not an almost join-semilattice).

- The Con_c functor
- k-ladders
- Critical points
- From lifting objects to lifting diagrams

$\lambda\text{-lifters}$

```
(\kappa, <\lambda) \rightsquigarrow F
```

Calculating Kuratowski indexes of finite posets

- Its underlying poset does not have any lifter (because it is not an almost join-semilattice).
- Thus we cannot apply CLL (or its known extensions) to it.

- The Con_c functor
- k-ladders
- Critical points
- From lifting objects to lifting diagrams

λ -lifters

```
(\kappa, <\lambda) \rightsquigarrow F
```

Calculating Kuratowski indexes of finite posets

- Its underlying poset does not have any lifter (because it is not an almost join-semilattice).
- Thus we cannot apply CLL (or its known extensions) to it.
- In particular, it is still unknown whether every distributive (∨, 0)-semilattice is isomorphic to Con_c M for some majority algebra M.

The $(\kappa, <\lambda) \rightsquigarrow P$ notation

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets The following is a more user-friendly variant of the definition of a lifter.

Definition (Gillibert and W., 2008)

The $(\kappa, <\lambda) \rightsquigarrow P$ notation

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

$(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets The following is a more user-friendly variant of the definition of a lifter.

Definition (Gillibert and W., 2008)

For infinite cardinals κ , λ and a poset P, let $(\kappa, <\lambda) \rightsquigarrow P$ hold if for every mapping $F : \mathfrak{P}(\kappa) \to [\kappa]^{<\lambda}$ there exists a one-to-one map $\sigma : P \rightarrowtail \kappa$ such that

 $(\forall x < y \text{ in } P)(F\sigma(P \downarrow x) \cap \sigma(P \downarrow y) \subseteq \sigma(P \downarrow x)).$

The $(\kappa, \langle \lambda \rangle \rightsquigarrow P$ notation

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets The following is a more user-friendly variant of the definition of a lifter.

Definition (Gillibert and W., 2008)

For infinite cardinals κ , λ and a poset P, let $(\kappa, <\lambda) \rightsquigarrow P$ hold if for every mapping $F \colon \mathfrak{P}(\kappa) \to [\kappa]^{<\lambda}$ there exists a one-to-one map $\sigma \colon P \rightarrowtail \kappa$ such that

 $(\forall x < y \text{ in } P)(F\sigma(P \downarrow x) \cap \sigma(P \downarrow y) \subseteq \sigma(P \downarrow x)).$

In case *P* is lower finite, if is sufficient to replace $P \downarrow z$ by $J(P) \downarrow z$ in the statement above (convenient for verifications on specific posets).

Lifters, free sets, ladders

- The Con_c functor
- k-ladders
- Critical points
- From lifting objects to lifting diagrams
- λ -lifters

$(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets

Theorem (Gillibert and W., 2008)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

$(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets

Theorem (Gillibert and W., 2008)

Let *P* be a finite poset and let λ be an infinite cardinal. Then *P* has a λ -lifter iff *P* is a disjoint union of almost join-semilattices with zero.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Lifters, free sets, ladders

- The Con_c functor
- k-ladders
- Critical points
- From lifting objects to lifting diagrams
- λ -lifters

$(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets

Theorem (Gillibert and W., 2008)

Let P be a finite poset and let λ be an infinite cardinal. Then P has a λ -lifter iff P is a disjoint union of almost join-semilattices with zero.

• The smallest possible cardinality of a λ -lifter of a finite poset P can be estimated precisely, via the $(\kappa, <\lambda) \rightsquigarrow P$ notation.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Lifters, free sets, ladders

- The Con_c functor
- k-ladders
- Critical points
- From lifting objects to lifting diagrams
- λ -lifters

$(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets

Theorem (Gillibert and W., 2008)

Let P be a finite poset and let λ be an infinite cardinal. Then P has a λ -lifter iff P is a disjoint union of almost join-semilattices with zero.

The smallest possible cardinality of a λ-lifter of a finite poset P can be estimated precisely, via the (κ, <λ) → P notation.</p>

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

 A convenient way to do this is to introduce the Kuratowski index.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

Calculating Kuratowski indexes of finite posets

Definition (Gillibert and W., 2008)

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

$(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets

Definition (Gillibert and W., 2008)

The Kuratowski index of a finite poset P, denoted by kur(P), is defined as 0 if P is an antichain, and, otherwise, as the least n > 0 such that $(\lambda^{+(n-1)}, <\lambda) \rightsquigarrow P$ for each infinite cardinal λ .

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

$(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets

Definition (Gillibert and W., 2008)

The Kuratowski index of a finite poset P, denoted by kur(P), is defined as 0 if P is an antichain, and, otherwise, as the least n > 0 such that $(\lambda^{+(n-1)}, <\lambda) \rightsquigarrow P$ for each infinite cardinal λ .

Theorem (Gillibert + W., 2008)

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

$$(\kappa, <\lambda) \rightsquigarrow F$$

Calculating Kuratowski indexes of finite posets

Definition (Gillibert and W., 2008)

The Kuratowski index of a finite poset P, denoted by kur(P), is defined as 0 if P is an antichain, and, otherwise, as the least n > 0 such that $(\lambda^{+(n-1)}, <\lambda) \rightarrow P$ for each infinite cardinal λ .

Theorem (Gillibert + W., 2008)

The Kuratowski index of P always exists, and $kur(P) \le dim(P) \le width J(P) \le card J(P)$. Furthermore, if P is a join-semilattice, then breadth $(P) \le kur(P)$.

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets

Definition (Gillibert and W., 2008)

The Kuratowski index of a finite poset P, denoted by kur(P), is defined as 0 if P is an antichain, and, otherwise, as the least n > 0 such that $(\lambda^{+(n-1)}, <\lambda) \rightarrow P$ for each infinite cardinal λ .

Theorem (Gillibert + W., 2008)

The Kuratowski index of P always exists, and $kur(P) \le dim(P) \le width J(P) \le card J(P)$. Furthermore, if P is a join-semilattice, then breadth $(P) \le kur(P)$.

Theorem (Gillibert + W., 2008)

Lifters, free sets, ladders

The Con_c functor

- k-ladders
- Critical points
- From lifting objects to lifting diagrams

 λ -lifters

$$(\kappa, <\lambda) \rightsquigarrow F$$

Calculating Kuratowski indexes of finite posets

Definition (Gillibert and W., 2008)

The Kuratowski index of a finite poset P, denoted by kur(P), is defined as 0 if P is an antichain, and, otherwise, as the least n > 0 such that $(\lambda^{+(n-1)}, <\lambda) \rightsquigarrow P$ for each infinite cardinal λ .

Theorem (Gillibert + W., 2008)

The Kuratowski index of P always exists, and $kur(P) \le dim(P) \le width J(P) \le card J(P)$. Furthermore, if P is a join-semilattice, then breadth(P) $\le kur(P)$.

Theorem (Gillibert + W., 2008)

For every infinite cardinal λ , every nontrivial finite almost join-semilattice P with zero has a λ -lifter (X, \mathbf{X}) with card $X = \text{card } \mathbf{X} = \lambda^{+(\text{kur}(P)-1)}$.

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets • kur(T) = 1 whenever T is a nontrivial finite tree.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Lifters, free sets, ladders

- The Con_c functor
- k-ladders
- Critical points
- From lifting objects to lifting diagrams
- λ -lifters

$(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets • kur(T) = 1 whenever T is a nontrivial finite tree.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• $P \subseteq Q$ implies that $kur(P) \leq kur(Q)$.

Lifters, free sets, ladders

- The Con_c functor
- k-ladders
- Critical points
- From lifting objects to lifting diagrams
- λ -lifters

$(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets

- kur(T) = 1 whenever T is a nontrivial finite tree.
- $P \subseteq Q$ implies that $kur(P) \leq kur(Q)$.
- kur(P × Q) ≤ kur(P) + kur(Q), for all finite posets P and Q with zero.

Lifters, free sets, ladders

- The Con_c functor
- k-ladders
- Critical points
- From lifting objects to lifting diagrams
- λ -lifters

$(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets

- kur(T) = 1 whenever T is a nontrivial finite tree.
- $P \subseteq Q$ implies that $kur(P) \leq kur(Q)$.
- kur(P × Q) ≤ kur(P) + kur(Q), for all finite posets P and Q with zero.
- Thus kur(P) = n in case P is a product of n nontrivial finite trees.

Lifters, free sets, ladders

- The Con_c functor
- k-ladders
- Critical points
- From lifting objects to lifting diagrams
- λ -lifters

$(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets

- kur(T) = 1 whenever T is a nontrivial finite tree.
- $P \subseteq Q$ implies that $kur(P) \leq kur(Q)$.
- kur(P × Q) ≤ kur(P) + kur(Q), for all finite posets P and Q with zero.
- Thus kur(P) = n in case P is a product of n nontrivial finite trees.
- In particular, kur(2ⁿ) = n (also follows from Kuratowski's Free Set Theorem).

Lifters, free sets, ladders

- The Con_c functor
- k-ladders
- Critical points
- From lifting objects to lifting diagrams
- λ -lifters

$(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets

- kur(T) = 1 whenever T is a nontrivial finite tree.
- $P \subseteq Q$ implies that $kur(P) \leq kur(Q)$.
- kur(P × Q) ≤ kur(P) + kur(Q), for all finite posets P and Q with zero.
- Thus kur(P) = n in case P is a product of n nontrivial finite trees.
- In particular, kur(2ⁿ) = n (also follows from Kuratowski's Free Set Theorem).
- Warning: the $P \mapsto kur(P)$ function is not absolute (in the set-theoretical sense).

... sometimes, not so easy:

Lifters, free sets, ladders

- The Con_c functor
- k-ladders
- Critical points
- From lifting objects to lifting diagrams
- λ -lifters

$(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

... sometimes, not so easy:

Lifters, free sets, ladders

- The Con_c functor
- k-ladders
- Critical points
- From lifting objects to lifting diagrams
- λ -lifters

$(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets • Consider the finite lattices *P* and *Q* represented below.

■ breadth(P) = breadth(Q) = 2 while dim(P) = dim(Q) = 3.

... sometimes, not so easy:

Lifters, free sets, ladders

- The Con_c functor
- k-ladders
- Critical points
- From lifting objects to lifting diagrams
- λ -lifters

$(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets • Consider the finite lattices *P* and *Q* represented below.

- breadth(P) = breadth(Q) = 2 while dim(P) = dim(Q) = 3.
- Thus $2 \leq \operatorname{kur}(P) \leq \operatorname{kur}(Q) \leq 3$.

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets

We don't know more. For example, kur(P) = 2 would mean the following:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

$(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets We don't know more. For example, kur(P) = 2 would mean the following:

For every infinite cardinal λ and every $F: [\lambda^+]^{<\omega} \rightarrow [\lambda^+]^{<\lambda}$, there are distinct $\xi_0, \xi_1, \xi_2, \eta_0, \eta_1, \eta_2 < \lambda$ such that $\xi_i \notin F(\{\xi_j, \eta_j\}), \eta_i \notin F(\{\xi_j, \eta_j\})$, and $\eta_i \notin F(\{\xi_0, \xi_1, \xi_2\})$ for all $i \neq j$ in $\{0, 1, 2\}$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ
Truncated *m*-cubes

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets For $1 \le r \le m$, we define the truncated *m*-dimensional cube $B_m(\le r) := \{X \in \mathfrak{P}(m) \mid \text{either card } X \le r \text{ or } X = m\},\$ endowed with containment.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Truncated *m*-cubes

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets For $1 \le r \le m$, we define the truncated *m*-dimensional cube $B_m(\le r) := \{X \in \mathfrak{P}(m) \mid \text{either card } X \le r \text{ or } X = m\},\$ endowed with containment.

Proposition (Gillibert + W., 2008)

Truncated *m*-cubes

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets For $1 \le r \le m$, we define the truncated *m*-dimensional cube $B_m(\leqslant r) := \{X \in \mathfrak{P}(m) \mid \text{either card } X \le r \text{ or } X = m\},$

endowed with containment.

Proposition (Gillibert + W., 2008)

Let r and m be integers with $1 \leq r < m$ and let κ and λ be infinite cardinals. Then $(\kappa, <\lambda) \rightarrow B_m(\leqslant r)$ iff $(\kappa, r, \lambda) \rightarrow m$, that is, for each $F : [\kappa]^r \rightarrow [\kappa]^{<\lambda}$, there exists $H \in [\kappa]^m$ such that $F(X) \cap H \subseteq X$ for each $X \in [H]^r$ (we say that H is free with respect to F).

Lifters, free sets, ladders			
The Con _c Junctor	Theorem		
Calculating Kuratowski ndexes of inite posets			

Lifters, free sets, ladders

Theorem

- The Con_c functor
- k-ladders
- Critical points
- From lifting objects to lifting diagrams
- λ -lifters

$(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets (i) If GCH holds, then $(\lambda^{+r}, r, \lambda) \rightarrow \lambda^+$ for every infinite cardinal λ and every integer $r \ge 1$ (Erdős *et al.*, 1984).

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Lifters, free sets, ladders

Theorem

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets (i) If GCH holds, then $(\lambda^{+r}, r, \lambda) \rightarrow \lambda^+$ for every infinite cardinal λ and every integer $r \ge 1$ (Erdős *et al.*, 1984).

(ii) $(\lambda^{+2}, 2, \lambda) \to m$ for every integer m > 0 (Hajnal and Máté, 1975). Hence kur $B_m(\leq 2) = 3$ for all $m \geq 3$.

Lifters, free sets, ladders

Theorem

- The Con_c functor
- k-ladders
- Critical points
- From lifting objects to lifting diagrams
- λ -lifters

$(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets

- (i) If GCH holds, then $(\lambda^{+r}, r, \lambda) \rightarrow \lambda^+$ for every infinite cardinal λ and every integer $r \ge 1$ (Erdős *et al.*, 1984).
- (ii) (λ⁺², 2, λ) → m for every integer m > 0 (Hajnal and Máté, 1975). Hence kur B_m(≤2) = 3 for all m ≥ 3.
 (iii) (λ⁺³, 3, λ) → m for every integer m > 0 (Hajnal, 1984).

Hence kur $B_m(\leq 3) = 4$ for all $m \geq 4$.

Lifters, free sets, ladders

Theorem

- The Con_c functor
- k-ladders
- Critical points
- From lifting objects to lifting diagrams

 λ -lifters

$(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets (i) If GCH holds, then $(\lambda^{+r}, r, \lambda) \rightarrow \lambda^+$ for every infinite cardinal λ and every integer $r \ge 1$ (Erdős *et al.*, 1984).

(ii) (λ⁺², 2, λ) → m for every integer m > 0 (Hajnal and Máté, 1975). Hence kur B_m(≤2) = 3 for all m ≥ 3.
(iii) (λ⁺³, 3, λ) → m for every integer m > 0 (Hajnal, 1984). Hence kur B_m(≤3) = 4 for all m ≥ 4.

Item (ii) above has been used by Ploščica and Gillibert to evaluate various critical points between finitely generated modular lattice varieties.

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets Set $t_0 := 5$, $t_1 := 7$, and, for each n > 0, let $t_{n+1} \rightarrow (t_n, 7)^5$ (they exist, due to Ramsey's Theorem).

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets Set $t_0 := 5$, $t_1 := 7$, and, for each n > 0, let $t_{n+1} \rightarrow (t_n, 7)^5$ (they exist, due to Ramsey's Theorem).

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem (Komjáth + Shelah, 2000)

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets Set $t_0 := 5$, $t_1 := 7$, and, for each n > 0, let $t_{n+1} \rightarrow (t_n, 7)^5$ (they exist, due to Ramsey's Theorem).

Theorem (Komjáth + Shelah, 2000)

For every n > 0, there exists a generic extension of the universe in which $(\aleph_n, 4, \aleph_0) \not\rightarrow t_n$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets Set $t_0 := 5$, $t_1 := 7$, and, for each n > 0, let $t_{n+1} \rightarrow (t_n, 7)^5$ (they exist, due to Ramsey's Theorem).

Theorem (Komjáth + Shelah, 2000)

For every n > 0, there exists a generic extension of the universe in which $(\aleph_n, 4, \aleph_0) \not\rightarrow t_n$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

In particular,

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

$(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets Set $t_0 := 5$, $t_1 := 7$, and, for each n > 0, let $t_{n+1} \rightarrow (t_n, 7)^5$ (they exist, due to Ramsey's Theorem).

Theorem (Komjáth + Shelah, 2000)

For every n > 0, there exists a generic extension of the universe in which $(\aleph_n, 4, \aleph_0) \not\rightarrow t_n$.

In particular,

There exists a generic extension of the universe in which
 (ℵ₄, 4, ℵ₀) → t₄.

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets Set $t_0 := 5$, $t_1 := 7$, and, for each n > 0, let $t_{n+1} \rightarrow (t_n, 7)^5$ (they exist, due to Ramsey's Theorem).

Theorem (Komjáth + Shelah, 2000)

For every n > 0, there exists a generic extension of the universe in which $(\aleph_n, 4, \aleph_0) \not\rightarrow t_n$.

In particular,

- There exists a generic extension of the universe in which (ℵ₄, 4, ℵ₀) → t₄.
- Hence kur $B_{t_4}(\leq 4) = 5$ in any universe with GCH, while kur $B_{t_4}(\leq 4) \geq 6$ in some generic extension (hence $P \mapsto kur(P)$ is not absolute).

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets It is not hard to verify that breadth $B_{n+2}(\leq n) = \dim B_{n+2}(\leq n) = n+1$, for all n > 0.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets It is not hard to verify that breadth $B_{n+2}(\leq n) = \dim B_{n+2}(\leq n) = n+1$, for all n > 0. Hence kur $B_{n+2}(\leq n) = n+1$, and so

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Lifters, free sets, ladders

- The Con_c functor
- k-ladders
- Critical points
- From lifting objects to lifting diagrams
- λ -lifters

$(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets It is not hard to verify that breadth $B_{n+2}(\leq n) = \dim B_{n+2}(\leq n) = n+1$, for all n > 0. Hence kur $B_{n+2}(\leq n) = n+1$, and so

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem (Gillibert 2008)

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

$(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets It is not hard to verify that breadth $B_{n+2}(\leq n) = \dim B_{n+2}(\leq n) = n+1$, for all n > 0. Hence kur $B_{n+2}(\leq n) = n+1$, and so

Theorem (Gillibert 2008)

The relation $(\lambda^{+n}, n, \lambda) \rightarrow n + 2$ holds for each infinite cardinal λ and each positive integer n.

Lifters, free sets, ladders

- The Con_c functor
- k-ladders
- Critical points
- From lifting objects to lifting diagrams
- λ -lifters

$(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets It is not hard to verify that breadth $B_{n+2}(\leq n) = \dim B_{n+2}(\leq n) = n+1$, for all n > 0. Hence kur $B_{n+2}(\leq n) = n+1$, and so

Theorem (Gillibert 2008)

The relation $(\lambda^{+n}, n, \lambda) \rightarrow n + 2$ holds for each infinite cardinal λ and each positive integer n.

```
In particular, (\aleph_4, 4, \aleph_0) \rightarrow 6.
```

Lifters, free sets, ladders

- The Con_c functor
- k-ladders
- Critical points
- From lifting objects to lifting diagrams
- λ -lifters

$(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets It is not hard to verify that breadth $B_{n+2}(\leq n) = \dim B_{n+2}(\leq n) = n+1$, for all n > 0. Hence kur $B_{n+2}(\leq n) = n+1$, and so

Theorem (Gillibert 2008)

The relation $(\lambda^{+n}, n, \lambda) \rightarrow n + 2$ holds for each infinite cardinal λ and each positive integer n.

- In particular, $(\aleph_4, 4, \aleph_0) \rightarrow 6$.
- Previously known bound: $(\aleph_4, 4, \aleph_0) \rightarrow 5$ (due to Kuratowski's Free Set Theorem).

Lifters, free sets, ladders

- The Con_c functor
- k-ladders
- Critical points
- From lifting objects to lifting diagrams
- λ -lifters

$(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets It is not hard to verify that breadth $B_{n+2}(\leq n) = \dim B_{n+2}(\leq n) = n+1$, for all n > 0. Hence kur $B_{n+2}(\leq n) = n+1$, and so

Theorem (Gillibert 2008)

The relation $(\lambda^{+n}, n, \lambda) \rightarrow n + 2$ holds for each infinite cardinal λ and each positive integer n.

- In particular, $(\aleph_4, 4, \aleph_0) \rightarrow 6$.
- Previously known bound: $(\aleph_4, 4, \aleph_0) \rightarrow 5$ (due to Kuratowski's Free Set Theorem).
- Next open question: $(\aleph_4, 4, \aleph_0) \rightarrow 7$. That is, does kur $B_7(\leqslant 4) = 5$?

Lifters, free sets, ladders

- The Con_c functor
- k-ladders
- Critical points
- From lifting objects to lifting diagrams
- λ -lifters

$(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets It is not hard to verify that breadth $B_{n+2}(\leq n) = \dim B_{n+2}(\leq n) = n+1$, for all n > 0. Hence kur $B_{n+2}(\leq n) = n+1$, and so

Theorem (Gillibert 2008)

The relation $(\lambda^{+n}, n, \lambda) \rightarrow n + 2$ holds for each infinite cardinal λ and each positive integer n.

- In particular, $(\aleph_4, 4, \aleph_0) \rightarrow 6$.
- Previously known bound: $(\aleph_4, 4, \aleph_0) \rightarrow 5$ (due to Kuratowski's Free Set Theorem).
- Next open question: $(\aleph_4, 4, \aleph_0) \rightarrow 7$. That is, does kur $B_7(\leqslant 4) = 5$?
- The unreachable upper limit: remember that $(\aleph_4, 4, \aleph_0) \not\rightarrow t_4$ in some generic extension.

Lifters, free sets, ladders

- The Con_c functor
- k-ladders
- Critical points
- From lifting objects to lifting diagrams
- λ -lifters

$(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets • Remember the estimate $kur(P) \leq dim(P)$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Lifters, free sets, ladders

- The Con_c functor
- k-ladders
- Critical points
- From lifting objects to lifting diagrams
- λ -lifters

$(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets

- Remember the estimate $kur(P) \leq dim(P)$.
- Estimating the order-dimension kur B_m(≤r) has been an object of intensive study (Dushnik, Füredi + Kahn, Kierstead, Hajnal, Spencer, and others).

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Lifters, free sets, ladders

- The Con_c functor
- k-ladders
- Critical points
- From lifting objects to lifting diagrams
- λ -lifters

$(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets

- Remember the estimate $kur(P) \leq dim(P)$.
- Estimating the order-dimension kur B_m(≤r) has been an object of intensive study (Dushnik, Füredi + Kahn, Kierstead, Hajnal, Spencer, and others).

Using the various estimates available, we obtain, for example:

Lifters, free sets, ladders

- The Con_c functor
- k-ladders
- Critical points
- From lifting objects to lifting diagrams

 λ -lifters

 $(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets • Remember the estimate $kur(P) \leq dim(P)$.

■ Estimating the order-dimension kur B_m(≤r) has been an object of intensive study (Dushnik, Füredi + Kahn, Kierstead, Hajnal, Spencer, and others).

Using the various estimates available, we obtain, for example:

Lifters, free sets, ladders

- The Con_c functor
- k-ladders
- Critical points
- From lifting objects to lifting diagrams

 λ -lifters

$(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets • Remember the estimate $kur(P) \leq dim(P)$.

■ Estimating the order-dimension kur B_m(≤r) has been an object of intensive study (Dushnik, Füredi + Kahn, Kierstead, Hajnal, Spencer, and others).

Using the various estimates available, we obtain, for example:

Theorem (Gillibert + W., 2008)

• $(\aleph_7, 4, \aleph_0) \rightarrow 10$ (using Dushnik's estimate).

Lifters, free sets, ladders

- The Con_c functor
- k-ladders
- Critical points
- From lifting objects to lifting diagrams

 λ -lifters

$(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets • Remember the estimate $kur(P) \leq dim(P)$.

■ Estimating the order-dimension kur B_m(≤r) has been an object of intensive study (Dushnik, Füredi + Kahn, Kierstead, Hajnal, Spencer, and others).

 Using the various estimates available, we obtain, for example:

- $(\aleph_7, 4, \aleph_0) \rightarrow 10$ (using Dushnik's estimate).
- $(\aleph_9, 5, \aleph_0) \rightarrow 12$ (using Dushnik's estimate).

Lifters, free sets, ladders

- The Con_c functor
- k-ladders
- Critical points
- From lifting objects to lifting diagrams

 λ -lifters

$(\kappa, <\lambda) \rightsquigarrow F$

Calculating Kuratowski indexes of finite posets • Remember the estimate $kur(P) \leq dim(P)$.

- Estimating the order-dimension kur B_m(≤r) has been an object of intensive study (Dushnik, Füredi + Kahn, Kierstead, Hajnal, Spencer, and others).
- Using the various estimates available, we obtain, for example:

- $(\aleph_7, 4, \aleph_0) \rightarrow 10$ (using Dushnik's estimate).
- $(\aleph_9, 5, \aleph_0) \rightarrow 12$ (using Dushnik's estimate).
- $(\aleph_{109}, 4, \aleph_0) \rightarrow 257$ (using Füredi and Kahn's estimate).

Lifters, free sets, ladders

- The Con_c functor
- k-ladders
- Critical points
- From lifting objects to lifting diagrams
- λ -lifters

$(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets

- Remember the estimate $kur(P) \leq dim(P)$.
- Estimating the order-dimension kur B_m(≤r) has been an object of intensive study (Dushnik, Füredi + Kahn, Kierstead, Hajnal, Spencer, and others).
- Using the various estimates available, we obtain, for example:

- $(\aleph_7, 4, \aleph_0) \rightarrow 10$ (using Dushnik's estimate).
- $(\aleph_9, 5, \aleph_0) \rightarrow 12$ (using Dushnik's estimate).
- $(\aleph_{109}, 4, \aleph_0) \rightarrow 257$ (using Füredi and Kahn's estimate).
- $(\aleph_{210}, 4, \aleph_0) \rightarrow 32,768$ (using Hajnal and Spencer's estimate).

Lifters, free sets, ladders

The Con_c functor

k-ladders

Critical points

From lifting objects to lifting diagrams

 λ -lifters

$(\kappa, <\lambda) \rightsquigarrow P$

Calculating Kuratowski indexes of finite posets For general n and r, $(\aleph_n, r, \aleph_0) \rightarrow E(n, r)$ with

$$\lg \lg E(n,r) \sim \frac{n}{r2^r \log 2} \text{ as } n \gg r \gg 0$$

イロト 不得 トイヨト イヨト

э.

(again by using Hajnal and Spencer's estimate).