#### Type monoids

 The variety of BISs
 ISs from partial functions
 BISs and additive semigroup homomorphisms
 Biases

 The type monoid

From 𝒴 to Typ S Typ S and equi decomposabilit types Dobbertin's

Theorem

Abelian ℓ-groups

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \rightarrow \\ \mathsf{V}(\kappa \langle s \rangle) \end{array}$ 

## Type monoids of Boolean inverse semigroups

## Friedrich Wehrung

LMNO, CNRS UMR 6139 (Caen) E-mail: friedrich.wehrung01@unicaen.fr URL: http://www.math.unicaen.fr/~wehrung

June 2016

3

イロト 不同 トイヨト イヨト

#### Type monoids

The variety o
 BISs

#### ISs from partial functions

BISs and additive semigroup homomorphisms Biases

 The type monoid

From to Typ *S* Typ *S* and equi decomposabilit types Dobbertin's Theorem

Abelian *l*-groups

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \left\langle S \right\rangle \\ \mathsf{Typ} \ S \rightarrow \\ \mathsf{V}(\kappa \left\langle S \right\rangle) \end{array}$ 

## Inverse semigroup

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 - のへで

#### Type monoids

The variety o
 BISs

#### ISs from partial functions

BISs and additive semigroup homomorphisms Biases

#### The type monoid

From 𝒴 to Typ S Typ S and equidecomposability types Dobbertin's

Theorem

Abelian ℓ-groups

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \left\langle S \right\rangle \\ \mathsf{Typ} \ S \rightarrow \\ \mathsf{V}(\kappa \left\langle S \right\rangle) \end{array}$ 

## Inverse semigroup

Semigroup  $(S, \cdot)$ , where  $\forall x \exists$  unique  $x^{-1}$  (the inverse of x) such that  $xx^{-1}x = x$  and  $x^{-1}xx^{-1} = x^{-1}$ .

#### Type monoids

The variety o
 BISs

ISs from partial functions

additive semigroup homomorphisms Biases

 The type monoid

From *D* to Typ *S* Typ *S* and equidecomposability types Dobbertin's Theorem

Abelian *l*-groups

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \to \\ \mathsf{V}(\kappa \langle s \rangle) \end{array}$ 

## Inverse semigroup

Semigroup  $(S, \cdot)$ , where  $\forall x \exists$  unique  $x^{-1}$  (the inverse of x) such that  $xx^{-1}x = x$  and  $x^{-1}xx^{-1} = x^{-1}$ .

There are many equivalent definitions, such as:

#### Type monoids

 The variety of BISs

ISs from partial functions

additive semigroup homomorphisms Biases

 The type monoid

From ∅ to Typ S Typ S and equidecomposability types Dobbertin's Theorem

Abelian *l*-groups

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \to \\ \mathsf{V}(\kappa \langle s \rangle) \end{array}$ 

## Inverse semigroup

Semigroup  $(S, \cdot)$ , where  $\forall x \exists$  unique  $x^{-1}$  (the inverse of x) such that  $xx^{-1}x = x$  and  $x^{-1}xx^{-1} = x^{-1}$ .

There are many equivalent definitions, such as:  $\forall x \exists y \ xyx = x$ , and all idempotents of *S* commute.

#### Type monoids

#### The variety of BISs

ISs from partial functions

additive semigroup homomorphisms Biases

 The type monoid

From 𝒯 to Typ S Typ S and equi decomposabilit types Dobbertin's Theorem

Abelian *l*-groups

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \rightarrow \\ V(\kappa \langle s \rangle) \end{array}$ 

### Inverse semigroup

Semigroup  $(S, \cdot)$ , where  $\forall x \exists$  unique  $x^{-1}$  (the inverse of x) such that  $xx^{-1}x = x$  and  $x^{-1}xx^{-1} = x^{-1}$ .

There are many equivalent definitions, such as:  $\forall x \exists y \ xyx = x$ , and all idempotents of *S* commute. We set  $\mathbf{d}(x) = x^{-1}x$  (the domain of *x*),  $\mathbf{r}(x) = xx^{-1}$  (the range of *x*),  $\mathrm{Idp} S = \{x \in S \mid x^2 = x\}$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

#### Type monoids

 The variety of BISs

ISs from partial functions

additive semigroup homomorphisms Biases

 The type monoid

From  $\mathscr{D}$  to Typ S Typ S and equi decomposabilit types Dobbertin's Theorem Abelian  $\ell$ -grou

 Type monoid: and nonstable
 K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \rightarrow \\ \mathsf{V}(\kappa \langle s \rangle) \end{array}$ 

### Inverse semigroup

Semigroup  $(S, \cdot)$ , where  $\forall x \exists$  unique  $x^{-1}$  (the inverse of x) such that  $xx^{-1}x = x$  and  $x^{-1}xx^{-1} = x^{-1}$ .

There are many equivalent definitions, such as:  $\forall x \exists y \ xyx = x$ , and all idempotents of S commute. We set  $\mathbf{d}(x) = x^{-1}x$  (the domain of x),  $\mathbf{r}(x) = xx^{-1}$  (the range of x),  $\mathrm{Idp} S = \{x \in S \mid x^2 = x\}$ .

Fundamental example (symmetric inverse semigroup)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

#### Type monoids

#### The variety of BISs

ISs from partial functions BISs and

additive semigroup homomorphisms Biases

 The type monoid

From  $\mathscr{D}$  to Typ S and equi decomposabilit types Dobbertin's Theorem Abelian  $\ell$ -grou

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \rightarrow \\ \mathsf{V}(\kappa \langle s \rangle) \end{array}$ 

## Inverse semigroup

Semigroup  $(S, \cdot)$ , where  $\forall x \exists$  unique  $x^{-1}$  (the inverse of x) such that  $xx^{-1}x = x$  and  $x^{-1}xx^{-1} = x^{-1}$ .

There are many equivalent definitions, such as:  $\forall x \exists y \ xyx = x$ , and all idempotents of S commute. We set  $\mathbf{d}(x) = x^{-1}x$  (the domain of x),  $\mathbf{r}(x) = xx^{-1}$  (the range of x),  $\mathrm{Idp} S = \{x \in S \mid x^2 = x\}$ .

### Fundamental example (symmetric inverse semigroup)

For any set  $\Omega$ , denote by  $\mathfrak{I}_{\Omega}$  the semigroup of all bijections  $f: X \to Y$ , where  $X, Y \subseteq \Omega$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

#### Type monoids

#### The variety of BISs

ISs from partial functions BISs and

semigroup homomorphisms Biases

 The type monoid

From  $\mathscr{D}$  to Typ S and equi decomposabilit types Dobbertin's Theorem Abelian  $\ell$ -grou

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \langle S \rangle \\ \text{Typ } S \rightarrow \\ \mathsf{V}(\kappa \langle S \rangle) \end{array}$ 

## Inverse semigroup

Semigroup  $(S, \cdot)$ , where  $\forall x \exists$  unique  $x^{-1}$  (the inverse of x) such that  $xx^{-1}x = x$  and  $x^{-1}xx^{-1} = x^{-1}$ .

There are many equivalent definitions, such as:  $\forall x \exists y \ xyx = x$ , and all idempotents of S commute. We set  $\mathbf{d}(x) = x^{-1}x$  (the domain of x),  $\mathbf{r}(x) = xx^{-1}$  (the range of x),  $\mathrm{Idp} S = \{x \in S \mid x^2 = x\}$ .

### Fundamental example (symmetric inverse semigroup)

For any set  $\Omega$ , denote by  $\mathfrak{I}_{\Omega}$  the semigroup of all bijections  $f: X \to Y$ , where  $X, Y \subseteq \Omega$  (partial bijections on  $\Omega$ ).

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 ののの

#### Type monoids

#### The variety of BISs

ISs from partial functions BISs and additive

semigroup homomorphisms Biases

 The type monoid

From  $\mathscr{D}$  to Typ S and equidecomposability types Dobbertin's Theorem Abelian  $\ell$ -grou

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \langle S \rangle \\ \text{Typ } S \rightarrow \\ \mathsf{V}(\kappa \langle S \rangle) \end{array}$ 

## Inverse semigroup

Semigroup  $(S, \cdot)$ , where  $\forall x \exists$  unique  $x^{-1}$  (the inverse of x) such that  $xx^{-1}x = x$  and  $x^{-1}xx^{-1} = x^{-1}$ .

There are many equivalent definitions, such as:  $\forall x \exists y \ xyx = x$ , and all idempotents of S commute. We set  $\mathbf{d}(x) = x^{-1}x$  (the domain of x),  $\mathbf{r}(x) = xx^{-1}$  (the range of x),  $\mathrm{Idp} S = \{x \in S \mid x^2 = x\}$ .

## Fundamental example (symmetric inverse semigroup)

For any set  $\Omega$ , denote by  $\mathfrak{I}_{\Omega}$  the semigroup of all bijections  $f: X \to Y$ , where  $X, Y \subseteq \Omega$  (partial bijections on  $\Omega$ ).

Composition of partial functions defined whenever possible:

#### Type monoids

#### The variety of BISs

ISs from partial functions BISs and additive

homomorphisms Biases

 The type monoid

From  $\mathscr{D}$  to Typ S and equidecomposability types Dobbertin's Theorem Abelian  $\ell$ -group

 Type monoids and nonstable K-theory

 $\begin{array}{l} \kappa \left< S \right> \\ \mathsf{Typ} \ S \rightarrow \\ \mathsf{V}(\kappa \left< S \right>) \end{array}$ 

## Inverse semigroup

Semigroup  $(S, \cdot)$ , where  $\forall x \exists$  unique  $x^{-1}$  (the inverse of x) such that  $xx^{-1}x = x$  and  $x^{-1}xx^{-1} = x^{-1}$ .

There are many equivalent definitions, such as:  $\forall x \exists y \ xyx = x$ , and all idempotents of S commute. We set  $\mathbf{d}(x) = x^{-1}x$  (the domain of x),  $\mathbf{r}(x) = xx^{-1}$  (the range of x),  $\mathrm{Idp} S = \{x \in S \mid x^2 = x\}$ .

## Fundamental example (symmetric inverse semigroup)

For any set  $\Omega$ , denote by  $\mathfrak{I}_{\Omega}$  the semigroup of all bijections  $f: X \to Y$ , where  $X, Y \subseteq \Omega$  (partial bijections on  $\Omega$ ).

Composition of partial functions defined whenever possible:  $dom(g \circ f) = \{x \in dom(f) \mid f(x) \in dom(g)\}.$ 

#### Type monoids

#### The variety of BISs

#### ISs from partial functions

BISs and additive semigroup homomorphisms Biases

#### The type monoid

- From 𝒯 to Typ S Typ S and equi decomposabilit types Dobbertin's
- Abelian *l*-groups
- Type monoid and nonstable K-theory
- $\begin{array}{l} \kappa \left< S \right> \\ \mathsf{Typ} \ S \rightarrow \\ \mathsf{V}(\kappa \left< S \right>) \end{array}$

## Vagner-Preston Theorem

#### Type monoids

#### The variety of BISs

#### ISs from partial functions

BISs and additive semigroup homomorphisms Biases

#### The type monoid

From  $\mathscr{D}$  to Typ S and equidecomposability types Dobbertin's

Abelian ℓ-groups

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \left< s \right> \\ \mathsf{Typ} \ s \rightarrow \\ \mathsf{V}(\kappa \left< s \right>) \end{array}$ 

## Vagner-Preston Theorem

Every inverse semigroup embeds into some  $\mathfrak{I}_{\Omega}$ .

#### Type monoids

#### The variety of BISs

ISs from partial functions

BISs and additive semigroup homomorphisms Biases

 The type monoid

From *D* to Typ *S* Typ *S* and equidecomposability types Dobbertin's Theorem

Abelian *l*-groups

 Type monoic and nonstable K-theory

 $\begin{array}{l} \kappa \left\langle s \right\rangle \\ \mathsf{Typ} \ s \rightarrow \\ \mathsf{V}(\kappa \left\langle s \right\rangle) \end{array}$ 

## Vagner-Preston Theorem

Every inverse semigroup embeds into some  $\mathfrak{I}_{\Omega}$ .

Means that every inverse semigroup can be represented as a semigroup of partial bijections on a set.

#### Type monoids

#### The variety of BISs

ISs from partial functions

BISs and additive semigroup homomorphisms Biases

 The type monoid

From  $\mathscr{D}$  to Typ S Typ S and equidecomposability types Dobbertin's Theorem

Abelian *l*-groups

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \langle S \rangle \\ \text{Typ } S \rightarrow \\ V(\kappa \langle S \rangle) \end{array}$ 

## Vagner-Preston Theorem

Every inverse semigroup embeds into some  $\mathfrak{I}_{\Omega}$ .

Means that every inverse semigroup can be represented as a semigroup of partial bijections on a set.

## Example constructed from a group action

#### Type monoids

#### The variety of BISs

ISs from partial functions

BISs and additive semigroup homomorphisms Biases

 The type monoid

From 𝒯 to Typ S Typ S and equi decomposabilit types Dobbertin's Theorem

Abelian *l*-groups

 Type monoids and nonstable
 K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \rightarrow \\ V(\kappa \langle s \rangle) \end{array}$ 

## Vagner-Preston Theorem

Every inverse semigroup embeds into some  $\mathfrak{I}_{\Omega}$ .

Means that every inverse semigroup can be represented as a semigroup of partial bijections on a set.

## Example constructed from a group action

If a group G acts on a set  $\Omega$ , consider all partial bijections  $f: X \to Y$ in  $\Im_{\Omega}$  that are piecewise in G:

#### Type monoids

#### The variety of BISs

ISs from partial functions

BISs and additive semigroup homomorphisms Biases

 The type monoid

From  $\mathcal{D}$  to Typ S and equi decomposabilit types Dobbertin's Theorem

Abelian ℓ-groups

 Type monoids and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \rightarrow \\ V(\kappa \langle s \rangle) \end{array}$ 

## Vagner-Preston Theorem

Every inverse semigroup embeds into some  $\mathfrak{I}_{\Omega}$ .

Means that every inverse semigroup can be represented as a semigroup of partial bijections on a set.

## Example constructed from a group action

If a group G acts on a set  $\Omega$ , consider all partial bijections  $f: X \to Y$ in  $\mathfrak{I}_{\Omega}$  that are piecewise in G: that is,  $\exists$  decompositions  $X = \bigsqcup_{i=1}^{n} X_i, Y = \bigsqcup_{i=1}^{n} Y_i$ , each  $g_i \in G$  and  $g_i X_i = Y_i$ , and

#### Type monoids

 The variety of BISs

ISs from partial functions

BISs and additive semigroup homomorphisms Biases

 The type monoid

From  $\mathcal{D}$  to Typ S Typ S and equi decomposabilit types Dobbertin's Theorem

Abelian ℓ-groups

 Type monoids and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \rightarrow \\ V(\kappa \langle s \rangle) \end{array}$ 

## Vagner-Preston Theorem

Every inverse semigroup embeds into some  $\mathfrak{I}_{\Omega}$ .

Means that every inverse semigroup can be represented as a semigroup of partial bijections on a set.

## Example constructed from a group action

If a group G acts on a set  $\Omega$ , consider all partial bijections  $f: X \to Y$ in  $\mathfrak{I}_{\Omega}$  that are piecewise in G: that is,  $\exists$  decompositions  $X = \bigsqcup_{i=1}^{n} X_i$ ,  $Y = \bigsqcup_{i=1}^{n} Y_i$ , each  $g_i \in G$  and  $g_i X_i = Y_i$ , and

 $f(x) = g_i x$  whenever  $x \in X_i$ .

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 ののの

#### Type monoids

 The variety of BISs

ISs from partial functions

BISs and additive semigroup homomorphisms Biases

 The type monoid

From  $\mathscr{D}$  to Typ S and equidecomposability types Dobbertin's Theorem Abelian legrou

 Type monoids and nonstable K-theory

 $\begin{array}{l} \kappa \left< S \right> \\ \mathsf{Typ} \ S \rightarrow \\ \mathsf{V}(\kappa \left< S \right>) \end{array}$ 

## Vagner-Preston Theorem

Every inverse semigroup embeds into some  $\mathfrak{I}_{\Omega}$ .

Means that every inverse semigroup can be represented as a semigroup of partial bijections on a set.

### Example constructed from a group action

If a group G acts on a set  $\Omega$ , consider all partial bijections  $f: X \to Y$ in  $\mathfrak{I}_{\Omega}$  that are piecewise in G: that is,  $\exists$  decompositions  $X = \bigsqcup_{i=1}^{n} X_i, Y = \bigsqcup_{i=1}^{n} Y_i$ , each  $g_i \in G$  and  $g_i X_i = Y_i$ , and

$$f(x)=g_i x$$
 whenever  $x\in X_i$  .

 $Inv(\Omega, G) = \{f \in \mathfrak{I}_{\Omega} \mid f \text{ is piecewise in } G\}$  is an inverse semigroup.

#### Type monoids

 The variety of BISs

ISs from partial functions

BISs and additive semigroup homomorphisms Biases

 The type monoid

From *D* to Typ *S* Typ *S* and equidecomposability types Dobbertin's Theorem Abelian ℓ-group

 Type monoids and nonstable
 K-theory

 $\begin{array}{l} \kappa \left< S \right> \\ \mathsf{Typ} \ S \ \rightarrow \\ \mathsf{V}(\kappa \left< S \right>) \end{array}$ 

## Vagner-Preston Theorem

Every inverse semigroup embeds into some  $\mathfrak{I}_{\Omega}$ .

Means that every inverse semigroup can be represented as a semigroup of partial bijections on a set.

## Example constructed from a group action

If a group G acts on a set  $\Omega$ , consider all partial bijections  $f: X \to Y$ in  $\mathfrak{I}_{\Omega}$  that are piecewise in G: that is,  $\exists$  decompositions  $X = \bigsqcup_{i=1}^{n} X_i, Y = \bigsqcup_{i=1}^{n} Y_i$ , each  $g_i \in G$  and  $g_i X_i = Y_i$ , and

$$f(x)=g_i x$$
 whenever  $x\in X_i$  .

 $Inv(\Omega, G) = \{f \in \mathfrak{I}_{\Omega} \mid f \text{ is piecewise in } G\}$  is an inverse semigroup.

Idempotents of  $Inv(\Omega, G)$ : they are the identities on all subsets of  $\Omega$ . They form a Boolean lattice.

#### Type monoids

### Extension of previous example

The variety o
 BISs

ISs from partial functions

BISs and additive semigroup homomorphisms Biases

 The type monoid

From  $\mathscr{D}$  to Typ S Typ S and equi decomposabilit types Dobbertin's Theorem

Abelian ℓ-groups

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \left\langle S \right\rangle \\ \mathsf{Typ} \ S \rightarrow \\ \mathsf{V}(\kappa \left\langle S \right\rangle) \end{array}$ 

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ― 圖 … 釣�?

#### Type monoids

#### The variety of BISs

#### ISs from partial functions

BISs and additive semigroup homomorphisms Biases

#### The type monoid

From  $\mathscr{D}$  to Typ *s* Typ *s* and equidecomposability types Dobbertin's

Abelian *l*=groups

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \left< S \right> \\ \mathsf{Typ} \ S \ \rightarrow \\ \mathsf{V}(\kappa \left< S \right>) \end{array}$ 

## Extension of previous example

Now X, Y, X<sub>i</sub>, Y<sub>i</sub> are all restricted to belong to some generalized Boolean sublattice  $\mathcal{B}$  of the powerset of  $\Omega$ .

#### Type monoids

#### The variety of BISs

#### ISs from partial functions

BISs and additive semigroup homomorphisms Biases

#### The type monoid

From D to Typ S and equidecomposability types Dobbertin's Theorem

Abelian ℓ-groups

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \langle S \rangle \\ \text{Typ } S \rightarrow \\ \mathsf{V}(\kappa \langle S \rangle) \end{array}$ 

## Extension of previous example

Now X, Y, X<sub>i</sub>, Y<sub>i</sub> are all restricted to belong to some generalized Boolean sublattice  $\mathcal{B}$  of the powerset of  $\Omega$ . We require  $g\mathcal{B} = \mathcal{B}$  $\forall g \in G$ , that is, G acts on  $\mathcal{B}$  by automorphisms.

#### Type monoids

#### The variety of BISs

ISs from partial functions

BISs and additive semigroup homomorphisms Biases

 The type monoid

From ∅ to Typ S Typ S and equidecomposability types Dobbertin's

Abelian *l*-groups

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \mathsf{Typ} \ s \rightarrow \\ \mathsf{V}(\kappa \langle s \rangle) \end{array}$ 

## Extension of previous example

Now X, Y, X<sub>i</sub>, Y<sub>i</sub> are all restricted to belong to some generalized Boolean sublattice  $\mathcal{B}$  of the powerset of  $\Omega$ . We require  $g\mathcal{B} = \mathcal{B}$  $\forall g \in G$ , that is, G acts on  $\mathcal{B}$  by automorphisms. The structure thus obtained,  $Inv(\mathcal{B}, G)$ , depends only of the isomorphism type of the action of G on  $\mathcal{B}$  (not of the given representation).

#### Type monoids

#### The variety of BISs

ISs from partial functions

BISs and additive semigroup homomorphisms Biases

 The type monoid

From  $\mathscr{D}$  to Typ *s* Typ *s* and equidecomposability types Dobbertin's

I heorem

 Type monoids and nonstable

K-theory  $\kappa \langle S \rangle$ Typ  $S \rightarrow$ 

## Extension of previous example

Now X, Y, X<sub>i</sub>, Y<sub>i</sub> are all restricted to belong to some generalized Boolean sublattice  $\mathcal{B}$  of the powerset of  $\Omega$ . We require  $g\mathcal{B} = \mathcal{B}$  $\forall g \in G$ , that is, G acts on  $\mathcal{B}$  by automorphisms. The structure thus obtained,  $Inv(\mathcal{B}, G)$ , depends only of the isomorphism type of the action of G on  $\mathcal{B}$  (not of the given representation). It is an inverse semigroup.

・ロ・・雪・・雪・・雪・ 今今や

#### Type monoids

#### The variety of BISs

ISs from partial functions

BISs and additive semigroup homomorphisms Biases

 The type monoid

From D to Typ S Typ S and equi decomposabilit types Dobbertin's Theorem

Abelian *l*-groups

 Type monoic and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \rightarrow \\ V(\kappa \langle s \rangle) \end{array}$ 

### Extension of previous example

Now X, Y, X<sub>i</sub>, Y<sub>i</sub> are all restricted to belong to some generalized Boolean sublattice  $\mathcal{B}$  of the powerset of  $\Omega$ . We require  $g\mathcal{B} = \mathcal{B}$  $\forall g \in G$ , that is, G acts on  $\mathcal{B}$  by automorphisms. The structure thus obtained,  $Inv(\mathcal{B}, G)$ , depends only of the isomorphism type of the action of G on  $\mathcal{B}$  (not of the given representation). It is an inverse semigroup.

Idempotents of  $Inv(\mathcal{B}, G)$ : they are the identity functions  $id_X$ , where  $X \in \mathcal{B}$ .

#### Type monoids

#### The variety of BISs

ISs from partial functions

BISs and additive semigroup homomorphisms Biases

 The type monoid

From D to Typ S and equidecomposability types Dobbertin's

Abelian *l*-groups

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \rightarrow \\ V(\kappa \langle s \rangle) \end{array}$ 

### Extension of previous example

Now X, Y,  $X_i$ ,  $Y_i$  are all restricted to belong to some generalized Boolean sublattice  $\mathcal{B}$  of the powerset of  $\Omega$ . We require  $g\mathcal{B} = \mathcal{B}$  $\forall g \in G$ , that is, G acts on  $\mathcal{B}$  by automorphisms. The structure thus obtained,  $Inv(\mathcal{B}, G)$ , depends only of the isomorphism type of the action of G on  $\mathcal{B}$  (not of the given representation). It is an inverse semigroup.

Idempotents of  $Inv(\mathcal{B}, G)$ : they are the identity functions  $id_X$ , where  $X \in \mathcal{B}$ .

## What kind of inverse semigroup is this?

#### Type monoids

#### The variety of BISs

ISs from partial functions

BISs and additive semigroup homomorphisms Biases

 The type monoid

From 𝒯 to Typ S Typ S and equi decomposabilit types Dobbertin's

I heorem

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \rightarrow \\ V(\kappa \langle s \rangle) \end{array}$ 

### Extension of previous example

Now X, Y,  $X_i$ ,  $Y_i$  are all restricted to belong to some generalized Boolean sublattice  $\mathcal{B}$  of the powerset of  $\Omega$ . We require  $g\mathcal{B} = \mathcal{B}$  $\forall g \in G$ , that is, G acts on  $\mathcal{B}$  by automorphisms. The structure thus obtained,  $Inv(\mathcal{B}, G)$ , depends only of the isomorphism type of the action of G on  $\mathcal{B}$  (not of the given representation). It is an inverse semigroup.

Idempotents of  $Inv(\mathcal{B}, G)$ : they are the identity functions  $id_X$ , where  $X \in \mathcal{B}$ .

## What kind of inverse semigroup is this?

Zero element: the function  $0 \in Inv(\mathcal{B}, G)$  with empty domain.

#### Type monoids

#### The variety of BISs

ISs from partial functions

BISs and additive semigroup homomorphisms Biases

 The type monoid

From 𝒯 to Typ S Typ S and equi decomposabilit types Dobbertin's

Abolian & gro

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \langle S \rangle \\ \mathsf{Typ} \ S \rightarrow \\ \mathsf{V}(\kappa \langle S \rangle) \end{array}$ 

### Extension of previous example

Now X, Y,  $X_i$ ,  $Y_i$  are all restricted to belong to some generalized Boolean sublattice  $\mathcal{B}$  of the powerset of  $\Omega$ . We require  $g\mathcal{B} = \mathcal{B}$  $\forall g \in G$ , that is, G acts on  $\mathcal{B}$  by automorphisms. The structure thus obtained,  $Inv(\mathcal{B}, G)$ , depends only of the isomorphism type of the action of G on  $\mathcal{B}$  (not of the given representation). It is an inverse semigroup.

Idempotents of  $Inv(\mathcal{B}, G)$ : they are the identity functions  $id_X$ , where  $X \in \mathcal{B}$ .

## What kind of inverse semigroup is this?

Zero element: the function  $0 \in Inv(\mathcal{B}, G)$  with empty domain.  $f \circ 0 = 0 \circ f = 0, \forall f \in Inv(\mathcal{B}, G).$ 

#### Type monoids

#### The variety of BISs

ISs from partial functions

additive semigroup homomorphisms Biases

 The type monoid

From 𝒴 to Typ S Typ S and equi decomposabilit types Dobbertin's

Abelian l-gro

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \left\langle S \right\rangle \\ \text{Typ } S \rightarrow \\ \mathsf{V}(\kappa \left\langle S \right\rangle) \end{array}$ 

### Extension of previous example

Now X, Y,  $X_i$ ,  $Y_i$  are all restricted to belong to some generalized Boolean sublattice  $\mathcal{B}$  of the powerset of  $\Omega$ . We require  $g\mathcal{B} = \mathcal{B}$  $\forall g \in G$ , that is, G acts on  $\mathcal{B}$  by automorphisms. The structure thus obtained,  $Inv(\mathcal{B}, G)$ , depends only of the isomorphism type of the action of G on  $\mathcal{B}$  (not of the given representation). It is an inverse semigroup.

Idempotents of  $Inv(\mathcal{B}, G)$ : they are the identity functions  $id_X$ , where  $X \in \mathcal{B}$ .

### What kind of inverse semigroup is this?

Zero element: the function  $0 \in Inv(\mathcal{B}, G)$  with empty domain.  $f \circ 0 = 0 \circ f = 0, \forall f \in Inv(\mathcal{B}, G).$ 

Orthogonality:  $f \perp g$  if  $dom(f) \cap dom(g) = rng(f) \cap rng(g) = \emptyset$ .

#### Type monoids

#### The variety of BISs

ISs from partial functions

additive semigroup homomorphisms Biases

 The type monoid

From D to Typ S Typ S and equidecomposability types Dobbertin's

Abelian *l*=gro

 Type monoid: and nonstable
 K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \to \\ \mathsf{V}(\kappa \langle s \rangle) \end{array}$ 

### Extension of previous example

Now X, Y,  $X_i$ ,  $Y_i$  are all restricted to belong to some generalized Boolean sublattice  $\mathcal{B}$  of the powerset of  $\Omega$ . We require  $g\mathcal{B} = \mathcal{B}$  $\forall g \in G$ , that is, G acts on  $\mathcal{B}$  by automorphisms. The structure thus obtained,  $Inv(\mathcal{B}, G)$ , depends only of the isomorphism type of the action of G on  $\mathcal{B}$  (not of the given representation). It is an inverse semigroup.

Idempotents of  $Inv(\mathcal{B}, G)$ : they are the identity functions  $id_X$ , where  $X \in \mathcal{B}$ .

## What kind of inverse semigroup is this?

Zero element: the function  $0 \in Inv(\mathcal{B}, G)$  with empty domain.  $f \circ 0 = 0 \circ f = 0, \forall f \in Inv(\mathcal{B}, G).$ Orthogonality:  $f \perp g$  if dom $(f) \cap dom(g) = rng(f) \cap rng(g) = \emptyset$ .

Can be expressed abstractly:  $f \perp g$  iff  $f \circ g^{-1} = f^{-1} \circ g = 0$ .

#### Type monoids

#### The variety of BISs

ISs from partial functions

additive semigroup homomorphisms Biases

 The type monoid

From  $\mathcal{D}$  to Typ *S* Typ *S* and equidecomposability types Dobbertin's

Abelian *L*-grou

Type monoids
 and nonstable
 K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \to \\ \mathsf{V}(\kappa \langle s \rangle) \end{array}$ 

## Extension of previous example

Now X, Y,  $X_i$ ,  $Y_i$  are all restricted to belong to some generalized Boolean sublattice  $\mathcal{B}$  of the powerset of  $\Omega$ . We require  $g\mathcal{B} = \mathcal{B}$  $\forall g \in G$ , that is, G acts on  $\mathcal{B}$  by automorphisms. The structure thus obtained,  $Inv(\mathcal{B}, G)$ , depends only of the isomorphism type of the action of G on  $\mathcal{B}$  (not of the given representation). It is an inverse semigroup.

Idempotents of  $Inv(\mathcal{B}, G)$ : they are the identity functions  $id_X$ , where  $X \in \mathcal{B}$ .

## What kind of inverse semigroup is this?

Zero element: the function  $0 \in Inv(\mathcal{B}, G)$  with empty domain.  $f \circ 0 = 0 \circ f = 0, \forall f \in Inv(\mathcal{B}, G).$ Orthogonality:  $f \perp g$  if  $dom(f) \cap dom(g) = rng(f) \cap rng(g) = \emptyset$ . Can be expressed abstractly:  $f \perp g$  iff  $f \circ g^{-1} = f^{-1} \circ g = 0$ .

Then one can form the orthogonal sum  $f \oplus g$ :

#### Type monoids

#### The variety of BISs

ISs from partial functions

additive semigroup homomorphisms Biases

 The type monoid

From D to Typ S Typ S and equidecomposability types Dobbertin's Theorem

Abelian ℓ-grou

 Type monoid: and nonstable
 K-theory

 $\begin{array}{l} \kappa \langle S \rangle \\ \text{Typ } S \rightarrow \\ \mathsf{V}(\kappa \langle S \rangle) \end{array}$ 

## Extension of previous example

Now X, Y,  $X_i$ ,  $Y_i$  are all restricted to belong to some generalized Boolean sublattice  $\mathcal{B}$  of the powerset of  $\Omega$ . We require  $g\mathcal{B} = \mathcal{B}$  $\forall g \in G$ , that is, G acts on  $\mathcal{B}$  by automorphisms. The structure thus obtained,  $Inv(\mathcal{B}, G)$ , depends only of the isomorphism type of the action of G on  $\mathcal{B}$  (not of the given representation). It is an inverse semigroup.

Idempotents of  $Inv(\mathcal{B}, G)$ : they are the identity functions  $id_X$ , where  $X \in \mathcal{B}$ .

## What kind of inverse semigroup is this?

Zero element: the function  $0 \in Inv(\mathcal{B}, G)$  with empty domain.  $f \circ 0 = 0 \circ f = 0, \forall f \in Inv(\mathcal{B}, G).$ Orthogonality:  $f \perp g$  if dom $(f) \cap dom(g) = rng(f) \cap rng(g) = \emptyset$ . Can be expressed abstractly:  $f \perp g$  iff  $f \circ g^{-1} = f^{-1} \circ g = 0$ . Then one can form the orthogonal sum  $f \oplus g$ :  $(f \oplus g)(x) = f(x)$  if  $x \in dom(f), g(x)$  if  $x \in dom(g)$ .

## Boolean inverse semigroups

#### Type monoids

 The variety of BISs
 ISs from partial functions
 BISs and additive semigroup homomorphisms

 The type monoid

From  $\mathscr{D}$  to Typ S and equidecomposability types Dobbertin's

Abelian *l*-group

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \left\langle S \right\rangle \\ \mathsf{Typ} \ S \rightarrow \\ \mathsf{V}(\kappa \left\langle S \right\rangle) \end{array}$ 

## Canonical ordering on an inverse semigroup:

## Boolean inverse semigroups

#### Type monoids

#### The variety of BISs

ISs from partial functions

BISs and additive semigroup homomorphisms

 The type monoid

From  $\mathscr{D}$  to Typ *s* Typ *s* and equidecomposability types Dobbertin's

Theorem

Abelian ℓ-groups

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \mathsf{Typ} \ s \rightarrow \\ \mathsf{V}(\kappa \langle s \rangle) \end{array}$ 

## Canonical ordering on an inverse semigroup:

 $x \le y$  iff ( $\exists$  idempotent e) x = ye (resp., x = ey), iff  $x = y \mathbf{d}(x)$ , iff  $x = \mathbf{r}(x)y$ .

## Boolean inverse semigroups

#### Type monoids

#### The variety of BISs

#### ISs from partial functions

#### BISs and additive semigroup homomorphisms Biases

 The type monoid

From D to Typ S Typ S and equidecomposability types Dobbertin's Theorem

Abelian ℓ-groups

 Type monoic and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \mathsf{Typ} \ s \rightarrow \\ \mathsf{V}(\kappa \langle s \rangle) \end{array}$ 

## Canonical ordering on an inverse semigroup:

 $x \le y$  iff ( $\exists$  idempotent e) x = ye (resp., x = ey), iff  $x = y \mathbf{d}(x)$ , iff  $x = \mathbf{r}(x)y$ .

For  $S = Inv(\mathcal{B}, G)$ ,  $f \leq g$  iff g extends f.

#### Type monoids

### The variety of BISs

ISs from partial functions

BISs and additive semigroup homomorphisms Biases

 The type monoid

From  $\mathscr{D}$  to Typ *S* Typ *S* and equidecomposability types Dobbertin's Theorem

Abelian ℓ-groups

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \rightarrow \\ V(\kappa \langle s \rangle) \end{array}$ 

### Canonical ordering on an inverse semigroup:

 $x \le y$  iff ( $\exists$  idempotent e) x = ye (resp., x = ey), iff  $x = y \mathbf{d}(x)$ , iff  $x = \mathbf{r}(x)y$ .

For  $S = Inv(\mathcal{B}, G)$ ,  $f \leq g$  iff g extends f.

### Boolean inverse semigroups

#### Type monoids

 The variety of BISs

ISs from partia functions

BISs and additive semigroup homomorphisms Biases

 The type monoid

From  $\mathscr{D}$  to Typ S Typ S and equi decomposabilit types Dobbertin's Theorem

 Type monoids and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \rightarrow \\ V(\kappa \langle s \rangle) \end{array}$ 

### Canonical ordering on an inverse semigroup:

 $x \le y$  iff ( $\exists$  idempotent e) x = ye (resp., x = ey), iff  $x = y \mathbf{d}(x)$ , iff  $x = \mathbf{r}(x)y$ .

For  $S = Inv(\mathcal{B}, G)$ ,  $f \leq g$  iff g extends f.

### Boolean inverse semigroups

Inverse semigroup S with zero  $(x0 = 0x = 0 \ \forall x)$  such that ldp S is a generalized Boolean algebra, and

#### Type monoids

 The variety of BISs

ISs from partial functions

BISs and additive semigroup homomorphisms

 The type monoid

From  $\mathscr{D}$  to Typ S Typ S and equidecomposability types Dobbertin's Theorem

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \rightarrow \\ \mathsf{V}(\kappa \langle s \rangle) \end{array}$ 

### Canonical ordering on an inverse semigroup:

 $x \le y$  iff ( $\exists$  idempotent e) x = ye (resp., x = ey), iff  $x = y \mathbf{d}(x)$ , iff  $x = \mathbf{r}(x)y$ .

For  $S = Inv(\mathcal{B}, G)$ ,  $f \leq g$  iff g extends f.

### Boolean inverse semigroups

Inverse semigroup S with zero  $(x0 = 0x = 0 \ \forall x)$  such that Idp S is a generalized Boolean algebra, and  $\forall x, y$  with  $x \perp y$ , the supremum  $x \oplus y$  of  $\{x, y\}$ , with respect to  $\leq$ , exists.

#### Type monoids

 The variety of BISs

ISs from partial functions

BISs and additive semigroup homomorphisms Biases

 The type monoid

From *D* to Typ *S* Typ *S* and equidecomposability types Dobbertin's Theorem Abelian ℓ-group

 Type monoic and nonstable K-theory

 $\begin{array}{l} \kappa \left\langle S \right\rangle \\ \text{Typ } S \rightarrow \\ \mathsf{V}(\kappa \left\langle S \right\rangle) \end{array}$ 

### Canonical ordering on an inverse semigroup:

 $x \le y$  iff ( $\exists$  idempotent e) x = ye (resp., x = ey), iff  $x = y \mathbf{d}(x)$ , iff  $x = \mathbf{r}(x)y$ .

For  $S = Inv(\mathcal{B}, G)$ ,  $f \leq g$  iff g extends f.

### Boolean inverse semigroups

Inverse semigroup S with zero  $(x0 = 0x = 0 \ \forall x)$  such that ldp S is a generalized Boolean algebra, and  $\forall x, y$  with  $x \perp y$ , the supremum  $x \oplus y$  of  $\{x, y\}$ , with respect to  $\leq$ , exists.

The latter condition, on  $\exists x \oplus y$ , is not redundant (example with ldp *S* the 2-atom Boolean algebra).

#### Type monoids

 The variety of BISs

ISs from partial functions

BISs and additive semigroup homomorphisms Biases

 The type monoid

From *D* to Typ *S* Typ *S* and equidecomposability types Dobbertin's Theorem Abelian ℓ-group

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \left\langle S \right\rangle \\ \mathsf{Typ} \ S \rightarrow \\ \mathsf{V}(\kappa \left\langle S \right\rangle) \end{array}$ 

### Canonical ordering on an inverse semigroup:

 $x \le y$  iff ( $\exists$  idempotent e) x = ye (resp., x = ey), iff  $x = y \mathbf{d}(x)$ , iff  $x = \mathbf{r}(x)y$ .

For  $S = Inv(\mathcal{B}, G)$ ,  $f \leq g$  iff g extends f.

### Boolean inverse semigroups

Inverse semigroup S with zero  $(x0 = 0x = 0 \ \forall x)$  such that ldp S is a generalized Boolean algebra, and  $\forall x, y$  with  $x \perp y$ , the supremum  $x \oplus y$  of  $\{x, y\}$ , with respect to  $\leq$ , exists.

The latter condition, on  $\exists x \oplus y$ , is not redundant (example with ldp *S* the 2-atom Boolean algebra). Large class of Boolean inverse semigroups: all Inv( $\mathcal{B}$ , *G*).

#### Type monoids

 The variety of BISs
 ISs from partial functions
 BISs and additive semigroup homomorphisms

 The type monoid

From 20 to Typ S Typ S and equidecomposability types Dobbertin's

Theorem

Abelian ℓ-groups

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \rightarrow \\ \mathsf{V}(\kappa \langle s \rangle) \end{array}$ 

### Proposition (folklore).

- ◆ ロ > ◆ 団 > ◆ 豆 > ◆ 豆 > の へ ()

#### Type monoids

### The variety of BISs ISs from partial functions BISs and additive semigroup homomorphisms

 The type monoid

From D to Typ S Typ S and equi decomposabilit types Dobbertin's

Theorem

Abelian ℓ-groups

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \to \\ \mathsf{V}(\kappa \langle s \rangle) \end{array}$ 

### Proposition (folklore).

Let S be a Boolean inverse semigroup and let  $a, b_1, \ldots, b_n \in S$ .

#### Type monoids

### The variety of BISs ISs from partial functions BISs and additive

semigroup homomorphisms

 The type monoid

From 𝒷 to Typ S Typ S and equi decomposabilit types Dobbertin's

Theorem

Abelian ℓ-groups

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \to \\ \mathsf{V}(\kappa \langle s \rangle) \end{array}$ 

### Proposition (folklore).

Let S be a Boolean inverse semigroup and let  $a, b_1, \ldots, b_n \in S$ .

**1**  $\bigvee_{i=1}^{n} b_i$  exists iff the  $b_i$  are pairwise compatible, that is, each  $b_i^{-1}b_j$  and each  $b_ib_j^{-1}$  is idempotent.

・ロ・・雪・・雪・・雪・ 今今や

#### Type monoids

Proposition (folklore).

### The variety of BISs ISs from partial functions BISs and additive semigroup

semigroup homomorphisms Biases

 The type monoid

From ∅ to Typ S Typ S and equi decomposabilit types Dobbertin's

I heorem

• Type monoids

and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \to \\ \mathsf{V}(\kappa \langle s \rangle) \end{array}$ 

### Let S be a Boolean inverse semigroup and let $a, b_1, \ldots, b_n \in S$ . $\bigvee_{i=1}^{n} b_i$ exists iff the $b_i$ are pairwise compatible, that is, each

 $V_{i=1} b_i$  exists in the  $b_i$  are pairwise compatible, that is,  $b_i^{-1}b_j$  and each  $b_ib_j^{-1}$  is idempotent.

2 If 
$$\bigvee_{i=1}^{n} b_i$$
 exists, then  $\bigvee_{i=1}^{n} (ab_i)$  and  $\bigvee_{i=1}^{n} (b_i a)$  both exist,  
 $\bigvee_{i=1}^{n} (ab_i) = a \bigvee_{i=1}^{n} b_i$ , and  $\bigvee_{i=1}^{n} (b_i a) = \left(\bigvee_{i=1}^{n} b_i\right) a$ .

・ロト・西・・田・・田・ のぐの

Type monoids

### The variety of BISs ISs from partial functions BISs and additive semigroup homomorphisms

Biases

 The type monoid

From 𝒴 to Typ S Typ S and equ decomposabili types Dobbertin's

Theorem

• Type monoids

and nonstable K-theory

 $\begin{array}{l} \kappa \langle S \rangle \\ \text{Typ } S \rightarrow \\ V(\kappa \langle S \rangle) \end{array}$ 

### Proposition (folklore).

Let S be a Boolean inverse semigroup and let  $a, b_1, \ldots, b_n \in S$ .

- $\bigvee_{i=1}^{n} b_i$  exists iff the  $b_i$  are pairwise compatible, that is, each  $b_i^{-1}b_j$  and each  $b_ib_j^{-1}$  is idempotent.
- 2 If  $\bigvee_{i=1}^{n} b_i$  exists, then  $\bigvee_{i=1}^{n} (ab_i)$  and  $\bigvee_{i=1}^{n} (b_ia)$  both exist,  $\bigvee_{i=1}^{n} (ab_i) = a \bigvee_{i=1}^{n} b_i$ , and  $\bigvee_{i=1}^{n} (b_ia) = (\bigvee_{i=1}^{n} b_i)a$ .
- 3 If  $\bigvee_{i=1}^{n} b_i$  exists, then  $a \wedge \bigvee_{i=1}^{n} b_i$  exists iff each  $a \wedge b_i$  exists, and then  $\bigvee_{i=1}^{n} (a \wedge b_i) = a \wedge \bigvee_{i=1}^{n} b_i$ .

Type monoids

### The variety of BISs ISs from partial functions BISs and additive semigroup homomorphisms

Biases

 The type monoid

From D to Typ S Typ S and equi decomposabilit types Dobbertin's Theorem

Abelian  $\ell$ -groups

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \left\langle S \right\rangle \\ \text{Typ } S \rightarrow \\ \mathsf{V}(\kappa \left\langle S \right\rangle) \end{array}$ 

### Proposition (folklore).

Let S be a Boolean inverse semigroup and let  $a, b_1, \ldots, b_n \in S$ .

- $\bigvee_{i=1}^{n} b_i$  exists iff the  $b_i$  are pairwise compatible, that is, each  $b_i^{-1}b_j$  and each  $b_ib_i^{-1}$  is idempotent.
- 2 If  $\bigvee_{i=1}^{n} b_i$  exists, then  $\bigvee_{i=1}^{n} (ab_i)$  and  $\bigvee_{i=1}^{n} (b_i a)$  both exist,  $\bigvee_{i=1}^{n} (ab_i) = a \bigvee_{i=1}^{n} b_i$ , and  $\bigvee_{i=1}^{n} (b_i a) = (\bigvee_{i=1}^{n} b_i) a$ .
- 3 If  $\bigvee_{i=1}^{n} b_i$  exists, then  $a \wedge \bigvee_{i=1}^{n} b_i$  exists iff each  $a \wedge b_i$  exists, and then  $\bigvee_{i=1}^{n} (a \wedge b_i) = a \wedge \bigvee_{i=1}^{n} b_i$ .

Note: for a Boolean inverse semigroup S and  $a, b \in S$ ,  $a \wedge b$  may not exist.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Type monoids

### The variety of BISs ISs from partial functions BISs and additive semigroup homomorphisms

Biases

 The type monoid

From ∅ to Typ S Typ S and equi decomposabilit types Dobbertin's Theorem

Abelian  $\ell$ -groups

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \left\langle S \right\rangle \\ \text{Typ } S \rightarrow \\ \mathsf{V}(\kappa \left\langle S \right\rangle) \end{array}$ 

### Proposition (folklore).

Let S be a Boolean inverse semigroup and let  $a, b_1, \ldots, b_n \in S$ .

- $\bigvee_{i=1}^{n} b_i$  exists iff the  $b_i$  are pairwise compatible, that is, each  $b_i^{-1}b_j$  and each  $b_i b_i^{-1}$  is idempotent.
- 2 If  $\bigvee_{i=1}^{n} b_i$  exists, then  $\bigvee_{i=1}^{n} (ab_i)$  and  $\bigvee_{i=1}^{n} (b_i a)$  both exist,  $\bigvee_{i=1}^{n} (ab_i) = a \bigvee_{i=1}^{n} b_i$ , and  $\bigvee_{i=1}^{n} (b_i a) = (\bigvee_{i=1}^{n} b_i) a$ .
- 3 If  $\bigvee_{i=1}^{n} b_i$  exists, then  $a \wedge \bigvee_{i=1}^{n} b_i$  exists iff each  $a \wedge b_i$  exists, and then  $\bigvee_{i=1}^{n} (a \wedge b_i) = a \wedge \bigvee_{i=1}^{n} b_i$ .

Note: for a Boolean inverse semigroup S and  $a, b \in S$ ,  $a \wedge b$  may not exist.

Those S in which  $a \wedge b$  always exists are called inverse meet-semigroups.

#### Type monoids

 The variety of BISs
 ISs from partial functions
 BISs and additive semigroup homomorphisms
 Biases

 The type monoid

From D to Typ S Typ S and equidecomposability types Dobbertin's Theorem

Abelian *l*-groups

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \left\langle S \right\rangle \\ \mathsf{Typ} \ S \rightarrow \\ \mathsf{V}(\kappa \left\langle S \right\rangle) \end{array}$ 

A relevant concept of morphism, for Boolean inverse semigroups, is the following.

#### Type monoids

 The variety of BISs
 ISs from partial functions
 BISs and additive semigroup homomorphisms

Biases

 The type monoid

From  $\mathscr{D}$  to Typ *S* Typ *S* and equidecomposability types

Theorem

Abelian *l*-groups

 Type monoic and nonstable K-theory

 $\begin{array}{l} \kappa \left\langle S \right\rangle \\ \mathsf{Typ} \ S \rightarrow \\ \mathsf{V}(\kappa \left\langle S \right\rangle) \end{array}$ 

A relevant concept of morphism, for Boolean inverse semigroups, is the following.

### Additive semigroup homomorphisms

#### Type monoids

 The variety of BISs
 ISs from partial functions
 BISs and additive semigroup homomorphisms

Biases

 The type monoid

From *D* to Typ *S* Typ *S* and equidecomposability types Dobbertin's

Theorem

Abelian *l*-groups

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \to \\ \mathsf{V}(\kappa \langle s \rangle) \end{array}$ 

A relevant concept of morphism, for Boolean inverse semigroups, is the following.

### Additive semigroup homomorphisms

A semigroup homomorphism  $f: S \to T$ , between Boolean inverse semigroups, is additive if  $x \perp_S y$  implies that  $f(x) \perp_T f(y)$  and  $f(x \oplus y) = f(x) \oplus f(y)$ .

#### Type monoids

 The variety of BISs
 ISs from partial functions
 BISs and additive semigroup homomorphisms

Biases

 The type monoid

From D to Typ S Typ S and equidecomposability types Dobbertin's

Abelian ℓ-groups

 Type monoids and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \to \\ \mathsf{V}(\kappa \langle s \rangle) \end{array}$ 

A relevant concept of morphism, for Boolean inverse semigroups, is the following.

### Additive semigroup homomorphisms

A semigroup homomorphism  $f: S \to T$ , between Boolean inverse semigroups, is additive if  $x \perp_S y$  implies that  $f(x) \perp_T f(y)$  and  $f(x \oplus y) = f(x) \oplus f(y)$ . (In particular,  $f(0_S) = 0_T$ .)

#### Type monoids

 The variety of BISs
 ISs from partial functions
 BISs and additive semigroup homomorphisms

Biases

 The type monoid

From D to Typ S Typ S and equidecomposability types Dobbertin's Theorem

Abelian ℓ-groups

 Type monoids and nonstable
 K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \rightarrow \\ V(\kappa \langle s \rangle) \end{array}$ 

A relevant concept of morphism, for Boolean inverse semigroups, is the following.

### Additive semigroup homomorphisms

A semigroup homomorphism  $f: S \to T$ , between Boolean inverse semigroups, is additive if  $x \perp_S y$  implies that  $f(x) \perp_T f(y)$  and  $f(x \oplus y) = f(x) \oplus f(y)$ . (In particular,  $f(0_S) = 0_T$ .)

Annoying fact:  $\oplus$  is only a partial operation.

#### Type monoids

 The variety of BISs
 ISs from partial functions
 BISs and additive semigroup homomorphisms

• The type

From *D* to Typ *S* Typ *S* and equidecomposability types Dobbertin's Theorem Abelian ℓ-grou

 Type monoids and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \to \\ \mathsf{V}(\kappa \langle s \rangle) \end{array}$ 

A relevant concept of morphism, for Boolean inverse semigroups, is the following.

### Additive semigroup homomorphisms

A semigroup homomorphism  $f: S \to T$ , between Boolean inverse semigroups, is additive if  $x \perp_S y$  implies that  $f(x) \perp_T f(y)$  and  $f(x \oplus y) = f(x) \oplus f(y)$ . (In particular,  $f(0_S) = 0_T$ .)

Annoying fact:  $\oplus$  is only a partial operation. Derived (full) operations:

$$x \otimes y = (\mathbf{r}(x) \setminus \mathbf{r}(y))x(\mathbf{d}(x) \setminus \mathbf{d}(y))$$
 (skew difference);  
 
$$x \nabla y = (x \otimes y) \oplus y$$
 (skew addition).

#### Type monoids

 The variety of BISs
 ISs from partial functions
 BISs and additive semigroup homomorphisms

The type monoid

From  $\mathscr{D}$  to Typ *s* and equidecomposability types Dobbertin's Theorem Abelian  $\ell$ -group

 Type monoids and nonstable
 K-theory

 $\begin{array}{l} \kappa \left\langle S \right\rangle \\ \mathsf{Typ} \ S \rightarrow \\ \mathsf{V}(\kappa \left\langle S \right\rangle) \end{array}$ 

A relevant concept of morphism, for Boolean inverse semigroups, is the following.

### Additive semigroup homomorphisms

A semigroup homomorphism  $f: S \to T$ , between Boolean inverse semigroups, is additive if  $x \perp_S y$  implies that  $f(x) \perp_T f(y)$  and  $f(x \oplus y) = f(x) \oplus f(y)$ . (In particular,  $f(0_S) = 0_T$ .)

Annoying fact:  $\oplus$  is only a partial operation. Derived (full) operations:

$$x \otimes y = (\mathbf{r}(x) \setminus \mathbf{r}(y))x(\mathbf{d}(x) \setminus \mathbf{d}(y))$$
 (skew difference);  
 
$$x \nabla y = (x \otimes y) \oplus y$$
 (skew addition).

Both  $x \otimes y$  and  $x \bigtriangledown y$  are always defined.

### Type monoids

 The variety of BISs
 ISs from partial functions
 BISs and additive semigroup homomorphisms

#### Biases

 The type monoid

From  $\mathcal{D}$  to Typ S Typ S and equi decomposabilit types Dobbertin's Theorem

Abelian *l*-groups

Type monon
 and nonstable
 K-theory

 $\begin{array}{l} \kappa \left\langle S \right\rangle \\ \mathsf{Typ} \ S \rightarrow \\ \mathsf{V}(\kappa \left\langle S \right\rangle) \end{array}$ 

### • The structures $(S, \cdot, 0, \heartsuit, \bigtriangledown)$ can be axiomatized,

・ロト・西ト・モン・ビー ひゃう

#### Type monoids

• The variety of BISs ISs from partial functions BISs and additive semigroup homomorphisms

#### Biases

 The type monoid

From D to Typ S Typ S and equidecomposability types Dobbertin's Theorem

Abelian *l*-groups

 Type monoise and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \to \\ \mathsf{V}(\kappa \langle s \rangle) \end{array}$ 

The structures  $(S, \cdot, 0, \otimes, \nabla)$  can be axiomatized, by finitely many identities (e.g.,  $x \otimes y = (x \nabla y)(x \otimes y)^{-1}(x \otimes y)$ ).

Those identities define the variety of all biases.

Type monoids

 The variety of BISs
 ISs from partial functions
 BISs and additive

semigroup homomorphisms

Biases

 The type monoid

From D to Typ S Typ S and equidecomposability types Dobbertin's Theorem

Abelian ℓ-groups

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \left\langle S \right\rangle \\ \mathsf{Typ} \ S \rightarrow \\ \mathsf{V}(\kappa \left\langle S \right\rangle) \end{array}$ 

The structures  $(S, \cdot, 0, \otimes, \nabla)$  can be axiomatized, by finitely many identities (e.g.,  $x \otimes y = (x \nabla y)(x \otimes y)^{-1}(x \otimes y)$ ).

• Those identities define the variety of all biases.

Biases $(\cdot, 0, \odot, \nabla) \rightleftharpoons$  Boolean inverse semigroups  $(\cdot, 0, \oplus)$ .

Type monoids

- The variety of BISs
   ISs from partial functions
   BISs and
- semigroup homomorphisms

#### Biases

- The type monoid
- From  $\mathscr{D}$  to Typ *S* Typ *S* and equidecomposability types Dobbertin's
- I heorem
- Type monoids
- Type monoid and nonstable K-theory
- $\begin{array}{l} \kappa \left< S \right> \\ \mathsf{Typ} \ S \rightarrow \\ \mathsf{V}(\kappa \left< S \right>) \end{array}$

- Those identities define the variety of all biases.
- Biases( $(\cdot, 0, \odot, \nabla)$   $\Longrightarrow$  Boolean inverse semigroups ( $(\cdot, 0, \oplus)$ ).
- For Boolean inverse semigroups S and T, a map f: S → T is a homomorphism of biases iff it is additive.

Type monoids

 The variety of BISs
 ISs from partial functions

additive semigroup homomorphisms

Biases

 The type monoid

From D to Typ S Typ S and equi decomposabilit types Dobbertin's

Theorem

Abelian  $\ell$ -groups

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \mathsf{Typ} \ s \rightarrow \\ \mathsf{V}(\kappa \langle s \rangle) \end{array}$ 

- Those identities define the variety of all biases.
- Biases( $\cdot, 0, \odot, \nabla$ )  $\Leftrightarrow$  Boolean inverse semigroups ( $\cdot, 0, \oplus$ ).
- For Boolean inverse semigroups S and T, a map f: S → T is a homomorphism of biases iff it is additive.
- A subset S in a BIS T is a sub-bias iff it is a subsemigroup, closed under finite  $\oplus$ , and closed under  $(x, y) \mapsto x \setminus y$  on Idp S.

Type monoids

 The variety of BISs
 ISs from partial functions
 BISs and

semigroup homomorphisms

Biases

 The type monoid

From 𝒴 to Typ S Typ S and equ decomposabilitypes Dobbertin's

Theorem

Abelian ℓ-groups

 Type monoic and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \rightarrow \\ V(\kappa \langle s \rangle) \end{array}$ 

- Those identities define the variety of all biases.
- Biases( $\cdot, 0, \odot, \nabla$ )  $\Leftrightarrow$  Boolean inverse semigroups ( $\cdot, 0, \oplus$ ).
- For Boolean inverse semigroups S and T, a map f: S → T is a homomorphism of biases iff it is additive.
- A subset S in a BIS T is a sub-bias iff it is a subsemigroup, closed under finite  $\oplus$ , and closed under  $(x, y) \mapsto x \setminus y$  on Idp S.
- The following term is a Mal'cev term for the variety of all biases:

$$m(x, y, z) = \left(x(\mathbf{d}(x) \otimes \mathbf{d}(y)) \lor xy^{-1}z\right) \lor (\mathbf{r}(z) \otimes \mathbf{r}(y))z$$

Type monoids

 The variety of BISs
 ISs from partial functions
 BISs and

semigroup homomorphisms

Biases

 The type monoid

From 𝒴 to Typ S Typ S and equ decomposabilitypes Dobbertin's

I heorem

 Type monoid: and nonstable
 K-theory

 $\begin{array}{l} \kappa \left< S \right> \\ \mathsf{Typ} \ S \ \rightarrow \\ \mathsf{V}(\kappa \left< S \right>) \end{array}$ 

The structures  $(S, \cdot, 0, \otimes, \nabla)$  can be axiomatized, by finitely many identities (e.g.,  $x \otimes y = (x \nabla y)(x \otimes y)^{-1}(x \otimes y)$ ).

- Those identities define the variety of all biases.
- Biases( $\cdot, 0, \odot, \nabla$ )  $\Leftrightarrow$  Boolean inverse semigroups ( $\cdot, 0, \oplus$ ).
- For Boolean inverse semigroups S and T, a map f: S → T is a homomorphism of biases iff it is additive.
- A subset S in a BIS T is a sub-bias iff it is a subsemigroup, closed under finite  $\oplus$ , and closed under  $(x, y) \mapsto x \setminus y$  on Idp S.
- The following term is a Mal'cev term for the variety of all biases:

$$m(x, y, z) = \left(x \left( \mathbf{d}(x) \otimes \mathbf{d}(y) \right) \bigtriangledown xy^{-1}z \right) \bigtriangledown \left( \mathbf{r}(z) \otimes \mathbf{r}(y) \right)z$$

 Therefore, the variety of all biases is congruence-permutable. (Note: it is not congruence-distributive.)

Type monoids

- The variety of BISs
   ISs from partial functions
   BISs and additive
- semigroup homomorphisms Riases
- The type monoid
- From  $\mathcal{D}$  to Typ S Typ S and equ decomposability types Dobbertin's
- I heorem
- Type monoid: and nonstable K-theory
- $\begin{array}{l} \kappa \langle S \rangle \\ \mathsf{Typ} \ S \rightarrow \\ \mathsf{V}(\kappa \langle S \rangle) \end{array}$

- Those identities define the variety of all biases.
- Biases( $\cdot, 0, \otimes, \nabla$ )  $\Leftrightarrow$  Boolean inverse semigroups ( $\cdot, 0, \oplus$ ).
- For Boolean inverse semigroups S and T, a map f: S → T is a homomorphism of biases iff it is additive.
- A subset S in a BIS T is a sub-bias iff it is a subsemigroup, closed under finite  $\oplus$ , and closed under  $(x, y) \mapsto x \setminus y$  on Idp S.
- The following term is a Mal'cev term for the variety of all biases:

$$m(x, y, z) = \left(x \left( \mathbf{d}(x) \otimes \mathbf{d}(y) \right) \bigtriangledown xy^{-1}z \right) \bigtriangledown \left( \mathbf{r}(z) \otimes \mathbf{r}(y) \right)z.$$

- Therefore, the variety of all biases is congruence-permutable. (Note: it is not congruence-distributive.)
- Hence, Boolean inverse semigroups are much closer to rings than to semigroups.

#### Type monoids

### The variety of BISs ISs from partial functions BISs and additive semigroup homomorphisms

#### Biases

 The type monoid

From *D* to Typ *S* Typ *S* and equi decomposabilit types Dobbertin's Theorem

Abelian *l*-groups

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \left\langle S \right\rangle \\ \mathsf{Typ} \ S \rightarrow \\ \mathsf{V}(\kappa \left\langle S \right\rangle) \end{array}$ 

### Proposition

#### Type monoids

• The variety of BISs ISs from partial functions BISs and additive semigroup

Biases

 The type monoid

From  $\mathscr{D}$  to Typ *S* Typ *S* and equidecomposability types Dobbertin's Theorem

Abelian *l*-groups

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \to \\ \mathsf{V}(\kappa \langle s \rangle) \end{array}$ 

### Proposition

Every Boolean inverse semigroup has an additive embedding into some  $\Im_{\Omega}$ . The embedding preserves all existing finite meets.

#### Type monoids

 The variety of BISs
 ISs from partial functions
 BISs and additive semigroup

#### Biases

 The type monoid

From D to Typ S Typ S and equidecomposability types Dobbertin's

Abelian *l*-groups

 Type monoic and nonstable K-theory

 $\begin{array}{l} \kappa \left\langle S \right\rangle \\ \mathsf{Typ} \ S \rightarrow \\ \mathsf{V}(\kappa \left\langle S \right\rangle) \end{array}$ 

### Proposition

Every Boolean inverse semigroup has an additive embedding into some  $\Im_{\Omega}$ . The embedding preserves all existing finite meets.

The Ω in this representation, denoted by G<sub>P</sub>(S) in Lawson and Lenz (2013), is the prime spectrum of S.

#### Type monoids

 The variety of BISs
 ISs from partial functions
 BISs and additive semigroup homomorphisms

#### Biases

 The type monoid

From D to Typ S and equi decomposabilit types Dobbertin's

Abelian l-groups

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \mathsf{Typ} \ s \rightarrow \\ \mathsf{V}(\kappa \langle s \rangle) \end{array}$ 

### Proposition

Every Boolean inverse semigroup has an additive embedding into some  $\mathfrak{I}_{\Omega}$ . The embedding preserves all existing finite meets.

- The Ω in this representation, denoted by G<sub>P</sub>(S) in Lawson and Lenz (2013), is the prime spectrum of S.
- The result above is contained in a duality theory worked out by Lawson and Lenz (2013).

#### Type monoids

 The variety of BISs
 ISs from partial functions
 BISs and additive semigroup homomorphisms

#### Biases

 The type monoid

From  $\mathscr{D}$  to Typ S and equi decomposabilit types Dobbertin's

I neorem

 Type monoids and nonstable K-theory

 $\begin{array}{l} \kappa \left< S \right> \\ \mathsf{Typ} \ S \ \rightarrow \\ \mathsf{V}(\kappa \left< S \right>) \end{array}$ 

### Proposition

Every Boolean inverse semigroup has an additive embedding into some  $\mathfrak{I}_{\Omega}$ . The embedding preserves all existing finite meets.

- The Ω in this representation, denoted by G<sub>P</sub>(S) in Lawson and Lenz (2013), is the prime spectrum of S.
- The result above is contained in a duality theory worked out by Lawson and Lenz (2013).
- The set-theoretical content of the result above is the Boolean prime ideal Theorem.

#### Type monoids

 The variety of BISs
 ISs from partial functions
 BISs and additive semigroup homomorphisms

#### Biases

 The type monoid

From D to Typ S and equi decomposabilit types Dobbertin's

I neorem

 Type monoids and nonstable K-theory

 $\begin{array}{l} \kappa \left\langle S \right\rangle \\ \text{Typ } S \to \\ \mathsf{V}(\kappa \left\langle S \right\rangle) \end{array}$ 

### Proposition

Every Boolean inverse semigroup has an additive embedding into some  $\mathfrak{I}_\Omega.$  The embedding preserves all existing finite meets.

- The Ω in this representation, denoted by G<sub>P</sub>(S) in Lawson and Lenz (2013), is the prime spectrum of S.
- The result above is contained in a duality theory worked out by Lawson and Lenz (2013).
- The set-theoretical content of the result above is the Boolean prime ideal Theorem.
- The representation above is called the regular representation of S.

## Green's relation ${\mathscr D}$

#### Type monoids

 The variety of BISs
 ISs from partial functions
 BISs and additive semigroup homomorphisms
 Biases

 The type monoid

#### From *D* to Typ S

Typ S and equidecomposability types Dobbertin's

Abelian *l*-group

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \left\langle S \right\rangle \\ \mathsf{Typ} \ S \rightarrow \\ \mathsf{V}(\kappa \left\langle S \right\rangle) \end{array}$ 

### On any inverse semigroup, we set

・ロト・日本・日本・日本・日本・今日・

## Green's relation $\mathscr{D}$

#### Type monoids

- The variety of BISs
   ISs from partial
- functions BISs and additive semigroup homomorphisms
- Biases
- The type monoid

### From *D* to Typ *S*

- Typ S and equi decomposabilit types Dobbertin's
- Theorem
- Abenan c-groups
- Type monol and nonstable K-theory
- $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \to \\ \mathsf{V}(\kappa \langle s \rangle) \end{array}$

On any inverse semigroup, we set

• 
$$x \mathscr{L} y \Leftrightarrow \mathbf{d}(x) = \mathbf{d}(y), x \mathscr{R} y \Leftrightarrow \mathbf{r}(x) = \mathbf{r}(y)$$
, and  
 $\mathscr{D} = \mathscr{L} \circ \mathscr{R} = \mathscr{R} \circ \mathscr{L}.$ 

イロン イヨン イヨン ・ ヨン

э.

10/23

## Green's relation $\mathscr{D}$

#### Type monoids

- The variety of BISs
- ISs from partial functions BISs and additive semigroup homomorphisms
- The type monoid

#### From $\mathscr{D}$ to Typ S

- Typ S and equidecomposability types Dobbertin's
- Abolion & grour
- Type monoids and nonstable
- K-theory  $\kappa \langle S \rangle$
- $\begin{array}{l} \mathsf{Typ} \ S \rightarrow \\ \mathsf{V}(\kappa \langle S \rangle) \end{array}$

- On any inverse semigroup, we set
- $x \mathscr{L} y \Leftrightarrow \mathbf{d}(x) = \mathbf{d}(y), x \mathscr{R} y \Leftrightarrow \mathbf{r}(x) = \mathbf{r}(y), \text{ and}$  $\mathscr{D} = \mathscr{L} \circ \mathscr{R} = \mathscr{R} \circ \mathscr{L}.$
- For idempotent *a* and *b*,  $a \mathcal{D} b$  iff  $(\exists x) (a = \mathbf{d}(x) \text{ and } b = \mathbf{r}(x))$ .

### Green's relation ${\mathscr D}$

#### Type monoids

- The variety of BISs
- ISs from partial functions BISs and additive semigroup homomorphisms Riases
- The type monoid

#### From ${\mathscr D}$ to Typ S

- Typ S and equidecomposability types Dobbertin's
- Theorem
- Abenan c-groups
- Type monoid and nonstable K-theory
- $\begin{array}{l} \kappa \left< S \right> \\ \mathsf{Typ} \ S \ \rightarrow \\ \mathsf{V}(\kappa \left< S \right>) \end{array}$

- On any inverse semigroup, we set
- $x \mathscr{L} y \Leftrightarrow \mathbf{d}(x) = \mathbf{d}(y), x \mathscr{R} y \Leftrightarrow \mathbf{r}(x) = \mathbf{r}(y), \text{ and } \mathscr{D} = \mathscr{L} \circ \mathscr{R} = \mathscr{R} \circ \mathscr{L}.$
- For idempotent *a* and *b*,  $a \mathcal{D} b$  iff  $(\exists x) (a = \mathbf{d}(x) \text{ and } b = \mathbf{r}(x))$ .
- For a Boolean inverse semigroup S, the quotient Int S = S/𝒴 (the dimension interval of S) can be endowed with a partial addition, given by

### Green's relation $\mathscr{D}$

#### Type monoids

- The variety of BISs
- ISs from partial functions BISs and additive semigroup homomorphisms Biases
- The type monoid

#### From ∅ to Typ S

- Typ S and equidecomposability types Dobbertin's
- Theorem
- Abelian ℓ-groups
- Type monoic and nonstable K-theory
- $\begin{array}{l} \kappa \langle S \rangle \\ \text{Typ } S \rightarrow \\ \mathsf{V}(\kappa \langle S \rangle) \end{array}$

- On any inverse semigroup, we set
- $x \mathscr{L} y \Leftrightarrow \mathbf{d}(x) = \mathbf{d}(y), x \mathscr{R} y \Leftrightarrow \mathbf{r}(x) = \mathbf{r}(y), \text{ and } \mathscr{D} = \mathscr{L} \circ \mathscr{R} = \mathscr{R} \circ \mathscr{L}.$
- For idempotent *a* and *b*,  $a \mathcal{D} b$  iff  $(\exists x) (a = \mathbf{d}(x) \text{ and } b = \mathbf{r}(x))$ .
- For a Boolean inverse semigroup S, the quotient Int S = S/𝒴 (the dimension interval of S) can be endowed with a partial addition, given by

 $(x/\mathscr{D}) + (y/\mathscr{D}) = (x \oplus y)/\mathscr{D}$ , whenever  $x \oplus y$  is defined.

### Green's relation ${\mathscr D}$

#### Type monoids

- The variety of BISs
- ISs from partial functions BISs and additive semigroup homomorphisms Biases
- The type monoid

#### From $\mathscr{D}$ to Typ S

- Typ S and equidecomposability types Dobbertin's
- Theorem
- Abelian *l*-groups
- Type monoid and nonstable K-theory
- $\begin{array}{l} \kappa \left< S \right> \\ \mathsf{Typ} \ S \ \rightarrow \\ \mathsf{V}(\kappa \left< S \right>) \end{array}$

- On any inverse semigroup, we set
- $x \mathscr{L} y \Leftrightarrow \mathbf{d}(x) = \mathbf{d}(y), x \mathscr{R} y \Leftrightarrow \mathbf{r}(x) = \mathbf{r}(y), \text{ and } \mathscr{D} = \mathscr{L} \circ \mathscr{R} = \mathscr{R} \circ \mathscr{L}.$
- For idempotent *a* and *b*,  $a \mathcal{D} b$  iff  $(\exists x) (a = \mathbf{d}(x) \text{ and } b = \mathbf{r}(x))$ .
- For a Boolean inverse semigroup S, the quotient Int S = S/𝒴 (the dimension interval of S) can be endowed with a partial addition, given by

 $(x/\mathscr{D}) + (y/\mathscr{D}) = (x \oplus y)/\mathscr{D}$ , whenever  $x \oplus y$  is defined.

**Important property of** Int S (not trivial): x + (y + z) is defined iff (x + y) + z is defined, and then both values are the same.

# Green's relation ${\mathscr D}$

#### Type monoids

- The variety of BISs
- ISs from partial functions BISs and additive semigroup homomorphisms Biases
- The type monoid

#### From *D* to Typ S

Typ S and equidecomposability types Dobbertin's

Theorem

Type monoids

and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \to \\ \mathsf{V}(\kappa \langle s \rangle) \end{array}$ 

- On any inverse semigroup, we set
- $x \mathcal{L} y \Leftrightarrow \mathbf{d}(x) = \mathbf{d}(y), x \mathcal{R} y \Leftrightarrow \mathbf{r}(x) = \mathbf{r}(y)$ , and  $\mathcal{D} = \mathcal{L} \circ \mathcal{R} = \mathcal{R} \circ \mathcal{L}$ .
- For idempotent *a* and *b*,  $a \mathcal{D} b$  iff  $(\exists x) (a = \mathbf{d}(x) \text{ and } b = \mathbf{r}(x))$ .
- For a Boolean inverse semigroup S, the quotient Int S = S/𝒴 (the dimension interval of S) can be endowed with a partial addition, given by

 $(x/\mathscr{D}) + (y/\mathscr{D}) = (x \oplus y)/\mathscr{D}$ , whenever  $x \oplus y$  is defined.

- **Important property of** Int S (not trivial): x + (y + z) is defined iff (x + y) + z is defined, and then both values are the same.
- The type monoid of S, denoted by Typ S, is the universal monoid of the partial commutative monoid Int S.

Type monoids

- The variety of BISs
   ISs from partial functions
   BISs and additive semigroup homomorphisms
   Biases
- The type monoid
- From  $\mathscr{D}$  to Typ S
- Typ S and equidecomposability types
- Dobbertin's Theorem
- Abelian ℓ-groups
- Type monoid and nonstable K-theory
- $\begin{array}{l} \kappa \left< S \right> \\ \mathsf{Typ} \ S \rightarrow \\ \mathsf{V}(\kappa \left< S \right>) \end{array}$

• Let a group G act by automorphisms on a generalized Boolean algebra  $\mathcal{B}$ .

・ロト (個) (目) (目) (目) (日) (の)

- The variety of BISs
   ISs from partial
- BISs and additive semigroup homomorphism
- Biases
- The type monoid
- From  ${\mathscr D}$  to Typ S
- Typ S and equidecomposability types
- Dobbertin's Theorem
- Abelian ℓ-groups
- Type monoid and nonstable K-theory
- $\begin{array}{l} \kappa \left< S \right> \\ \mathsf{Typ} \ S \rightarrow \\ \mathsf{V}(\kappa \left< S \right>) \end{array}$

- Let a group G act by automorphisms on a generalized Boolean algebra  $\mathcal{B}$ .
- $S = Inv(\mathcal{B}, G)$  is a Boolean inverse semigroup.

- The variety of BISs
- ISs from partial functions BISs and additive semigroup homomorphisms
- Biases
- The type monoid
- From  ${\mathscr D}$  to Typ S
- Typ S and equidecomposability types
- Dobbertin's Theorem
- Abelian  $\ell$ -groups
- Type monoid and nonstable K-theory
- $\begin{array}{l} \kappa \left< S \right> \\ \mathsf{Typ} \ S \rightarrow \\ \mathsf{V}(\kappa \left< S \right>) \end{array}$

- Let a group G act by automorphisms on a generalized Boolean algebra  $\mathcal{B}$ .
- $S = Inv(\mathcal{B}, G)$  is a Boolean inverse semigroup.
- What is 𝒴 on its idempotents?

- The variety of BISs
- ISs from partia functions BISs and additive semigroup homomorphism
- Biases
- The type monoid
- From  ${\mathscr D}$  to Typ S
- Typ S and equidecomposability types
- Dobbertin's Theorem
- Abelian *l*-groups
- Type monoid and nonstable K-theory
- $\begin{array}{l} \kappa \left< S \right> \\ \mathsf{Typ} \ S \rightarrow \\ \mathsf{V}(\kappa \left< S \right>) \end{array}$

- Let a group G act by automorphisms on a generalized Boolean algebra  $\mathcal{B}$ .
- $S = Inv(\mathcal{B}, G)$  is a Boolean inverse semigroup.
- What is 𝒴 on its idempotents?
- id<sub>X</sub> D id<sub>Y</sub> iff there is a partial bijection f, piecewise in G, defined on X, such that f[X] = Y.

- The variety of BISs
- ISs from partia functions BISs and additive semigroup homomorphism
- Biases
- The type monoid
- From  ${\mathscr D}$  to Typ S
- Typ S and equidecomposability types
- Dobbertin's Theorem
- Abelian ℓ-groups
- Type monoic and nonstable K-theory
- $\begin{array}{l} \kappa \langle S \rangle \\ \text{Typ } S \rightarrow \\ \mathsf{V}(\kappa \langle S \rangle) \end{array}$

- Let a group G act by automorphisms on a generalized Boolean algebra  $\mathcal{B}$ .
- $S = Inv(\mathcal{B}, G)$  is a Boolean inverse semigroup.
- What is 𝒴 on its idempotents?
- $\operatorname{id}_X \mathscr{D} \operatorname{id}_Y$  iff there is a partial bijection f, piecewise in G, defined on X, such that f[X] = Y.
- That is, there are decompositions  $X = \bigsqcup_{i=1}^{n} X_i$ ,  $Y = \bigsqcup_{i=1}^{n} Y_i$ , together with  $g_i \in G$ , such that each  $X_i, Y_i \in \mathcal{B}$  and each  $Y_i = g_i X_i$ .

- The variety of BISs
- ISs from partia functions BISs and additive semigroup homomorphism
- Biases
- The type monoid
- From *D* to Typ *S*
- Typ S and equidecomposability types
- Dobbertin's Theorem
- Abelian ℓ-groups
- Type monoid and nonstable K-theory
- $\begin{array}{l} \kappa \left\langle S \right\rangle \\ \mathsf{Typ} \ S \rightarrow \\ \mathsf{V}(\kappa \left\langle S \right\rangle) \end{array}$

- Let a group G act by automorphisms on a generalized Boolean algebra  $\mathcal{B}$ .
- $S = Inv(\mathcal{B}, G)$  is a Boolean inverse semigroup.
- What is 𝒴 on its idempotents?
- $\operatorname{id}_X \mathscr{D} \operatorname{id}_Y$  iff there is a partial bijection f, piecewise in G, defined on X, such that f[X] = Y.
- That is, there are decompositions  $X = \bigsqcup_{i=1}^{n} X_i$ ,  $Y = \bigsqcup_{i=1}^{n} Y_i$ , together with  $g_i \in G$ , such that each  $X_i, Y_i \in \mathcal{B}$  and each  $Y_i = g_i X_i$ .
- This means that X and Y are G-equidecomposable, with pieces from  $\mathcal{B}$ .

- The variety of BISs
- ISs from partia functions BISs and additive semigroup homomorphism
- Biases
- The type monoid
- From *D* to Typ *S*
- Typ S and equidecomposability types
- Dobbertin's Theorem
- Abelian ℓ-groups
- Type monoid and nonstable K-theory
- $\begin{array}{l} \kappa \left< S \right> \\ \mathsf{Typ} \ S \rightarrow \\ \mathsf{V}(\kappa \left< S \right>) \end{array}$

- Let a group G act by automorphisms on a generalized Boolean algebra  $\mathcal{B}$ .
- $S = Inv(\mathcal{B}, G)$  is a Boolean inverse semigroup.
- What is 𝒴 on its idempotents?
- id<sub>X</sub> D id<sub>Y</sub> iff there is a partial bijection f, piecewise in G, defined on X, such that f[X] = Y.
- That is, there are decompositions  $X = \bigsqcup_{i=1}^{n} X_i$ ,  $Y = \bigsqcup_{i=1}^{n} Y_i$ , together with  $g_i \in G$ , such that each  $X_i, Y_i \in \mathcal{B}$  and each  $Y_i = g_i X_i$ .
- This means that X and Y are G-equidecomposable, with pieces from  $\mathcal{B}$ .
- Denote by Z<sup>+</sup>⟨ℬ⟩//G the monoid of [generated by] all equidecomposability types of members of ℬ with respect to the action of G.

#### Type monoids

- The variety of BISs
- ISs from partial functions BISs and additive semigroup homomorphism
- Biases
- The type monoid
- From  ${\mathscr D}$  to Typ S
- Typ S and equidecomposability types
- Dobbertin's Theorem
- Type monoids
- Type monoic and nonstable K-theory
- $\begin{array}{l} \kappa \left< S \right> \\ \mathsf{Typ} \ S \ \rightarrow \\ \mathsf{V}(\kappa \left< S \right>) \end{array}$

- Let a group G act by automorphisms on a generalized Boolean algebra  $\mathcal{B}$ .
- $S = Inv(\mathcal{B}, G)$  is a Boolean inverse semigroup.
- What is 𝒴 on its idempotents?
- id<sub>X</sub> D id<sub>Y</sub> iff there is a partial bijection f, piecewise in G, defined on X, such that f[X] = Y.
- That is, there are decompositions  $X = \bigsqcup_{i=1}^{n} X_i$ ,  $Y = \bigsqcup_{i=1}^{n} Y_i$ , together with  $g_i \in G$ , such that each  $X_i, Y_i \in \mathcal{B}$  and each  $Y_i = g_i X_i$ .
- This means that *X* and *Y* are *G*-equidecomposable, with pieces from *B*.
- Denote by Z<sup>+</sup>⟨B⟩//G the monoid of [generated by] all equidecomposability types of members of B with respect to the action of G.
- Then the type monoid of  $Inv(\mathcal{B}, G)$  is isomorphic to  $\mathbb{Z}^+ \langle \mathcal{B} \rangle /\!\!/ G$ .

イロト イポト イヨト イヨト

#### Type monoids

• The variety of BISs ISs from partial functions BISs and additive semigroup homomorphisms Biases

 The type monoid

From *D* to Typ S

Typ S and equidecomposability types

Dobbertin's Theorem

Abelian ℓ-groups

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \left\langle S \right\rangle \\ \mathsf{Typ} \ S \rightarrow \\ \mathsf{V}(\kappa \left\langle S \right\rangle) \end{array}$ 

• Say that a commutative monoid is measurable if it is isomorphic to Typ *S*, for some Boolean inverse semigroup *S*.

・ロ・・四・・ヨ・・ヨ・ ヨー うへぐ

- The variety of BISs
- functions BISs and additive semigroup homomorphism
- Biases
- The type monoid
- From  $\mathscr{D}$  to Typ S
- Typ S and equidecomposability types
- Dobbertin's Theorem
- Abelian ℓ-groups
- Type monoic and nonstable K-theory
- $\begin{array}{l} \kappa \left< S \right> \\ \mathsf{Typ} \ S \rightarrow \\ \mathsf{V}(\kappa \left< S \right>) \end{array}$

- Say that a commutative monoid is measurable if it is isomorphic to Typ *S*, for some Boolean inverse semigroup *S*.
- By the above, every Z<sup>+</sup>⟨B⟩//G (where a group G acts on a generalized Boolean algebra B) is measurable.

- The variety of BISs
- ISs from partial functions BISs and additive semigroup homomorphisms
- The type monoid
- From  $\mathscr{D}$  to Typ S
- Typ S and equidecomposability types
- Dobbertin's Theorem
- Abelian ℓ-groups
- Type monoic and nonstable K-theory
- $\begin{array}{l} \kappa \left< S \right> \\ \mathsf{Typ} \ S \rightarrow \\ \mathsf{V}(\kappa \left< S \right>) \end{array}$

- Say that a commutative monoid is measurable if it is isomorphic to Typ *S*, for some Boolean inverse semigroup *S*.
- By the above, every Z<sup>+</sup>⟨B⟩//G (where a group G acts on a generalized Boolean algebra B) is measurable.
- The converse holds (not so trivial).

- The variety of BISs
- ISs from partial functions BISs and additive semigroup homomorphisms
- The type monoid
- From *D* to Typ *S*
- Typ S and equidecomposability types
- Dobbertin's Theorem
- Abelian *l*-groups
- Type monoid and nonstable K-theory
- $\begin{array}{l} \kappa \left< S \right> \\ \mathsf{Typ} \ S \rightarrow \\ \mathsf{V}(\kappa \left< S \right>) \end{array}$

- Say that a commutative monoid is measurable if it is isomorphic to Typ *S*, for some Boolean inverse semigroup *S*.
- By the above, every Z<sup>+</sup>⟨B⟩//G (where a group G acts on a generalized Boolean algebra B) is measurable.
- The converse holds (not so trivial).
- Starting with a Boolean inverse semigroup S, we need to find G,  $\mathcal{B}$  such that Typ  $S \cong \mathbb{Z}^+ \langle \mathfrak{B} \rangle /\!\!/ G$ .

- The variety of BISs
- ISs from partial functions BISs and additive semigroup homomorphisms
- The type
- From  ${\mathscr D}$  to Typ S
- Typ S and equidecomposability types
- Dobbertin's Theorem
- Abelian ℓ-groups
- Type monoic and nonstable K-theory
- $\begin{array}{l} \kappa \left< S \right> \\ \mathsf{Typ} \ S \rightarrow \\ \mathsf{V}(\kappa \left< S \right>) \end{array}$

- Say that a commutative monoid is measurable if it is isomorphic to Typ *S*, for some Boolean inverse semigroup *S*.
- By the above, every Z<sup>+</sup>⟨B⟩//G (where a group G acts on a generalized Boolean algebra B) is measurable.
- The converse holds (not so trivial).
- Starting with a Boolean inverse semigroup S, we need to find G,  $\mathcal{B}$  such that Typ  $S \cong \mathbb{Z}^+ \langle \mathfrak{B} \rangle /\!\!/ G$ .
- First guess: try B = Idp S, G = "inner automorphisms" (?) of B (Note: ∀x, ∀idempotent e, xex<sup>-1</sup> is idempotent).

- The variety of BISs
- ISs from partial functions BISs and additive semigroup homomorphisms
- \_.
- The type monoid
- From *D* to Typ *S*
- Typ S and equidecomposability types
- Dobbertin's Theorem
- Abenan e-groups
- Type monoid and nonstable K-theory
- $\begin{array}{l} \kappa \left\langle S \right\rangle \\ \mathsf{Typ} \ S \rightarrow \\ \mathsf{V}(\kappa \left\langle S \right\rangle) \end{array}$

- Say that a commutative monoid is measurable if it is isomorphic to Typ *S*, for some Boolean inverse semigroup *S*.
- By the above, every Z<sup>+</sup>⟨B⟩∥G (where a group G acts on a generalized Boolean algebra B) is measurable.
- The converse holds (not so trivial).
- Starting with a Boolean inverse semigroup S, we need to find G,  $\mathcal{B}$  such that Typ  $S \cong \mathbb{Z}^+ \langle \mathfrak{B} \rangle /\!\!/ G$ .
- First guess: try B = Idp S, G = "inner automorphisms" (?) of B (Note: ∀x, ∀idempotent e, xex<sup>-1</sup> is idempotent).
- Problem: the map  $f_x: e \mapsto xex^{-1}$ , for e idempotent  $\leq \mathbf{d}(x)$ , may not extend to any automorphism of  $\mathcal{B}$ .

- The variety of BISs
- ISs from partial functions BISs and additive semigroup homomorphism
- Biases
- The type monoid
- From D to Typ S
- Typ S and equidecomposability types
- Dobbertin's Theorem
- Type monoids and nonstable
- $\begin{array}{l} \kappa \left< S \right> \\ \mathsf{Typ} \ S \ \rightarrow \\ \mathsf{V}(\kappa \left< S \right>) \end{array}$

- Say that a commutative monoid is measurable if it is isomorphic to Typ *S*, for some Boolean inverse semigroup *S*.
- By the above, every Z<sup>+</sup>⟨B⟩∥G (where a group G acts on a generalized Boolean algebra B) is measurable.
- The converse holds (not so trivial).
- Starting with a Boolean inverse semigroup S, we need to find G,  $\mathcal{B}$  such that Typ  $S \cong \mathbb{Z}^+ \langle \mathfrak{B} \rangle /\!\!/ G$ .
- First guess: try B = Idp S, G = "inner automorphisms" (?) of B (Note: ∀x, ∀idempotent e, xex<sup>-1</sup> is idempotent).
- Problem: the map  $f_x: e \mapsto xex^{-1}$ , for e idempotent  $\leq \mathbf{d}(x)$ , may not extend to any automorphism of  $\mathcal{B}$ .
- Can be solved by representing B as generalized Boolean lattice of subsets of some set Ω, then duplicating Ω. This leaves enough room to extend f<sub>x</sub>.

#### Type monoids

#### • The variety of BISs ISs from partial functions BISs and additive semigroup homomorphisms Biases

• The type monoid

From *D* to Typ S

Typ S and equidecomposability types

Dobbertin's Theorem

Abelian ℓ-groups

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \left< S \right> \\ \mathsf{Typ} \ S \rightarrow \\ \mathsf{V}(\kappa \left< S \right>) \end{array}$ 

### Proposition

(ロ) (回) (目) (目) (日) (の)

Type monoids

Proposition

### The variety of BISs ISs from partial functions BISs and additive

semigroup homomorphisms Biases

 The type monoid

From *D* to Typ *S* 

Typ S and equidecomposability types

Dobbertin's Theorem

Abelian ℓ-groups

 Type monoic and nonstable K-theory

 $\begin{array}{l} \kappa \left\langle S \right\rangle \\ \mathsf{Typ} \ S \rightarrow \\ \mathsf{V}(\kappa \left\langle S \right\rangle) \end{array}$ 

### A commutative monoid M is measurable (i.e., Typ S for some Boolean inverse semigroup S) iff $M \cong \mathbb{Z}^+ \langle \mathcal{B} \rangle /\!\!/ G$ for some action of a group G on a generalized Boolean algebra $\mathcal{B}$ .

Type monoids

Proposition

#### • The variety of BISs ISs from partial functions BISs and additive semigroup homomorphisms

 The type monoid

From *D* to Typ *S* 

Typ S and equidecomposability types

Dobbertin's Theorem

Abelian ℓ-groups

 Type monoic and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \to \\ \mathsf{V}(\kappa \langle s \rangle) \end{array}$ 

A commutative monoid M is measurable (i.e., Typ S for some Boolean inverse semigroup S) iff  $M \cong \mathbb{Z}^+ \langle \mathfrak{B} \rangle /\!\!/ G$  for some action of a group G on a generalized Boolean algebra  $\mathfrak{B}$ .

Every measurable monoid is isomorphic to Typ S for a Boolean meet-semigroup (resp., fundamental Boolean inverse semigroup) S.

Type monoids

#### The variety of BISs ISs from partial functions BISs and additive semigroup homomorphisms Riases

 The type monoid

From Ø to Typ S

Typ S and equidecomposability types

Dobbertin's Theorem

Abelian ℓ-groups

 Type monoids and nonstable K-theory

 $\begin{array}{l} \kappa \langle S \rangle \\ \text{Typ } S \rightarrow \\ V(\kappa \langle S \rangle) \end{array}$ 

### Proposition

A commutative monoid M is measurable (i.e., Typ S for some Boolean inverse semigroup S) iff  $M \cong \mathbb{Z}^+ \langle \mathcal{B} \rangle /\!\!/ G$  for some action of a group G on a generalized Boolean algebra  $\mathcal{B}$ .

Every measurable monoid is isomorphic to Typ S for a Boolean meet-semigroup (resp., fundamental Boolean inverse semigroup) S. (meet-semigroup: replace Ω by Ω × G; fundamental: Typ(S) ≅ Typ(S/μ).)

Type monoids

• The variety of BISs ISs from partial functions BISs and additive semigroup homomorphisms Riases

 The type monoid

From Ø to Typ S

Typ S and equidecomposability types

Dobbertin's Theorem

Abelian ℓ-groups

 Type monoic and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \rightarrow \\ V(\kappa \langle s \rangle) \end{array}$ 

### Proposition

A commutative monoid M is measurable (i.e., Typ S for some Boolean inverse semigroup S) iff  $M \cong \mathbb{Z}^+ \langle \mathcal{B} \rangle /\!\!/ G$  for some action of a group G on a generalized Boolean algebra  $\mathcal{B}$ .

- Every measurable monoid is isomorphic to Typ S for a Boolean meet-semigroup (resp., fundamental Boolean inverse semigroup) S. (meet-semigroup: replace Ω by Ω × G; fundamental: Typ(S) ≅ Typ(S/μ).)
- There is a countable counterexample showing that "meet-semigroup" and "fundamental" cannot be reached simultaneously.

Type monoids

Proposition

 The variety of BISs
 ISs from partial functions
 BISs and additive semigroup homomorphisms
 Biases

 The type monoid

From *D* to Typ *S* 

Typ S and equidecomposability types

Dobbertin's Theorem

. т. . .

and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \rightarrow \\ V(\kappa \langle s \rangle) \end{array}$ 

A commutative monoid M is measurable (i.e., Typ S for some Boolean inverse semigroup S) iff  $M \cong \mathbb{Z}^+ \langle \mathfrak{B} \rangle /\!\!/ G$  for some action of a group G on a generalized Boolean algebra  $\mathfrak{B}$ .

- Every measurable monoid is isomorphic to Typ S for a Boolean meet-semigroup (resp., fundamental Boolean inverse semigroup) S. (meet-semigroup: replace Ω by Ω × G; fundamental: Typ(S) ≅ Typ(S/μ).)
- There is a countable counterexample showing that "meet-semigroup" and "fundamental" cannot be reached simultaneously.
- Every measurable monoid M is conical, that is, has  $x + y = 0 \Rightarrow x = y = 0$ .

Type monoids

 The variety of BISs
 ISs from partial functions
 BISs and additive semigroup homomorphisms
 Biases

 The type monoid

From *D* to Typ *S* 

Typ S and equidecomposability types

Dobbertin's Theorem

 Type monoids and nonstable

 $\begin{array}{l} \kappa \left\langle S \right\rangle \\ \text{Typ } S \rightarrow \\ \mathsf{V}(\kappa \left\langle S \right\rangle) \end{array}$ 

### Proposition

A commutative monoid M is measurable (i.e., Typ S for some Boolean inverse semigroup S) iff  $M \cong \mathbb{Z}^+ \langle \mathcal{B} \rangle /\!\!/ G$  for some action of a group G on a generalized Boolean algebra  $\mathcal{B}$ .

- Every measurable monoid is isomorphic to Typ S for a Boolean meet-semigroup (resp., fundamental Boolean inverse semigroup) S. (meet-semigroup: replace Ω by Ω × G; fundamental: Typ(S) ≅ Typ(S/μ).)
- There is a countable counterexample showing that "meet-semigroup" and "fundamental" cannot be reached simultaneously.
- Every measurable monoid M is conical, that is, has  $x + y = 0 \Rightarrow x = y = 0$ .
- Also, *M* is a refinement monoid, that is, whenever  $a_0 + a_1 = b_0 + b_1$  in *M*, there are  $c_{0,0}, c_{0,1}, c_{1,0}, c_{1,1} \in M$  such that each  $a_i = c_{i,0} + c_{i,1}$  and each  $b_j = c_{0,j} + c_{1,j}$ .

Type monoids

Proposition

 The variety of BISs
 ISs from partial functions
 BISs and additive semigroup homomorphisms
 Biases

 The type monoid

From *D* to Typ *S* 

Typ S and equidecomposability types

Dobbertin's Theorem

and nonstable K-theory

 $\begin{array}{l} \kappa \langle S \rangle \\ \text{Typ } S \rightarrow \\ V(\kappa \langle S \rangle) \end{array}$ 

A commutative monoid M is measurable (i.e., Typ S for some Boolean inverse semigroup S) iff  $M \cong \mathbb{Z}^+ \langle \mathfrak{B} \rangle /\!\!/ G$  for some action of a group G on a generalized Boolean algebra  $\mathfrak{B}$ .

- Every measurable monoid is isomorphic to Typ S for a Boolean meet-semigroup (resp., fundamental Boolean inverse semigroup) S. (meet-semigroup: replace Ω by Ω × G; fundamental: Typ(S) ≅ Typ(S/μ).)
- There is a countable counterexample showing that "meet-semigroup" and "fundamental" cannot be reached simultaneously.
- Every measurable monoid M is conical, that is, has  $x + y = 0 \Rightarrow x = y = 0$ .
- Also, *M* is a refinement monoid, that is, whenever  $a_0 + a_1 = b_0 + b_1$  in *M*, there are  $c_{0,0}, c_{0,1}, c_{1,0}, c_{1,1} \in M$  such that each  $a_i = c_{i,0} + c_{i,1}$  and each  $b_j = c_{0,j} + c_{1,j}$ .
- How about the converse?

#### Type monoids

### The variety of BISs ISs from partial functions BISs and additive semigroup homomorphisms Biases

 The type monoid

From *D* to Typ *S* Typ *S* and equ decomposabili

Dobbertin's Theorem

Abelian ℓ-groups

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \langle S \rangle \\ \text{Typ } S \rightarrow \\ \mathsf{V}(\kappa \langle S \rangle) \end{array}$ 

### Theorem (Dobbertin, 1983)

・ロト ・四ト ・ヨト ・ヨー うへぐ

#### Type monoids

#### • The variety of BISs ISs from partial functions BISs and additive semigroup

Biases

 The type monoid

From  $\mathscr{D}$  to Typ S Typ S and e

decomposability types

Dobbertin's Theorem

Abelian ℓ-groups

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \to \\ \mathsf{V}(\kappa \langle s \rangle) \end{array}$ 

### Theorem (Dobbertin, 1983)

### Let *M* be a countable, conical refinement monoid and let $e \in M$ .

Theorem (Dobbertin, 1983)

#### Type monoids

### The variety of BISs ISs from partial

functions BISs and additive semigroup homomorphisms Biases

• The type monoid

From  $\mathcal{D}$  to Typ S Typ S and e

décomposability types

Dobbertin's Theorem

Abelian ℓ-groups

 Type monoic and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \rightarrow \\ V(\kappa \langle s \rangle) \end{array}$ 

# Let *M* be a countable, conical refinement monoid and let $e \in M$ . Then there are a countable Boolean algebra *B* and a finitely additive measure $\mu: B \to M$ such that $\mu(1) = e$ , $\mu^{-1} \{0\} = \{0\}$ , and whenever $\mu(c) = a + b$ , there exists a decomposition $c = a \oplus b$ in *B* such that $\mu(a) = a$ and $\mu(b) = b$ .

#### Type monoids

### The variety of BISs ISs from partial

BISs and additive semigroup homomorphisms Biases

• The type monoid

From  $\mathcal{D}$  to Typ S Typ S and ed

decomposability types

Dobbertin's Theorem

Abelian ℓ-groups

 Type monoids and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \to \\ \mathsf{V}(\kappa \langle s \rangle) \end{array}$ 

# Theorem (Dobbertin, 1983)

Let *M* be a countable, conical refinement monoid and let  $e \in M$ . Then there are a countable Boolean algebra *B* and a finitely additive measure  $\mu: B \to M$  such that  $\mu(1) = e$ ,  $\mu^{-1} \{0\} = \{0\}$ , and whenever  $\mu(c) = a + b$ , there exists a decomposition  $c = a \oplus b$  in *B* such that  $\mu(a) = a$  and  $\mu(b) = b$ . (We say that  $\mu$  is a V-measure.)

Theorem (Dobbertin, 1983)

#### Type monoids

### The variety of BISs ISs from partial functions

BISs and additive semigroup homomorphisms Biases

#### The type monoid

From  $\mathscr{D}$  to Typ *S* Typ *S* and equ decomposabilit

#### Dobbertin's Theorem

Abelian *l*-groups

 Type monoids and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \rightarrow \\ \mathsf{V}(\kappa \langle s \rangle) \end{array}$ 

# Let *M* be a countable, conical refinement monoid and let $e \in M$ . Then there are a countable Boolean algebra *B* and a finitely additive measure $\mu: B \to M$ such that $\mu(1) = e$ , $\mu^{-1} \{0\} = \{0\}$ , and whenever $\mu(c) = a + b$ , there exists a decomposition $c = a \oplus b$ in *B* such that $\mu(a) = a$ and $\mu(b) = b$ . (We say that $\mu$ is a V-measure.) Moreover, the pair $(B, \mu)$ is unique up to isomorphism.

#### Type monoids

• The variety of BISs ISs from partial functions

additive semigroup homomorphisms Biases

 The type monoid

From D to Typ S Typ S and e

decomposability types

Dobbertin's Theorem

Abelian ℓ-groups

 Type monoids and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \to \\ \mathsf{V}(\kappa \langle s \rangle) \end{array}$ 

### Theorem (Dobbertin, 1983)

Let *M* be a countable, conical refinement monoid and let  $e \in M$ . Then there are a countable Boolean algebra *B* and a finitely additive measure  $\mu: B \to M$  such that  $\mu(1) = e$ ,  $\mu^{-1} \{0\} = \{0\}$ , and whenever  $\mu(c) = a + b$ , there exists a decomposition  $c = a \oplus b$  in *B* such that  $\mu(a) = a$  and  $\mu(b) = b$ . (We say that  $\mu$  is a V-measure.) Moreover, the pair  $(B, \mu)$  is unique up to isomorphism.

• Example: 
$$M = (\mathbb{Z}^+, +, 0)$$
,  $e = 1$ . Then  $B = \{0, 1\}$ ,  $\mu(1) = 1$ .

#### Type monoids

• The variety of BISs ISs from partial functions BISs and additive

semigroup homomorphisms Biases

 The type monoid

From  $\mathscr{D}$  to Typ *S* Typ *S* and eq

types Dobbertin's Theorem

Abelian *l*-groups

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \to \\ \mathsf{V}(\kappa \langle s \rangle) \end{array}$ 

### Theorem (Dobbertin, 1983)

Let *M* be a countable, conical refinement monoid and let  $e \in M$ . Then there are a countable Boolean algebra *B* and a finitely additive measure  $\mu: B \to M$  such that  $\mu(1) = e$ ,  $\mu^{-1} \{0\} = \{0\}$ , and whenever  $\mu(c) = a + b$ , there exists a decomposition  $c = a \oplus b$  in *B* such that  $\mu(a) = a$  and  $\mu(b) = b$ . (We say that  $\mu$  is a V-measure.) Moreover, the pair  $(B, \mu)$  is unique up to isomorphism.

- **Example**:  $M = (\mathbb{Z}^+, +, 0)$ , e = 1. Then  $B = \{0, 1\}$ ,  $\mu(1) = 1$ .
- **Example**:  $M = (\{0, 1\}, \lor, 0)$ , the two-element semilattice, and e = 1. Then B = the unique countable atomless Boolean algebra,  $\mu(x) = 1$  iff  $x \neq 0$ .

#### Type monoids

• The variety of BISs ISs from partial functions BISc and

additive semigroup homomorphisms Biases

 The type monoid

From  $\mathscr{D}$  to Typ S Typ S and eq

types Dobbertin's

Theorem

Abelian ℓ-groups

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \rightarrow \\ \mathsf{V}(\kappa \langle s \rangle) \end{array}$ 

### Theorem (Dobbertin, 1983)

Let *M* be a countable, conical refinement monoid and let  $e \in M$ . Then there are a countable Boolean algebra *B* and a finitely additive measure  $\mu: B \to M$  such that  $\mu(1) = e$ ,  $\mu^{-1} \{0\} = \{0\}$ , and whenever  $\mu(c) = a + b$ , there exists a decomposition  $c = a \oplus b$  in *B* such that  $\mu(a) = a$  and  $\mu(b) = b$ . (We say that  $\mu$  is a V-measure.) Moreover, the pair  $(B, \mu)$  is unique up to isomorphism.

- **Example**:  $M = (\mathbb{Z}^+, +, 0)$ , e = 1. Then  $B = \{0, 1\}$ ,  $\mu(1) = 1$ .
- Example: M = ({0,1}, ∨, 0), the two-element semilattice, and e = 1. Then B = the unique countable atomless Boolean algebra, μ(x) = 1 iff x ≠ 0.

### Possibilities of extension of Dobbertin's Theorem:

#### Type monoids

• The variety of BISs ISs from partial functions BISs and

semigroup homomorphisms Biases

 The type monoid

From  $\mathscr{D}$  to Typ *S* Typ *S* and eq

types Dobbertin's

Theorem

Abenan *e*-groups

 Type monoic and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \rightarrow \\ \mathsf{V}(\kappa \langle s \rangle) \end{array}$ 

### Theorem (Dobbertin, 1983)

Let *M* be a countable, conical refinement monoid and let  $e \in M$ . Then there are a countable Boolean algebra *B* and a finitely additive measure  $\mu: B \to M$  such that  $\mu(1) = e$ ,  $\mu^{-1} \{0\} = \{0\}$ , and whenever  $\mu(c) = a + b$ , there exists a decomposition  $c = a \oplus b$  in *B* such that  $\mu(a) = a$  and  $\mu(b) = b$ . (We say that  $\mu$  is a V-measure.) Moreover, the pair  $(B, \mu)$  is unique up to isomorphism.

- **Example**:  $M = (\mathbb{Z}^+, +, 0)$ , e = 1. Then  $B = \{0, 1\}$ ,  $\mu(1) = 1$ .
- **Example**:  $M = (\{0, 1\}, \lor, 0)$ , the two-element semilattice, and e = 1. Then B = the unique countable atomless Boolean algebra,  $\mu(x) = 1$  iff  $x \neq 0$ .

### Possibilities of extension of Dobbertin's Theorem:

For card  $M = \aleph_1$ , uniqueness is lost.

### Dobbertin's V-measures

#### Type monoids

• The variety of BISs ISs from partial functions BISs and

additive semigroup homomorphisms Biases

 The type monoid

From  $\mathscr{D}$  to Typ *S* Typ *S* and eq

types Dobbertin's

Theorem

Abelian ℓ-groups

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \rightarrow \\ V(\kappa \langle s \rangle) \end{array}$ 

### Theorem (Dobbertin, 1983)

Let *M* be a countable, conical refinement monoid and let  $e \in M$ . Then there are a countable Boolean algebra *B* and a finitely additive measure  $\mu: B \to M$  such that  $\mu(1) = e$ ,  $\mu^{-1} \{0\} = \{0\}$ , and whenever  $\mu(c) = a + b$ , there exists a decomposition  $c = a \oplus b$  in *B* such that  $\mu(a) = a$  and  $\mu(b) = b$ . (We say that  $\mu$  is a V-measure.) Moreover, the pair  $(B, \mu)$  is unique up to isomorphism.

- **Example**:  $M = (\mathbb{Z}^+, +, 0)$ , e = 1. Then  $B = \{0, 1\}$ ,  $\mu(1) = 1$ .
- **Example**:  $M = (\{0, 1\}, \lor, 0)$ , the two-element semilattice, and e = 1. Then B = the unique countable atomless Boolean algebra,  $\mu(x) = 1$  iff  $x \neq 0$ .

### Possibilities of extension of Dobbertin's Theorem:

For card  $M = \aleph_1$ , uniqueness is lost. If card  $M \ge \aleph_2$ , then existence is lost (W 1998).

### Type monoids

 The variety of BISs
 ISs from partial functions
 BISs and additive semigroup homomorphisms
 Biases

 The type monoid

From *𝒴* to Typ *S* Typ *S* and equi decomposabilit types

Dobbertin's Theorem

Abelian ℓ-groups

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \rightarrow \\ V(\kappa \langle s \rangle) \end{array}$ 

Proof of Dobbertin's Theorem: essentially back-and-forth.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 - のへで

### Type monoids

 The variety of BISs
 ISs from partial functions
 BISs and additive semigroup homomorphisms
 Biases

 The type monoid

From D to Typ S Typ S and equidecomposabil

types Dobbertin's Theorem

Abelian *l*-groups

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \langle S \rangle \\ \text{Typ } S \rightarrow \\ \mathsf{V}(\kappa \langle S \rangle) \end{array}$ 

Proof of Dobbertin's Theorem: essentially back-and-forth.

# Proposition

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - 釣ぬの

#### Type monoids

 The variety of BISs
 ISs from partial

functions BISs and additive semigroup homomorphisms Biases

 The type monoid

From D to Typ S Typ S and eq

types Dobbertin's Theorem

Abelian *l*=groups

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \left\langle S \right\rangle \\ \mathsf{Typ} \ S \rightarrow \\ \mathsf{V}(\kappa \left\langle S \right\rangle) \end{array}$ 

Proof of Dobbertin's Theorem: essentially back-and-forth.

### Proposition

Every countable conical refinement monoid is measurable.

・ロト ・回 ト ・ヨト ・ヨト ・ヨー うへぐ

#### Type monoids

 The variety of BISs
 ISs from partial

functions BISs and additive semigroup homomorphisms Biases

 The type monoid

From *D* to Typ *S* Typ *S* and equ decomposability

Dobbertin's Theorem

Abelian ℓ-groups

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \rightarrow \\ \mathsf{V}(\kappa \langle s \rangle) \end{array}$ 

Proof of Dobbertin's Theorem: essentially back-and-forth.

### Proposition

Every countable conical refinement monoid is measurable.

■ Idea of proof:

#### Type monoids

 The variety of BISs
 ISs from partial

functions BISs and additive semigroup homomorphisms Biases

 The type monoid

From ∅ to Typ S Typ S and eq decomposabil

types Dobbertin's Theorem

Abelian ℓ-groups

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \rightarrow \\ V(\kappa \langle s \rangle) \end{array}$ 

Proof of Dobbertin's Theorem: essentially back-and-forth.

### Proposition

- Idea of proof:
- M is an o-ideal in M' = M ⊔ {∞}. Since the o-ideals of Typ S correspond to the additive ideals of S, the problem is reduced to the case where M has an order-unit e.

#### Type monoids

 The variety of BISs
 ISs from partial functions

BISs and additive semigroup homomorphisms Biases

 The type monoid

From D to Typ S Typ S and equ decomposability

Dobbertin's Theorem

Abelian  $\ell$ -groups

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \rightarrow \\ V(\kappa \langle s \rangle) \end{array}$ 

Proof of Dobbertin's Theorem: essentially back-and-forth.

### Proposition

- Idea of proof:
- M is an o-ideal in M' = M ⊔ {∞}. Since the o-ideals of Typ S correspond to the additive ideals of S, the problem is reduced to the case where M has an order-unit e.
- Let  $\mu \colon (B,1) \to (M, \boldsymbol{e})$  be Dobbertin's V-measure.

#### Type monoids

• The variety of BISs ISs from partial functions

additive semigroup homomorphisms Biases

 The type monoid

From D to Typ S Typ S and eq decomposabil

Dobbertin's Theorem

Abelian ℓ-groups

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \to \\ \mathsf{V}(\kappa \langle s \rangle) \end{array}$ 

Proof of Dobbertin's Theorem: essentially back-and-forth.

### Proposition

- Idea of proof:
- M is an o-ideal in M' = M ⊔ {∞}. Since the o-ideals of Typ S correspond to the additive ideals of S, the problem is reduced to the case where M has an order-unit e.
- Let  $\mu: (B, 1) \rightarrow (M, e)$  be Dobbertin's V-measure.
- Set  $S = Inv(B, \mu) =$  semigroup of all  $\mu$ -preserving partial isomorphisms  $f : B \downarrow a \rightarrow B \downarrow b$ , where  $a, b \in B$  with  $\mu(a) = \mu(b)$ .

#### Type monoids

 The variety of BISs
 ISs from partial functions

BISs and additive semigroup homomorphisms Biases

 The type monoid

From *D* to Typ *S* Typ *S* and eq decomposabl

Dobbertin's Theorem

Abelian *l*-groups

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \to \\ \mathsf{V}(\kappa \langle s \rangle) \end{array}$ 

Proof of Dobbertin's Theorem: essentially back-and-forth.

### Proposition

- Idea of proof:
- M is an o-ideal in M' = M ⊔ {∞}. Since the o-ideals of Typ S correspond to the additive ideals of S, the problem is reduced to the case where M has an order-unit e.
- Let  $\mu \colon (B,1) \to (M, e)$  be Dobbertin's V-measure.
- Set S = Inv(B, μ) = semigroup of all μ-preserving partial isomorphisms f : B ↓ a → B ↓ b, where a, b ∈ B with μ(a) = μ(b).
- S is a Boolean inverse semigroup, with idempotents  $\overline{a} = \operatorname{id}_{B \downarrow a}$  where  $a \in B$ .

#### Type monoids

- The variety of BISs ISs from partial
- BISs and additive semigroup homomorphisms
- The type monoid
- From  ${\mathscr D}$  to Typ *S* Typ *S* and equ decomposabili

Dobbertin's Theorem

Abelian ℓ-groups

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \rightarrow \\ \mathsf{V}(\kappa \langle s \rangle) \end{array}$ 

Because of the uniqueness statement in Dobbertin's Theorem, for any  $a, b \in B$ , if  $\mu(a) = \mu(b)$ , there is  $f \in S$  (usually not unique) such that f(a) = b.

- The variety of BISs
   ISs from partial
- functions BISs and additive semigroup homomorphism:
- The type monoid
- From  $\mathscr{D}$  to Typ *S* Typ *S* and equ decomposabilit
- Dobbertin's Theorem
- Abelian *l*-groups
- Type monoid and nonstable K-theory
- $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \to \\ \mathsf{V}(\kappa \langle s \rangle) \end{array}$

- Because of the uniqueness statement in Dobbertin's Theorem, for any a, b ∈ B, if µ(a) = µ(b), there is f ∈ S (usually not unique) such that f(a) = b.
- Hence,  $\overline{a} \mathscr{D} \overline{b}$  within S iff  $\mu(a) = \mu(b)$ .

#### Type monoids

- The variety of BISs
   ISs from partial
- functions BISs and additive semigroup homomorphism
- The type monoid
- From  $\mathscr{D}$  to Typ S Typ S and equidecomposabilities

Dobbertin's Theorem

Abelian *l*-groups

 Type monoids and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \to \\ \mathsf{V}(\kappa \langle s \rangle) \end{array}$ 

- Because of the uniqueness statement in Dobbertin's Theorem, for any a, b ∈ B, if µ(a) = µ(b), there is f ∈ S (usually not unique) such that f(a) = b.
- Hence,  $\overline{a} \mathcal{D} \overline{b}$  within S iff  $\mu(a) = \mu(b)$ .
- By the definition of Typ S, there is a unique monoid homomorphism φ: Typ S → M such that φ(ā/𝔅) = μ(a) ∀a ∈ B.

- The variety of BISs
   ISs from partial
- functions BISs and additive semigroup homomorphism
- The type monoid
- From  $\mathscr{D}$  to Typ *S* Typ *S* and equidecomposabilities
- Dobbertin's Theorem
- Abelian ℓ-groups
- Type monoid and nonstable K-theory
- $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \rightarrow \\ V(\kappa \langle s \rangle) \end{array}$

- Because of the uniqueness statement in Dobbertin's Theorem, for any a, b ∈ B, if µ(a) = µ(b), there is f ∈ S (usually not unique) such that f(a) = b.
  - Hence,  $\overline{a} \mathscr{D} \overline{b}$  within S iff  $\mu(a) = \mu(b)$ .
- By the definition of Typ S, there is a unique monoid homomorphism φ: Typ S → M such that φ(ā/𝔅) = μ(a) ∀a ∈ B.
- Since M is a refinement monoid and μ is a V-measure, the range of φ (which is also the range of μ) generates M as a submonoid.

- The variety of BISs
   ISs from partial
- functions BISs and additive semigroup homomorphism
- The type monoid
- From  $\mathscr{D}$  to Typ *S* Typ *S* and eq
- Dobbertin's Theorem
- Abelian  $\ell\text{-}\mathsf{groups}$
- Type monoid: and nonstable
   K-theory
- $\begin{array}{l} \kappa \langle S \rangle \\ \text{Typ } S \to \\ \mathsf{V}(\kappa \langle S \rangle) \end{array}$

- Because of the uniqueness statement in Dobbertin's Theorem, for any a, b ∈ B, if µ(a) = µ(b), there is f ∈ S (usually not unique) such that f(a) = b.
  - Hence,  $\overline{a} \mathscr{D} \overline{b}$  within S iff  $\mu(a) = \mu(b)$ .
  - By the definition of Typ S, there is a unique monoid homomorphism φ: Typ S → M such that φ(ā/𝔅) = μ(a) ∀a ∈ B.
- Since *M* is a refinement monoid and μ is a V-measure, the range of φ (which is also the range of μ) generates *M* as a submonoid.
- Moreover,  $\varphi$  is one-to-one on Int *S* (because  $\overline{a} \mathscr{D} \overline{b}$  within *S* iff  $\mu(a) = \mu(b)$ ).

- The variety of BISs
   ISs from partial
- functions BISs and additive semigroup homomorphism
- The type monoid
- From  $\mathscr{D}$  to Typ S Typ S and equilation of the secomposability of
- Dobbertin's Theorem
- Abelian *l*-groups
- Type monoids
  and nonstable
  K-theory
- $\begin{array}{l} \kappa \left< S \right> \\ \mathsf{Typ} \ S \rightarrow \\ \mathsf{V}(\kappa \left< S \right>) \end{array}$

- Because of the uniqueness statement in Dobbertin's Theorem, for any a, b ∈ B, if µ(a) = µ(b), there is f ∈ S (usually not unique) such that f(a) = b.
  - Hence,  $\overline{a} \mathscr{D} \overline{b}$  within S iff  $\mu(a) = \mu(b)$ .
- By the definition of Typ S, there is a unique monoid homomorphism φ: Typ S → M such that φ(ā/𝔅) = μ(a) ∀a ∈ B.
- Since *M* is a refinement monoid and μ is a V-measure, the range of φ (which is also the range of μ) generates *M* as a submonoid.
- Moreover,  $\varphi$  is one-to-one on Int *S* (because  $\overline{a} \mathscr{D} \overline{b}$  within *S* iff  $\mu(a) = \mu(b)$ ).
- By the general properties of refinement monoids, this implies that  $\varphi$  is an isomorphism.

- The variety of BISs
   ISs from partial
- BISs and additive semigroup homomorphism:
- The type monoid
- From ∅ to Typ S Typ S and eq decomposabil
- Dobbertin's Theorem
- Abelian *l*-groups
- Type monoid: and nonstable
   K-theory
- $\begin{array}{l} \kappa \left< S \right> \\ \mathsf{Typ} \ S \rightarrow \\ \mathsf{V}(\kappa \left< S \right>) \end{array}$

- Because of the uniqueness statement in Dobbertin's Theorem, for any a, b ∈ B, if µ(a) = µ(b), there is f ∈ S (usually not unique) such that f(a) = b.
  - Hence,  $\overline{a} \mathscr{D} \overline{b}$  within S iff  $\mu(a) = \mu(b)$ .
- By the definition of Typ S, there is a unique monoid homomorphism φ: Typ S → M such that φ(ā/𝔅) = μ(a) ∀a ∈ B.
- Since *M* is a refinement monoid and μ is a V-measure, the range of φ (which is also the range of μ) generates *M* as a submonoid.
- Moreover,  $\varphi$  is one-to-one on Int *S* (because  $\overline{a} \mathscr{D} \overline{b}$  within *S* iff  $\mu(a) = \mu(b)$ ).
- By the general properties of refinement monoids, this implies that  $\varphi$  is an isomorphism. Hence  $M \cong \text{Typ } S$ .

#### Type monoids

### The variety of BISs ISs from partial functions BISs and additive semigroup homomorphisms Biases

 The type monoid

From D to Typ S Typ S and equi decomposabilit types Dobbertin's

#### Abelian ℓ-groups

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \to \\ \mathsf{V}(\kappa \langle s \rangle) \end{array}$ 

### Theorem (W 2015)

▲□▶ ▲□▶ ▲≧▶ ▲≧▶ = ● のへで

Theorem (W 2015)

Type monoids

### The variety of BISs ISs from partial functions BISs and additive semigroup homomorphisms Biases

 The type monoid

From D to Typ S Typ S and equi decomposabilit types Dobbertin's

#### Abelian ℓ-groups

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \langle S \rangle \\ \text{Typ } S \rightarrow \\ \mathsf{V}(\kappa \langle S \rangle) \end{array}$ 

For every abelian  $\ell$ -group G, there is a Boolean inverse semigroup S, explicitly constructed, such that Typ  $S \cong G^+$ .

Theorem (W 2015)

Type monoids

#### • The variety of BISs ISs from partial functions BISs and

semigroup homomorphisms Biases

 The type monoid

From 𝒷 to Typ S Typ S and equidecomposability types Dobbertin's

Theorem

### Abelian $\ell$ -groups

 Type monoid: and nonstable
 K-theory

 $\begin{array}{l} \kappa \langle S \rangle \\ \text{Typ } S \rightarrow \\ \mathsf{V}(\kappa \langle S \rangle) \end{array}$ 

For every abelian  $\ell$ -group G, there is a Boolean inverse semigroup S, explicitly constructed, such that Typ  $S \cong G^+$ .

The poset D = G ⊔ {⊥}, for a new bottom element ⊥, is a distributive lattice with zero.

Theorem (W 2015)

Type monoids

#### • The variety of BISs ISs from partial functions BISs and additive semigroup

homomorphisms Biases

 The type monoid

From D to Typ S Typ S and equi decomposabilit types Dobbertin's

Theorem

### Abelian $\ell$ -groups

Type monoids
 and nonstable
 K-theory

 $\begin{array}{l} \kappa \left\langle s \right\rangle \\ \mathsf{Typ} \ s \ \rightarrow \\ \mathsf{V}(\kappa \left\langle s \right\rangle) \end{array}$ 

For every abelian  $\ell$ -group G, there is a Boolean inverse semigroup S, explicitly constructed, such that Typ  $S \cong G^+$ .

- The poset D = G ⊔ {⊥}, for a new bottom element ⊥, is a distributive lattice with zero.
- Embed D into its enveloping Boolean ring  $\overline{B} = BR(D)$ .

Theorem (W 2015)

Type monoids

#### • The variety of BISs ISs from partial functions BISs and additive semigroup homomorphisms

Biases

 The type monoid

From  $\mathcal{D}$  to Typ S Typ S and equidecomposabilititypes Dobbertin's

Theorem

### Abelian $\ell$ -groups

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \langle S \rangle \\ \text{Typ } S \rightarrow \\ \mathsf{V}(\kappa \langle S \rangle) \end{array}$ 

For every abelian  $\ell$ -group G, there is a Boolean inverse semigroup S, explicitly constructed, such that Typ  $S \cong G^+$ .

- The poset D = G ⊔ {⊥}, for a new bottom element ⊥, is a distributive lattice with zero.
- Embed D into its enveloping Boolean ring  $\overline{B} = BR(D)$ .
- The elements of  $\overline{B}$  have the form  $\bigvee_{0 \le i < n} (a_{2i+1} \smallsetminus a_{2i})$ , where all  $a_i \in D$  and  $\perp \le a_0 \le \cdots \le a_{2n}$ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

17/23

Theorem (W 2015)

Type monoids

#### • The variety of BISs ISs from partial functions BISs and additive semigroup homomorphisms Plases

 The type monoid

From 𝒴 to Typ S Typ S and equi decomposabilit types Dobbertin's

Theorem

### Abelian $\ell$ -groups

 Type monoids and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \mathsf{Typ} \ s \rightarrow \\ \mathsf{V}(\kappa \langle s \rangle) \end{array}$ 

# For every abelian $\ell$ -group G, there is a Boolean inverse semigroup S, explicitly constructed, such that Typ $S \cong G^+$ .

- The poset D = G ⊔ {⊥}, for a new bottom element ⊥, is a distributive lattice with zero.
- Embed D into its enveloping Boolean ring  $\overline{B} = BR(D)$ .
- The elements of  $\overline{B}$  have the form  $\bigvee_{0 \le i < n} (a_{2i+1} \smallsetminus a_{2i})$ , where all  $a_i \in D$  and  $\perp \le a_0 \le \cdots \le a_{2n}$ .
- Adding the condition  $a_0 \neq \bot$  (i.e., each  $a_i \in G$ ) yields a Boolean subring B of  $\overline{B}$ .

Theorem (W 2015)

Type monoids

#### • The variety of BISs ISs from partial functions BISs and additive semigroup homomorphisms Riases

 The type monoid

From  $\mathscr{D}$  to Typ S and equi decomposabilit types Dobbertin's

### Abelian *l*-groups

 Type monoids and nonstable K-theory

 $\begin{array}{l} \kappa \left< S \right> \\ \mathsf{Typ} \ S \ \rightarrow \\ \mathsf{V}(\kappa \left< S \right>) \end{array}$ 

For every abelian  $\ell$ -group G, there is a Boolean inverse semigroup S, explicitly constructed, such that Typ  $S \cong G^+$ .

- The poset D = G ⊔ {⊥}, for a new bottom element ⊥, is a distributive lattice with zero.
- Embed D into its enveloping Boolean ring  $\overline{B} = BR(D)$ .
- The elements of  $\overline{B}$  have the form  $\bigvee_{0 \le i < n} (a_{2i+1} \smallsetminus a_{2i})$ , where all  $a_i \in D$  and  $\perp \le a_0 \le \cdots \le a_{2n}$ .
- Adding the condition  $a_0 \neq \bot$  (i.e., each  $a_i \in G$ ) yields a Boolean subring B of  $\overline{B}$ .
- The dimension monoid Dim G of the (distributive) lattice (G, ∨, ∧) is isomorphic to the monoid Z<sup>+</sup>⟨B⟩ of all nonnegative linear combinations of members of B, with ⊕ in B turned to + in Z<sup>+</sup>⟨B⟩.

#### Type monoids

- The variety of BISs
   ISs from partial functions
   BISs and additive semigroup homomorphisms
   Biases
- The type monoid
- From 𝒴 to Typ S Typ S and equidecomposability types Dobbertin's
- Abelian *l*-groups
- Type monoid and nonstable K-theory
- $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \to \\ \mathsf{V}(\kappa \langle s \rangle) \end{array}$

• Enables us to define a V-measure (as in Dobbertin's Theorem)  $\mu: B \to G^+$  by

Type monoids

• The variety of BISs ISs from partial functions BISs and additive semigroup homomorphisms Biases

 The type monoid

From  $\mathscr{D}$  to Typ *S* Typ *S* and equidecomposabilitypes Dobbertin's

Theorem

#### Abelian ℓ-groups

 Type monoids and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \rightarrow \\ \mathsf{V}(\kappa \langle s \rangle) \end{array}$ 

• Enables us to define a V-measure (as in Dobbertin's Theorem)  $\mu: B \to G^+$  by

$$\mu\Big(\bigvee_{0\leq i< n}(\mathsf{a}_{2i+1}\smallsetminus\mathsf{a}_{2i})\Big)=\sum_{i< n}(\mathsf{a}_{2i+1}-\mathsf{a}_{2i})$$

(where  $a_0 \leq a_1 \leq \cdots \leq a_{2n}$  in G).

Moreover, ∀a ∈ G, the translation x → x + a "extends" to an automorphism τ<sub>a</sub> of B. So τ<sub>a</sub>(y \ x) = (a + y) \ (a + x), ∀x ≤ y in G.

Type monoids

• The variety of BISs ISs from partial functions BISs and additive semigroup homomorphisms Biases

 The type monoid

From  $\mathscr{D}$  to Typ S Typ S and equidecomposabilitypes Dobbertin's

Theorem

#### Abelian ℓ-groups

 Type monoids and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \to \\ \mathsf{V}(\kappa \langle s \rangle) \end{array}$ 

• Enables us to define a V-measure (as in Dobbertin's Theorem)  $\mu: B \to G^+$  by

$$\mu\Big(\bigvee_{0\leq i< n}(\textbf{a}_{2i+1}\smallsetminus \textbf{a}_{2i})\Big)=\sum_{i< n}(\textbf{a}_{2i+1}-\textbf{a}_{2i})$$

(where  $a_0 \leq a_1 \leq \cdots \leq a_{2n}$  in G).

Moreover, ∀a ∈ G, the translation x → x + a "extends" to an automorphism τ<sub>a</sub> of B. So τ<sub>a</sub>(y \ x) = (a + y) \ (a + x), ∀x ≤ y in G.

•  $\overline{G} = \{\tau_a \mid a \in G\}$  is a subgroup of Aut *B*, isomorphic to *G*.

Type monoids

• The variety of BISs ISs from partial functions BISs and additive semigroup homomorphisms Biases

 The type monoid

From D to Typ S Typ S and equidecomposabilitypes Dobbertin's

Theorem

#### Abelian ℓ-groups

 Type monoids and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \to \\ \mathsf{V}(\kappa \langle s \rangle) \end{array}$ 

• Enables us to define a V-measure (as in Dobbertin's Theorem)  $\mu: B \to G^+$  by

$$\mu\Big(\bigvee_{0\leq i< n}(a_{2i+1}\smallsetminus a_{2i})\Big)=\sum_{i< n}(a_{2i+1}-a_{2i})$$

(where  $a_0 \leq a_1 \leq \cdots \leq a_{2n}$  in G).

■ Moreover, ∀a ∈ G, the translation x → x + a "extends" to an automorphism τ<sub>a</sub> of B. So τ<sub>a</sub>(y \ x) = (a + y) \ (a + x), ∀x ≤ y in G.

•  $\overline{G} = \{\tau_a \mid a \in G\}$  is a subgroup of Aut *B*, isomorphic to *G*.

• The desired BIS is  $S = Inv(B, \overline{G})$ .

Type monoids

• The variety of BISs ISs from partial functions BISs and additive semigroup homomorphisms Biases

 The type monoid

From D to Typ S and equ decomposabili types Dobbertin's

Theorem

Abelian ℓ-groups

 Type monoids and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \rightarrow \\ \mathsf{V}(\kappa \langle s \rangle) \end{array}$ 

• Enables us to define a V-measure (as in Dobbertin's Theorem)  $\mu: B \to G^+$  by

$$\mu\Big(\bigvee_{0\leq i< n}(\textbf{a}_{2i+1}\smallsetminus \textbf{a}_{2i})\Big)=\sum_{i< n}(\textbf{a}_{2i+1}-\textbf{a}_{2i})$$

(where  $a_0 \leq a_1 \leq \cdots \leq a_{2n}$  in G).

- Moreover, ∀a ∈ G, the translation x → x + a "extends" to an automorphism τ<sub>a</sub> of B. So τ<sub>a</sub>(y \ x) = (a + y) \ (a + x), ∀x ≤ y in G.
- $\overline{G} = \{\tau_a \mid a \in G\}$  is a subgroup of Aut *B*, isomorphic to *G*.
- The desired BIS is S = Inv(B, G). One must prove that for x, y ∈ B, µ(x) = µ(y) iff x and y are equidecomposable modulo translations from G (think of elements of B as disjoint unions of intervals with endpoints from G).

#### Type monoids

- The variety of BISs ISs from partial functions BISs and additive semigroup homomorphisms Biases
- The type monoid
- From D to Typ S Typ S and equidecomposability types Dobbertin's Theorem

#### Abelian ℓ-groups

- Type monoid and nonstable K-theory
- $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \to \\ \mathsf{V}(\kappa \langle s \rangle) \end{array}$

■ Using Mundici's 1986 result (MV-algebras = unit intervals of abelian ℓ-groups), it thus follows that every MV-algebra is isomorphic to Int S = S/𝔅, for some BIS S.

・ロ・・雪・・雪・・雪・ 今今や

#### Type monoids

- The variety of BISs ISs from partial functions BISs and additive semigroup homomorphisms Biases
- The type monoid
- From  $\mathscr{D}$  to Typ *s* Typ *s* and equidecomposability types Dobbertin's

#### Abelian ℓ-groups

- Type monoid and nonstable K-theory
- $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \to \\ \mathsf{V}(\kappa \langle s \rangle) \end{array}$

Using Mundici's 1986 result (MV-algebras ⇒ unit intervals of abelian ℓ-groups), it thus follows that every MV-algebra is isomorphic to Int S = S/𝔅, for some BIS S. Every such S is factorizable (i.e., ∀x, ∃ unit g, x ≤ g), and has 𝔅 = 𝔅.

#### Type monoids

- The variety of BISs ISs from partial functions BISs and additive semigroup
- Biases

#### The type monoid

From  $\mathscr{D}$  to Typ S and equidecomposability types Dobbertin's

#### Abelian ℓ-groups

 Type monoids and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \rightarrow \\ \mathsf{V}(\kappa \langle s \rangle) \end{array}$ 

Using Mundici's 1986 result (MV-algebras = unit intervals of abelian ℓ-groups), it thus follows that every MV-algebra is isomorphic to Int S = S/𝔅, for some BIS S. Every such S is factorizable (i.e., ∀x, ∃ unit g, x ≤ g), and has 𝔅 = 𝔅.

In the countable case, Lawson and Scott get the additional information that S can be taken AF (i.e., countable direct limit of finite products of symmetric inverse semigroups).

#### Type monoids

- The variety of BISs ISs from partial functions BISs and additive semigroup
- homomorphisms Biases
- The type monoid
- From *D* to Typ *S* Typ *S* and equi decomposabilit types Dobbertin's
- Theorem

#### Abelian ℓ-groups

- Type monoid and nonstable K-theory
- $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \rightarrow \\ \mathsf{V}(\kappa \langle s \rangle) \end{array}$

Using Mundici's 1986 result (MV-algebras ⇒ unit intervals of abelian ℓ-groups), it thus follows that every MV-algebra is isomorphic to Int S = S/𝔅, for some BIS S. Every such S is factorizable (i.e., ∀x, ∃ unit g, x ≤ g), and has 𝔅 = 𝔅.

- In the countable case, Lawson and Scott get the additional information that S can be taken AF (i.e., countable direct limit of finite products of symmetric inverse semigroups).
- Dropping separability and keeping lim, this result can be extended to all G<sup>+</sup>, where G is a dimension group (not necessarily lattice-ordered) of cardinality ≤ ℵ<sub>1</sub>.

#### Type monoids

- The variety of BISs
   ISs from partial functions
   BISs and additive semigroup homomorphisms
- Biases
- The type monoid
- From D to Typ S and equidecomposability types Dobbertin's
- Abelian ℓ-groups
- Type monoid and nonstable K-theory
- $\begin{array}{l} \kappa \left\langle S \right\rangle \\ \text{Typ } S \rightarrow \\ \mathsf{V}(\kappa \left\langle S \right\rangle) \end{array}$

Using Mundici's 1986 result (MV-algebras = unit intervals of abelian ℓ-groups), it thus follows that every MV-algebra is isomorphic to Int S = S/𝔅, for some BIS S. Every such S is factorizable (i.e., ∀x, ∃ unit g, x ≤ g), and has 𝔅 = 𝔅.

- In the countable case, Lawson and Scott get the additional information that S can be taken AF (i.e., countable direct limit of finite products of symmetric inverse semigroups).
- Dropping separability and keeping lim, this result can be extended to all G<sup>+</sup>, where G is a dimension group (not necessarily lattice-ordered) of cardinality ≤ ℵ<sub>1</sub>. (*Proof: mutatis mutandis* extend the usual Elliott, Goodearl + Handelman arguments from locally matricial algebras, or C\*-algebras, to BISs.)

#### Type monoids

- The variety of BISs ISs from partial functions BISs and additive semigroup homomorphisms
- Biases
- The type monoid
- From  $\mathscr{D}$  to Typ S and equi decomposabilit types Dobbertin's
- Abelian ℓ-groups
- Type monoid and nonstable K-theory
- $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \to \\ \mathsf{V}(\kappa \langle s \rangle) \end{array}$

Using Mundici's 1986 result (MV-algebras = unit intervals of abelian ℓ-groups), it thus follows that every MV-algebra is isomorphic to Int S = S/𝔅, for some BIS S. Every such S is factorizable (i.e., ∀x, ∃ unit g, x ≤ g), and has 𝔅 = 𝔅.

- In the countable case, Lawson and Scott get the additional information that S can be taken AF (i.e., countable direct limit of finite products of symmetric inverse semigroups).
- Dropping separability and keeping lim, this result can be extended to all G<sup>+</sup>, where G is a dimension group (not necessarily lattice-ordered) of cardinality ≤ ℵ<sub>1</sub>. (*Proof: mutatis mutandis* extend the usual Elliott, Goodearl + Handelman arguments from locally matricial algebras, or C\*-algebras, to BISs.)
- Getting "locally matricial" in arbitrary cardinality: hopeless for arbitrary dimension groups (counterexamples of size ℵ<sub>2</sub>), but still open for abelian ℓ-groups.

## Additive enveloping K-algebra of a BIS

| Type monoids | Definition |  |
|--------------|------------|--|
|              | •          |  |
|              |            |  |
|              | 5          |  |

## Additive enveloping K-algebra of a BIS

Type monoids

Definition

### The variety of BISs ISs from partial functions BISs and additive semigroup homomorphisms Biases

 The type monoid

From *D* to Typ *S* Typ *S* and equidecomposability types Dobbertin's Theorem

Abelian *ℓ*-groups

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \left< S \right> \\ \text{Typ } S \rightarrow \\ V(\kappa \left< S \right>) \end{array}$ 

# For a unital ring K and a BIS S, $K\langle S \rangle$ is the K-algebra defined by generators S and relations $\lambda s = s\lambda$ , 1s = s, z = x + y (within $K\langle S \rangle$ ) whenever $z = x \oplus y$ (within S).

Type monoids

 The variety of BISs
 ISs from partial functions
 BISs and additive semigroup homomorphisms
 Biases

 The type monoid

From *D* to Typ *S* Typ *S* and equidecomposability types Dobbertin's Theorem

Abelian *l*-groups

 Type monoic and nonstable K-theory

 $\begin{array}{l} \kappa \left\langle S \right\rangle \\ \text{Typ } S \rightarrow \\ V(\kappa \left\langle S \right\rangle) \end{array}$ 

### Definition

For a unital ring K and a BIS S,  $K\langle S \rangle$  is the K-algebra defined by generators S and relations  $\lambda s = s\lambda$ , 1s = s, z = x + y (within  $K\langle S \rangle$ ) whenever  $z = x \oplus y$  (within S).

■ For S a Boolean inverse meet-semigroup, K⟨S⟩ is isomorphic to Steinberg's K 𝒯<sub>T</sub> (S) (étale groupoid algebra of 𝒯<sub>T</sub>(S)), where 𝒯<sub>T</sub>(S) is called there the *universal additive groupoid* of S. Steinberg's construction extends to *Hausdorff inverse semigroups* (not necessarily Boolean).

Type monoids

Definition

• The variety of BISs ISs from partial functions BISs and additive semigroup homomorphisms Biases

 The type monoid

From D to Typ S and equidecomposability types Dobbertin's

I heorem

 Type monoids and nonstable K-theory

 $\begin{array}{l} \kappa \langle S \rangle \\ \text{Typ } S \rightarrow \\ V(\kappa \langle S \rangle) \end{array}$ 

# For a unital ring K and a BIS S, $K\langle S \rangle$ is the K-algebra defined by generators S and relations $\lambda s = s\lambda$ , 1s = s, z = x + y (within $K\langle S \rangle$ ) whenever $z = x \oplus y$ (within S).

- For S a Boolean inverse meet-semigroup, K⟨S⟩ is isomorphic to Steinberg's K U<sub>T</sub>(S) (étale groupoid algebra of U<sub>T</sub>(S)), where U<sub>T</sub>(S) is called there the universal additive groupoid of S. Steinberg's construction extends to Hausdorff inverse semigroups (not necessarily Boolean).
- If K is an involutary ring, then K⟨S⟩ is an involutary K-algebra (set (λs)\* = λ\*s<sup>-1</sup>).

Type monoids

Definition

• The variety of BISs ISs from partial functions BISs and additive semigroup homomorphisms Biases

The type monoid

From  $\mathscr{D}$  to Typ S and equidecomposability types Dobbertin's

Theorem

 Type monoids and nonstable
 K-theory

 $\begin{array}{l} \kappa \langle S \rangle \\ \text{Typ } S \rightarrow \\ V(\kappa \langle S \rangle) \end{array}$ 

# For a unital ring K and a BIS S, $K\langle S \rangle$ is the K-algebra defined by generators S and relations $\lambda s = s\lambda$ , 1s = s, z = x + y (within $K\langle S \rangle$ ) whenever $z = x \oplus y$ (within S).

- For S a Boolean inverse meet-semigroup, K⟨S⟩ is isomorphic to Steinberg's K U<sub>T</sub>(S) (étale groupoid algebra of U<sub>T</sub>(S)), where U<sub>T</sub>(S) is called there the universal additive groupoid of S. Steinberg's construction extends to Hausdorff inverse semigroups (not necessarily Boolean).
- If K is an involutary ring, then K⟨S⟩ is an involutary K-algebra (set (λs)\* = λ\*s<sup>-1</sup>).
- If X ⊆ S generates S as a bias, then it also generates K⟨S⟩ as an involutary subring.

20/23

Type monoids

• The variety of BISs ISs from partial functions BISs and additive semigroup homomorphisms Biases

 The type monoid

From D to Typ S Typ S and equidecomposability types Dobbertin's

Theorem

 Type monoids and nonstable K-theory

 $\begin{array}{l} \kappa \langle S \rangle \\ \text{Typ } S \rightarrow \\ V(\kappa \langle S \rangle) \end{array}$ 

## Definition

For a unital ring K and a BIS S,  $K\langle S \rangle$  is the K-algebra defined by generators S and relations  $\lambda s = s\lambda$ , 1s = s, z = x + y (within  $K\langle S \rangle$ ) whenever  $z = x \oplus y$  (within S).

- For S a Boolean inverse meet-semigroup, K⟨S⟩ is isomorphic to Steinberg's K U<sub>T</sub>(S) (étale groupoid algebra of U<sub>T</sub>(S)), where U<sub>T</sub>(S) is called there the universal additive groupoid of S. Steinberg's construction extends to Hausdorff inverse semigroups (not necessarily Boolean).
- If K is an involutary ring, then K⟨S⟩ is an involutary K-algebra (set (λs)\* = λ\*s<sup>-1</sup>).
- If X ⊆ S generates S as a bias, then it also generates K⟨S⟩ as an involutary subring.
- The construction *K*⟨*S*⟩ extends known constructions, such as *Leavitt path algebras*.

#### Type monoids

 The variety of BISs
 ISs from partial functions
 BISs and additive semigroup homomorphisms
 Biases

 The type monoid

From  $\mathcal{D}$  to Typ S Typ S and equi decomposabilit types Dobbertin's Theorem

Abelian ℓ-groups

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \left< S \right> \\ \text{Typ } S \rightarrow \\ V(\kappa \left< S \right>) \end{array}$ 

## Proposition (W 2015)

Proposition (W 2015)

#### Type monoids

### The variety of BISs ISs from partial

functions BISs and additive semigroup homomorphisms Biases

#### The type monoid

From D to Typ S Typ S and equidecomposability types Dobbertin's Theorem

Abelian *l*-groups

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \left< S \right> \\ \text{Typ } S \rightarrow \\ V(\kappa \left< S \right>) \end{array}$ 

# Every inverse semigroup S, in an involutary ring R, is contained in a BIS $\overline{S} \subseteq R$ , in which $\oplus$ specializes orthogonal addition (x + y), where $x^*y = xy^* = 0$ .

Proposition (W 2015)

#### Type monoids

#### The variety of BISs ISs from partial functions BISs and additive semigroup

- The type monoid
- From  $\mathscr{D}$  to Typ S and equidecomposability types Dobbertin's
- I heorem
- Type monoids
- and nonstable K-theory
- $\begin{array}{l} \kappa \left< S \right> \\ \text{Typ } S \rightarrow \\ V(\kappa \left< S \right>) \end{array}$

Every inverse semigroup S, in an involutary ring R, is contained in a BIS  $\overline{S} \subseteq R$ , in which  $\oplus$  specializes orthogonal addition (x + y), where  $x^*y = xy^* = 0$ .

Loosely speaking, this means that studying inverse semigroups in involutary rings reduces, in many instances, to studying Boolean inverse semigroups in involutary rings.

#### Type monoids

#### • The variety of BISs ISs from partial functions BISs and additive semigroup homomorphisms

Biases

#### The type monoid

From D to Typ S and equidecomposability types Dobbertin's

Abelian ℓ-groups

 Type monoid and nonstable
 K-theory

 $\begin{array}{l} \kappa \left< s \right> \\ \text{Typ } s \rightarrow \\ \mathsf{V}(\kappa \left< s \right>) \end{array}$ 

## Proposition (W 2015)

Every inverse semigroup S, in an involutary ring R, is contained in a BIS  $\overline{S} \subseteq R$ , in which  $\oplus$  specializes orthogonal addition (x + y), where  $x^*y = xy^* = 0$ .

- Loosely speaking, this means that studying inverse semigroups in involutary rings reduces, in many instances, to studying Boolean inverse semigroups in involutary rings.
- Can, in certain conditions, be extended to involutary semirings.

Proposition (W 2015)

#### Type monoids

• The variety of BISs ISs from partial functions BISs and additive semigroup homomorphisms

 The type monoid

From *D* to Typ *S* Typ *S* and equidecomposability types Dobbertin's Theorem

Abelian *l*-groups

 Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \rightarrow \\ V(\kappa \langle s \rangle) \end{array}$ 

# Every inverse semigroup S, in an involutary ring R, is contained in a BIS $\overline{S} \subseteq R$ , in which $\oplus$ specializes orthogonal addition $(x + y, \text{ where } x^*y = xy^* = 0)$ .

- Loosely speaking, this means that studying inverse semigroups in involutary rings reduces, in many instances, to studying Boolean inverse semigroups in involutary rings.
- Can, in certain conditions, be extended to involutary semirings.
- Yields a workable definition of the tensor product  $S \otimes T$  of two BISs S and T, which is still a BIS and has  $Idp(S \otimes T) \cong (Idp S) \otimes (Idp T)$ ,  $U_{mon}(S \otimes T) \cong U_{mon}(S) \otimes U_{mon}(T)$ , and  $Typ(S \otimes T) \cong Typ(S) \otimes Typ(T)$ .



- The variety of BISs
   ISs from partial
- functions BISs and additive semigroup homomorphisms Biases
- The type monoid
- From *D* to Typ *S* Typ *S* and equidecomposability types Dobbertin's Theorem
- Abelian ℓ-groups
- Type monoid and nonstable K-theory
- $\begin{array}{l} \kappa \left< S \right> \\ \text{Typ } S \rightarrow \\ V(\kappa \left< S \right>) \end{array}$

- For S a sub-BIS ( $\rightleftharpoons$  sub-bias) of T, the canonical map  $K\langle S \rangle \rightarrow K\langle T \rangle$  may not be one-to-one.
- Nevertheless, in a number of cases, it is one-to-one.

- The variety of BISs
   ISs from partial
- functions BISs and additive semigroup homomorphisms Biases
- The type monoid
- From *D* to Typ *S* Typ *S* and equidecomposability types Dobbertin's
- Abelian *l*-groups
- Type monoids and nonstable K-theory
- $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \rightarrow \\ V(\kappa \langle s \rangle) \end{array}$

- For S a sub-BIS ( $\leftrightarrows$  sub-bias) of T, the canonical map  $K\langle S \rangle \rightarrow K\langle T \rangle$  may not be one-to-one.
- Nevertheless, in a number of cases, it is one-to-one.
- For example, if T is the regular representation of S, or if T is a Boolean inverse meet-semigroup and S is closed under finite meets, then  $K\langle S \rangle \rightarrow K\langle T \rangle$  is one-to-one.

- The variety of BISs ISs from partial functions
- BISs and additive semigroup homomorphisms Biases
- The type monoid
- From  $\mathscr{D}$  to Typ S and equidecomposability types Dobbertin's
- Abelian l-group
- Type monoid and nonstable K-theory
- $\begin{array}{l} \kappa \langle S \rangle \\ \text{Typ } S \to \\ V(\kappa \langle S \rangle) \end{array}$

- For S a sub-BIS ( $\rightleftharpoons$  sub-bias) of T, the canonical map  $K\langle S \rangle \rightarrow K\langle T \rangle$  may not be one-to-one.
- Nevertheless, in a number of cases, it is one-to-one.
- For example, if T is the regular representation of S, or if T is a Boolean inverse meet-semigroup and S is closed under finite meets, then K⟨S⟩ → K⟨T⟩ is one-to-one.
- Has to do with so-called transfer properties in lattice theory

- The variety of BISs
   ISs from partial functions
- BISs and additive semigroup homomorphisms Biases
- The type monoid
- From  $\mathscr{D}$  to Typ *s* Typ *s* and equidecomposability types Dobbertin's
- I heorem
- Type monoids
  and nonstable
- and nonstable K-theory
- $\begin{array}{l} \kappa \left\langle s \right\rangle \\ \text{Typ } s \to \\ \mathsf{V}(\kappa \left\langle s \right\rangle) \end{array}$

- For S a sub-BIS ( $\leftrightarrows$  sub-bias) of T, the canonical map  $K\langle S \rangle \rightarrow K\langle T \rangle$  may not be one-to-one.
- Nevertheless, in a number of cases, it is one-to-one.
- For example, if T is the regular representation of S, or if T is a Boolean inverse meet-semigroup and S is closed under finite meets, then K⟨S⟩ → K⟨T⟩ is one-to-one.
- Has to do with so-called transfer properties in lattice theory (getting from  $K \hookrightarrow \text{Id } L$  to  $K \hookrightarrow L$ ).

Type monoids

 The variety of BISs
 ISs from partial functions
 BISs and additive semigroup homomorphisms
 Biases

 The type monoid

From 20 to Typ S Typ S and equidecomposability types Dobbertin's Theorem

Abelian *l*-groups

 Type monoise and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \rightarrow \\ \mathsf{V}(\kappa \langle s \rangle) \end{array}$ 

For idempotent matrices *a* and *b* from a ring *R*, let  $a \sim b$  hold if  $\exists x, y, a = xy$  and b = yx (*Murray - von Neumann equivalence*).

#### Type monoids

- The variety of BISs
   ISs from partial functions
   BISs and additive
- semigroup homomorphi Biases
- The type monoid
- From  $\mathscr{D}$  to Typ *s* Typ *s* and equidecomposability types Dobbertin's
- Abolion & grour
- Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \left< S \right> \\ \mathsf{Typ} \ S \rightarrow \\ \mathsf{V}(\kappa \left< S \right>) \end{array}$ 

- For idempotent matrices *a* and *b* from a ring *R*, let  $a \sim b$  hold if  $\exists x, y, a = xy$  and b = yx (*Murray* von Neumann equivalence).
- MvN classes can be added, *via* [x] + [y] = [x + y] provided xy = yx = 0.

- The variety of BISs
   ISs from partial
- functions BISs and additive semigroup homomorphisms Biases
- The type monoid
- From  $\mathscr{D}$  to Typ *s* Typ *s* and equidecomposability types Dobbertin's
- Abolian & group
- Type monoids and nonstable K-theory
- $\begin{array}{l} \kappa \langle S \rangle \\ \mathsf{Typ} \ S \rightarrow \\ \mathsf{V}(\kappa \langle S \rangle) \end{array}$

- For idempotent matrices *a* and *b* from a ring *R*, let  $a \sim b$  hold if  $\exists x, y, a = xy$  and b = yx (*Murray von Neumann equivalence*).
- MvN classes can be added, via [x] + [y] = [x + y] provided xy = yx = 0.
- V(R) = {[x] | x idempotent matrix from R}, the nonstable K-theory of R. It is a conical commutative monoid.

#### Type monoids

- The variety of BISs
- ISs from partial functions BISs and additive semigroup homomorphisms Bizes
- The type monoid
- From  $\mathscr{D}$  to Typ *S* Typ *S* and equidecomposability types Dobbertin's Theorem
- Abelian ℓ-groups
- Type monoids and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \mathsf{Typ} \, s \to \\ \mathsf{V}(\kappa \langle s \rangle) \end{array}$ 

- For idempotent matrices *a* and *b* from a ring *R*, let  $a \sim b$  hold if  $\exists x, y, a = xy$  and b = yx (*Murray von Neumann equivalence*).
- MvN classes can be added, via [x] + [y] = [x + y] provided xy = yx = 0.
- V(R) = {[x] | x idempotent matrix from R}, the nonstable K-theory of R. It is a conical commutative monoid.

### Proposition (W 2015)

#### Type monoids

- The variety of BISs
- ISs from partial functions BISs and additive semigroup homomorphisms Biases
- The type monoid
- From  $\mathcal{D}$  to Typ *S* Typ *S* and equidecomposability types Dobbertin's Theorem
- Abelian  $\ell$ -groups
- Type monoids and nonstable K-theory

 $\kappa \langle S \rangle$ Typ  $S \rightarrow V(\kappa \langle S \rangle)$ 

- For idempotent matrices *a* and *b* from a ring *R*, let  $a \sim b$  hold if  $\exists x, y, a = xy$  and b = yx (*Murray* von Neumann equivalence).
- MvN classes can be added, via [x] + [y] = [x + y] provided xy = yx = 0.
- V(R) = {[x] | x idempotent matrix from R}, the nonstable K-theory of R. It is a conical commutative monoid.

### Proposition (W 2015)

Let S be a BIS and let K be a unital ring. Then there is a unique monoid homomorphism  $f: \operatorname{Typ} S \to V(K\langle S \rangle)$  such that  $f(x/\mathscr{D}) = [x]_{K\langle S \rangle} \ \forall x \in S.$ 

#### Type monoids

- The variety o
  BISs
- ISs from partial functions BISs and additive semigroup homomorphisms Biases
- The type monoid
- From 𝒯 to Typ S Typ S and equidecomposability types Dobbertin's Theorem
- Abelian ℓ-group
- Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \langle S \rangle \\ \text{Typ } S \rightarrow \\ \mathsf{V}(\kappa \langle S \rangle) \end{array}$ 

- For idempotent matrices *a* and *b* from a ring *R*, let  $a \sim b$  hold if  $\exists x, y, a = xy$  and b = yx (*Murray von Neumann equivalence*).
- MvN classes can be added, via [x] + [y] = [x + y] provided xy = yx = 0.
- V(R) = {[x] | x idempotent matrix from R}, the nonstable K-theory of R. It is a conical commutative monoid.

## Proposition (W 2015)

Let S be a BIS and let K be a unital ring. Then there is a unique monoid homomorphism  $f: \operatorname{Typ} S \to V(K\langle S \rangle)$  such that  $f(x/\mathscr{D}) = [x]_{K\langle S \rangle} \ \forall x \in S.$ 

There are counterexamples where *f* is neither one-to-one, nor onto, even for *K* a field.

#### Type monoids

- The variety o
  BISs
- ISs from partial functions BISs and additive semigroup homomorphisms Bizess
- The type monoid
- From 𝒯 to Typ S Typ S and equidecomposability types Dobbertin's Theorem
- Abelian *l*-group
- Type monoid and nonstable K-theory

 $\begin{array}{l} \kappa \langle s \rangle \\ \text{Typ } s \rightarrow \\ \mathsf{V}(\kappa \langle s \rangle) \end{array}$ 

- For idempotent matrices *a* and *b* from a ring *R*, let  $a \sim b$  hold if  $\exists x, y, a = xy$  and b = yx (*Murray von Neumann equivalence*).
- MvN classes can be added, via [x] + [y] = [x + y] provided xy = yx = 0.
- V(R) = {[x] | x idempotent matrix from R}, the nonstable K-theory of R. It is a conical commutative monoid.

## Proposition (W 2015)

Let S be a BIS and let K be a unital ring. Then there is a unique monoid homomorphism  $f: \operatorname{Typ} S \to V(K\langle S \rangle)$  such that  $f(x/\mathscr{D}) = [x]_{K\langle S \rangle} \ \forall x \in S.$ 

- There are counterexamples where *f* is neither one-to-one, nor onto, even for *K* a field.
- Question: does Typ  $S \cong V(\mathbb{Z}\langle S \rangle)$ ?