Type monoids of Boolean inverse semigroups

Friedrich Wehrung
LMNO, CNRS UMR 6139 (Caen)
E-mail: friedrich.wehrung01@unicaen.fr
URL: http://www.math.unicaen.fr/~wehrung

June 2016

Theorem
Abelian ℓ groups

- Type monoids

Basic definitions

Inverse semigroup

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup
homomorphisms
Biases
- The type
monoid
From $\mathscr{2}$ to
Typ 5
Typ S and equi-
decomposability
types
Dobbertin's
Theorem
Abelian ℓ-groups
- Type monoids
and nonstable
K-theory
$k\langle s\rangle$
$\xrightarrow{\text { Typ } S} \overrightarrow{V(k\langle S\rangle)}$

Basic definitions

Inverse semigroup

Semigroup (S, \cdot), where $\forall x \exists$ unique x^{-1} (the inverse of x) such that $x x^{-1} x=x$ and $x^{-1} x x^{-1}=x^{-1}$.

Basic definitions

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup
homomorphisms
Biases
- The type
monoid
From \mathscr{Q} to
Typ S
Typ S and equidecomposability types
Dobbertin's
Theorem
Abelian E-groups
- Type monoids and nonstable K-theory
$k\langle s\rangle$
Typ $S \rightarrow$
$V(k\langle s\rangle)$

Inverse semigroup
Semigroup (S, \cdot), where $\forall x \exists$ unique x^{-1} (the inverse of x) such that $x x^{-1} x=x$ and $x^{-1} x x^{-1}=x^{-1}$.

There are many equivalent definitions, such as:

Basic definitions

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup
homomorphisms
Biases
- The type
monoid
From \mathscr{Q} to
Typ S
Typ S . and equidecomposability types
Dobbertin's
Theorem
Abelian ℓ-groups
- Type monoids and nonstable K-theory
$k\langle s\rangle$
$\xrightarrow{\text { Typ } S} \overrightarrow{V(K(s))}$

Inverse semigroup
Semigroup (S, \cdot), where $\forall x \exists$ unique x^{-1} (the inverse of x) such that $x x^{-1} x=x$ and $x^{-1} x x^{-1}=x^{-1}$.

There are many equivalent definitions, such as: $\forall x \exists y x y x=x$, and all idempotents of S commute.

Basic definitions

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup
homomorphisms
Biases
- The type
monoid
From \mathscr{Q} to
Typ S
Typ S and equidecomposability types
Dobbertin's
Theorem
Abelian ℓ groups
- Type monoids and nonstable K-theory $k\langle s\rangle$ Typ $S \vec{V} \vec{V}(s))$

Inverse semigroup
Semigroup (S, \cdot), where $\forall x \exists$ unique x^{-1} (the inverse of x) such that $x x^{-1} x=x$ and $x^{-1} x x^{-1}=x^{-1}$.

There are many equivalent definitions, such as: $\forall x \exists y x y x=x$, and all idempotents of S commute. We set $\mathbf{d}(x)=x^{-1} x$ (the domain of x), $\mathbf{r}(x)=x x^{-1}$ (the range of $x)$, $\operatorname{Idp} S=\left\{x \in S \mid x^{2}=x\right\}$.

Basic definitions

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup
homomorphisms Biases
- The type
monoid
From \mathscr{D} to
Typ S
Typ S and equidecomposability types
Dobbertin's Theorem Abelian ℓ groups - Type monoids and nonstable K-theory

Inverse semigroup

Semigroup (S, \cdot), where $\forall x \exists$ unique x^{-1} (the inverse of x) such that $x x^{-1} x=x$ and $x^{-1} x x^{-1}=x^{-1}$.

There are many equivalent definitions, such as: $\forall x \exists y x y x=x$, and all idempotents of S commute.
We set $\mathbf{d}(x)=x^{-1} x$ (the domain of x), $\mathbf{r}(x)=x x^{-1}$ (the range of $x), \operatorname{Idp} S=\left\{x \in S \mid x^{2}=x\right\}$.

Fundamental example (symmetric inverse semigroup)

Basic definitions

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup.
homomorphisms Biases
- The type
monoid
From \mathscr{D} to
Typ S
Typ S and equidecomposability types
Dobbertin's
Theorem
Abelian ℓ-groups
- Type monoids and nonstable K-theory $k\langle s\rangle$ Typ S
$V(k\langle s\rangle)$

Inverse semigroup

Semigroup (S, \cdot), where $\forall x \exists$ unique x^{-1} (the inverse of x) such that $x x^{-1} x=x$ and $x^{-1} x x^{-1}=x^{-1}$.

There are many equivalent definitions, such as: $\forall x \exists y x y x=x$, and all idempotents of S commute.
We set $\mathbf{d}(x)=x^{-1} x$ (the domain of x), $\mathbf{r}(x)=x x^{-1}$ (the range of $x)$, $\operatorname{Idp} S=\left\{x \in S \mid x^{2}=x\right\}$.

Fundamental example (symmetric inverse semigroup)
For any set Ω, denote by \Im_{Ω} the semigroup of all bijections $f: X \rightarrow Y$, where $X, Y \subseteq \Omega$

Basic definitions

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup.
homomorphisms Biases
- The type monoid
From 2 to
Typ S
Typ S and equidecomposability types
Dobbertin's
Theorem
Abelian ℓ-groups
- Type monoids and nonstable K-theory $k\langle s)$ $\xrightarrow[\text { Typ } S]{V(K\langle S\rangle)}$

Inverse semigroup

Semigroup (S, \cdot), where $\forall x \exists$ unique x^{-1} (the inverse of x) such that $x x^{-1} x=x$ and $x^{-1} x x^{-1}=x^{-1}$.

There are many equivalent definitions, such as: $\forall x \exists y x y x=x$, and all idempotents of S commute.
We set $\mathbf{d}(x)=x^{-1} x$ (the domain of x), $\mathbf{r}(x)=x x^{-1}$ (the range of $x)$, $\operatorname{Idp} S=\left\{x \in S \mid x^{2}=x\right\}$.

Fundamental example (symmetric inverse semigroup)
For any set Ω, denote by \Im_{Ω} the semigroup of all bijections $f: X \rightarrow Y$, where $X, Y \subseteq \Omega$ (partial bijections on Ω).

Basic definitions

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup
homomorphisms Biases
- The type monoid
From $Q 2$ to
Typ S
Typ S and equidecomposability types
Dobbertin's
Theorem
Abelian ℓ-groups
- Type monoids and nonstable K-theory

Inverse semigroup

Semigroup ($S, \cdot \cdot$), where $\forall x \exists$ unique x^{-1} (the inverse of x) such that $x x^{-1} x=x$ and $x^{-1} x x^{-1}=x^{-1}$.

There are many equivalent definitions, such as: $\forall x \exists y x y x=x$, and all idempotents of S commute.
We set $\mathbf{d}(x)=x^{-1} x$ (the domain of x), $\mathbf{r}(x)=x x^{-1}$ (the range of $x)$, $\operatorname{Idp} S=\left\{x \in S \mid x^{2}=x\right\}$.

Fundamental example (symmetric inverse semigroup)

For any set Ω, denote by \Im_{Ω} the semigroup of all bijections $f: X \rightarrow Y$, where $X, Y \subseteq \Omega$ (partial bijections on Ω).

Composition of partial functions defined whenever possible:

Basic definitions

- The variety of BISs

ISs from partial functions
BISs and
additive
semigroup
homomorphisms Biases

- The type monoid
From \mathscr{D} to
Typ S
Typ. S and equidecomposability types
Dobbertin's
Theorem
Abelian ℓ-groups

Inverse semigroup

Semigroup (S, \cdot), where $\forall x \exists$ unique x^{-1} (the inverse of x) such that $x x^{-1} x=x$ and $x^{-1} x x^{-1}=x^{-1}$.

There are many equivalent definitions, such as:
$\forall x \exists y x y x=x$, and all idempotents of S commute.
We set $\mathbf{d}(x)=x^{-1} x$ (the domain of x), $\mathbf{r}(x)=x x^{-1}$ (the range of $x)$, $\operatorname{Idp} S=\left\{x \in S \mid x^{2}=x\right\}$.

Fundamental example (symmetric inverse semigroup)

For any set Ω, denote by \Im_{Ω} the semigroup of all bijections $f: X \rightarrow Y$, where $X, Y \subseteq \Omega$ (partial bijections on Ω).

Composition of partial functions defined whenever possible: $\operatorname{dom}(g \circ f)=\{x \in \operatorname{dom}(f) \mid f(x) \in \operatorname{dom}(g)\}$.

Inverse semigroups of partial bijections

Vagner-Preston Theorem

- The variety of BISs
ISs from partial functions
BISs and additive semigroup

Inverse semigroups of partial bijections

- The variety of

ISs from partial functions
BISs and additive semigroup
homomorphisms
Biases

- The type
monoid
From \mathscr{Q} to
Typ S
Typ S and equidecomposability types
Dobbertin's
Theorem
Abelian ℓ-groups
- Type monoids and nonstable K-theory
$k\langle s\rangle$
$\xrightarrow{\text { Typ } S} \mathrm{~V}(k\langle S\rangle)$

Vagner-Preston Theorem

Every inverse semigroup embeds into some \Im_{Ω}.

Inverse semigroups of partial bijections

Vagner-Preston Theorem

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup
homomorphisms
Biases
- The type
monoid
From \mathscr{Q} to
Typ S
Typ S and equidecomposability types
Dobbertin's
Theorem
Abelian ℓ-groups
- Type monoids and nonstable K-theory
$k\langle s\rangle$
Typ $S \rightarrow$
$V(K(s))$

Every inverse semigroup embeds into some \mathfrak{I}_{Ω}.
Means that every inverse semigroup can be represented as a semigroup of partial bijections on a set.

Inverse semigroups of partial bijections

Vagner-Preston Theorem

- The variety of BISs
ISs from partial
functions
BISs and
additive
semigroup.
homomorphisms Biases
- The type monoid
From \mathscr{Q} to
Typ S
Typ S S and equidecomposability types
Dobbertin's
Theorem
Abelian ℓ-groups
- Type monoids and nonstable K-theory
$k\langle s\rangle$ $\xrightarrow{\operatorname{Typ} S} \vec{V}(k\langle s\rangle)$

Every inverse semigroup embeds into some \Im_{Ω}.
Means that every inverse semigroup can be represented as a semigroup of partial bijections on a set.

Example constructed from a group action

Inverse semigroups of partial bijections

Vagner-Preston Theorem

- The variety of BISs
ISs from partial
functions
BISs and
additive
semigroup
homomorphisms Biases
- The type monoid
From \mathscr{D} to
Typ S
Typ S and equi-
decomposability types
Dobbertin's
Theorem
Abelian ℓ-groups
- Type monoids and nonstable K-theory $k\langle s\rangle$ $\xrightarrow{\operatorname{Typ} S} \mathrm{~V}(k\langle s\rangle)$

Every inverse semigroup embeds into some \Im_{Ω}.
Means that every inverse semigroup can be represented as a semigroup of partial bijections on a set.

Example constructed from a group action

If a group G acts on a set Ω, consider all partial bijections $f: X \rightarrow Y$ in I_{Ω} that are piecewise in G :

Inverse semigroups of partial bijections

Vagner-Preston Theorem

- The variety of BISs
ISs from partial
functions
BISs and
additive
semigroup
homomorphisms Biases
- The type monoid
From \mathscr{D} to
Typ S
Typ.S and equi-
decomposability types
Dobbertin's Theorem Abelian ℓ-groups - Type monoids and nonstable K-theory $k\langle s\rangle$ Typ s
$V(k(s))$

Every inverse semigroup embeds into some \Im_{Ω}.
Means that every inverse semigroup can be represented as a semigroup of partial bijections on a set.

Example constructed from a group action

If a group G acts on a set Ω, consider all partial bijections $f: X \rightarrow Y$ in \Im_{Ω} that are piecewise in G : that is, \exists decompositions $X=\bigsqcup_{i=1}^{n} X_{i}, Y=\bigsqcup_{i=1}^{n} Y_{i}$, each $g_{i} \in G$ and $g_{i} X_{i}=Y_{i}$, and

Inverse semigroups of partial bijections

Vagner-Preston Theorem

- The variety of BISs
ISs from partial
functions
BISs and
additive
semigroup
homomorphisms Biases
- The type
monoid
From \mathscr{D} to
Typ S
Typ S and equi-
decomposability types
Dobbertin's
Theorem
Abelian t-groups
- Type monoids and nonstable K-theory $k\langle s\rangle$ $\xrightarrow{\text { Typ } S} \overrightarrow{V(k\langle S\rangle)}$

Every inverse semigroup embeds into some \Im_{Ω}.
Means that every inverse semigroup can be represented as a semigroup of partial bijections on a set.

Example constructed from a group action

If a group G acts on a set Ω, consider all partial bijections $f: X \rightarrow Y$ in \Im_{Ω} that are piecewise in G : that is, \exists decompositions $X=\bigsqcup_{i=1}^{n} X_{i}, Y=\bigsqcup_{i=1}^{n} Y_{i}$, each $g_{i} \in G$ and $g_{i} X_{i}=Y_{i}$, and

$$
f(x)=g_{i} x \text { whenever } x \in X_{i} .
$$

Inverse semigroups of partial bijections

Vagner-Preston Theorem

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup
homomorphisms Biases
- The type
monoid
From 28 to
Typ S
Typ S and equidecomposability types
Dobbertin's
Theorem
Abelian ℓ-groups
- Type monoid's and nonstable K-theory $K(S)$ Typ S
$V(k\langle S\rangle)$

Every inverse semigroup embeds into some \Im_{Ω}.
Means that every inverse semigroup can be represented as a semigroup of partial bijections on a set.

Example constructed from a group action

If a group G acts on a set Ω, consider all partial bijections $f: X \rightarrow Y$ in \Im_{Ω} that are piecewise in G : that is, \exists decompositions $X=\bigsqcup_{i=1}^{n} X_{i}, Y=\bigsqcup_{i=1}^{n} Y_{i}$, each $g_{i} \in G$ and $g_{i} X_{i}=Y_{i}$, and

$$
f(x)=g_{i} x \text { whenever } x \in X_{i}
$$

$\operatorname{lnv}(\Omega, G)=\left\{f \in I_{\Omega} \mid f\right.$ is piecewise in $\left.G\right\}$ is an inverse semigroup.

Inverse semigroups of partial bijections

Vagner-Preston Theorem

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup.
fomomorphisms Biases
- The type
monoid
From Gil to
Typ S
Typ S and equidecomposability types
Dobbertin's
Theorem
Abelian ℓ-groups
- Type monoid's and nonstable K-theory $k(S)$ $\xrightarrow{\text { Typ. } S} \overrightarrow{V(k\langle s\rangle)}$

Every inverse semigroup embeds into some \Im_{Ω}.
Means that every inverse semigroup can be represented as a semigroup of partial bijections on a set.

Example constructed from a group action

If a group G acts on a set Ω, consider all partial bijections $f: X \rightarrow Y$ in \mathfrak{I}_{Ω} that are piecewise in G : that is, \exists decompositions
$X=\bigsqcup_{i=1}^{n} X_{i}, Y=\bigsqcup_{i=1}^{n} Y_{i}$, each $g_{i} \in G$ and $g_{i} X_{i}=Y_{i}$, and

$$
f(x)=g_{i} x \text { whenever } x \in X_{i}
$$

$\operatorname{lnv}(\Omega, G)=\left\{f \in \Im_{\Omega} \mid f\right.$ is piecewise in $\left.G\right\}$ is an inverse semigroup.
Idempotents of $\operatorname{lnv}(\Omega, G)$: they are the identities on all subsets of Ω. They form a Boolean lattice.

Example from a group action on a generalized Boolean algebra

Extension of previous example

- The variety of

Example from a group action on a generalized Boolean algebra

Type monoids

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup
homomorphisms
Biases
- The type
monoid
From \mathscr{Q} to
Typ S
Typ S and equidecomposability types
Dobbertin's
Theorem
Abelian ℓ-groups
- Type monoids and nonstable K-theory
$k\langle s\rangle$
$\xrightarrow{\text { Typ } s} \overrightarrow{V(k\langle s\rangle)}$

Extension of previous example
Now X, Y, X_{i}, Y_{i} are all restricted to belong to some generalized Boolean sublattice \mathcal{B} of the powerset of Ω.

Example from a group action on a generalized Boolean algebra

Extension of previous example

Now X, Y, X_{i}, Y_{i} are all restricted to belong to some generalized Boolean sublattice \mathcal{B} of the powerset of Ω. We require $g \mathcal{B}=\mathcal{B}$ $\forall g \in G$, that is, G acts on \mathcal{B} by automorphisms.

Example from a group action on a generalized Boolean algebra

- The variety of

ISs from partial functions
BISs and
additive
semigroup
homomorphisms Biases

- The type monoid
From \mathscr{D} to
Typ S
Typ S and equidecomposability types
Dobbertin's Theorem Abefian E-groups

Extension of previous example

Now X, Y, X_{i}, Y_{i} are all restricted to belong to some generalized Boolean sublattice \mathcal{B} of the powerset of Ω. We require $g \mathcal{B}=\mathcal{B}$ $\forall g \in G$, that is, G acts on \mathcal{B} by automorphisms. The structure thus obtained, $\operatorname{lnv}(\mathcal{B}, G)$, depends only of the isomorphism type of the action of G on \mathcal{B} (not of the given representation).

Example from a group action on a generalized Boolean algebra

Extension of previous example
Now X, Y, X_{i}, Y_{i} are all restricted to belong to some generalized Boolean sublattice \mathcal{B} of the powerset of Ω. We require $g \mathcal{B}=\mathcal{B}$ $\forall g \in G$, that is, G acts on \mathcal{B} by automorphisms. The structure thus obtained, $\operatorname{lnv}(\mathcal{B}, G)$, depends only of the isomorphism type of the action of G on \mathcal{B} (not of the given representation). It is an inverse semigroup.

Example from a group action on a generalized Boolean algebra

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup.
homomorphisms Biases
- The type monoid
From toz to
Typ S
Typ S and equidecomposability types
Dobbertin's Theorem Abelian ℓ-groups

Extension of previous example
Now X, Y, X_{i}, Y_{i} are all restricted to belong to some generalized Boolean sublattice \mathcal{B} of the powerset of Ω. We require $g \mathcal{B}=\mathcal{B}$ $\forall g \in G$, that is, G acts on \mathcal{B} by automorphisms. The structure thus obtained, $\operatorname{lnv}(\mathcal{B}, G)$, depends only of the isomorphism type of the action of G on \mathcal{B} (not of the given representation). It is an inverse semigroup.

Idempotents of $\operatorname{lnv}(\mathcal{B}, G)$: they are the identity functions id_{X}, where $X \in \mathcal{B}$.

Example from a group action on a generalized Boolean algebra

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup
homomorphisms Biases
- The type monoid
From 21 to
Typ S
Typ S and equidecomposability types
Dobbertin's Theorem Abelian ℓ-groups

Extension of previous example
Now X, Y, X_{i}, Y_{i} are all restricted to belong to some generalized Boolean sublattice \mathcal{B} of the powerset of Ω. We require $g \mathcal{B}=\mathcal{B}$ $\forall g \in G$, that is, G acts on \mathcal{B} by automorphisms. The structure thus obtained, $\operatorname{lnv}(\mathcal{B}, G)$, depends only of the isomorphism type of the action of G on \mathcal{B} (not of the given representation). It is an inverse semigroup.

Idempotents of $\operatorname{Inv}(\mathcal{B}, G)$: they are the identity functions id_{X}, where $X \in \mathcal{B}$.
What kind of inverse semigroup is this?

Example from a group action on a generalized Boolean algebra

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup.
homomorphisms Biases
- The type monoid
From tol to
Typ S
Typ S and equidecomposability types
Dobbertin's Theorem Abelian ℓ-groups

Extension of previous example
Now X, Y, X_{i}, Y_{i} are all restricted to belong to some generalized Boolean sublattice \mathcal{B} of the powerset of Ω. We require $g \mathcal{B}=\mathcal{B}$ $\forall g \in G$, that is, G acts on \mathcal{B} by automorphisms. The structure thus obtained, $\operatorname{lnv}(\mathcal{B}, G)$, depends only of the isomorphism type of the action of G on \mathcal{B} (not of the given representation). It is an inverse semigroup.

Idempotents of $\operatorname{lnv}(\mathcal{B}, G)$: they are the identity functions id_{X}, where $X \in \mathcal{B}$.
What kind of inverse semigroup is this?
Zero element: the function $0 \in \operatorname{Inv}(\mathcal{B}, G)$ with empty domain.

Example from a group action on a generalized Boolean algebra

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup.
homomorphisms Biases
- The type monoid
From to
Typ S
Typ S and equidecomposability types
Dobbertin's
Theorem
Abelian ℓ-groups
- Type monoids and nonstable K-theory $k\langle s\rangle$ Typ $S \rightarrow$
$V(K\langle S\rangle)$

Extension of previous example
Now X, Y, X_{i}, Y_{i} are all restricted to belong to some generalized Boolean sublattice \mathcal{B} of the powerset of Ω. We require $g \mathcal{B}=\mathcal{B}$ $\forall g \in G$, that is, G acts on \mathcal{B} by automorphisms. The structure thus obtained, $\operatorname{lnv}(\mathcal{B}, G)$, depends only of the isomorphism type of the action of G on \mathcal{B} (not of the given representation). It is an inverse semigroup.

Idempotents of $\operatorname{lnv}(\mathcal{B}, G)$: they are the identity functions id_{X}, where $X \in \mathcal{B}$.
What kind of inverse semigroup is this?
Zero element: the function $0 \in \operatorname{lnv}(\mathcal{B}, G)$ with empty domain.
$f \circ 0=0 \circ f=0, \forall f \in \operatorname{lnv}(\mathcal{B}, G)$.

Example from a group action on a generalized Boolean algebra

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup.
homomorphisms Biases
- The type monoid
From to to Typ S
Typ S and equidecomposability types
Dobbertin's Theorem Abelian ℓ-groups

Extension of previous example

Now X, Y, X_{i}, Y_{i} are all restricted to belong to some generalized Boolean sublattice \mathcal{B} of the powerset of Ω. We require $g \mathcal{B}=\mathcal{B}$ $\forall g \in G$, that is, G acts on \mathcal{B} by automorphisms. The structure thus obtained, $\operatorname{Inv}(\mathcal{B}, G)$, depends only of the isomorphism type of the action of G on \mathcal{B} (not of the given representation). It is an inverse semigroup.

Idempotents of $\operatorname{Inv}(\mathcal{B}, G)$: they are the identity functions $i d_{x}$, where $X \in \mathcal{B}$.
What kind of inverse semigroup is this?
Zero element: the function $0 \in \operatorname{lnv}(\mathcal{B}, G)$ with empty domain.
$f \circ 0=0 \circ f=0, \forall f \in \operatorname{lnv}(\mathcal{B}, G)$.
Orthogonality: $f \perp g$ if $\operatorname{dom}(f) \cap \operatorname{dom}(g)=r n g(f) \cap r n g(g)=\varnothing$.

Example from a group action on a generalized Boolean algebra

- The variety of BISs
ISs from partial functions BISs and additive semigroup homomorphisms Biases
- The type monoid From th to Typ S
Typ S and equidecomposability types
Dobbertin's Theorem Abelian ℓ-groups

Extension of previous example

Now X, Y, X_{i}, Y_{i} are all restricted to belong to some generalized Boolean sublattice \mathcal{B} of the powerset of Ω. We require $g \mathcal{B}=\mathcal{B}$ $\forall g \in G$, that is, G acts on \mathcal{B} by automorphisms. The structure thus obtained, $\operatorname{lnv}(\mathcal{B}, G)$, depends only of the isomorphism type of the action of G on \mathcal{B} (not of the given representation). It is an inverse semigroup.

Idempotents of $\operatorname{Inv}(\mathcal{B}, G)$: they are the identity functions $i d_{x}$, where $X \in \mathcal{B}$.
What kind of inverse semigroup is this?
Zero element: the function $0 \in \operatorname{lnv}(\mathcal{B}, G)$ with empty domain.
$f \circ 0=0 \circ f=0, \forall f \in \operatorname{lnv}(\mathcal{B}, G)$.
Orthogonality: $f \perp g$ if $\operatorname{dom}(f) \cap \operatorname{dom}(g)=\operatorname{rng}(f) \cap \operatorname{rng}(g)=\varnothing$. Can be expressed abstractly: $f \perp g$ iff $f \circ g^{-1}=f^{-1} \circ g=0$.

Example from a group action on a generalized Boolean algebra

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup
homomorphisms Biases
- The type
monoid
From to to
Typ S
Typ S and equidecomposability types
Dobbertin's
Theorem
Abelian ℓ-groups
- Type monoids and nonstable K-theory

Extension of previous example

Now X, Y, X_{i}, Y_{i} are all restricted to belong to some generalized Boolean sublattice \mathcal{B} of the powerset of Ω. We require $g \mathcal{B}=\mathcal{B}$ $\forall g \in G$, that is, G acts on \mathcal{B} by automorphisms. The structure thus obtained, $\operatorname{Inv}(\mathcal{B}, G)$, depends only of the isomorphism type of the action of G on \mathcal{B} (not of the given representation). It is an inverse semigroup.

Idempotents of $\operatorname{Inv}(\mathcal{B}, G)$: they are the identity functions id_{x}, where $X \in \mathcal{B}$.
What kind of inverse semigroup is this?
Zero element: the function $0 \in \operatorname{lnv}(\mathcal{B}, G)$ with empty domain.
$f \circ 0=0 \circ f=0, \forall f \in \operatorname{lnv}(\mathcal{B}, G)$.
Orthogonality: $f \perp g$ if $\operatorname{dom}(f) \cap \operatorname{dom}(g)=\operatorname{rng}(f) \cap \operatorname{rng}(g)=\varnothing$.
Can be expressed abstractly: $f \perp g$ iff $f \circ g^{-1}=f^{-1} \circ g=0$. Then one can form the orthogonal sum $f \oplus g$:

Example from a group action on a generalized Boolean algebra

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup
homomorphisms Biases
- The type
monoid
From ${ }^{2}$ to
Typ S
Typ S and equidecomposability types
Dobbertin's
Theorem
Abelian ℓ-groups
- Type monoids and nonstable K-theory

Extension of previous example

Now X, Y, X_{i}, Y_{i} are all restricted to belong to some generalized Boolean sublattice \mathcal{B} of the powerset of Ω. We require $g \mathcal{B}=\mathcal{B}$ $\forall g \in G$, that is, G acts on \mathcal{B} by automorphisms. The structure thus obtained, $\operatorname{lnv}(\mathcal{B}, G)$, depends only of the isomorphism type of the action of G on \mathcal{B} (not of the given representation). It is an inverse semigroup.

Idempotents of $\operatorname{Inv}(\mathcal{B}, G)$: they are the identity functions id_{x}, where $X \in \mathcal{B}$.
What kind of inverse semigroup is this?
Zero element: the function $0 \in \operatorname{Inv}(\mathcal{B}, G)$ with empty domain.
$f \circ 0=0 \circ f=0, \forall f \in \operatorname{lnv}(\mathcal{B}, G)$.
Orthogonality: $f \perp g$ if $\operatorname{dom}(f) \cap \operatorname{dom}(g)=r n g(f) \cap r n g(g)=\varnothing$.
Can be expressed abstractly: $f \perp g$ iff $f \circ g^{-1}=f^{-1} \circ g=0$.
Then one can form the orthogonal sum $f \oplus g:(f \oplus g)(x)=f(x)$ if $x \in \operatorname{dom}(f), g(x)$ if $x \in \operatorname{dom}(g)$.

Boolean inverse semigroups

- The variety of BISs
ISs from partial functions
BISs and additive semigroup homomorphisms Biases

```
- The type
```

monoid

From $\mathscr{2}$ to Typ S
Typ S and equidecomposability types
Dobbertin's
Theorem
Abelian ℓ-groups

- Type monoids and nonstable
K-theory
$k\langle s\rangle$
$\xrightarrow{\text { Typ } S} \mathrm{~V}(k\langle s\rangle)$

Canonical ordering on an inverse semigroup:

Boolean inverse semigroups

- The variety of BISs
ISs from partial functions
BISs and
additive semigroup homomorphisms Biases
- The type
monoid
From (2) to
Typ S
Typ. s and equidecomposability types
Dobbertin's
Theorem
Abelian ℓ-groups
- Type monoids and nonstable K-theory
$k\langle s\rangle$
$\xrightarrow{\text { Typ } S} \mathrm{~V}(k\langle s\rangle)$

Canonical ordering on an inverse semigroup:

$x \leq y$ iff $(\exists$ idempotent $e) x=y e$ (resp., $x=e y$), iff $x=y \mathbf{d}(x)$, iff $x=\mathbf{r}(x) y$.

Boolean inverse semigroups

- The variety of BISs
ISs from partial functions
BISs and additive semigroup homomorphisms Biases
- The type monoid
From \mathscr{D} to
Typ S
Typ S and equidecomposability types
Dobbertin's
Theorem
Abelian ℓ-groups
- Type monoids and nonstable K-theory
$k\langle s\rangle$
$\xrightarrow{\text { Typ } s} \underset{(k\langle s))}{ }$

Canonical ordering on an inverse semigroup:

$x \leq y$ iff $(\exists$ idempotent $e) x=y e$ (resp., $x=e y$), iff $x=y \mathbf{d}(x)$, iff $x=\mathbf{r}(x) y$.

For $S=\operatorname{lnv}(\mathcal{B}, G), f \leq g$ iff g extends f.

Boolean inverse semigroups

- The variety of BISs
ISs from partial functions
BISs and additive semigroup homomorphisms
Biases
- The type
monoid
From \mathscr{D} to
Typ S
Typ S and equidecomposability types
Dobbertin's
Theorem
Abelian ℓ-groups
- Type monoids and nonstable
K-theory
$k\langle s\rangle$
Typ $S \vec{~} V(k\langle s\rangle)$

Canonical ordering on an inverse semigroup:

$x \leq y$ iff $(\exists$ idempotent $e) x=y e$ (resp., $x=e y)$, iff $x=y \mathbf{d}(x)$, iff $x=\mathbf{r}(x) y$.

For $S=\operatorname{lnv}(\mathcal{B}, G), f \leq g$ iff g extends f.
Boolean inverse semigroups

Boolean inverse semigroups

- The variety of BISs
ISs from partial functions
BISs and additive semigroup homomorphisms
Biases
- The type
monoid
From 2 to
Typ S
Typ S and equi-
decomposability types
Dobbertin's Theorem Abelian ℓ-groups
- Type monoids and nonstable K-theory $k\langle s\rangle$ Typ $S \rightarrow$
$V(k\langle s\rangle)$

Canonical ordering on an inverse semigroup:

$x \leq y$ iff (\exists idempotent $e) x=y e$ (resp., $x=e y$), iff $x=y \mathbf{d}(x)$, iff $x=\mathbf{r}(x) y$.

For $S=\operatorname{lnv}(\mathcal{B}, G), f \leq g$ iff g extends f.

Boolean inverse semigroups

Inverse semigroup S with zero $(x 0=0 x=0 \forall x)$ such that Idp S is a generalized Boolean algebra, and

Boolean inverse semigroups

- The variety of BISs
ISs from partial functions
BISs and additive semigroup homomorphisms
Biases
- The type
monoid
From $\mathscr{2}$ to
Typ 5
Typ S and equi-
decomposability types
Dobbertin's Theorem
Abelian ℓ-groups
- Type monoids and nonstable K-theory $k\langle s\rangle$ Typ $S \rightarrow$
$V(k\langle s\rangle)$

Canonical ordering on an inverse semigroup:

$x \leq y$ iff $(\exists$ idempotent $e) x=y e$ (resp., $x=e y$), iff $x=y \mathbf{d}(x)$, iff $x=\mathbf{r}(x) y$.

For $S=\operatorname{lnv}(\mathcal{B}, G), f \leq g$ iff g extends f.

Boolean inverse semigroups

Inverse semigroup S with zero $(x 0=0 x=0 \forall x)$ such that Idp S is a generalized Boolean algebra, and $\forall x, y$ with $x \perp y$, the supremum $x \oplus y$ of $\{x, y\}$, with respect to \leq, exists.

Boolean inverse semigroups

- The variety of BISs
ISs from partial functions
BISs and
additive semigroup
homomorphisms
Biases

Canonical ordering on an inverse semigroup:

$x \leq y$ iff $(\exists$ idempotent $e) x=y e$ (resp., $x=e y$), iff $x=y \mathbf{d}(x)$, iff $x=\mathbf{r}(x) y$.

For $S=\operatorname{lnv}(\mathcal{B}, G), f \leq g$ iff g extends f.

Boolean inverse semigroups

Inverse semigroup S with zero $(x 0=0 x=0 \forall x)$ such that Idp S is a generalized Boolean algebra, and $\forall x, y$ with $x \perp y$, the supremum $x \oplus y$ of $\{x, y\}$, with respect to \leq, exists.

The latter condition, on $\exists x \oplus y$, is not redundant (example with Idp S the 2-atom Boolean algebra).

Boolean inverse semigroups

- The variety of BISs
ISs from partial functions
BISs and
additive semigroup
homomorphisms
Biases
- The type
monoid
From Q to
Typ S
Typ S and equidecomposability types
Dobbertin's
Theorem
Abelian ℓ-groups
- Type monoid's and nonstable K-theory $k(s)$ Typ $S \rightarrow$

Canonical ordering on an inverse semigroup:
$x \leq y$ iff $(\exists$ idempotent $e) x=y e$ (resp., $x=e y$), iff $x=y \mathbf{d}(x)$, iff $x=\mathbf{r}(x) y$.

For $S=\operatorname{lnv}(\mathcal{B}, G), f \leq g$ iff g extends f.

Boolean inverse semigroups

Inverse semigroup S with zero $(x 0=0 x=0 \forall x)$ such that $\operatorname{ldp} S$ is a generalized Boolean algebra, and $\forall x, y$ with $x \perp y$, the supremum $x \oplus y$ of $\{x, y\}$, with respect to \leq, exists.

The latter condition, on $\exists x \oplus y$, is not redundant (example with Idp S the 2-atom Boolean algebra). Large class of Boolean inverse semigroups: all $\operatorname{Inv}(\mathcal{B}, G)$.

Distributivity of multiplication and meet on joins

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup
homomorphisms
Biases
- The type
monoid
From 2 to
Typ S
Typ S and equi-
decomposability types
Dobbertin's
Theorem
Abelian ℓ-groups
- Type monoids
and nonstable
K-theory
$k\langle s\rangle$
$\stackrel{T y p}{\mathrm{Typ}(k\langle s\rangle)}$

Proposition (folklore).

Distributivity of multiplication and meet on joins

- The variety of BISs
ISs from partial functions
BISs and additive semigroup homomorphisms Biases
- The type
monoid
From \mathscr{Q} to
Typ S
Typ S and equidecomposability types
Dobbertin's
Theorem
Abelian ℓ-groups
- Type monoids
and nonstable
K-theory
$k\langle s\rangle$
Typ $S \vec{~} V(k\langle s\rangle)$

Proposition (folklore).
Let S be a Boolean inverse semigroup and let $a, b_{1}, \ldots, b_{n} \in S$.

Distributivity of multiplication and meet on joins

- The variety of BISs
ISs from partial functions
BISs and
additive semigroup homomorphisms Biases

Proposition (folklore).
Let S be a Boolean inverse semigroup and let $a, b_{1}, \ldots, b_{n} \in S$.
$1 \bigvee_{i=1}^{n} b_{i}$ exists iff the b_{i} are pairwise compatible, that is, each $b_{i}^{-1} b_{j}$ and each $b_{i} b_{j}^{-1}$ is idempotent.

Distributivity of multiplication and meet on joins

- The variety of BISs
ISs from partial functions
BISs and
additive semigroup homomorphisms

Biases

- The type
monoid
From \mathscr{Z} to
Typ S
Typ S and equidecomposability types
Dobbertin's
Theorem
Abefian C-groups
- Type monoids and nonstable K-theory

Proposition (folklore).

Let S be a Boolean inverse semigroup and let $a, b_{1}, \ldots, b_{n} \in S$.
$1 \bigvee_{i=1}^{n} b_{i}$ exists iff the b_{i} are pairwise compatible, that is, each $b_{i}^{-1} b_{j}$ and each $b_{i} b_{j}^{-1}$ is idempotent.
2 If $\bigvee_{i=1}^{n} b_{i}$ exists, then $\bigvee_{i=1}^{n}\left(a b_{i}\right)$ and $\bigvee_{i=1}^{n}\left(b_{i} a\right)$ both exist, $\bigvee_{i=1}^{n}\left(a b_{i}\right)=a \bigvee_{i=1}^{n} b_{i}$, and $\bigvee_{i=1}^{n}\left(b_{i} a\right)=\left(\bigvee_{i=1}^{n} b_{i}\right) a$.

Distributivity of multiplication and meet on joins

Proposition (folklore).

- The variety of BISs
ISs from partial functions
BISs and
additive semigroup
homomorphisms
Biases
- The type
monoid
From (2) to
Typ S
Typ S and equidecomposability types
Dobbertin's Theorem
Abelian ℓ-groups
- Type monoids and nonstable K-theory

Let S be a Boolean inverse semigroup and let $a, b_{1}, \ldots, b_{n} \in S$.
$1 \bigvee_{i=1}^{n} b_{i}$ exists iff the b_{i} are pairwise compatible, that is, each $b_{i}^{-1} b_{j}$ and each $b_{i} b_{j}^{-1}$ is idempotent.
2 If $\bigvee_{i=1}^{n} b_{i}$ exists, then $\bigvee_{i=1}^{n}\left(a b_{i}\right)$ and $\bigvee_{i=1}^{n}\left(b_{i} a\right)$ both exist, $\bigvee_{i=1}^{n}\left(a b_{i}\right)=a \bigvee_{i=1}^{n} b_{i}$, and $\bigvee_{i=1}^{n}\left(b_{i} a\right)=\left(\bigvee_{i=1}^{n} b_{i}\right) a$.
3 If $\bigvee_{i=1}^{n} b_{i}$ exists, then $a \wedge \bigvee_{i=1}^{n} b_{i}$ exists iff each $a \wedge b_{i}$ exists, and then $\bigvee_{i=1}^{n}\left(a \wedge b_{i}\right)=a \wedge \bigvee_{i=1}^{n} b_{i}$.

Distributivity of multiplication and meet on joins

Proposition (folklore).

- The variety of BISs
ISs from partial functions
BISs and
additive semigroup
- The type
monoid
From ${ }^{2}$ to
Typ S
Typ S and equidecomposability types
Dobbertin's Theorem
Abelian ℓ-groups
- Type monoids and nonstable K-theory $k\langle s\rangle$ Typ $S \rightarrow$
$V(k\langle S\rangle)$

Let S be a Boolean inverse semigroup and let $a, b_{1}, \ldots, b_{n} \in S$.
$1 \bigvee_{i=1}^{n} b_{i}$ exists iff the b_{i} are pairwise compatible, that is, each $b_{i}^{-1} b_{j}$ and each $b_{i} b_{j}^{-1}$ is idempotent.
2 If $\bigvee_{i=1}^{n} b_{i}$ exists, then $\bigvee_{i=1}^{n}\left(a b_{i}\right)$ and $\bigvee_{i=1}^{n}\left(b_{i} a\right)$ both exist, $\bigvee_{i=1}^{n}\left(a b_{i}\right)=a \bigvee_{i=1}^{n} b_{i}$, and $\bigvee_{i=1}^{n}\left(b_{i} a\right)=\left(\bigvee_{i=1}^{n} b_{i}\right) a$.
3 If $\bigvee_{i=1}^{n} b_{i}$ exists, then $a \wedge \bigvee_{i=1}^{n} b_{i}$ exists iff each $a \wedge b_{i}$ exists, and then $\bigvee_{i=1}^{n}\left(a \wedge b_{i}\right)=a \wedge \bigvee_{i=1}^{n} b_{i}$.

Note: for a Boolean inverse semigroup S and $a, b \in S, a \wedge b$ may not exist.

Distributivity of multiplication and meet on joins

Proposition (folklore).

- The variety of BISs
ISs from partial functions
BISs and
additive semigroup
homomorphisms
Biases
- The type
monoid
From 27 to
Typ S
Typ S and equi-

Let S be a Boolean inverse semigroup and let $a, b_{1}, \ldots, b_{n} \in S$.
$1 \bigvee_{i=1}^{n} b_{i}$ exists iff the b_{i} are pairwise compatible, that is, each $b_{i}^{-1} b_{j}$ and each $b_{i} b_{j}^{-1}$ is idempotent.
2 If $\bigvee_{i=1}^{n} b_{i}$ exists, then $\bigvee_{i=1}^{n}\left(a b_{i}\right)$ and $\bigvee_{i=1}^{n}\left(b_{i} a\right)$ both exist, $\bigvee_{i=1}^{n}\left(a b_{i}\right)=a \bigvee_{i=1}^{n} b_{i}$, and $\bigvee_{i=1}^{n}\left(b_{i} a\right)=\left(\bigvee_{i=1}^{n} b_{i}\right) a$.
3 If $\bigvee_{i=1}^{n} b_{i}$ exists, then $a \wedge \bigvee_{i=1}^{n} b_{i}$ exists iff each $a \wedge b_{i}$ exists, and then $\bigvee_{i=1}^{n}\left(a \wedge b_{i}\right)=a \wedge \bigvee_{i=1}^{n} b_{i}$.

Note: for a Boolean inverse semigroup S and $a, b \in S, a \wedge b$ may not exist.
Those S in which $a \wedge b$ always exists are called inverse meet-semigroups.

Additive homomorphisms

- The variety of BISs
ISs from partial functions
BISs and
additive semigroup homomorphisms
Biases
- The type
monoid

From

Typ 5
Tvp. S and equidecomposability types
Dobbertin's
Theorem
Abelian ℓ-groups

- Type monoids
and nonstable
K-theory
K (S
Typ $S \rightarrow$

A relevant concept of morphism, for Boolean inverse semigroups, is the following.

Additive homomorphisms

- The variety of BISs
ISs from partial functions
BISs and
additive semigroup homomorphisms Biases

A relevant concept of morphism, for Boolean inverse semigroups, is the following.

Additive semigroup homomorphisms

Additive homomorphisms

- The variety of BISs
ISs from partial functions
BISs and
additive semigroup homomorphisms

A relevant concept of morphism, for Boolean inverse semigroups, is the following.

Additive semigroup homomorphisms

A semigroup homomorphism $f: S \rightarrow T$, between Boolean inverse semigroups, is additive if $x \perp_{S} y$ implies that $f(x) \perp_{T} f(y)$ and $f(x \oplus y)=f(x) \oplus f(y)$.

Additive homomorphisms

- The variety of BISs
ISs from partial functions
BISs and
additive semigroup homomorphisms

A relevant concept of morphism, for Boolean inverse semigroups, is the following.

Additive semigroup homomorphisms

A semigroup homomorphism $f: S \rightarrow T$, between Boolean inverse semigroups, is additive if $x \perp_{S} y$ implies that $f(x) \perp_{T} f(y)$ and $f(x \oplus y)=f(x) \oplus f(y)$. (In particular, $f\left(0_{S}\right)=0_{T}$.)

Additive homomorphisms

- The variety of BISs
ISs from partial functions
BISs and
additive semigroup homomorphisms Biases

A relevant concept of morphism, for Boolean inverse semigroups, is the following.

Additive semigroup homomorphisms

A semigroup homomorphism $f: S \rightarrow T$, between Boolean inverse semigroups, is additive if $x \perp_{S} y$ implies that $f(x) \perp_{T} f(y)$ and $f(x \oplus y)=f(x) \oplus f(y)$. (In particular, $f\left(0_{S}\right)=0_{T}$.)

Annoying fact: \oplus is only a partial operation.

Additive homomorphisms

- The variety of BISs
ISs from partial functions
BISs and
additive semigroup
homomorphisms
Biases
- The type
monoid
From \mathscr{D} to
Typ S
Typ S and equidecomposability types
Dobbertin's Theorem Abelian ℓ-groups

A relevant concept of morphism, for Boolean inverse semigroups, is the following.

Additive semigroup homomorphisms

A semigroup homomorphism $f: S \rightarrow T$, between Boolean inverse semigroups, is additive if $x \perp_{S} y$ implies that $f(x) \perp_{T} f(y)$ and $f(x \oplus y)=f(x) \oplus f(y)$. (In particular, $f\left(0_{S}\right)=0_{T}$.)

Annoying fact: \oplus is only a partial operation. Derived (full) operations:

$$
\begin{array}{ll}
x \otimes y=(\mathbf{r}(x) \backslash \mathbf{r}(y)) x(\mathbf{d}(x) \backslash \mathbf{d}(y)) & \\
\text { (skew difference); } \\
x \nabla y=(x \otimes y) \oplus y & \\
\text { (skew addition). }
\end{array}
$$

Additive homomorphisms

- The variety of BISs

ISs from partial functions
BISs and
additive semigroup
homomorphisms
Biases

- The type
monoid
From Q to
Typ S
Typ S and equidecomposability types
Dobbertin's Theorem Abelian ℓ-groups

A relevant concept of morphism, for Boolean inverse semigroups, is the following.

Additive semigroup homomorphisms

A semigroup homomorphism $f: S \rightarrow T$, between Boolean inverse semigroups, is additive if $x \perp_{S} y$ implies that $f(x) \perp_{T} f(y)$ and $f(x \oplus y)=f(x) \oplus f(y)$. (In particular, $f\left(0_{S}\right)=0_{T}$.)

Annoying fact: \oplus is only a partial operation. Derived (full) operations:

$$
\begin{array}{ll}
x \otimes y=(\mathbf{r}(x) \backslash \mathbf{r}(y)) x(\mathbf{d}(x) \backslash \mathbf{d}(y)) & \\
\text { (skew difference); } \\
x \nabla y=(x \otimes y) \oplus y & \\
\text { (skew addition). }
\end{array}
$$

Both $x \otimes y$ and $x \nabla y$ are always defined.

The variety of all biases

■ The structures $(S, \cdot, 0, \otimes, \nabla)$ can be axiomatized,

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup
homomorphisms
Biases
- The type
monoid
From \mathscr{D} to
Typ S
Typ.S and equi-
decomposability types
Dobbertin's
Theorem
Abelian ℓ-groups
- Type monoids
and nonstable
K-theory
$k\langle s\rangle$
Typ $s \vec{~} V(k\langle s\rangle)$

The variety of all biases

- The structures $(S, \cdot, 0, Q, \nabla)$ can be axiomatized, by finitely many identities (e.g., $\left.x \otimes y=(x \nabla y)(x \otimes y)^{-1}(x \otimes y)\right)$.
- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup
homomorphisms
Biases
- The type
monoid
From \mathscr{D} to
Typ S
Typ S and equidecomposability types
Dobbertin's
Theorem
Abelian ℓ-groups
- Type monoids and nonstable K-theory
$k\langle s\rangle$
$\xrightarrow{\text { Typ } S} \vec{V}(k\langle s\rangle)$

■ Those identities define the variety of all biases.

The variety of all biases

■ The structures $(S, \cdot, 0, \ominus, \nabla)$ can be axiomatized, by finitely many identities (e.g., $\left.x \otimes y=(x \nabla y)(x \otimes y)^{-1}(x \otimes y)\right)$.

- Those identities define the variety of all biases.
- Biases $(\cdot, 0, \ominus, \nabla) \leftrightharpoons$ Boolean inverse semigroups $(\cdot, 0, \oplus)$.

The variety of all biases

- The structures $(S, \cdot, 0, \ominus, \nabla)$ can be axiomatized, by finitely many identities (e.g., $\left.x \otimes y=(x \nabla y)(x \otimes y)^{-1}(x \otimes y)\right)$.
- Those identities define the variety of all biases.
- Biases $(\cdot, 0, \ominus, \nabla) \leftrightharpoons$ Boolean inverse semigroups $(\cdot, 0, \oplus)$.

■ For Boolean inverse semigroups S and T, a map $f: S \rightarrow T$ is a homomorphism of biases iff it is additive.

The variety of all biases

Type monoids

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup
homomorphisms
Biases
- The type
monoid
From θ to
Typ S
Typ S and equidecomposability types
Dobbertin's Theorem Abelian ℓ-groups
- The structures $(S, \cdot, 0, \ominus, \nabla)$ can be axiomatized, by finitely many identities (e.g., $\left.x \otimes y=(x \nabla y)(x \otimes y)^{-1}(x \otimes y)\right)$.
- Those identities define the variety of all biases.
- Biases $(\cdot, 0, \otimes, \nabla) \leftrightharpoons$ Boolean inverse semigroups $(\cdot, 0, \oplus)$.

■ For Boolean inverse semigroups S and T, a map $f: S \rightarrow T$ is a homomorphism of biases iff it is additive.

- A subset S in a BIS T is a sub-bias iff it is a subsemigroup, closed under finite \oplus, and closed under $(x, y) \mapsto x \backslash y$ on Idp S.

The variety of all biases

- The structures $(S, \cdot, 0, \ominus, \nabla)$ can be axiomatized, by finitely many identities (e.g., $\left.x \otimes y=(x \nabla y)(x \otimes y)^{-1}(x \otimes y)\right)$.
- Those identities define the variety of all biases.
- Biases $(\cdot, 0, \otimes, \nabla) \leftrightharpoons$ Boolean inverse semigroups $(\cdot, 0, \oplus)$.

■ For Boolean inverse semigroups S and T, a map $f: S \rightarrow T$ is a homomorphism of biases iff it is additive.

- A subset S in a BIS T is a sub-bias iff it is a subsemigroup, closed under finite \oplus, and closed under $(x, y) \mapsto x \backslash y$ on Idp S.
- The following term is a Mal'cev term for the variety of all biases:

$$
m(x, y, z)=\left(x(\mathbf{d}(x) \otimes \mathbf{d}(y)) \nabla x y^{-1} z\right) \nabla(\mathbf{r}(z) \vee \mathbf{r}(y)) z
$$

The variety of all biases

- The structures $(S, \cdot, 0, \ominus, \nabla)$ can be axiomatized, by finitely many identities (e.g., $\left.x \otimes y=(x \nabla y)(x \otimes y)^{-1}(x \otimes y)\right)$.
- The variety of
- Those identities define the variety of all biases.
- Biases $(\cdot, 0, \otimes, \nabla) \leftrightharpoons$ Boolean inverse semigroups $(\cdot, 0, \oplus)$.

■ For Boolean inverse semigroups S and T, a map $f: S \rightarrow T$ is a homomorphism of biases iff it is additive.

- A subset S in a BIS T is a sub-bias iff it is a subsemigroup, closed under finite \oplus, and closed under $(x, y) \mapsto x \backslash y$ on Idp S.
- The following term is a Mal'cev term for the variety of all biases:

$$
m(x, y, z)=\left(x(\mathbf{d}(x) \otimes \mathbf{d}(y)) \nabla x y^{-1} z\right) \nabla(\mathbf{r}(z) \ominus \mathbf{r}(y)) z
$$

- Therefore, the variety of all biases is congruence-permutable. (Note: it is not congruence-distributive.)

The variety of all biases

- The structures $(S, \cdot, 0, \ominus, \nabla)$ can be axiomatized, by finitely many identities (e.g., $\left.x \otimes y=(x \nabla y)(x \otimes y)^{-1}(x \otimes y)\right)$.
- The variety of
- Those identities define the variety of all biases.
- Biases $(\cdot, 0, \otimes, \nabla) \leftrightharpoons$ Boolean inverse semigroups $(\cdot, 0, \oplus)$.

■ For Boolean inverse semigroups S and T, a map $f: S \rightarrow T$ is a homomorphism of biases iff it is additive.

- A subset S in a BIS T is a sub-bias iff it is a subsemigroup, closed under finite \oplus, and closed under $(x, y) \mapsto x \backslash y$ on Idp S.
- The following term is a Mal'cev term for the variety of all biases:

$$
m(x, y, z)=\left(x(\mathbf{d}(x) \otimes \mathbf{d}(y)) \nabla x y^{-1} z\right) \nabla(\mathbf{r}(z) \vee \mathbf{r}(y)) z
$$

- Therefore, the variety of all biases is congruence-permutable. (Note: it is not congruence-distributive.)
- Hence, Boolean inverse semigroups are much closer to rings than to semigroups.

A Cayley-type theorem for BISs

- The variety of
 Proposition

ISs from partial
functions
BISs and
additive
semigroup
homomorphisms
Biases

A Cayley-type theorem for BISs

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup
homomorphisms Biases

Proposition

Every Boolean inverse semigroup has an additive embedding into some \mathfrak{I}_{Ω}. The embedding preserves all existing finite meets.

A Cayley-type theorem for BISs

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup
homomorphisms Biases

Proposition

Every Boolean inverse semigroup has an additive embedding into some \mathfrak{I}_{Ω}. The embedding preserves all existing finite meets.

- The Ω in this representation, denoted by $\operatorname{Gp}(S)$ in Lawson and Lenz (2013), is the prime spectrum of S.

A Cayley-type theorem for BISs

- The variety of BISs
ISs from partial functions
BISs and
additive semigroup homomorphisms Biases

Proposition

Every Boolean inverse semigroup has an additive embedding into some \mathfrak{I}_{Ω}. The embedding preserves all existing finite meets.

■ The Ω in this representation, denoted by $G p(S)$ in Lawson and Lenz (2013), is the prime spectrum of S.
■ The result above is contained in a duality theory worked out by Lawson and Lenz (2013).

A Cayley-type theorem for BISs

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup
homomorphisms
Biases
- The type
monoid
From Q to
Typ S
Typ S and equidecomposability types
Dobbertin's
Theorem
Abelian ℓ-groups
- Type monoids and nonstable K-theory

Proposition

Every Boolean inverse semigroup has an additive embedding into some \mathfrak{I}_{Ω}. The embedding preserves all existing finite meets.

- The Ω in this representation, denoted by $\mathrm{G}_{\mathrm{p}}(S)$ in Lawson and Lenz (2013), is the prime spectrum of S.
- The result above is contained in a duality theory worked out by Lawson and Lenz (2013).
- The set-theoretical content of the result above is the Boolean prime ideal Theorem.

A Cayley-type theorem for BISs

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup
homomorphisms
Biases
- The type
monoid
From Q to
Typ S
Typ S and equidecomposability types
Dobbertin's
Theorem
Abelian ℓ-groups
- Type monoids and nonstable K-theory

Proposition

Every Boolean inverse semigroup has an additive embedding into some \mathfrak{I}_{Ω}. The embedding preserves all existing finite meets.

■ The Ω in this representation, denoted by $G_{p}(S)$ in Lawson and Lenz (2013), is the prime spectrum of S.
■ The result above is contained in a duality theory worked out by Lawson and Lenz (2013).
■ The set-theoretical content of the result above is the Boolean prime ideal Theorem.
■ The representation above is called the regular representation of S.

Green's relation \mathscr{D}

Type monoids

- On any inverse semigroup, we set
- The variety of BISs
ISs from partial
functions
BISs and
additive
semigroup.
homomorphisms
Biases
- The type
monoid
From \mathscr{D} to
Typ S
Typ. S and equidecomposability types
Dobbertin's
Theorem
Abelian ℓ-groups
- Type monoids
and nonstable
K-theory
$k\langle s\rangle$
Typ S
$V(k\langle S\rangle)$

Green's relation \mathscr{D}

Type monoids

- The variety of

ISs from partial
functions
BISs and
additive
semigroup
homomorphisms
Biases

- The type
monoid
From \mathscr{D} to Typ S
Typ S and equidecomposability types
Dobbertin's
Theorem
Abelian ℓ-groups
- Type monoids
and nonstable
K-theory
$k\langle s\rangle$
Typ $S \rightarrow \vec{~} V(k\langle S\rangle)$
- On any inverse semigroup, we set

■ $x \mathscr{L} y \Leftrightarrow \mathbf{d}(x)=\mathbf{d}(y), x \mathscr{R} y \Leftrightarrow \mathbf{r}(x)=\mathbf{r}(y)$, and $\mathscr{D}=\mathscr{L} \circ \mathscr{R}=\mathscr{R} \circ \mathscr{L}$.

Green's relation \mathscr{D}

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup
homomorphisms
Biases
- The type
monoid
From \mathscr{D} to Typ S
Typ S and equidecomposability types
Dobbertin's
Theorem
Abelian ℓ-groups
- Type monoids and nonstable K-theory
$k\langle s\rangle$
Typ $s \rightarrow \vec{~} V(K\langle s\rangle)$
- On any inverse semigroup, we set

■ $x \mathscr{L} y \Leftrightarrow \mathbf{d}(x)=\mathbf{d}(y), x \mathscr{R} y \Leftrightarrow \mathbf{r}(x)=\mathbf{r}(y)$, and $\mathscr{D}=\mathscr{L} \circ \mathscr{R}=\mathscr{R} \circ \mathscr{L}$.

- For idempotent a and $b, a \mathscr{D} b$ iff $(\exists x)(a=\mathbf{d}(x)$ and $b=\mathbf{r}(x))$.

Green's relation \mathscr{D}

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup
homomorphisms
Biases
- The type monoid
From \mathscr{D} to Typ S
Typ S and equi-
decomposability types
Dobbertin's
Theorem
Abelian ℓ-groups
- Type monoids and nonstable K-theory $k\langle s\rangle$ $\xrightarrow[\text { Typ } S \rightarrow]{V(K\langle S\rangle)}$
- On any inverse semigroup, we set

■ $x \mathscr{L} y \Leftrightarrow \mathbf{d}(x)=\mathbf{d}(y), x \mathscr{R} y \Leftrightarrow \mathbf{r}(x)=\mathbf{r}(y)$, and $\mathscr{D}=\mathscr{L} \circ \mathscr{R}=\mathscr{R} \circ \mathscr{L}$.

- For idempotent a and $b, a \mathscr{D} b$ iff $(\exists x)(a=\mathbf{d}(x)$ and $b=\mathbf{r}(x))$.

■ For a Boolean inverse semigroup S, the quotient $\operatorname{lnt} S=S / \mathscr{D}$ (the dimension interval of S) can be endowed with a partial addition, given by

Green's relation \mathscr{D}

- On any inverse semigroup, we set
- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup
homomorphisms
Biases
- The type
monoid
From \mathscr{D} to Typ S
Typ S and equi-
decomposability types
Dobbertin's Theorem Abelian ℓ-groups
- Type monoids and nonstable K-theory $k\langle s\rangle$ $\xrightarrow{\text { Typ } S} \overrightarrow{V(K\langle S\rangle)}$

■ $x \mathscr{L} y \Leftrightarrow \mathbf{d}(x)=\mathbf{d}(y), x \mathscr{R} y \Leftrightarrow \mathbf{r}(x)=\mathbf{r}(y)$, and $\mathscr{D}=\mathscr{L} \circ \mathscr{R}=\mathscr{R} \circ \mathscr{L}$.
$■$ For idempotent a and $b, a \mathscr{D} b$ iff $(\exists x)(a=\mathbf{d}(x)$ and $b=\mathbf{r}(x))$.
■ For a Boolean inverse semigroup S, the quotient $\operatorname{lnt} S=S / \mathscr{D}$ (the dimension interval of S) can be endowed with a partial addition, given by

$$
(x / \mathscr{D})+(y / \mathscr{D})=(x \oplus y) / \mathscr{D}, \text { whenever } x \oplus y \text { is defined. }
$$

Green's relation \mathscr{D}

- On any inverse semigroup, we set
- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup
homomorphisms Biases
- The type
monoid
From \mathscr{D} to Typ S
Typ S and equi-
decomposability types
Dobbertin's Theorem Abelian ℓ-groups
- Type monoids and nonstable K-theory $k\langle s\rangle$ $\xrightarrow[\text { Typ } S]{V(k\langle s\rangle)}$

■ $x \mathscr{L} y \Leftrightarrow \mathbf{d}(x)=\mathbf{d}(y), x \mathscr{R} y \Leftrightarrow \mathbf{r}(x)=\mathbf{r}(y)$, and $\mathscr{D}=\mathscr{L} \circ \mathscr{R}=\mathscr{R} \circ \mathscr{L}$.
$■$ For idempotent a and $b, a \mathscr{D} b$ iff $(\exists x)(a=\mathbf{d}(x)$ and $b=\mathbf{r}(x))$.
■ For a Boolean inverse semigroup S, the quotient $\operatorname{lnt} S=S / \mathscr{D}$ (the dimension interval of S) can be endowed with a partial addition, given by

$$
(x / \mathscr{D})+(y / \mathscr{D})=(x \oplus y) / \mathscr{D}, \text { whenever } x \oplus y \text { is defined. }
$$

■ Important property of $\operatorname{lnt} S$ (not trivial): $\boldsymbol{x}+(\boldsymbol{y}+\boldsymbol{z})$ is defined iff $(\boldsymbol{x}+\boldsymbol{y})+\boldsymbol{z}$ is defined, and then both values are the same.

Green's relation \mathscr{D}

- On any inverse semigroup, we set
- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup
homomorphisms Biases
- The type
monoid
From \mathscr{D} to Typ S
Typ S and equi-
decomposability types Dobbertin's Theorem Abelian ℓ-groups
- Type monoids and nonstable K-theory
$■ x \mathscr{L} y \Leftrightarrow \mathbf{d}(x)=\mathbf{d}(y), x \mathscr{R} y \Leftrightarrow \mathbf{r}(x)=\mathbf{r}(y)$, and $\mathscr{D}=\mathscr{L} \circ \mathscr{R}=\mathscr{R} \circ \mathscr{L}$.
■ For idempotent a and $b, a \mathscr{D} b$ iff $(\exists x)(a=\mathbf{d}(x)$ and $b=\mathbf{r}(x))$.
■ For a Boolean inverse semigroup S, the quotient $\operatorname{lnt} S=S / \mathscr{D}$ (the dimension interval of S) can be endowed with a partial addition, given by

$$
(x / \mathscr{D})+(y / \mathscr{D})=(x \oplus y) / \mathscr{D}, \text { whenever } x \oplus y \text { is defined. }
$$

■ Important property of $\operatorname{lnt} S$ (not trivial): $\boldsymbol{x}+(\boldsymbol{y}+\boldsymbol{z})$ is defined iff $(\boldsymbol{x}+\boldsymbol{y})+\boldsymbol{z}$ is defined, and then both values are the same.

- The type monoid of S, denoted by Typ S, is the universal monoid of the partial commutative monoid $\operatorname{lnt} S$.

Type monoid of $\operatorname{Inv}(\mathcal{B}, G)$

■ Let a group G act by automorphisms on a generalized Boolean algebra \mathcal{B}.

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup.
homomorphisms
Biases
- The type
monoid
From
Typ S and equidecomposability types
Dobbertin's
Theorem
Abelian ℓ-groups
- Type monoids
and nonstable
K-theory
$k\langle s\rangle$
$\xrightarrow{\text { Typ } S} \vec{V}(k\langle s\rangle)$

Type monoid of $\operatorname{Inv}(\mathcal{B}, G)$

■ Let a group G act by automorphisms on a generalized Boolean algebra \mathcal{B}.
■ $S=\operatorname{lnv}(\mathcal{B}, G)$ is a Boolean inverse semigroup.

Type monoid of $\operatorname{Inv}(\mathcal{B}, G)$

■ Let a group G act by automorphisms on a generalized Boolean algebra \mathcal{B}.
■ $S=\operatorname{lnv}(\mathcal{B}, G)$ is a Boolean inverse semigroup.
■ What is \mathscr{D} on its idempotents?

Type monoid of $\operatorname{Inv}(\mathcal{B}, G)$

■ Let a group G act by automorphisms on a generalized Boolean algebra \mathcal{B}.

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup
homomorphisms
Biases
- The type monoid
From \mathscr{Q} to
Typ S
Typ S and equidecomposability types
Dobbertin's
Theorem
Abelian ℓ-groups
- Type monoids and nonstable K-theory
$k\langle s\rangle$
$\xrightarrow{\text { Typ } S} \mathrm{~V}(k\langle s\rangle)$
- $S=\operatorname{lnv}(\mathcal{B}, G)$ is a Boolean inverse semigroup.
- What is \mathscr{D} on its idempotents?

■ $\mathrm{id}_{X} \mathscr{D} \mathrm{id}_{Y}$ iff there is a partial bijection f, piecewise in G, defined on X, such that $f[X]=Y$.

Type monoid of $\operatorname{Inv}(\mathcal{B}, G)$

■ Let a group G act by automorphisms on a generalized Boolean algebra \mathcal{B}.
■ $S=\operatorname{lnv}(\mathcal{B}, G)$ is a Boolean inverse semigroup.
■ What is \mathscr{D} on its idempotents?
■ $\mathrm{id}_{X} \mathscr{D} \mathrm{id}_{Y}$ iff there is a partial bijection f, piecewise in G, defined on X, such that $f[X]=Y$.

- That is, there are decompositions $X=\bigsqcup_{i=1}^{n} X_{i}, Y=\bigsqcup_{i=1}^{n} Y_{i}$, together with $g_{i} \in G$, such that each $X_{i}, Y_{i} \in \mathcal{B}$ and each $Y_{i}=g_{i} X_{i}$.

Type monoid of $\operatorname{Inv}(\mathcal{B}, G)$

■ Let a group G act by automorphisms on a generalized Boolean algebra \mathcal{B}.

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup
■ $S=\operatorname{lnv}(\mathcal{B}, G)$ is a Boolean inverse semigroup.
■ What is \mathscr{D} on its idempotents?
■ $\mathrm{id}_{X} \mathscr{D} \mathrm{id}_{Y}$ iff there is a partial bijection f, piecewise in G, defined on X, such that $f[X]=Y$.
■ That is, there are decompositions $X=\bigsqcup_{i=1}^{n} X_{i}, Y=\bigsqcup_{i=1}^{n} Y_{i}$, together with $g_{i} \in G$, such that each $X_{i}, Y_{i} \in \mathcal{B}$ and each $Y_{i}=g_{i} X_{i}$.
- This means that X and Y are G-equidecomposable, with pieces from \mathcal{B}.

Type monoid of $\operatorname{Inv}(\mathcal{B}, G)$

■ Let a group G act by automorphisms on a generalized Boolean algebra \mathcal{B}.

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup
■ $S=\operatorname{lnv}(\mathcal{B}, G)$ is a Boolean inverse semigroup.
■ What is \mathscr{D} on its idempotents?
■ $\mathrm{id}_{X} \mathscr{D} \mathrm{id}_{Y}$ iff there is a partial bijection f, piecewise in G, defined on X, such that $f[X]=Y$.
■ That is, there are decompositions $X=\bigsqcup_{i=1}^{n} X_{i}, Y=\bigsqcup_{i=1}^{n} Y_{i}$, together with $g_{i} \in G$, such that each $X_{i}, Y_{i} \in \mathcal{B}$ and each $Y_{i}=g_{i} X_{i}$.
- This means that X and Y are G-equidecomposable, with pieces from \mathcal{B}.
■ Denote by $\mathbb{Z}^{+}\langle\mathcal{B}\rangle / / G$ the monoid of [generated by] all equidecomposability types of members of \mathcal{B} with respect to the action of G.

Type monoid of $\operatorname{Inv}(\mathcal{B}, G)$

■ Let a group G act by automorphisms on a generalized Boolean algebra \mathcal{B}.

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup
■ $S=\operatorname{lnv}(\mathcal{B}, G)$ is a Boolean inverse semigroup.
■ What is \mathscr{D} on its idempotents?
■ $\mathrm{id}_{X} \mathscr{D} \mathrm{id}_{Y}$ iff there is a partial bijection f, piecewise in G, defined on X, such that $f[X]=Y$.
■ That is, there are decompositions $X=\bigsqcup_{i=1}^{n} X_{i}, Y=\bigsqcup_{i=1}^{n} Y_{i}$, together with $g_{i} \in G$, such that each $X_{i}, Y_{i} \in \mathcal{B}$ and each $Y_{i}=g_{i} X_{i}$.
- This means that X and Y are G-equidecomposable, with pieces from \mathcal{B}.
■ Denote by $\mathbb{Z}^{+}\langle\mathcal{B}\rangle / / G$ the monoid of [generated by] all equidecomposability types of members of \mathcal{B} with respect to the action of G.
- Then the type monoid of $\operatorname{Inv}(\mathcal{B}, G)$ is isomorphic to $\mathbb{Z}^{+}\langle\mathcal{B}\rangle / / G$.

Measurable monoids

- Say that a commutative monoid is measurable if it is isomorphic to Typ S, for some Boolean inverse semigroup S.

Measurable monoids

- Say that a commutative monoid is measurable if it is isomorphic
- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup.
homomorphisms
Biases
- The type
monoid
From \mathscr{D} to
Typ S
Typ S and equidecomposability types
Dobbertin's
Theorem
Abelian ℓ-groups
- Type monoids and nonstable K-theory
$k\langle s\rangle$
Typ $S \vec{~} \mathrm{~V}(k\langle s\rangle)$
to Typ S, for some Boolean inverse semigroup S.
- By the above, every $\mathbb{Z}^{+}\langle\mathcal{B}\rangle / / G$ (where a group G acts on a generalized Boolean algebra \mathcal{B}) is measurable.

Measurable monoids

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup
homomorphisms
Biases
- The type
monoid
From θ to
Typ S
Typ S and equidecomposability types
Dobbertin's
Theorem
Abelian ℓ-groups
- Type monoids
and nonstable
K-theory
$k\langle s\rangle$
Typ S
$V(K\langle S\rangle)$
- Say that a commutative monoid is measurable if it is isomorphic to Typ S, for some Boolean inverse semigroup S.
- By the above, every $\mathbb{Z}^{+}\langle\mathcal{B}\rangle / / G$ (where a group G acts on a generalized Boolean algebra \mathcal{B}) is measurable.
- The converse holds (not so trivial).

Measurable monoids

- Say that a commutative monoid is measurable if it is isomorphic
- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup.
homomorphisms
Biases
- The type monoid
From $\%$ to Typ S
Typ S and equidecomposability types
Dobbertin's
Theorem
Abelian ℓ-groups
- Type monoids and nonstable K-theory $k\langle s\rangle$ $\xrightarrow{\text { Typ } S} \rightarrow$
to Typ S, for some Boolean inverse semigroup S.
- By the above, every $\mathbb{Z}^{+}\langle\mathcal{B}\rangle / / G$ (where a group G acts on a generalized Boolean algebra \mathcal{B}) is measurable.
- The converse holds (not so trivial).
- Starting with a Boolean inverse semigroup S, we need to find G, \mathcal{B} such that $\operatorname{Typ} S \cong \mathbb{Z}^{+}\langle\mathcal{B}\rangle / / G$.

Measurable monoids

- Say that a commutative monoid is measurable if it is isomorphic
- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup
homomorphisms Biases

The type
monoid
From $\mathscr{\theta}$ to
Typ S and equi-
decomposability types
Dobbertin's Theorem Abelian ℓ-groups

- Type monoids and nonstable K-theory $k\langle S\rangle$ $\xrightarrow{\text { Typ } S} \begin{aligned} & \mathrm{V}(\mathrm{K}\langle\mathrm{S}\rangle)\end{aligned}$
to Typ S, for some Boolean inverse semigroup S.
- By the above, every $\mathbb{Z}^{+}\langle\mathcal{B}\rangle / / G$ (where a group G acts on a generalized Boolean algebra \mathcal{B}) is measurable.
- The converse holds (not so trivial).
- Starting with a Boolean inverse semigroup S, we need to find G, \mathcal{B} such that $\operatorname{Typ} S \cong \mathbb{Z}^{+}\langle\mathcal{B}\rangle / / G$.
- First guess: $\operatorname{try} \mathcal{B}=\operatorname{ldp} S, G=$ "inner automorphisms" (?) of \mathcal{B} (Note: $\forall x$, \forall idempotent $e, x e x^{-1}$ is idempotent).

Measurable monoids

- Say that a commutative monoid is measurable if it is isomorphic
- The variety of BISs
ISs from partial functions BISs and additive semigroup homomorphisms Biases
- The type
monoid
From $\mathscr{\theta}$ to
Typ S and equidecomposability types
Dobbertin's
Theorem
Abelian ℓ-groups
- Type monoids and nonstable K-theory $k\langle s\rangle$ Typ $S \rightarrow$
$V(K\langle S\rangle)$ to Typ S, for some Boolean inverse semigroup S.
- By the above, every $\mathbb{Z}^{+}\langle\mathcal{B}\rangle / / G$ (where a group G acts on a generalized Boolean algebra \mathcal{B}) is measurable.
- The converse holds (not so trivial).

■ Starting with a Boolean inverse semigroup S, we need to find G, \mathcal{B} such that $\operatorname{Typ} S \cong \mathbb{Z}^{+}\langle\mathcal{B}\rangle / / G$.

- First guess: $\operatorname{try} \mathcal{B}=\operatorname{ldp} S, G=$ "inner automorphisms" (?) of \mathcal{B} (Note: $\forall x$, \forall idempotent $e, x e x^{-1}$ is idempotent).
- Problem: the map $f_{x}: e \mapsto x e x^{-1}$, for e idempotent $\leq \mathbf{d}(x)$, may not extend to any automorphism of \mathcal{B}.

Measurable monoids

- Say that a commutative monoid is measurable if it is isomorphic
- The variety of BISs
ISs from partial functions BISs and additive semigroup homomorphisms Biases
- The type
monoid
From \mathscr{D} to
Typ S
Typ S and equidecomposability types
Dobbertin's
Theorem
Abelian ℓ-groups
- Type monoids and nonstable K-theory
to Typ S, for some Boolean inverse semigroup S.
■ By the above, every $\mathbb{Z}^{+}\langle\mathcal{B}\rangle / / G$ (where a group G acts on a generalized Boolean algebra \mathcal{B}) is measurable.
- The converse holds (not so trivial).

■ Starting with a Boolean inverse semigroup S, we need to find G, \mathcal{B} such that Typ $S \cong \mathbb{Z}^{+}\langle\mathcal{B}\rangle / / G$.
■ First guess: try $\mathcal{B}=\operatorname{Idp} S, G=$ "inner automorphisms" (?) of \mathcal{B} (Note: $\forall x$, \forall idempotent $e, x e x^{-1}$ is idempotent).
$■$ Problem: the map $f_{x}: e \mapsto x e x^{-1}$, for e idempotent $\leq \mathbf{d}(x)$, may not extend to any automorphism of \mathcal{B}.
■ Can be solved by representing \mathcal{B} as generalized Boolean lattice of subsets of some set Ω, then duplicating Ω. This leaves enough room to extend f_{x}.

Measurability versus equidecomposability

Measurability versus equidecomposability

Type monoids

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup
homomorphisms
Biases
- The type
monoid
From \mathscr{Q} to
Typs
Typ S and equidecomposability types
Dobbertin's
Theorem
Abelian ℓ-groups
- Type monoids and nonstable K-theory
$k\langle s\rangle$
Typ $S \vec{~} \mathrm{~V}(k\langle s\rangle)$

Proposition

A commutative monoid M is measurable (i.e., Typ S for some Boolean inverse semigroup S) iff $M \cong \mathbb{Z}^{+}\langle\mathcal{B}\rangle / / G$ for some action of a group G on a generalized Boolean algebra \mathcal{B}.

Measurability versus equidecomposability

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup
homomorphisms Biases
- The type monoid
From \mathscr{D} to Typ S
Typ S and equidecomposability types
Dobbertin's Theorem Abelian ℓ-groups - Type monoids and nonstable K-theory $k\langle s\rangle$ $\xrightarrow{\operatorname{Typ} S} \mathrm{~V}(k\langle s\rangle)$

Proposition

A commutative monoid M is measurable (i.e., Typ S for some Boolean inverse semigroup S) iff $M \cong \mathbb{Z}^{+}\langle\mathcal{B}\rangle / / G$ for some action of a group G on a generalized Boolean algebra \mathcal{B}.

■ Every measurable monoid is isomorphic to Typ S for a Boolean meet-semigroup (resp., fundamental Boolean inverse semigroup) S.

Measurability versus equidecomposability

Proposition

- The variety of BISs
ISs from partial functions
BISs and
adiditive
semigroup
homomorphisms Biases

A commutative monoid M is measurable (i.e., Typ S for some Boolean inverse semigroup S) iff $M \cong \mathbb{Z}^{+}\langle\mathcal{B}\rangle / / G$ for some action of a group G on a generalized Boolean algebra \mathcal{B}.

- Every measurable monoid is isomorphic to Typ S for a Boolean meet-semigroup (resp., fundamental Boolean inverse semigroup) S. (meet-semigroup: replace Ω by $\Omega \times G$; fundamental: $\operatorname{Typ}(S) \cong \operatorname{Typ}(S / \boldsymbol{\mu})$.)

Measurability versus equidecomposability

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup
homomorphisms Biases

Proposition

A commutative monoid M is measurable (i.e., Typ S for some Boolean inverse semigroup S) iff $M \cong \mathbb{Z}^{+}\langle\mathcal{B}\rangle / / G$ for some action of a group G on a generalized Boolean algebra \mathcal{B}.

■ Every measurable monoid is isomorphic to Typ S for a Boolean meet-semigroup (resp., fundamental Boolean inverse semigroup) S. (meet-semigroup: replace Ω by $\Omega \times G$; fundamental: $\operatorname{Typ}(S) \cong \operatorname{Typ}(S / \boldsymbol{\mu})$.)

- There is a countable counterexample showing that "meet-semigroup" and "fundamental" cannot be reached simultaneously.

Measurability versus equidecomposability

Proposition

A commutative monoid M is measurable (i.e., Typ S for some Boolean inverse semigroup S) iff $M \cong \mathbb{Z}^{+}\langle\mathcal{B}\rangle / / G$ for some action of a group G on a generalized Boolean algebra \mathcal{B}.

- Every measurable monoid is isomorphic to Typ S for a Boolean meet-semigroup (resp., fundamental Boolean inverse semigroup) S. (meet-semigroup: replace Ω by $\Omega \times G$; fundamental: $\operatorname{Typ}(S) \cong \operatorname{Typ}(S / \boldsymbol{\mu})$.)
■ There is a countable counterexample showing that "meet-semigroup" and "fundamental" cannot be reached simultaneously.
■ Every measurable monoid M is conical, that is, has $x+y=0 \Rightarrow$ $x=y=0$.

Measurability versus equidecomposability

Proposition

A commutative monoid M is measurable (i.e., Typ S for some Boolean inverse semigroup S) iff $M \cong \mathbb{Z}^{+}\langle\mathcal{B}\rangle / / G$ for some action of a group G on a generalized Boolean algebra \mathcal{B}.

■ Every measurable monoid is isomorphic to Typ S for a Boolean meet-semigroup (resp., fundamental Boolean inverse semigroup) S. (meet-semigroup: replace Ω by $\Omega \times G$; fundamental: $\operatorname{Typ}(S) \cong \operatorname{Typ}(S / \boldsymbol{\mu})$.)

- There is a countable counterexample showing that "meet-semigroup" and "fundamental" cannot be reached simultaneously.
■ Every measurable monoid M is conical, that is, has $x+y=0 \Rightarrow$ $x=y=0$.
- Also, M is a refinement monoid, that is, whenever $a_{0}+a_{1}=b_{0}+b_{1}$ in M, there are $c_{0,0}, c_{0,1}, c_{1,0}, c_{1,1} \in M$ such that each $a_{i}=c_{i, 0}+c_{i, 1}$ and each $b_{j}=c_{0, j}+c_{1, j}$.

Measurability versus equidecomposability

Proposition

A commutative monoid M is measurable (i.e., Typ S for some Boolean inverse semigroup S) iff $M \cong \mathbb{Z}^{+}\langle\mathcal{B}\rangle / / G$ for some action of a group G on a generalized Boolean algebra \mathcal{B}.

■ Every measurable monoid is isomorphic to Typ S for a Boolean meet-semigroup (resp., fundamental Boolean inverse semigroup) S. (meet-semigroup: replace Ω by $\Omega \times G$; fundamental: $\operatorname{Typ}(S) \cong \operatorname{Typ}(S / \boldsymbol{\mu})$.)

- There is a countable counterexample showing that "meet-semigroup" and "fundamental" cannot be reached simultaneously.
■ Every measurable monoid M is conical, that is, has $x+y=0 \Rightarrow$ $x=y=0$.
\square Also, M is a refinement monoid, that is, whenever $a_{0}+a_{1}=b_{0}+b_{1}$ in M, there are $c_{0,0}, c_{0,1}, c_{1,0}, c_{1,1} \in M$ such that each $a_{i}=c_{i, 0}+c_{i, 1}$ and each $b_{j}=c_{0, j}+c_{1, j}$.
- How about the converse?

Dobbertin's V-measures

Theorem (Dobbertin, 1983)

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup
homomorphisms
Biases
- The type
monoid
From \mathscr{D} to
Typ S
Typ 5 and equidecomposability types
Dobbertin's
Theorem
Abelian ℓ-groups
- Type monoids
and nonstable
K-theory
$k\langle s\rangle$
$\xrightarrow{\text { Typ } S}, \vec{V}(k\langle s\rangle)$

Dobbertin's V-measures

- The variety of BISs
ISs from partial functions
BISs and additive semigroup

Theorem (Dobbertin, 1983)
Let M be a countable, conical refinement monoid and let $\boldsymbol{e} \in M$.

Dobbertin's V-measures

Theorem (Dobbertin, 1983)

Let M be a countable, conical refinement monoid and let $\boldsymbol{e} \in M$. Then there are a countable Boolean algebra B and a finitely additive measure $\mu: B \rightarrow M$ such that $\mu(1)=\boldsymbol{e}, \mu^{-1}\{0\}=\{0\}$, and whenever $\mu(c)=\boldsymbol{a}+\boldsymbol{b}$, there exists a decomposition $c=a \oplus b$ in B such that $\mu(a)=\boldsymbol{a}$ and $\mu(b)=\boldsymbol{b}$.

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup.
homomorphisms
Biases
- The type monoid
From $\mathscr{2}$ to
Typ S
Typ S and equidecomposability

Dobbertin's
Theorem
Abelian ℓ-groups

- Type monoids and nonstable K-theory $k\langle s\rangle$ $\xrightarrow{\text { Typ } S} \mathrm{~V}(k\langle s\rangle)$

Dobbertin's V-measures

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup.
homomorphisms
Biases
- The type monoid
From \mathscr{D} to
Typ S
Typ 5 and equidecomposability

Dobbertin's
Theorem
Abelian ℓ-groups

- Type monoids and nonstable K-theory $k\langle s\rangle$ Typ $S \rightarrow$
$V(k\langle s\rangle)$

Theorem (Dobbertin, 1983)

Let M be a countable, conical refinement monoid and let $\boldsymbol{e} \in M$. Then there are a countable Boolean algebra B and a finitely additive measure $\mu: B \rightarrow M$ such that $\mu(1)=\boldsymbol{e}, \mu^{-1}\{0\}=\{0\}$, and whenever $\mu(c)=\boldsymbol{a}+\boldsymbol{b}$, there exists a decomposition $c=a \oplus b$ in B such that $\mu(a)=\boldsymbol{a}$ and $\mu(b)=\boldsymbol{b}$. (We say that μ is a V-measure.)

Dobbertin's V-measures

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup.
homomorphisms Biases
- The type monoid
From \mathscr{Q} to
Typ S
Typ 5 and equidecomposability

Dobbertin's
Theorem
Abelian ℓ-groups

- Type monoids and nonstable K-theory $k\langle s\rangle$ Typ $S \rightarrow$
$V(k\langle s\rangle)$

Theorem (Dobbertin, 1983)

Let M be a countable, conical refinement monoid and let $\boldsymbol{e} \in M$. Then there are a countable Boolean algebra B and a finitely additive measure $\mu: B \rightarrow M$ such that $\mu(1)=\boldsymbol{e}, \mu^{-1}\{0\}=\{0\}$, and whenever $\mu(c)=\boldsymbol{a}+\boldsymbol{b}$, there exists a decomposition $c=a \oplus b$ in B such that $\mu(a)=\boldsymbol{a}$ and $\mu(b)=\boldsymbol{b}$. (We say that μ is a V-measure.) Moreover, the pair (B, μ) is unique up to isomorphism.

Dobbertin's V-measures

Theorem (Dobbertin, 1983)

Let M be a countable, conical refinement monoid and let $\boldsymbol{e} \in M$. Then there are a countable Boolean algebra B and a finitely additive measure $\mu: B \rightarrow M$ such that $\mu(1)=\boldsymbol{e}, \mu^{-1}\{0\}=\{0\}$, and whenever $\mu(c)=\boldsymbol{a}+\boldsymbol{b}$, there exists a decomposition $c=a \oplus b$ in B such that $\mu(a)=\boldsymbol{a}$ and $\mu(b)=\boldsymbol{b}$. (We say that μ is a V-measure.) Moreover, the pair (B, μ) is unique up to isomorphism.

■ Example: $M=\left(\mathbb{Z}^{+},+, 0\right), \boldsymbol{e}=1$. Then $B=\{0,1\}, \mu(1)=1$.

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup.
homomorphisms Biases
- The type monoid
From 2 to
Typ S
Typ S S and equidecomposability types

Dobbertin's V-measures

Theorem (Dobbertin, 1983)

Let M be a countable, conical refinement monoid and let $\boldsymbol{e} \in M$. Then there are a countable Boolean algebra B and a finitely additive measure $\mu: B \rightarrow M$ such that $\mu(1)=\boldsymbol{e}, \mu^{-1}\{0\}=\{0\}$, and whenever $\mu(c)=\boldsymbol{a}+\boldsymbol{b}$, there exists a decomposition $c=a \oplus b$ in B such that $\mu(a)=\boldsymbol{a}$ and $\mu(b)=\boldsymbol{b}$. (We say that μ is a V -measure.) Moreover, the pair (B, μ) is unique up to isomorphism.

■ Example: $M=\left(\mathbb{Z}^{+},+, 0\right), \boldsymbol{e}=1$. Then $B=\{0,1\}, \mu(1)=1$.

- Example: $M=(\{0,1\}, \vee, 0)$, the two-element semilattice, and $\boldsymbol{e}=1$. Then $B=$ the unique countable atomless Boolean algebra, $\mu(x)=1$ iff $x \neq 0$.

Dobbertin's V-measures

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup.
homomorphisms Biases
- The type monoid From \mathscr{D} to Typ S
Typ S and equidecomposability

Dobbertin's Theorem
Abelian ℓ-groups

- Type monoids and nonstable K-theory

Theorem (Dobbertin, 1983)

Let M be a countable, conical refinement monoid and let $\boldsymbol{e} \in M$. Then there are a countable Boolean algebra B and a finitely additive measure $\mu: B \rightarrow M$ such that $\mu(1)=\boldsymbol{e}, \mu^{-1}\{0\}=\{0\}$, and whenever $\mu(c)=\boldsymbol{a}+\boldsymbol{b}$, there exists a decomposition $\boldsymbol{c}=\boldsymbol{a} \oplus \boldsymbol{b}$ in B
such that $\mu(a)=\boldsymbol{a}$ and $\mu(b)=\boldsymbol{b}$. (We say that μ is a V -measure.) whenever $\mu(c)=\boldsymbol{a}+\boldsymbol{b}$, there exists a decomposition $\boldsymbol{c}=\boldsymbol{a} \oplus \boldsymbol{b}$ in B
such that $\mu(a)=\boldsymbol{a}$ and $\mu(b)=\boldsymbol{b}$. (We say that μ is a V -measure.) Moreover, the pair (B, μ) is unique up to isomorphism.

- Example: $M=(\{0,1\}, \vee, 0)$, the two-element semilattice, and $\boldsymbol{e}=1$. Then $B=$ the unique countable atomless Boolean algebra, $\mu(x)=1$ iff $x \neq 0$.

Possibilities of extension of Dobbertin's Theorem:

$$
■ \text { Example: } M=\left(\mathbb{Z}^{+},+, 0\right), \boldsymbol{e}=1 \text {. Then } B=\{0,1\}, \mu(1)=1 \text {. }
$$

- Example: $M=(\mathbb{Z},+, 0), e=1$. Then $B=\{0,1\}, \mu(1)=1$.

Dobbertin's V-measures

Theorem (Dobbertin, 1983)

Let M be a countable, conical refinement monoid and let $\boldsymbol{e} \in M$. Then there are a countable Boolean algebra B and a finitely additive measure $\mu: B \rightarrow M$ such that $\mu(1)=\boldsymbol{e}, \mu^{-1}\{0\}=\{0\}$, and whenever $\mu(c)=\boldsymbol{a}+\boldsymbol{b}$, there exists a decomposition $c=a \oplus b$ in B such that $\mu(a)=\boldsymbol{a}$ and $\mu(b)=\boldsymbol{b}$. (We say that μ is a V -measure.) Moreover, the pair (B, μ) is unique up to isomorphism.

■ Example: $M=\left(\mathbb{Z}^{+},+, 0\right), \boldsymbol{e}=1$. Then $B=\{0,1\}, \mu(1)=1$.

- Example: $M=(\{0,1\}, \vee, 0)$, the two-element semilattice, and $\boldsymbol{e}=1$. Then $B=$ the unique countable atomless Boolean algebra, $\mu(x)=1$ iff $x \neq 0$.

Possibilities of extension of Dobbertin's Theorem:

For card $M=\aleph_{1}$, uniqueness is lost.

Dobbertin's V-measures

Theorem (Dobbertin, 1983)

Let M be a countable, conical refinement monoid and let $\boldsymbol{e} \in M$. Then there are a countable Boolean algebra B and a finitely additive measure $\mu: B \rightarrow M$ such that $\mu(1)=\boldsymbol{e}, \mu^{-1}\{0\}=\{0\}$, and whenever $\mu(c)=\boldsymbol{a}+\boldsymbol{b}$, there exists a decomposition $c=a \oplus b$ in B such that $\mu(a)=\boldsymbol{a}$ and $\mu(b)=\boldsymbol{b}$. (We say that μ is a V -measure.) Moreover, the pair (B, μ) is unique up to isomorphism.

- Example: $M=\left(\mathbb{Z}^{+},+, 0\right), \boldsymbol{e}=1$. Then $B=\{0,1\}, \mu(1)=1$.
- Example: $M=(\{0,1\}, \vee, 0)$, the two-element semilattice, and $\boldsymbol{e}=1$. Then $B=$ the unique countable atomless Boolean algebra, $\mu(x)=1$ iff $x \neq 0$.

Possibilities of extension of Dobbertin's Theorem:

For card $M=\aleph_{1}$, uniqueness is lost. If card $M \geq \aleph_{2}$, then existence is lost (W 1998).

From Dobbertin's Theorem to type monoids

Proof of Dobbertin's Theorem: essentially back-and-forth.

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup
homomorphisms
Biases
- The type
monoid
From 2 to
Typ s
Typ S S and equidecomposability types
Dobbertin's
Theorem
Abelian ℓ-groups
- Type monoids
and nonstable
K-theory
$k\langle s\rangle$
$\overrightarrow{T y p} s \rightarrow$

From Dobbertin's Theorem to type monoids

Proof of Dobbertin's Theorem: essentially back-and-forth.

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup
homomorphisms
Biases
- The type
monoid
From \mathscr{Q} to
Typ S
Typ 5 and equidecomposability types
Dobbertin's
Theorem
Abelian ℓ-groups
- Type monoids and nonstable K-theory
$k\langle s\rangle$
Typ $S \vec{~} \mathrm{~V}(k\langle s\rangle)$

Proposition

From Dobbertin's Theorem to type monoids

Proof of Dobbertin's Theorem: essentially back-and-forth.

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup.
homomorphisms
Biases
- The type
monoid
From $\%$ to
Typ S
Typ S and equidecomposability types
Dobbertin's
Theorem
Abelian ℓ-groups
- Type monoids
and nonstable
K-theory
$k\langle s\rangle$
Typ $S \rightarrow$
$V(K\langle S\rangle)$

Proposition
Every countable conical refinement monoid is measurable.

From Dobbertin's Theorem to type monoids

Proof of Dobbertin's Theorem: essentially back-and-forth.

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup.
homomorphisms
Biases
- The type
monoid
From θ to
Typ S
Typ S and equidecomposability types
Dobbertin's
Theorem
Abelian ℓ-group
- Type monoids
and nonstable
K-theory
$K\langle s\rangle$
Typ $S \rightarrow$
$V(K\langle S\rangle)$

Proposition
Every countable conical refinement monoid is measurable.

- Idea of proof:

From Dobbertin's Theorem to type monoids

Proof of Dobbertin's Theorem: essentially back-and-forth.

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup.
homomorphisms
Biases
- The type
monoid
From \mathscr{D} to
Typ S
Typ 5 and equidecomposability

Dobbertin's
Theorem
Abelian ℓ-groups

- Type monoids and nonstable K-theory $k\langle s\rangle$ $\xrightarrow{\text { Typ } S} \mathrm{~V}(k\langle s\rangle)$

Proposition

Every countable conical refinement monoid is measurable.

- Idea of proof:

■ M is an o-ideal in $M^{\prime}=M \sqcup\{\infty\}$. Since the o-ideals of Typ S correspond to the additive ideals of S, the problem is reduced to the case where M has an order-unit \boldsymbol{e}.

From Dobbertin's Theorem to type monoids

Proof of Dobbertin's Theorem: essentially back-and-forth.

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup
homomorphisms
Biases
- The type
monoid
From \mathscr{Q} to
Typ S
Typ S and equi-

Proposition

Every countable conical refinement monoid is measurable.

- Idea of proof:

■ M is an o-ideal in $M^{\prime}=M \sqcup\{\infty\}$. Since the o-ideals of Typ S correspond to the additive ideals of S, the problem is reduced to the case where M has an order-unit \boldsymbol{e}.
■ Let $\mu:(B, 1) \rightarrow(M, \boldsymbol{e})$ be Dobbertin's V -measure.

From Dobbertin's Theorem to type monoids

Proof of Dobbertin's Theorem: essentially back-and-forth.

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup
homomorphisms Biases

Proposition

Every countable conical refinement monoid is measurable.

- Idea of proof:
$\square M$ is an o-ideal in $M^{\prime}=M \sqcup\{\infty\}$. Since the o-ideals of Typ S correspond to the additive ideals of S, the problem is reduced to the case where M has an order-unit \boldsymbol{e}.
■ Let $\mu:(B, 1) \rightarrow(M, \boldsymbol{e})$ be Dobbertin's V -measure.
■ Set $S=\operatorname{lnv}(B, \mu)=$ semigroup of all μ-preserving partial isomorphisms $f: B \downarrow a \rightarrow B \downarrow b$, where $a, b \in B$ with $\mu(a)=\mu(b)$.

From Dobbertin's Theorem to type monoids

Proof of Dobbertin's Theorem: essentially back-and-forth.

- The variety of BISs

ISs from partial functions
BISs and
additive
semigroup.
homomorphisms
Biases

- The type
monoid
From © to
Typ S
Typ S and equidecomposability types
Dobbertin's
Theorem
Abelian ℓ-groups
- Type monoids and nonstable K-theory

Proposition

Every countable conical refinement monoid is measurable.

- Idea of proof:

■ M is an o-ideal in $M^{\prime}=M \sqcup\{\infty\}$. Since the o-ideals of Typ S correspond to the additive ideals of S, the problem is reduced to the case where M has an order-unit \boldsymbol{e}.
■ Let $\mu:(B, 1) \rightarrow(M, \boldsymbol{e})$ be Dobbertin's V -measure.
■ Set $S=\operatorname{lnv}(B, \mu)=$ semigroup of all μ-preserving partial isomorphisms $f: B \downarrow a \rightarrow B \downarrow b$, where $a, b \in B$ with $\mu(a)=\mu(b)$.
■ S is a Boolean inverse semigroup, with idempotents $\bar{a}=\operatorname{id}_{B \downarrow a}$ where $a \in B$.

Measurability of countable CRMs (cont'd)

■ Because of the uniqueness statement in Dobbertin's Theorem, for any $a, b \in B$, if $\mu(a)=\mu(b)$, there is $f \in S$ (usually not unique) such that $f(a)=b$.

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup.
homomorphisms
Biases
- The type
monoid
From θ to
Typ.S
Typ S and equidecomposability types
Dobbertin's
Theorem
Abelian ℓ-groups
- Type monoids and nonstable K-theory
$K\langle s\rangle$
Typ S
$V(k\langle S\rangle)$

Measurability of countable CRMs (cont'd)

- Because of the uniqueness statement in Dobbertin's Theorem, for any $a, b \in B$, if $\mu(a)=\mu(b)$, there is $f \in S$ (usually not unique) such that $f(a)=b$.
- Hence, $\bar{a} \mathscr{D} \bar{b}$ within S iff $\mu(a)=\mu(b)$.

Measurability of countable CRMs (cont'd)

■ Because of the uniqueness statement in Dobbertin's Theorem, for any $a, b \in B$, if $\mu(a)=\mu(b)$, there is $f \in S$ (usually not unique) such that $f(a)=b$.
■ Hence, $\bar{a} \mathscr{D} \bar{b}$ within S iff $\mu(a)=\mu(b)$.
■ By the definition of $\operatorname{Typ} S$, there is a unique monoid homomorphism φ : Typ $S \rightarrow M$ such that $\varphi(\bar{a} / \mathscr{D})=\mu(a)$ $\forall a \in B$.

Measurability of countable CRMs (cont'd)

■ Because of the uniqueness statement in Dobbertin's Theorem, for any $a, b \in B$, if $\mu(a)=\mu(b)$, there is $f \in S$ (usually not unique) such that $f(a)=b$.
■ Hence, $\bar{a} \mathscr{D} \bar{b}$ within S iff $\mu(a)=\mu(b)$.
■ By the definition of $\operatorname{Typ} S$, there is a unique monoid homomorphism $\varphi: \operatorname{Typ} S \rightarrow M$ such that $\varphi(\bar{a} / \mathscr{D})=\mu(a)$ $\forall a \in B$.

- Since M is a refinement monoid and μ is a V-measure, the range of φ (which is also the range of μ) generates M as a submonoid.

Measurability of countable CRMs (cont'd)

■ Because of the uniqueness statement in Dobbertin's Theorem, for any $a, b \in B$, if $\mu(a)=\mu(b)$, there is $f \in S$ (usually not unique) such that $f(a)=b$.
■ Hence, $\bar{a} \mathscr{D} \bar{b}$ within S iff $\mu(a)=\mu(b)$.

- By the definition of $\operatorname{Typ} S$, there is a unique monoid homomorphism φ : Typ $S \rightarrow M$ such that $\varphi(\bar{a} / \mathscr{D})=\mu(a)$ $\forall a \in B$.
- Since M is a refinement monoid and μ is a V-measure, the range of φ (which is also the range of μ) generates M as a submonoid.
- Moreover, φ is one-to-one on $\operatorname{lnt} S$ (because $\bar{a} \mathscr{D} \bar{b}$ within S iff $\mu(a)=\mu(b))$.

Measurability of countable CRMs (cont'd)

■ Because of the uniqueness statement in Dobbertin's Theorem, for any $a, b \in B$, if $\mu(a)=\mu(b)$, there is $f \in S$ (usually not unique) such that $f(a)=b$.
■ Hence, $\bar{a} \mathscr{D} \bar{b}$ within S iff $\mu(a)=\mu(b)$.

- By the definition of $\operatorname{Typ} S$, there is a unique monoid homomorphism φ : Typ $S \rightarrow M$ such that $\varphi(\bar{a} / \mathscr{D})=\mu(a)$ $\forall a \in B$.
- Since M is a refinement monoid and μ is a V-measure, the range of φ (which is also the range of μ) generates M as a submonoid.
- Moreover, φ is one-to-one on $\operatorname{lnt} S$ (because $\bar{a} \mathscr{D} \bar{b}$ within S iff $\mu(a)=\mu(b))$.
- By the general properties of refinement monoids, this implies that φ is an isomorphism.
- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup.
homomorphisms Biases
- The type
monoid
From $\mathscr{2}$ to Typ S
Typ S and equidecomposability

Dobbertin's
Theorem
Abelian ℓ-groups

- Type monoids and nonstable K-theory

Measurability of countable CRMs (cont'd)

■ Because of the uniqueness statement in Dobbertin's Theorem, for any $a, b \in B$, if $\mu(a)=\mu(b)$, there is $f \in S$ (usually not unique) such that $f(a)=b$.

- Hence, $\bar{a} \mathscr{D} \bar{b}$ within S iff $\mu(a)=\mu(b)$.
- By the definition of $\operatorname{Typ} S$, there is a unique monoid homomorphism φ : Typ $S \rightarrow M$ such that $\varphi(\bar{a} / \mathscr{D})=\mu(a)$ $\forall a \in B$.
- Since M is a refinement monoid and μ is a V-measure, the range of φ (which is also the range of μ) generates M as a submonoid.
- Moreover, φ is one-to-one on $\operatorname{lnt} S$ (because $\bar{a} \mathscr{D} \bar{b}$ within S iff $\mu(a)=\mu(b))$.
- By the general properties of refinement monoids, this implies that φ is an isomorphism. Hence $M \cong \operatorname{Typ} S$.

Representing abelian ℓ-groups

Theorem (W 2015)

- The variety of

Representing abelian ℓ-groups

Type monoids

- The variety of BISs
ISs from partial functions
BISs and additive semigroup homomorphisms Biases
- The type monoid
From \mathscr{D} to
Typ S
Typ 5 and equidecomposability types
Dobbertin's
Theorem
Abelian ℓ-groups
- Type monoids and nonstable K-theory
$k\langle s\rangle$
Typ $S \vec{~} \mathrm{~V}(\mathrm{~K}\langle s\rangle)$

Theorem (W 2015)

For every abelian ℓ-group G, there is a Boolean inverse semigroup S, explicitly constructed, such that $\operatorname{Typ} S \cong G^{+}$.

Representing abelian ℓ-groups

- The variety of BISs
ISs from partial functions
BISs and
adcitive
semigroup.
homomorphisms
Biases
- The type monoid
From \mathscr{D} to
Typ S
Typ 5 and equidecomposability types
Dobbertin's
Theorem
Abelian ℓ-groups
- Type monoids and nonstable K-theory $k\langle s\rangle$ Typ $S \vec{~} V(k\langle s\rangle)$

Theorem (W 2015)

For every abelian ℓ-group G, there is a Boolean inverse semigroup S, explicitly constructed, such that Typ $S \cong G^{+}$.

■ The poset $D=G \sqcup\{\perp\}$, for a new bottom element \perp, is a distributive lattice with zero.

Representing abelian ℓ-groups

Theorem (W 2015)

For every abelian ℓ-group G, there is a Boolean inverse semigroup S, explicitly constructed, such that Typ $S \cong G^{+}$.

■ The poset $D=G \sqcup\{\perp\}$, for a new bottom element \perp, is a distributive lattice with zero.
■ Embed D into its enveloping Boolean ring $\bar{B}=\operatorname{BR}(D)$.

Representing abelian ℓ-groups

Theorem (W 2015)

For every abelian ℓ-group G, there is a Boolean inverse semigroup S, explicitly constructed, such that Typ $S \cong G^{+}$.

■ The poset $D=G \sqcup\{\perp\}$, for a new bottom element \perp, is a distributive lattice with zero.
■ Embed D into its enveloping Boolean ring $\bar{B}=\operatorname{BR}(D)$.
■ The elements of \bar{B} have the form $\bigvee_{0 \leq i<n}\left(a_{2 i+1} \backslash a_{2 i}\right)$, where all $a_{i} \in D$ and $\perp \leq a_{0} \leq \cdots \leq a_{2 n}$.

Representing abelian ℓ-groups

Theorem (W 2015)

For every abelian ℓ-group G, there is a Boolean inverse semigroup S, explicitly constructed, such that Typ $S \cong G^{+}$.

■ The poset $D=G \sqcup\{\perp\}$, for a new bottom element \perp, is a distributive lattice with zero.
■ Embed D into its enveloping Boolean ring $\bar{B}=\operatorname{BR}(D)$.
■ The elements of \bar{B} have the form $\bigvee_{0 \leq i<n}\left(a_{2 i+1} \backslash a_{2 i}\right)$, where all $a_{i} \in D$ and $\perp \leq a_{0} \leq \cdots \leq a_{2 n}$.
■ Adding the condition $a_{0} \neq \perp$ (i.e., each $a_{i} \in G$) yields a Boolean subring B of \bar{B}.

Representing abelian ℓ-groups

Theorem (W 2015)

For every abelian ℓ-group G, there is a Boolean inverse semigroup S, explicitly constructed, such that Typ $S \cong G^{+}$.

■ The poset $D=G \sqcup\{\perp\}$, for a new bottom element \perp, is a distributive lattice with zero.
■ Embed D into its enveloping Boolean ring $\bar{B}=\operatorname{BR}(D)$.
■ The elements of \bar{B} have the form $\bigvee_{0 \leq i<n}\left(a_{2 i+1} \backslash a_{2 i}\right)$, where all $a_{i} \in D$ and $\perp \leq a_{0} \leq \cdots \leq a_{2 n}$.
■ Adding the condition $a_{0} \neq \perp$ (i.e., each $a_{i} \in G$) yields a Boolean subring B of \bar{B}.

- The dimension monoid $\operatorname{Dim} G$ of the (distributive) lattice (G, \vee, \wedge) is isomorphic to the monoid $\mathbb{Z}^{+}\langle B\rangle$ of all nonnegative linear combinations of members of B, with \oplus in B turned to + in $\mathbb{Z}^{+}\langle B\rangle$.

Representing abelian ℓ-groups (cont'd)

- Enables us to define a V-measure (as in Dobbertin's Theorem) $\mu: B \rightarrow G^{+}$by

Representing abelian ℓ-groups (cont'd)

- Enables us to define a V-measure (as in Dobbertin's Theorem) $\mu: B \rightarrow G^{+}$by

$$
\mu\left(\bigvee_{0 \leq i<n}\left(a_{2 i+1} \backslash a_{2 i}\right)\right)=\sum_{i<n}\left(a_{2 i+1}-a_{2 i}\right)
$$

(where $a_{0} \leq a_{1} \leq \cdots \leq a_{2 n}$ in G).

- Moreover, $\forall a \in G$, the translation $x \mapsto x+a$ "extends" to an automorphism τ_{a} of B. So $\tau_{a}(y \backslash x)=(a+y) \backslash(a+x)$, $\forall x \leq y$ in G.

Representing abelian ℓ-groups (cont'd)

- Enables us to define a V-measure (as in Dobbertin's Theorem) $\mu: B \rightarrow G^{+}$by

$$
\mu\left(\bigvee_{0 \leq i<n}\left(a_{2 i+1} \backslash a_{2 i}\right)\right)=\sum_{i<n}\left(a_{2 i+1}-a_{2 i}\right)
$$

(where $a_{0} \leq a_{1} \leq \cdots \leq a_{2 n}$ in G).

- Moreover, $\forall a \in G$, the translation $x \mapsto x+a$ "extends" to an automorphism τ_{a} of B. So $\tau_{a}(y \backslash x)=(a+y) \backslash(a+x)$, $\forall x \leq y$ in G.
- $\bar{G}=\left\{\tau_{a} \mid a \in G\right\}$ is a subgroup of Aut B, isomorphic to G.

Representing abelian ℓ-groups (cont'd)

- Enables us to define a V-measure (as in Dobbertin's Theorem) $\mu: B \rightarrow G^{+}$by

$$
\mu\left(\bigvee_{0 \leq i<n}\left(a_{2 i+1} \backslash a_{2 i}\right)\right)=\sum_{i<n}\left(a_{2 i+1}-a_{2 i}\right)
$$

(where $a_{0} \leq a_{1} \leq \cdots \leq a_{2 n}$ in G).

- Moreover, $\forall a \in G$, the translation $x \mapsto x+a$ "extends" to an automorphism τ_{a} of B. So $\tau_{a}(y \backslash x)=(a+y) \backslash(a+x)$, $\forall x \leq y$ in G.
- $\bar{G}=\left\{\tau_{a} \mid a \in G\right\}$ is a subgroup of Aut B, isomorphic to G.
- The desired BIS is $S=\operatorname{lnv}(B, \bar{G})$.

Representing abelian ℓ-groups (cont'd)

- Enables us to define a V-measure (as in Dobbertin's Theorem)
- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup.
homomorphisms
Biases
- The type
monoid
From \mathscr{D} to
Typ S
Typ S and equidecomposability types
Dobbertin's
Theorem
Abelian ℓ-groups
- Type monoids and nonstable K-theory
$\mu: B \rightarrow G^{+}$by

$$
\mu\left(\bigvee_{0 \leq i<n}\left(a_{2 i+1} \backslash a_{2 i}\right)\right)=\sum_{i<n}\left(a_{2 i+1}-a_{2 i}\right)
$$

(where $a_{0} \leq a_{1} \leq \cdots \leq a_{2 n}$ in G).
■ Moreover, $\forall a \in G$, the translation $x \mapsto x+a$ "extends" to an automorphism τ_{a} of B. So $\tau_{a}(y \backslash x)=(a+y) \backslash(a+x)$, $\forall x \leq y$ in G.
■ $\bar{G}=\left\{\tau_{a} \mid a \in G\right\}$ is a subgroup of Aut B, isomorphic to G.

- The desired BIS is $S=\operatorname{lnv}(B, \bar{G})$. One must prove that for $x, y \in B, \mu(x)=\underline{\mu}(y)$ iff x and y are equidecomposable modulo translations from \bar{G} (think of elements of B as disjoint unions of intervals with endpoints from G).

Loose ends on ℓ-groups

■ Using Mundici's 1986 result (MV-algebras \leftrightharpoons unit intervals of abelian ℓ-groups), it thus follows that every MV-algebra is isomorphic to $\operatorname{Int} S=S / \mathscr{D}$, for some BIS S.

Loose ends on ℓ-groups

■ Using Mundici's 1986 result (MV-algebras \leftrightharpoons unit intervals of abelian ℓ-groups), it thus follows that every MV-algebra is isomorphic to $\operatorname{lnt} S=S / \mathscr{D}$, for some BIS S. Every such S is factorizable (i.e., $\forall x, \exists$ unit $g, x \leq g$), and has $\mathscr{D}=\mathscr{J}$.

Loose ends on ℓ-groups

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup.
homomorphisms
Biases
- The type
monoid
From \mathscr{D} to
Typ S
Typ 5 and equidecomposability types
Dobbertin's
Theorem
Abelian ℓ-groups
- Type monoids and nonstable K-theory $k\langle s\rangle$ $\xrightarrow{\operatorname{Typ} S} \vec{V}(k\langle s\rangle)$

■ Using Mundici's 1986 result (MV-algebras \leftrightharpoons unit intervals of abelian ℓ-groups), it thus follows that every MV-algebra is isomorphic to $\operatorname{lnt} S=S / \mathscr{D}$, for some BIS S. Every such S is factorizable (i.e., $\forall x, \exists$ unit $g, x \leq g$), and has $\mathscr{D}=\mathscr{J}$.
■ In the countable case, Lawson and Scott get the additional information that S can be taken AF (i.e., countable direct limit of finite products of symmetric inverse semigroups).

Loose ends on ℓ-groups

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup
homomorphisms
Biases
- The type
monoid
From $\mathscr{2}$ to
Typ S
Typ S and equidecomposability types
Dobbertin's Theorem Abelian ℓ-groups

■ Using Mundici's 1986 result (MV-algebras \leftrightharpoons unit intervals of abelian ℓ-groups), it thus follows that every MV-algebra is isomorphic to $\operatorname{lnt} S=S / \mathscr{D}$, for some BIS S. Every such S is factorizable (i.e., $\forall x, \exists$ unit $g, x \leq g$), and has $\mathscr{D}=\mathscr{J}$.
■ In the countable case, Lawson and Scott get the additional information that S can be taken AF (i.e., countable direct limit of finite products of symmetric inverse semigroups).
■ Dropping separability and keeping $\underset{\rightarrow}{\lim }$, this result can be extended to all G^{+}, where G is a dimension group (not necessarily lattice-ordered) of cardinality $\leq \aleph_{1}$.

Loose ends on ℓ-groups

■ Using Mundici's 1986 result (MV-algebras \leftrightharpoons unit intervals of abelian ℓ-groups), it thus follows that every MV-algebra is isomorphic to $\operatorname{lnt} S=S / \mathscr{D}$, for some BIS S. Every such S is factorizable (i.e., $\forall x, \exists$ unit $g, x \leq g$), and has $\mathscr{D}=\mathscr{J}$.
■ In the countable case, Lawson and Scott get the additional information that S can be taken AF (i.e., countable direct limit of finite products of symmetric inverse semigroups).
■ Dropping separability and keeping $\underset{\rightarrow}{\lim }$, this result can be extended to all G^{+}, where G is a dimension group (not necessarily lattice-ordered) of cardinality $\leq \aleph_{1}$. (Proof: mutatis mutandis extend the usual Elliott, Goodearl + Handelman arguments from locally matricial algebras, or C*-algebras, to BISs.)

Loose ends on ℓ-groups

■ Using Mundici's 1986 result (MV-algebras \leftrightharpoons unit intervals of abelian ℓ-groups), it thus follows that every MV-algebra is isomorphic to $\operatorname{lnt} S=S / \mathscr{D}$, for some BIS S. Every such S is factorizable (i.e., $\forall x, \exists$ unit $g, x \leq g$), and has $\mathscr{D}=\mathscr{J}$.

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup
homomorphisms Biases
- The type
monoid
From 2 to
Typ S
Typ S and equidecomposability types
Dobbertin's
Theorem
Abelian ℓ-groups
- Type monoids and nonstable K-theory
- In the countable case, Lawson and Scott get the additional information that S can be taken AF (i.e., countable direct limit of finite products of symmetric inverse semigroups).
- Dropping separability and keeping $\underset{\rightarrow}{\text { lim, this result can be }}$ extended to all G^{+}, where G is a dimension group (not necessarily lattice-ordered) of cardinality $\leq \aleph_{1}$. (Proof: mutatis mutandis extend the usual Elliott, Goodearl + Handelman arguments from locally matricial algebras, or C^{*}-algebras, to BISs.)
- Getting "locally matricial" in arbitrary cardinality: hopeless for arbitrary dimension groups (counterexamples of size \aleph_{2}), but still open for abelian ℓ-groups.

Additive enveloping K－algebra of a BIS

Definition

－The variety of

Additive enveloping K-algebra of a BIS

Type monoids

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup
homomorphisms
Biases
- The type
monoid
From \mathscr{D} to
Typ S
Typ 5 and equidecomposability types
Dobbertin's
Theorem
Abelian ℓ-groups
- Type monoids and nonstable K-theory $k\langle s\rangle$
$\xrightarrow{\text { Typ } S} \overrightarrow{V(k\langle s\rangle)}$

Definition

For a unital ring K and a BIS $S, K\langle S\rangle$ is the K-algebra defined by generators S and relations $\lambda s=s \lambda, 1 s=s, z=x+y($ within $K\langle S\rangle)$ whenever $z=x \oplus y($ within $S)$.

Additive enveloping K-algebra of a BIS

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup
homomorphisms Biases
- The type
monoid
From \mathscr{D} to
Typ S
Typ.S and equidecomposability types
Dobbertin's Theorem Abelian ℓ-groups
- Type monoids and nonstable K-theory

Definition

For a unital ring K and a BIS $S, K\langle S\rangle$ is the K-algebra defined by generators S and relations $\lambda s=s \lambda, 1 s=s, z=x+y($ within $K\langle S\rangle)$ whenever $z=x \oplus y($ within $S)$.

■ For S a Boolean inverse meet-semigroup, $K\langle S\rangle$ is isomorphic to Steinberg's $K \mathscr{U}_{\mathrm{T}}(S)$ (étale groupoid algebra of $\mathscr{U}_{\mathrm{T}}(S)$), where $\mathscr{U}_{\mathrm{T}}(S)$ is called there the universal additive groupoid of S. Steinberg's construction extends to Hausdorff inverse semigroups (not necessarily Boolean).

Additive enveloping K-algebra of a BIS

Definition

For a unital ring K and a BIS $S, K\langle S\rangle$ is the K-algebra defined by generators S and relations $\lambda s=s \lambda, 1 s=s, z=x+y($ within $K\langle S\rangle)$ whenever $z=x \oplus y($ within $S)$.

- The variety of BISs
ISs from partial functions
BISs and additive semigroup homomorphisms Biases
- The type

■ For S a Boolean inverse meet-semigroup, $K\langle S\rangle$ is isomorphic to Steinberg's $K \mathscr{U}_{\mathrm{T}}(S)$ (étale groupoid algebra of $\mathscr{U}_{\mathrm{T}}(S)$), where $\mathscr{U}_{\mathrm{T}}(S)$ is called there the universal additive groupoid of S. Steinberg's construction extends to Hausdorff inverse semigroups (not necessarily Boolean).
■ If K is an involutary ring, then $K\langle S\rangle$ is an involutary K-algebra $\left(\operatorname{set}(\lambda s)^{*}=\lambda^{*} s^{-1}\right)$.

Additive enveloping K-algebra of a BIS

Definition

For a unital ring K and a BIS $S, K\langle S\rangle$ is the K-algebra defined by generators S and relations $\lambda s=s \lambda, 1 s=s, z=x+y($ within $K\langle S\rangle)$ whenever $z=x \oplus y($ within $S)$.

■ For S a Boolean inverse meet-semigroup, $K\langle S\rangle$ is isomorphic to Steinberg's $K \mathscr{U}_{\mathrm{T}}(S)$ (étale groupoid algebra of $\mathscr{U}_{\mathrm{T}}(S)$), where $\mathscr{U}_{\mathrm{T}}(S)$ is called there the universal additive groupoid of S. Steinberg's construction extends to Hausdorff inverse semigroups (not necessarily Boolean).
■ If K is an involutary ring, then $K\langle S\rangle$ is an involutary K-algebra $\left(\operatorname{set}(\lambda s)^{*}=\lambda^{*} s^{-1}\right)$.
■ If $X \subseteq S$ generates S as a bias, then it also generates $K\langle S\rangle$ as an involutary subring.

Additive enveloping K-algebra of a BIS

Definition

For a unital ring K and a BIS $S, K\langle S\rangle$ is the K-algebra defined by generators S and relations $\lambda s=s \lambda, 1 s=s, z=x+y$ (within $K\langle S\rangle$) whenever $z=x \oplus y($ within $S)$.

- For S a Boolean inverse meet-semigroup, $K\langle S\rangle$ is isomorphic to Steinberg's $K \mathscr{U}_{\mathrm{T}}(S)$ (étale groupoid algebra of $\mathscr{U}_{\mathrm{T}}(S)$), where $\mathscr{U}_{\mathrm{T}}(S)$ is called there the universal additive groupoid of S. Steinberg's construction extends to Hausdorff inverse semigroups (not necessarily Boolean).
- If K is an involutary ring, then $K\langle S\rangle$ is an involutary K-algebra $\left(\right.$ set $\left.(\lambda s)^{*}=\lambda^{*} s^{-1}\right)$.
- If $X \subseteq S$ generates S as a bias, then it also generates $K\langle S\rangle$ as an involutary subring.
- The construction $K\langle S\rangle$ extends known constructions, such as Leavitt path algebras.

BISs interact with involutary rings

Proposition (W 2015)

```
- The variety of
BISs
ISs from partial
functions
BISs and
additive
semigroup
homomorphisms
Biases
- The type
monoid
From \mathscr{D to}
Typ S
Typ S and equi-
decomposability
types
Dobbertin's
Theorem
Abelian \ell-groups
- Type monoids
and nonstable
K-theory
k\langles\rangle
Typ S }
TypS 
```


BISs interact with involutary rings

Proposition (W 2015)

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup
homomorphisms
Biases
- The type
monoid
From \mathscr{D} to
Typ S
Typ S and equidecomposability types
Dobbertin's
Theorem
Abelian ℓ-groups
- Type monoids and nonstable K-theory $k\langle s\rangle$
$\xrightarrow{\text { Typ } S} \overrightarrow{V(k\langle S\rangle)}$

Every inverse semigroup S, in an involutary ring R, is contained in a BIS $\bar{S} \subseteq R$, in which \oplus specializes orthogonal addition ($x+y$, where $x^{*} y=x y^{*}=0$).

BISs interact with involutary rings

Proposition (W 2015)

- The variety of

Every inverse semigroup S, in an involutary ring R, is contained in a BIS $\bar{S} \subseteq R$, in which \oplus specializes orthogonal addition ($x+y$, where $x^{*} y=x y^{*}=0$).

■ Loosely speaking, this means that studying inverse semigroups in involutary rings reduces, in many instances, to studying Boolean inverse semigroups in involutary rings.

BISs interact with involutary rings

Proposition (W 2015)

- The variety of

Every inverse semigroup S, in an involutary ring R, is contained in a BIS $\bar{S} \subseteq R$, in which \oplus specializes orthogonal addition ($x+y$, where $x^{*} y=x y^{*}=0$).

■ Loosely speaking, this means that studying inverse semigroups in involutary rings reduces, in many instances, to studying Boolean inverse semigroups in involutary rings.
■ Can, in certain conditions, be extended to involutary semirings.

BISs interact with involutary rings

Proposition (W 2015)

- The variety of

Every inverse semigroup S, in an involutary ring R, is contained in a BIS $\bar{S} \subseteq R$, in which \oplus specializes orthogonal addition ($x+y$, where $x^{*} y=x y^{*}=0$).

■ Loosely speaking, this means that studying inverse semigroups in involutary rings reduces, in many instances, to studying Boolean inverse semigroups in involutary rings.
■ Can, in certain conditions, be extended to involutary semirings.

- Yields a workable definition of the tensor product $S \otimes T$ of two BISs S and T, which is still a BIS and has $\operatorname{ldp}(S \otimes T) \cong(\operatorname{ldp} S) \otimes(\operatorname{ldp} T)$, $\mathrm{U}_{\text {mon }}(S \otimes T) \cong \mathrm{U}_{\text {mon }}(S) \otimes \mathrm{U}_{\text {mon }}(T)$, and $\operatorname{Typ}(S \otimes T) \cong \operatorname{Typ}(S) \otimes \operatorname{Typ}(T)$.

Embedding properties of $K\langle S\rangle$

■ For S a sub-BIS (\leftrightharpoons sub-bias) of T, the canonical map $K\langle S\rangle \rightarrow K\langle T\rangle$ may not be one-to-one.

Embedding properties of $K\langle S\rangle$

- For S a sub-BIS (\leftrightharpoons sub-bias) of T, the canonical map $K\langle S\rangle \rightarrow K\langle T\rangle$ may not be one-to-one.
■ Nevertheless, in a number of cases, it is one-to-one.

Embedding properties of $K\langle S\rangle$

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup
homomorphisms
Biases
- The type

Typ S and equi-
decomposability types
Dobbertin's
Theorem
Abelian ℓ-groups

- Type monoids
and nonstable
K-theory
$k\langle s\rangle$
$\xrightarrow{\text { Typ } S} \begin{aligned} & \mathrm{V}(\mathrm{K}(\mathrm{S}))\end{aligned}$

■ For S a sub-BIS (\leftrightharpoons sub-bias) of T, the canonical map $K\langle S\rangle \rightarrow K\langle T\rangle$ may not be one-to-one.
■ Nevertheless, in a number of cases, it is one-to-one.
■ For example, if T is the regular representation of S, or if T is a Boolean inverse meet-semigroup and S is closed under finite meets, then $K\langle S\rangle \rightarrow K\langle T\rangle$ is one-to-one.

Embedding properties of $K\langle S\rangle$

■ For S a sub-BIS (\leftrightharpoons sub-bias) of T, the canonical map $K\langle S\rangle \rightarrow K\langle T\rangle$ may not be one-to-one.
■ Nevertheless, in a number of cases, it is one-to-one.
■ For example, if T is the regular representation of S, or if T is a Boolean inverse meet-semigroup and S is closed under finite meets, then $K\langle S\rangle \rightarrow K\langle T\rangle$ is one-to-one.
■ Has to do with so-called transfer properties in lattice theory

Embedding properties of $K\langle S\rangle$

■ For S a sub-BIS (\leftrightharpoons sub-bias) of T, the canonical map $K\langle S\rangle \rightarrow K\langle T\rangle$ may not be one-to-one.
■ Nevertheless, in a number of cases, it is one-to-one.
■ For example, if T is the regular representation of S, or if T is a Boolean inverse meet-semigroup and S is closed under finite meets, then $K\langle S\rangle \rightarrow K\langle T\rangle$ is one-to-one.

- Has to do with so-called transfer properties in lattice theory (getting from $K \hookrightarrow$ Id L to $K \hookrightarrow L$).

The canonical map Typ $S \rightarrow \mathrm{~V}(K\langle S\rangle)$

■ For idempotent matrices a and b from a ring R, let $a \sim b$ hold if $\exists x, y, a=x y$ and $b=y x$ (Murray - von Neumann equivalence).

The canonical map Typ $S \rightarrow \mathrm{~V}(K\langle S\rangle)$

- For idempotent matrices a and b from a ring R, let $a \sim b$ hold if $\exists x, y, a=x y$ and $b=y x$ (Murray - von Neumann equivalence).
- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup.
homomorphisms
Biases
- The type
monoid
From \mathscr{Q} to
Typ S
Typ S and equidecomposability types
Dobbertin's
Theorem
Abelian ℓ-groups
- Type monoids
and nonstable
K-theory
$K\langle S\rangle$
Typ $S \rightarrow$
Typ $S \rightarrow$
$V(K\langle S\rangle)$
- MvN classes can be added, via $[x]+[y]=[x+y]$ provided $x y=y x=0$.

The canonical map Typ $S \rightarrow \mathrm{~V}(K\langle S\rangle)$

■ For idempotent matrices a and b from a ring R, let $a \sim b$ hold if $\exists x, y, a=x y$ and $b=y x$ (Murray - von Neumann equivalence).

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup
homomorphisms
Biases
- The type
monoid
From \mathscr{D} to
Typ S
Typ S and equidecomposability types
Dobbertin's
Theorem
Abelian ℓ-groups
- Type monoids
and nonstable
K-theory
$k\langle s\rangle$
Typ $S \rightarrow$
$\vee(k\langle s\rangle)$
- MvN classes can be added, via $[x]+[y]=[x+y]$ provided $x y=y x=0$.
$■ \mathrm{~V}(R)=\{[x] \mid x$ idempotent matrix from $R\}$, the nonstable K-theory of R. It is a conical commutative monoid.

The canonical map Typ $S \rightarrow \mathrm{~V}(K\langle S\rangle)$

■ For idempotent matrices a and b from a ring R, let $a \sim b$ hold if $\exists x, y, a=x y$ and $b=y x$ (Murray - von Neumann equivalence).
■ MvN classes can be added, via $[x]+[y]=[x+y]$ provided $x y=y x=0$.
$■ \mathrm{~V}(R)=\{[x] \mid x$ idempotent matrix from $R\}$, the nonstable K-theory of R. It is a conical commutative monoid.

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup
homomorphisms Biases

Proposition (W 2015)

The canonical map Typ $S \rightarrow \mathrm{~V}(K\langle S\rangle)$

■ For idempotent matrices a and b from a ring R, let $a \sim b$ hold if $\exists x, y, a=x y$ and $b=y x$ (Murray - von Neumann equivalence).

- The variety of BISs
ISs from partial functions
BISs and
adiditive
semigroup
homomorphisms Biases
$■$ MvN classes can be added, via $[x]+[y]=[x+y]$ provided $x y=y x=0$.
$■ \mathrm{~V}(R)=\{[x] \mid x$ idempotent matrix from $R\}$, the nonstable K-theory of R. It is a conical commutative monoid.

Proposition (W 2015)

Let S be a BIS and let K be a unital ring. Then there is a unique monoid homomorphism \boldsymbol{f} : $\operatorname{Typ} S \rightarrow \mathrm{~V}(K\langle S\rangle)$ such that $\boldsymbol{f}(x / \mathscr{D})=[x]_{K\langle S\rangle} \forall x \in S$.

The canonical map Typ $S \rightarrow \mathrm{~V}(K\langle S\rangle)$

■ For idempotent matrices a and b from a ring R, let $a \sim b$ hold if $\exists x, y, a=x y$ and $b=y x$ (Murray - von Neumann equivalence).

- The variety of BISs
ISs from partial functions
BISs and
additive
semigroup
homomorphisms Biases

Proposition (W 2015)
Let S be a BIS and let K be a unital ring. Then there is a unique monoid homomorphism $\boldsymbol{f}: \operatorname{Typ} S \rightarrow \mathrm{~V}(K\langle S\rangle)$ such that $\boldsymbol{f}(x / \mathscr{D})=[x]_{K\langle S\rangle} \forall x \in S$.

■ There are counterexamples where \boldsymbol{f} is neither one-to-one, nor onto, even for K a field.

The canonical map Typ $S \rightarrow \mathrm{~V}(K\langle S\rangle)$

■ For idempotent matrices a and b from a ring R, let $a \sim b$ hold if $\exists x, y, a=x y$ and $b=y x$ (Murray - von Neumann equivalence).

- The variety of
$■$ MvN classes can be added, via $[x]+[y]=[x+y]$ provided $x y=y x=0$.
$\square \mathrm{V}(R)=\{[x] \mid x$ idempotent matrix from $R\}$, the nonstable K-theory of R. It is a conical commutative monoid.

Proposition (W 2015)
Let S be a BIS and let K be a unital ring. Then there is a unique monoid homomorphism $\boldsymbol{f}: \operatorname{Typ} S \rightarrow \mathrm{~V}(K\langle S\rangle)$ such that $\boldsymbol{f}(x / \mathscr{D})=[x]_{K\langle S\rangle} \forall x \in S$.

■ There are counterexamples where \boldsymbol{f} is neither one-to-one, nor onto, even for K a field.

- Question: does Typ $S \cong \mathrm{~V}(\mathbb{Z}\langle S\rangle)$?

