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Basic definitions

Inverse semigroup

Semigroup (S , ·), where ∀x ∃ unique x−1 (the inverse of x) such that
xx−1x = x and x−1xx−1 = x−1.

There are many equivalent definitions, such as:
∀x ∃y xyx = x , and all idempotents of S commute.
We set d(x) = x−1x (the domain of x), r(x) = xx−1 (the range
of x), Idp S =

{
x ∈ S | x2 = x

}
.

Fundamental example (symmetric inverse semigroup)

For any set Ω, denote by IΩ the semigroup of all bijections
f : X → Y , where X ,Y ⊆ Ω (partial bijections on Ω).

Composition of partial functions defined whenever possible:
dom(g ◦ f ) = {x ∈ dom(f ) | f (x) ∈ dom(g)}.
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Inverse semigroups of partial bijections

Vagner-Preston Theorem

Every inverse semigroup embeds into some IΩ.

Means that every inverse semigroup can be represented as a
semigroup of partial bijections on a set.

Example constructed from a group action

If a group G acts on a set Ω, consider all partial bijections f : X → Y
in IΩ that are piecewise in G : that is, ∃ decompositions
X =

⊔n
i=1 Xi , Y =

⊔n
i=1 Yi , each gi ∈ G and giXi = Yi , and

f (x) = gix whenever x ∈ Xi .

Inv(Ω,G ) = {f ∈ IΩ | f is piecewise in G} is an inverse semigroup.

Idempotents of Inv(Ω,G ): they are the identities on all subsets of Ω.
They form a Boolean lattice.

3/23



Type monoids

• The variety of
BISs

ISs from partial
functions

BISs and
additive
semigroup
homomorphisms

Biases

• The type
monoid

From D to
Typ S

Typ S and equi-
decomposability
types

Dobbertin’s
Theorem

Abelian `-groups

• Type monoids
and nonstable
K-theory

K〈S〉
Typ S →
V(K〈S〉)

Inverse semigroups of partial bijections

Vagner-Preston Theorem

Every inverse semigroup embeds into some IΩ.

Means that every inverse semigroup can be represented as a
semigroup of partial bijections on a set.

Example constructed from a group action

If a group G acts on a set Ω, consider all partial bijections f : X → Y
in IΩ that are piecewise in G : that is, ∃ decompositions
X =

⊔n
i=1 Xi , Y =

⊔n
i=1 Yi , each gi ∈ G and giXi = Yi , and

f (x) = gix whenever x ∈ Xi .

Inv(Ω,G ) = {f ∈ IΩ | f is piecewise in G} is an inverse semigroup.

Idempotents of Inv(Ω,G ): they are the identities on all subsets of Ω.
They form a Boolean lattice.

3/23



Type monoids

• The variety of
BISs

ISs from partial
functions

BISs and
additive
semigroup
homomorphisms

Biases

• The type
monoid

From D to
Typ S

Typ S and equi-
decomposability
types

Dobbertin’s
Theorem

Abelian `-groups

• Type monoids
and nonstable
K-theory

K〈S〉
Typ S →
V(K〈S〉)

Inverse semigroups of partial bijections

Vagner-Preston Theorem

Every inverse semigroup embeds into some IΩ.

Means that every inverse semigroup can be represented as a
semigroup of partial bijections on a set.

Example constructed from a group action

If a group G acts on a set Ω, consider all partial bijections f : X → Y
in IΩ that are piecewise in G : that is, ∃ decompositions
X =

⊔n
i=1 Xi , Y =

⊔n
i=1 Yi , each gi ∈ G and giXi = Yi , and

f (x) = gix whenever x ∈ Xi .

Inv(Ω,G ) = {f ∈ IΩ | f is piecewise in G} is an inverse semigroup.

Idempotents of Inv(Ω,G ): they are the identities on all subsets of Ω.
They form a Boolean lattice.

3/23



Type monoids

• The variety of
BISs

ISs from partial
functions

BISs and
additive
semigroup
homomorphisms

Biases

• The type
monoid

From D to
Typ S

Typ S and equi-
decomposability
types

Dobbertin’s
Theorem

Abelian `-groups

• Type monoids
and nonstable
K-theory

K〈S〉
Typ S →
V(K〈S〉)

Inverse semigroups of partial bijections

Vagner-Preston Theorem

Every inverse semigroup embeds into some IΩ.

Means that every inverse semigroup can be represented as a
semigroup of partial bijections on a set.

Example constructed from a group action

If a group G acts on a set Ω, consider all partial bijections f : X → Y
in IΩ that are piecewise in G : that is, ∃ decompositions
X =

⊔n
i=1 Xi , Y =

⊔n
i=1 Yi , each gi ∈ G and giXi = Yi , and

f (x) = gix whenever x ∈ Xi .

Inv(Ω,G ) = {f ∈ IΩ | f is piecewise in G} is an inverse semigroup.

Idempotents of Inv(Ω,G ): they are the identities on all subsets of Ω.
They form a Boolean lattice.

3/23



Type monoids

• The variety of
BISs

ISs from partial
functions

BISs and
additive
semigroup
homomorphisms

Biases

• The type
monoid

From D to
Typ S

Typ S and equi-
decomposability
types

Dobbertin’s
Theorem

Abelian `-groups

• Type monoids
and nonstable
K-theory

K〈S〉
Typ S →
V(K〈S〉)

Inverse semigroups of partial bijections

Vagner-Preston Theorem

Every inverse semigroup embeds into some IΩ.

Means that every inverse semigroup can be represented as a
semigroup of partial bijections on a set.

Example constructed from a group action

If a group G acts on a set Ω, consider all partial bijections f : X → Y
in IΩ that are piecewise in G :

that is, ∃ decompositions
X =

⊔n
i=1 Xi , Y =

⊔n
i=1 Yi , each gi ∈ G and giXi = Yi , and

f (x) = gix whenever x ∈ Xi .

Inv(Ω,G ) = {f ∈ IΩ | f is piecewise in G} is an inverse semigroup.

Idempotents of Inv(Ω,G ): they are the identities on all subsets of Ω.
They form a Boolean lattice.

3/23



Type monoids

• The variety of
BISs

ISs from partial
functions

BISs and
additive
semigroup
homomorphisms

Biases

• The type
monoid

From D to
Typ S

Typ S and equi-
decomposability
types

Dobbertin’s
Theorem

Abelian `-groups

• Type monoids
and nonstable
K-theory

K〈S〉
Typ S →
V(K〈S〉)

Inverse semigroups of partial bijections

Vagner-Preston Theorem

Every inverse semigroup embeds into some IΩ.

Means that every inverse semigroup can be represented as a
semigroup of partial bijections on a set.

Example constructed from a group action

If a group G acts on a set Ω, consider all partial bijections f : X → Y
in IΩ that are piecewise in G : that is, ∃ decompositions
X =

⊔n
i=1 Xi , Y =

⊔n
i=1 Yi , each gi ∈ G and giXi = Yi , and

f (x) = gix whenever x ∈ Xi .

Inv(Ω,G ) = {f ∈ IΩ | f is piecewise in G} is an inverse semigroup.

Idempotents of Inv(Ω,G ): they are the identities on all subsets of Ω.
They form a Boolean lattice.

3/23



Type monoids

• The variety of
BISs

ISs from partial
functions

BISs and
additive
semigroup
homomorphisms

Biases

• The type
monoid

From D to
Typ S

Typ S and equi-
decomposability
types

Dobbertin’s
Theorem

Abelian `-groups

• Type monoids
and nonstable
K-theory

K〈S〉
Typ S →
V(K〈S〉)

Inverse semigroups of partial bijections

Vagner-Preston Theorem

Every inverse semigroup embeds into some IΩ.

Means that every inverse semigroup can be represented as a
semigroup of partial bijections on a set.

Example constructed from a group action

If a group G acts on a set Ω, consider all partial bijections f : X → Y
in IΩ that are piecewise in G : that is, ∃ decompositions
X =

⊔n
i=1 Xi , Y =

⊔n
i=1 Yi , each gi ∈ G and giXi = Yi , and

f (x) = gix whenever x ∈ Xi .

Inv(Ω,G ) = {f ∈ IΩ | f is piecewise in G} is an inverse semigroup.

Idempotents of Inv(Ω,G ): they are the identities on all subsets of Ω.
They form a Boolean lattice.

3/23



Type monoids

• The variety of
BISs

ISs from partial
functions

BISs and
additive
semigroup
homomorphisms

Biases

• The type
monoid

From D to
Typ S

Typ S and equi-
decomposability
types

Dobbertin’s
Theorem

Abelian `-groups

• Type monoids
and nonstable
K-theory

K〈S〉
Typ S →
V(K〈S〉)

Inverse semigroups of partial bijections

Vagner-Preston Theorem

Every inverse semigroup embeds into some IΩ.

Means that every inverse semigroup can be represented as a
semigroup of partial bijections on a set.

Example constructed from a group action

If a group G acts on a set Ω, consider all partial bijections f : X → Y
in IΩ that are piecewise in G : that is, ∃ decompositions
X =

⊔n
i=1 Xi , Y =

⊔n
i=1 Yi , each gi ∈ G and giXi = Yi , and

f (x) = gix whenever x ∈ Xi .

Inv(Ω,G ) = {f ∈ IΩ | f is piecewise in G} is an inverse semigroup.

Idempotents of Inv(Ω,G ): they are the identities on all subsets of Ω.
They form a Boolean lattice.

3/23



Type monoids

• The variety of
BISs

ISs from partial
functions

BISs and
additive
semigroup
homomorphisms

Biases

• The type
monoid

From D to
Typ S

Typ S and equi-
decomposability
types

Dobbertin’s
Theorem

Abelian `-groups

• Type monoids
and nonstable
K-theory

K〈S〉
Typ S →
V(K〈S〉)

Inverse semigroups of partial bijections

Vagner-Preston Theorem

Every inverse semigroup embeds into some IΩ.

Means that every inverse semigroup can be represented as a
semigroup of partial bijections on a set.

Example constructed from a group action

If a group G acts on a set Ω, consider all partial bijections f : X → Y
in IΩ that are piecewise in G : that is, ∃ decompositions
X =

⊔n
i=1 Xi , Y =

⊔n
i=1 Yi , each gi ∈ G and giXi = Yi , and

f (x) = gix whenever x ∈ Xi .

Inv(Ω,G ) = {f ∈ IΩ | f is piecewise in G} is an inverse semigroup.

Idempotents of Inv(Ω,G ): they are the identities on all subsets of Ω.
They form a Boolean lattice.

3/23



Type monoids

• The variety of
BISs

ISs from partial
functions

BISs and
additive
semigroup
homomorphisms

Biases

• The type
monoid

From D to
Typ S

Typ S and equi-
decomposability
types

Dobbertin’s
Theorem

Abelian `-groups

• Type monoids
and nonstable
K-theory

K〈S〉
Typ S →
V(K〈S〉)

Example from a group action on a generalized
Boolean algebra

Extension of previous example

Now X , Y , Xi , Yi are all restricted to belong to some generalized
Boolean sublattice B of the powerset of Ω. We require gB = B

∀g ∈ G , that is, G acts on B by automorphisms. The structure thus
obtained, Inv(B,G ), depends only of the isomorphism type of the
action of G on B (not of the given representation). It is an inverse
semigroup.

Idempotents of Inv(B,G ): they are the identity functions idX , where
X ∈ B.
What kind of inverse semigroup is this?
Zero element: the function 0 ∈ Inv(B,G ) with empty domain.
f ◦ 0 = 0 ◦ f = 0, ∀f ∈ Inv(B,G ).
Orthogonality: f ⊥ g if dom(f ) ∩ dom(g) = rng(f ) ∩ rng(g) = ∅.
Can be expressed abstractly: f ⊥ g iff f ◦ g−1 = f −1 ◦ g = 0.
Then one can form the orthogonal sum f ⊕ g : (f ⊕ g)(x) = f (x) if
x ∈ dom(f ), g(x) if x ∈ dom(g).
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Boolean inverse semigroups

Canonical ordering on an inverse semigroup:

x ≤ y iff (∃ idempotent e) x = ye (resp., x = ey), iff x = y d(x), iff
x = r(x)y .

For S = Inv(B,G ), f ≤ g iff g extends f .

Boolean inverse semigroups

Inverse semigroup S with zero (x0 = 0x = 0 ∀x) such that IdpS is a
generalized Boolean algebra, and ∀x , y with x ⊥ y , the supremum
x ⊕ y of {x , y}, with respect to ≤, exists.

The latter condition, on ∃x ⊕ y , is not redundant (example with
IdpS the 2-atom Boolean algebra).
Large class of Boolean inverse semigroups: all Inv(B,G ).
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Distributivity of multiplication and meet on joins

Proposition (folklore).

Let S be a Boolean inverse semigroup and let a, b1, . . . , bn ∈ S .

1
∨n

i=1 bi exists iff the bi are pairwise compatible, that is, each
b−1
i bj and each bib

−1
j is idempotent.
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Additive homomorphisms

A relevant concept of morphism, for Boolean inverse semigroups, is
the following.

Additive semigroup homomorphisms

A semigroup homomorphism f : S → T , between Boolean inverse
semigroups, is additive if x ⊥S y implies that f (x) ⊥T f (y) and
f (x ⊕ y) = f (x)⊕ f (y). (In particular, f (0S) = 0T .)

Annoying fact: ⊕ is only a partial operation.
Derived (full) operations:

x � y = (r(x) r r(y))x(d(x) r d(y)) (skew difference);

x O y = (x � y)⊕ y (skew addition).

Both x � y and x O y are always defined.
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The variety of all biases

The structures (S , ·, 0, �,O) can be axiomatized,

by finitely

many identities (e.g., x � y = (x O y)(x � y)−1(x � y)).

Those identities define the variety of all biases.

Biases(·, 0, �,O) � Boolean inverse semigroups (·, 0,⊕).

For Boolean inverse semigroups S and T , a map f : S → T is a
homomorphism of biases iff it is additive.

A subset S in a BIS T is a sub-bias iff it is a subsemigroup,
closed under finite ⊕, and closed under (x , y) 7→ x r y on Idp S .

The following term is a Mal’cev term for the variety of all biases:

m(x , y , z) =
(
x
(
d(x) � d(y)

)
O xy−1z

)
O
(
r(z) � r(y)

)
z .

Therefore, the variety of all biases is congruence-permutable.
(Note: it is not congruence-distributive.)

Hence, Boolean inverse semigroups are much closer to rings than
to semigroups.
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A Cayley-type theorem for BISs

Proposition

Every Boolean inverse semigroup has an additive embedding into
some IΩ. The embedding preserves all existing finite meets.

The Ω in this representation, denoted by GP(S) in Lawson and
Lenz (2013), is the prime spectrum of S .

The result above is contained in a duality theory worked out by
Lawson and Lenz (2013).

The set-theoretical content of the result above is the Boolean
prime ideal Theorem.

The representation above is called the regular representation
of S .
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Green’s relation D

On any inverse semigroup, we set

x L y ⇔ d(x) = d(y), x R y ⇔ r(x) = r(y), and
D = L ◦R = R ◦L .

For idempotent a and b, a D b iff (∃x) (a = d(x) and b = r(x)).

For a Boolean inverse semigroup S , the quotient IntS = S/D
(the dimension interval of S) can be endowed with a partial
addition, given by

(x/D) + (y/D) = (x ⊕ y)/D , whenever x ⊕ y is defined.

Important property of IntS (not trivial): x + (y + z) is defined
iff (x + y) + z is defined, and then both values are the same.

The type monoid of S , denoted by TypS , is the universal
monoid of the partial commutative monoid Int S .
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Type monoid of Inv(B,G )

Let a group G act by automorphisms on a generalized Boolean
algebra B.

S = Inv(B,G ) is a Boolean inverse semigroup.

What is D on its idempotents?

idX D idY iff there is a partial bijection f , piecewise in G ,
defined on X , such that f [X ] = Y .

That is, there are decompositions X =
⊔n

i=1 Xi , Y =
⊔n

i=1 Yi ,
together with gi ∈ G , such that each Xi ,Yi ∈ B and each
Yi = giXi .

This means that X and Y are G -equidecomposable, with pieces
from B.

Denote by Z+〈B〉//G the monoid of [generated by] all
equidecomposability types of members of B with respect to the
action of G .

Then the type monoid of Inv(B,G ) is isomorphic to Z+〈B〉//G .
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Say that a commutative monoid is measurable if it is isomorphic
to Typ S , for some Boolean inverse semigroup S .

By the above, every Z+〈B〉//G (where a group G acts on a
generalized Boolean algebra B) is measurable.

The converse holds (not so trivial).

Starting with a Boolean inverse semigroup S , we need to find G ,
B such that Typ S ∼= Z+〈B〉//G .

First guess: try B = IdpS , G =“inner automorphisms” (?) of B
(Note: ∀x , ∀idempotent e, xex−1 is idempotent).

Problem: the map fx : e 7→ xex−1, for e idempotent ≤ d(x),
may not extend to any automorphism of B.

Can be solved by representing B as generalized Boolean lattice
of subsets of some set Ω, then duplicating Ω. This leaves
enough room to extend fx .
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Measurability versus equidecomposability

Proposition

A commutative monoid M is measurable (i.e., TypS for some
Boolean inverse semigroup S) iff M ∼= Z+〈B〉//G for some action of
a group G on a generalized Boolean algebra B.

Every measurable monoid is isomorphic to TypS for a Boolean
meet-semigroup (resp., fundamental Boolean inverse
semigroup) S . (meet-semigroup: replace Ω by Ω× G ;
fundamental: Typ(S) ∼= Typ(S/µ).)
There is a countable counterexample showing that
“meet-semigroup” and “fundamental” cannot be reached
simultaneously.
Every measurable monoid M is conical, that is, has x + y = 0 ⇒
x = y = 0.
Also, M is a refinement monoid, that is, whenever
a0 + a1 = b0 + b1 in M, there are c0,0, c0,1, c1,0, c1,1 ∈ M such
that each ai = ci,0 + ci,1 and each bj = c0,j + c1,j .
How about the converse?
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Dobbertin’s V-measures

Theorem (Dobbertin, 1983)

Let M be a countable, conical refinement monoid and let e ∈ M.
Then there are a countable Boolean algebra B and a finitely additive
measure µ : B → M such that µ(1) = e, µ−1 {0} = {0}, and
whenever µ(c) = a + b, there exists a decomposition c = a⊕ b in B
such that µ(a) = a and µ(b) = b. (We say that µ is a V-measure.)
Moreover, the pair (B, µ) is unique up to isomorphism.

Example: M = (Z+,+, 0), e = 1. Then B = {0, 1}, µ(1) = 1.

Example: M = ({0, 1} ,∨, 0), the two-element semilattice, and
e = 1. Then B = the unique countable atomless Boolean
algebra, µ(x) = 1 iff x 6= 0.

Possibilities of extension of Dobbertin’s Theorem:

For cardM = ℵ1, uniqueness is lost. If cardM ≥ ℵ2, then existence is
lost (W 1998).
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From Dobbertin’s Theorem to type monoids

Proof of Dobbertin’s Theorem: essentially back-and-forth.

Proposition

Every countable conical refinement monoid is measurable.

Idea of proof :

M is an o-ideal in M ′ = M t {∞}. Since the o-ideals of Typ S
correspond to the additive ideals of S , the problem is reduced to
the case where M has an order-unit e.

Let µ : (B, 1)→ (M, e) be Dobbertin’s V-measure.

Set S = Inv(B, µ) = semigroup of all µ-preserving partial
isomorphisms f : B ↓ a→ B ↓ b, where a, b ∈ B with
µ(a) = µ(b).

S is a Boolean inverse semigroup, with idempotents a = idB↓a
where a ∈ B.

15/23



Type monoids

• The variety of
BISs

ISs from partial
functions

BISs and
additive
semigroup
homomorphisms

Biases

• The type
monoid

From D to
Typ S

Typ S and equi-
decomposability
types

Dobbertin’s
Theorem

Abelian `-groups

• Type monoids
and nonstable
K-theory

K〈S〉
Typ S →
V(K〈S〉)

From Dobbertin’s Theorem to type monoids

Proof of Dobbertin’s Theorem: essentially back-and-forth.

Proposition

Every countable conical refinement monoid is measurable.

Idea of proof :

M is an o-ideal in M ′ = M t {∞}. Since the o-ideals of Typ S
correspond to the additive ideals of S , the problem is reduced to
the case where M has an order-unit e.

Let µ : (B, 1)→ (M, e) be Dobbertin’s V-measure.

Set S = Inv(B, µ) = semigroup of all µ-preserving partial
isomorphisms f : B ↓ a→ B ↓ b, where a, b ∈ B with
µ(a) = µ(b).

S is a Boolean inverse semigroup, with idempotents a = idB↓a
where a ∈ B.

15/23



Type monoids

• The variety of
BISs

ISs from partial
functions

BISs and
additive
semigroup
homomorphisms

Biases

• The type
monoid

From D to
Typ S

Typ S and equi-
decomposability
types

Dobbertin’s
Theorem

Abelian `-groups

• Type monoids
and nonstable
K-theory

K〈S〉
Typ S →
V(K〈S〉)

From Dobbertin’s Theorem to type monoids

Proof of Dobbertin’s Theorem: essentially back-and-forth.

Proposition

Every countable conical refinement monoid is measurable.

Idea of proof :

M is an o-ideal in M ′ = M t {∞}. Since the o-ideals of Typ S
correspond to the additive ideals of S , the problem is reduced to
the case where M has an order-unit e.

Let µ : (B, 1)→ (M, e) be Dobbertin’s V-measure.

Set S = Inv(B, µ) = semigroup of all µ-preserving partial
isomorphisms f : B ↓ a→ B ↓ b, where a, b ∈ B with
µ(a) = µ(b).

S is a Boolean inverse semigroup, with idempotents a = idB↓a
where a ∈ B.

15/23



Type monoids

• The variety of
BISs

ISs from partial
functions

BISs and
additive
semigroup
homomorphisms

Biases

• The type
monoid

From D to
Typ S

Typ S and equi-
decomposability
types

Dobbertin’s
Theorem

Abelian `-groups

• Type monoids
and nonstable
K-theory

K〈S〉
Typ S →
V(K〈S〉)

From Dobbertin’s Theorem to type monoids

Proof of Dobbertin’s Theorem: essentially back-and-forth.

Proposition

Every countable conical refinement monoid is measurable.

Idea of proof :

M is an o-ideal in M ′ = M t {∞}. Since the o-ideals of Typ S
correspond to the additive ideals of S , the problem is reduced to
the case where M has an order-unit e.

Let µ : (B, 1)→ (M, e) be Dobbertin’s V-measure.

Set S = Inv(B, µ) = semigroup of all µ-preserving partial
isomorphisms f : B ↓ a→ B ↓ b, where a, b ∈ B with
µ(a) = µ(b).

S is a Boolean inverse semigroup, with idempotents a = idB↓a
where a ∈ B.

15/23



Type monoids

• The variety of
BISs

ISs from partial
functions

BISs and
additive
semigroup
homomorphisms

Biases

• The type
monoid

From D to
Typ S

Typ S and equi-
decomposability
types

Dobbertin’s
Theorem

Abelian `-groups

• Type monoids
and nonstable
K-theory

K〈S〉
Typ S →
V(K〈S〉)

From Dobbertin’s Theorem to type monoids

Proof of Dobbertin’s Theorem: essentially back-and-forth.

Proposition

Every countable conical refinement monoid is measurable.

Idea of proof :

M is an o-ideal in M ′ = M t {∞}. Since the o-ideals of Typ S
correspond to the additive ideals of S , the problem is reduced to
the case where M has an order-unit e.

Let µ : (B, 1)→ (M, e) be Dobbertin’s V-measure.

Set S = Inv(B, µ) = semigroup of all µ-preserving partial
isomorphisms f : B ↓ a→ B ↓ b, where a, b ∈ B with
µ(a) = µ(b).

S is a Boolean inverse semigroup, with idempotents a = idB↓a
where a ∈ B.

15/23



Type monoids

• The variety of
BISs

ISs from partial
functions

BISs and
additive
semigroup
homomorphisms

Biases

• The type
monoid

From D to
Typ S

Typ S and equi-
decomposability
types

Dobbertin’s
Theorem

Abelian `-groups

• Type monoids
and nonstable
K-theory

K〈S〉
Typ S →
V(K〈S〉)

From Dobbertin’s Theorem to type monoids

Proof of Dobbertin’s Theorem: essentially back-and-forth.

Proposition

Every countable conical refinement monoid is measurable.

Idea of proof :

M is an o-ideal in M ′ = M t {∞}. Since the o-ideals of Typ S
correspond to the additive ideals of S , the problem is reduced to
the case where M has an order-unit e.

Let µ : (B, 1)→ (M, e) be Dobbertin’s V-measure.

Set S = Inv(B, µ) = semigroup of all µ-preserving partial
isomorphisms f : B ↓ a→ B ↓ b, where a, b ∈ B with
µ(a) = µ(b).

S is a Boolean inverse semigroup, with idempotents a = idB↓a
where a ∈ B.

15/23



Type monoids

• The variety of
BISs

ISs from partial
functions

BISs and
additive
semigroup
homomorphisms

Biases

• The type
monoid

From D to
Typ S

Typ S and equi-
decomposability
types

Dobbertin’s
Theorem

Abelian `-groups

• Type monoids
and nonstable
K-theory

K〈S〉
Typ S →
V(K〈S〉)

From Dobbertin’s Theorem to type monoids

Proof of Dobbertin’s Theorem: essentially back-and-forth.

Proposition

Every countable conical refinement monoid is measurable.

Idea of proof :

M is an o-ideal in M ′ = M t {∞}. Since the o-ideals of Typ S
correspond to the additive ideals of S , the problem is reduced to
the case where M has an order-unit e.

Let µ : (B, 1)→ (M, e) be Dobbertin’s V-measure.

Set S = Inv(B, µ) = semigroup of all µ-preserving partial
isomorphisms f : B ↓ a→ B ↓ b, where a, b ∈ B with
µ(a) = µ(b).

S is a Boolean inverse semigroup, with idempotents a = idB↓a
where a ∈ B.

15/23



Type monoids

• The variety of
BISs

ISs from partial
functions

BISs and
additive
semigroup
homomorphisms

Biases

• The type
monoid

From D to
Typ S

Typ S and equi-
decomposability
types

Dobbertin’s
Theorem

Abelian `-groups

• Type monoids
and nonstable
K-theory

K〈S〉
Typ S →
V(K〈S〉)

From Dobbertin’s Theorem to type monoids

Proof of Dobbertin’s Theorem: essentially back-and-forth.

Proposition

Every countable conical refinement monoid is measurable.

Idea of proof :

M is an o-ideal in M ′ = M t {∞}. Since the o-ideals of Typ S
correspond to the additive ideals of S , the problem is reduced to
the case where M has an order-unit e.

Let µ : (B, 1)→ (M, e) be Dobbertin’s V-measure.

Set S = Inv(B, µ) = semigroup of all µ-preserving partial
isomorphisms f : B ↓ a→ B ↓ b, where a, b ∈ B with
µ(a) = µ(b).

S is a Boolean inverse semigroup, with idempotents a = idB↓a
where a ∈ B.

15/23



Type monoids

• The variety of
BISs

ISs from partial
functions

BISs and
additive
semigroup
homomorphisms

Biases

• The type
monoid

From D to
Typ S

Typ S and equi-
decomposability
types

Dobbertin’s
Theorem

Abelian `-groups

• Type monoids
and nonstable
K-theory

K〈S〉
Typ S →
V(K〈S〉)

Measurability of countable CRMs (cont’d)

Because of the uniqueness statement in Dobbertin’s Theorem,
for any a, b ∈ B, if µ(a) = µ(b), there is f ∈ S (usually not
unique) such that f (a) = b.

Hence, a D b within S iff µ(a) = µ(b).

By the definition of TypS , there is a unique monoid
homomorphism ϕ : TypS → M such that ϕ

(
a/D

)
= µ(a)

∀a ∈ B.

Since M is a refinement monoid and µ is a V-measure, the range
of ϕ (which is also the range of µ) generates M as a submonoid.

Moreover, ϕ is one-to-one on Int S (because a D b within S iff
µ(a) = µ(b)).

By the general properties of refinement monoids, this implies
that ϕ is an isomorphism. Hence M ∼= TypS .
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Representing abelian `-groups

Theorem (W 2015)

For every abelian `-group G , there is a Boolean inverse semigroup S ,
explicitly constructed, such that Typ S ∼= G+.

The poset D = G t {⊥}, for a new bottom element ⊥, is a
distributive lattice with zero.

Embed D into its enveloping Boolean ring B = BR(D).

The elements of B have the form
∨

0≤i<n(a2i+1 r a2i ), where all
ai ∈ D and ⊥ ≤ a0 ≤ · · · ≤ a2n.

Adding the condition a0 6= ⊥ (i.e., each ai ∈ G ) yields a Boolean
subring B of B.

The dimension monoid DimG of the (distributive) lattice
(G ,∨,∧) is isomorphic to the monoid Z+〈B〉 of all nonnegative
linear combinations of members of B, with ⊕ in B turned to +
in Z+〈B〉.

17/23



Type monoids

• The variety of
BISs

ISs from partial
functions

BISs and
additive
semigroup
homomorphisms

Biases

• The type
monoid

From D to
Typ S

Typ S and equi-
decomposability
types

Dobbertin’s
Theorem

Abelian `-groups

• Type monoids
and nonstable
K-theory

K〈S〉
Typ S →
V(K〈S〉)

Representing abelian `-groups

Theorem (W 2015)

For every abelian `-group G , there is a Boolean inverse semigroup S ,
explicitly constructed, such that Typ S ∼= G+.

The poset D = G t {⊥}, for a new bottom element ⊥, is a
distributive lattice with zero.

Embed D into its enveloping Boolean ring B = BR(D).

The elements of B have the form
∨

0≤i<n(a2i+1 r a2i ), where all
ai ∈ D and ⊥ ≤ a0 ≤ · · · ≤ a2n.

Adding the condition a0 6= ⊥ (i.e., each ai ∈ G ) yields a Boolean
subring B of B.

The dimension monoid DimG of the (distributive) lattice
(G ,∨,∧) is isomorphic to the monoid Z+〈B〉 of all nonnegative
linear combinations of members of B, with ⊕ in B turned to +
in Z+〈B〉.

17/23



Type monoids

• The variety of
BISs

ISs from partial
functions

BISs and
additive
semigroup
homomorphisms

Biases

• The type
monoid

From D to
Typ S

Typ S and equi-
decomposability
types

Dobbertin’s
Theorem

Abelian `-groups

• Type monoids
and nonstable
K-theory

K〈S〉
Typ S →
V(K〈S〉)

Representing abelian `-groups

Theorem (W 2015)

For every abelian `-group G , there is a Boolean inverse semigroup S ,
explicitly constructed, such that Typ S ∼= G+.

The poset D = G t {⊥}, for a new bottom element ⊥, is a
distributive lattice with zero.

Embed D into its enveloping Boolean ring B = BR(D).

The elements of B have the form
∨

0≤i<n(a2i+1 r a2i ), where all
ai ∈ D and ⊥ ≤ a0 ≤ · · · ≤ a2n.

Adding the condition a0 6= ⊥ (i.e., each ai ∈ G ) yields a Boolean
subring B of B.

The dimension monoid DimG of the (distributive) lattice
(G ,∨,∧) is isomorphic to the monoid Z+〈B〉 of all nonnegative
linear combinations of members of B, with ⊕ in B turned to +
in Z+〈B〉.

17/23



Type monoids

• The variety of
BISs

ISs from partial
functions

BISs and
additive
semigroup
homomorphisms

Biases

• The type
monoid

From D to
Typ S

Typ S and equi-
decomposability
types

Dobbertin’s
Theorem

Abelian `-groups

• Type monoids
and nonstable
K-theory

K〈S〉
Typ S →
V(K〈S〉)

Representing abelian `-groups

Theorem (W 2015)

For every abelian `-group G , there is a Boolean inverse semigroup S ,
explicitly constructed, such that Typ S ∼= G+.

The poset D = G t {⊥}, for a new bottom element ⊥, is a
distributive lattice with zero.

Embed D into its enveloping Boolean ring B = BR(D).

The elements of B have the form
∨

0≤i<n(a2i+1 r a2i ), where all
ai ∈ D and ⊥ ≤ a0 ≤ · · · ≤ a2n.

Adding the condition a0 6= ⊥ (i.e., each ai ∈ G ) yields a Boolean
subring B of B.

The dimension monoid DimG of the (distributive) lattice
(G ,∨,∧) is isomorphic to the monoid Z+〈B〉 of all nonnegative
linear combinations of members of B, with ⊕ in B turned to +
in Z+〈B〉.

17/23



Type monoids

• The variety of
BISs

ISs from partial
functions

BISs and
additive
semigroup
homomorphisms

Biases

• The type
monoid

From D to
Typ S

Typ S and equi-
decomposability
types

Dobbertin’s
Theorem

Abelian `-groups

• Type monoids
and nonstable
K-theory

K〈S〉
Typ S →
V(K〈S〉)

Representing abelian `-groups

Theorem (W 2015)

For every abelian `-group G , there is a Boolean inverse semigroup S ,
explicitly constructed, such that Typ S ∼= G+.

The poset D = G t {⊥}, for a new bottom element ⊥, is a
distributive lattice with zero.

Embed D into its enveloping Boolean ring B = BR(D).

The elements of B have the form
∨

0≤i<n(a2i+1 r a2i ), where all
ai ∈ D and ⊥ ≤ a0 ≤ · · · ≤ a2n.

Adding the condition a0 6= ⊥ (i.e., each ai ∈ G ) yields a Boolean
subring B of B.

The dimension monoid DimG of the (distributive) lattice
(G ,∨,∧) is isomorphic to the monoid Z+〈B〉 of all nonnegative
linear combinations of members of B, with ⊕ in B turned to +
in Z+〈B〉.

17/23



Type monoids

• The variety of
BISs

ISs from partial
functions

BISs and
additive
semigroup
homomorphisms

Biases

• The type
monoid

From D to
Typ S

Typ S and equi-
decomposability
types

Dobbertin’s
Theorem

Abelian `-groups

• Type monoids
and nonstable
K-theory

K〈S〉
Typ S →
V(K〈S〉)

Representing abelian `-groups

Theorem (W 2015)

For every abelian `-group G , there is a Boolean inverse semigroup S ,
explicitly constructed, such that Typ S ∼= G+.

The poset D = G t {⊥}, for a new bottom element ⊥, is a
distributive lattice with zero.

Embed D into its enveloping Boolean ring B = BR(D).

The elements of B have the form
∨

0≤i<n(a2i+1 r a2i ), where all
ai ∈ D and ⊥ ≤ a0 ≤ · · · ≤ a2n.

Adding the condition a0 6= ⊥ (i.e., each ai ∈ G ) yields a Boolean
subring B of B.

The dimension monoid DimG of the (distributive) lattice
(G ,∨,∧) is isomorphic to the monoid Z+〈B〉 of all nonnegative
linear combinations of members of B, with ⊕ in B turned to +
in Z+〈B〉.

17/23



Type monoids

• The variety of
BISs

ISs from partial
functions

BISs and
additive
semigroup
homomorphisms

Biases

• The type
monoid

From D to
Typ S

Typ S and equi-
decomposability
types

Dobbertin’s
Theorem

Abelian `-groups

• Type monoids
and nonstable
K-theory

K〈S〉
Typ S →
V(K〈S〉)

Representing abelian `-groups

Theorem (W 2015)

For every abelian `-group G , there is a Boolean inverse semigroup S ,
explicitly constructed, such that Typ S ∼= G+.

The poset D = G t {⊥}, for a new bottom element ⊥, is a
distributive lattice with zero.

Embed D into its enveloping Boolean ring B = BR(D).

The elements of B have the form
∨

0≤i<n(a2i+1 r a2i ), where all
ai ∈ D and ⊥ ≤ a0 ≤ · · · ≤ a2n.

Adding the condition a0 6= ⊥ (i.e., each ai ∈ G ) yields a Boolean
subring B of B.

The dimension monoid DimG of the (distributive) lattice
(G ,∨,∧) is isomorphic to the monoid Z+〈B〉 of all nonnegative
linear combinations of members of B, with ⊕ in B turned to +
in Z+〈B〉.

17/23



Type monoids

• The variety of
BISs

ISs from partial
functions

BISs and
additive
semigroup
homomorphisms

Biases

• The type
monoid

From D to
Typ S

Typ S and equi-
decomposability
types

Dobbertin’s
Theorem

Abelian `-groups

• Type monoids
and nonstable
K-theory

K〈S〉
Typ S →
V(K〈S〉)

Representing abelian `-groups (cont’d)

Enables us to define a V-measure (as in Dobbertin’s Theorem)
µ : B → G+ by

µ
( ∨

0≤i<n

(a2i+1 r a2i )
)

=
∑
i<n

(a2i+1 − a2i )

(where a0 ≤ a1 ≤ · · · ≤ a2n in G ).

Moreover, ∀a ∈ G , the translation x 7→ x + a “extends” to an
automorphism τa of B. So τa(y r x) = (a + y) r (a + x),
∀x ≤ y in G .

G = {τa | a ∈ G} is a subgroup of AutB, isomorphic to G .

The desired BIS is S = Inv(B,G ). One must prove that for
x , y ∈ B, µ(x) = µ(y) iff x and y are equidecomposable modulo
translations from G (think of elements of B as disjoint unions of
intervals with endpoints from G ).
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Loose ends on `-groups

Using Mundici’s 1986 result (MV-algebras � unit intervals of
abelian `-groups), it thus follows that every MV-algebra is
isomorphic to IntS = S/D , for some BIS S .

Every such S is
factorizable (i.e., ∀x , ∃ unit g , x ≤ g), and has D = J .

In the countable case, Lawson and Scott get the additional
information that S can be taken AF (i.e., countable direct limit
of finite products of symmetric inverse semigroups).

Dropping separability and keeping lim−→, this result can be

extended to all G+, where G is a dimension group (not
necessarily lattice-ordered) of cardinality ≤ ℵ1. (Proof : mutatis
mutandis extend the usual Elliott, Goodearl + Handelman
arguments from locally matricial algebras, or C*-algebras, to
BISs.)

Getting “locally matricial” in arbitrary cardinality: hopeless for
arbitrary dimension groups (counterexamples of size ℵ2), but
still open for abelian `-groups.

19/23



Type monoids

• The variety of
BISs

ISs from partial
functions

BISs and
additive
semigroup
homomorphisms

Biases

• The type
monoid

From D to
Typ S

Typ S and equi-
decomposability
types

Dobbertin’s
Theorem

Abelian `-groups

• Type monoids
and nonstable
K-theory

K〈S〉
Typ S →
V(K〈S〉)

Loose ends on `-groups

Using Mundici’s 1986 result (MV-algebras � unit intervals of
abelian `-groups), it thus follows that every MV-algebra is
isomorphic to IntS = S/D , for some BIS S . Every such S is
factorizable (i.e., ∀x , ∃ unit g , x ≤ g), and has D = J .

In the countable case, Lawson and Scott get the additional
information that S can be taken AF (i.e., countable direct limit
of finite products of symmetric inverse semigroups).

Dropping separability and keeping lim−→, this result can be

extended to all G+, where G is a dimension group (not
necessarily lattice-ordered) of cardinality ≤ ℵ1. (Proof : mutatis
mutandis extend the usual Elliott, Goodearl + Handelman
arguments from locally matricial algebras, or C*-algebras, to
BISs.)

Getting “locally matricial” in arbitrary cardinality: hopeless for
arbitrary dimension groups (counterexamples of size ℵ2), but
still open for abelian `-groups.

19/23



Type monoids

• The variety of
BISs

ISs from partial
functions

BISs and
additive
semigroup
homomorphisms

Biases

• The type
monoid

From D to
Typ S

Typ S and equi-
decomposability
types

Dobbertin’s
Theorem

Abelian `-groups

• Type monoids
and nonstable
K-theory

K〈S〉
Typ S →
V(K〈S〉)

Loose ends on `-groups

Using Mundici’s 1986 result (MV-algebras � unit intervals of
abelian `-groups), it thus follows that every MV-algebra is
isomorphic to IntS = S/D , for some BIS S . Every such S is
factorizable (i.e., ∀x , ∃ unit g , x ≤ g), and has D = J .

In the countable case, Lawson and Scott get the additional
information that S can be taken AF (i.e., countable direct limit
of finite products of symmetric inverse semigroups).

Dropping separability and keeping lim−→, this result can be

extended to all G+, where G is a dimension group (not
necessarily lattice-ordered) of cardinality ≤ ℵ1. (Proof : mutatis
mutandis extend the usual Elliott, Goodearl + Handelman
arguments from locally matricial algebras, or C*-algebras, to
BISs.)

Getting “locally matricial” in arbitrary cardinality: hopeless for
arbitrary dimension groups (counterexamples of size ℵ2), but
still open for abelian `-groups.

19/23



Type monoids

• The variety of
BISs

ISs from partial
functions

BISs and
additive
semigroup
homomorphisms

Biases

• The type
monoid

From D to
Typ S

Typ S and equi-
decomposability
types

Dobbertin’s
Theorem

Abelian `-groups

• Type monoids
and nonstable
K-theory

K〈S〉
Typ S →
V(K〈S〉)

Loose ends on `-groups

Using Mundici’s 1986 result (MV-algebras � unit intervals of
abelian `-groups), it thus follows that every MV-algebra is
isomorphic to IntS = S/D , for some BIS S . Every such S is
factorizable (i.e., ∀x , ∃ unit g , x ≤ g), and has D = J .

In the countable case, Lawson and Scott get the additional
information that S can be taken AF (i.e., countable direct limit
of finite products of symmetric inverse semigroups).

Dropping separability and keeping lim−→, this result can be

extended to all G+, where G is a dimension group (not
necessarily lattice-ordered) of cardinality ≤ ℵ1.

(Proof : mutatis
mutandis extend the usual Elliott, Goodearl + Handelman
arguments from locally matricial algebras, or C*-algebras, to
BISs.)

Getting “locally matricial” in arbitrary cardinality: hopeless for
arbitrary dimension groups (counterexamples of size ℵ2), but
still open for abelian `-groups.

19/23



Type monoids

• The variety of
BISs

ISs from partial
functions

BISs and
additive
semigroup
homomorphisms

Biases

• The type
monoid

From D to
Typ S

Typ S and equi-
decomposability
types

Dobbertin’s
Theorem

Abelian `-groups

• Type monoids
and nonstable
K-theory

K〈S〉
Typ S →
V(K〈S〉)

Loose ends on `-groups

Using Mundici’s 1986 result (MV-algebras � unit intervals of
abelian `-groups), it thus follows that every MV-algebra is
isomorphic to IntS = S/D , for some BIS S . Every such S is
factorizable (i.e., ∀x , ∃ unit g , x ≤ g), and has D = J .

In the countable case, Lawson and Scott get the additional
information that S can be taken AF (i.e., countable direct limit
of finite products of symmetric inverse semigroups).

Dropping separability and keeping lim−→, this result can be

extended to all G+, where G is a dimension group (not
necessarily lattice-ordered) of cardinality ≤ ℵ1. (Proof : mutatis
mutandis extend the usual Elliott, Goodearl + Handelman
arguments from locally matricial algebras, or C*-algebras, to
BISs.)

Getting “locally matricial” in arbitrary cardinality: hopeless for
arbitrary dimension groups (counterexamples of size ℵ2), but
still open for abelian `-groups.

19/23



Type monoids

• The variety of
BISs

ISs from partial
functions

BISs and
additive
semigroup
homomorphisms

Biases

• The type
monoid

From D to
Typ S

Typ S and equi-
decomposability
types

Dobbertin’s
Theorem

Abelian `-groups

• Type monoids
and nonstable
K-theory

K〈S〉
Typ S →
V(K〈S〉)

Loose ends on `-groups

Using Mundici’s 1986 result (MV-algebras � unit intervals of
abelian `-groups), it thus follows that every MV-algebra is
isomorphic to IntS = S/D , for some BIS S . Every such S is
factorizable (i.e., ∀x , ∃ unit g , x ≤ g), and has D = J .

In the countable case, Lawson and Scott get the additional
information that S can be taken AF (i.e., countable direct limit
of finite products of symmetric inverse semigroups).

Dropping separability and keeping lim−→, this result can be

extended to all G+, where G is a dimension group (not
necessarily lattice-ordered) of cardinality ≤ ℵ1. (Proof : mutatis
mutandis extend the usual Elliott, Goodearl + Handelman
arguments from locally matricial algebras, or C*-algebras, to
BISs.)

Getting “locally matricial” in arbitrary cardinality: hopeless for
arbitrary dimension groups (counterexamples of size ℵ2), but
still open for abelian `-groups.

19/23



Type monoids

• The variety of
BISs

ISs from partial
functions

BISs and
additive
semigroup
homomorphisms

Biases

• The type
monoid

From D to
Typ S

Typ S and equi-
decomposability
types

Dobbertin’s
Theorem

Abelian `-groups

• Type monoids
and nonstable
K-theory

K〈S〉
Typ S →
V(K〈S〉)

Additive enveloping K -algebra of a BIS

Definition

For a unital ring K and a BIS S , K 〈S〉 is the K -algebra defined by
generators S and relations λs = sλ, 1s = s, z = x + y (within K 〈S〉)
whenever z = x ⊕ y (within S).

For S a Boolean inverse meet-semigroup, K 〈S〉 is isomorphic to
Steinberg’s K UT (S) (étale groupoid algebra of UT(S)), where
UT(S) is called there the universal additive groupoid of S .
Steinberg’s construction extends to Hausdorff inverse semigroups
(not necessarily Boolean).

If K is an involutary ring, then K 〈S〉 is an involutary K -algebra
(set (λs)∗ = λ∗s−1).

If X ⊆ S generates S as a bias, then it also generates K 〈S〉 as
an involutary subring.

The construction K 〈S〉 extends known constructions, such as
Leavitt path algebras.
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whenever z = x ⊕ y (within S).

For S a Boolean inverse meet-semigroup, K 〈S〉 is isomorphic to
Steinberg’s K UT (S) (étale groupoid algebra of UT(S)), where
UT(S) is called there the universal additive groupoid of S .
Steinberg’s construction extends to Hausdorff inverse semigroups
(not necessarily Boolean).

If K is an involutary ring, then K 〈S〉 is an involutary K -algebra
(set (λs)∗ = λ∗s−1).
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BISs interact with involutary rings

Proposition (W 2015)

Every inverse semigroup S , in an involutary ring R, is contained in a
BIS S ⊆ R, in which ⊕ specializes orthogonal addition (x + y , where
x∗y = xy∗ = 0).

Loosely speaking, this means that studying inverse semigroups in
involutary rings reduces, in many instances, to studying Boolean
inverse semigroups in involutary rings.

Can, in certain conditions, be extended to involutary semirings.

Yields a workable definition of the tensor product S ⊗ T of two
BISs S and T , which is still a BIS and has
Idp(S ⊗ T ) ∼= (IdpS)⊗ (IdpT ),
Umon(S ⊗ T ) ∼= Umon(S)⊗ Umon(T ), and
Typ(S ⊗ T ) ∼= Typ(S)⊗ Typ(T ).
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Embedding properties of K 〈S〉

For S a sub-BIS (� sub-bias) of T , the canonical map
K 〈S〉 → K 〈T 〉 may not be one-to-one.

Nevertheless, in a number of cases, it is one-to-one.

For example, if T is the regular representation of S , or if T is a
Boolean inverse meet-semigroup and S is closed under finite
meets, then K 〈S〉 → K 〈T 〉 is one-to-one.

Has to do with so-called transfer properties in lattice theory
(getting from K ↪→ Id L to K ↪→ L).
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The canonical map Typ S → V(K 〈S〉)

For idempotent matrices a and b from a ring R, let a ∼ b hold if
∃x , y , a = xy and b = yx (Murray - von Neumann equivalence).

MvN classes can be added, via [x ] + [y ] = [x + y ] provided
xy = yx = 0.

V(R) = {[x ] | x idempotent matrix from R}, the nonstable
K-theory of R. It is a conical commutative monoid.

Proposition (W 2015)

Let S be a BIS and let K be a unital ring. Then there is a unique
monoid homomorphism f : TypS → V(K 〈S〉) such that
f (x/D) = [x ]K〈S〉 ∀x ∈ S .

There are counterexamples where f is neither one-to-one, nor
onto, even for K a field.

Question: does Typ S ∼= V(Z〈S〉)?
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