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Background: algebraic lattices

An element a in a lattice (A,∨,∧) is compact, if a ≤ ∨X
(for X ⊆ A) implies that there exists a finite Y ⊆ X such
that a ≤ ∨Y .

A lattice A is algebraic, if it is complete and every element
of A is a join (=supremum) of compact elements.

For an algebra U, the lattice Con U of all congruences
of U (with ⊆) is algebraic (Birkhoff and Frink, 1948).



CLP CX

Background

Distr Alg Lat

AlgLat - JSem

DSLATs

Main result

Kuratowski

Weak Distr

L(Ω)

R(S), D(S)

G(Ω)

Evaporation

Erosion

Alt chains

Descent

Lattice case

Background: algebraic lattices

An element a in a lattice (A,∨,∧) is compact, if a ≤ ∨X
(for X ⊆ A) implies that there exists a finite Y ⊆ X such
that a ≤ ∨Y .

A lattice A is algebraic, if it is complete and every element
of A is a join (=supremum) of compact elements.

For an algebra U, the lattice Con U of all congruences
of U (with ⊆) is algebraic (Birkhoff and Frink, 1948).



CLP CX

Background

Distr Alg Lat

AlgLat - JSem

DSLATs

Main result

Kuratowski

Weak Distr

L(Ω)

R(S), D(S)

G(Ω)

Evaporation

Erosion

Alt chains

Descent

Lattice case

Background: algebraic lattices

An element a in a lattice (A,∨,∧) is compact, if a ≤ ∨X
(for X ⊆ A) implies that there exists a finite Y ⊆ X such
that a ≤ ∨Y .

A lattice A is algebraic, if it is complete and every element
of A is a join (=supremum) of compact elements.

For an algebra U, the lattice Con U of all congruences
of U (with ⊆) is algebraic (Birkhoff and Frink, 1948).



CLP CX

Background

Distr Alg Lat

AlgLat - JSem

DSLATs

Main result

Kuratowski

Weak Distr

L(Ω)

R(S), D(S)

G(Ω)

Evaporation

Erosion

Alt chains

Descent

Lattice case

Background: the Grätzer-Schmidt Theorem

Theorem (Grätzer and Schmidt, 1963)

Every algebraic lattice A is isomorphic to Con U, for some
algebra U.

The algebra U constructed above may have many operations.
This is unavoidable in general (Freese, Lampe, and Taylor,
1979), but U can be taken a groupoid in case the lattice A has
a compact unit (Lampe, 1982).
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Background: compact congruences

The compact congruences of an algebra U (that is, the
compact elements of Con U) are the finite joins of
principal congruences conU(x , y) (i.e., the least
congruence of U that identifies x and y), where x , y ∈ U.

The collection Conc U of all compact congruences of U
(with ⊆) is a (∨, 0)-semilattice.

Any homomorphism f : U → V of algebras of the same
signature gives rise to a (∨, 0)-homomorphism
Conc f : Conc U → Conc V , defined by the rule

(Conc f )(α) =
∨(

conV (f (x), f (y)) | (x , y) ∈ α
)
.

Hence U 7→ Conc U, f 7→ Conc f defines a functor from
algebras of a same signature with their homomorphisms to
(∨, 0)-semilattices and (∨, 0)-homomorphisms. This
functor preserves direct limits.
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Lattice case

Funayama and Nakayama’s Theorem

Theorem (Funayama and Nakayama, 1942)

Con L is distributive, for any lattice L.

The proof uses a majority operation on L, for example,

m(x , y , z) = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z) (x , y , z ∈ L).

(where majority operation just means that
m(x , x , y) = m(x , y , x) = m(y , x , x) = x .)
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Dilworth’s finite converse

At about that time Dilworth discovered the following converse:

Theorem (Dilworth, ∼1940s, unpublished)

Every finite distributive lattice is isomorphic to Con L, for some
finite lattice L.

First published proof of the theorem above due to Grätzer and
Schmidt (1963). Their lattice L is sectionally complemented,
that is, for each x ≤ y in L, there exists z ∈ L such that
x ∧ z = 0 and x ∨ z = y (abbreviation: y = x ⊕ z).
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Lattice case

The Congruence Lattice Problem

The general problem is traditionally attributed to Dilworth:

The Congruence Lattice Problem, CLP

Is every distributive algebraic lattice isomorphic to Con L, for
some lattice L?

Its first printed appearance was in Grätzer and Schmidt, 1962,
but it was obviously known earlier.

For more history on this
problem, see G. Grätzer, “Two problems that shaped a century
of lattice theory”, Notices Amer. Math. Soc. 54, no. 6
(June/July 2007), 696–707.
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Algebraic lattices and (∨, 0)-semilattices

A := category of all algebraic lattices with
compactness-preserving complete join-homomorphisms
(but not necessarily meet-homomorphisms).

S := category of all (∨, 0)-semilattices with
(∨, 0)-homomorphisms.

With an algebraic lattice A, associate the
(∨, 0)-semilattice Komp A of all compact elements of A.

Extends naturally to a functor Komp: A → S.

With a (∨, 0)-semilattice S , associate the lattice Id S of all
ideals of S , that is, all lower subsets of S that are also
(∨, 0)-subsemilattices of S .

Extends naturally to a functor Id : S → A.
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The category equivalence between A and S

Theorem (folklore, ∼1950s)

The pair of functors (Komp, Id) extends naturally to a category
equivalence between A (algebraic lattices) and S
((∨, 0)-semilattices).

So, algebraic lattices are “the same” as (∨, 0)-semilattices.
The lattice Con U (for an algebra U), which is an algebraic
lattice, corresponds to the (∨, 0)-semilattice Conc U.
Most problems related to CLP are more conveniently
formulated in the language of (∨, 0)-semilattices.
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Distributive semilattices

Definition

A (∨, 0)-semilattice S is distributive, if for all a, b, c ∈ S such
that c ≤ a ∨ b, there are x ≤ a and y ≤ b such that c = x ∨ y .

Equivalently, the ideal lattice Id S is a distributive lattice.
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Equivalently, the ideal lattice Id S is a distributive lattice.
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that c ≤ a ∨ b, there are x ≤ a and y ≤ b such that c = x ∨ y .

a b
c

a ∨ b

x y

Equivalently, the ideal lattice Id S is a distributive lattice.
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Semilattice formulation of CLP

Semilattice formulation of CLP

Is every distributive (∨, 0)-semilattice S representable, that is,
isomorphic to Conc L, for some lattice L?

Many partial positive results are known. For example, for S a
lattice (Schmidt 1981) or even a countable directed union of
distributive lattices (FW 2003), or |S | 6 ℵ1 (Huhn 1985). In
all these cases, L can be taken relatively complemented with
zero, thus with permutable congruences (Grätzer, Lakser, and
FW). In constrast, for |S | > ℵ2, there may be no solution
where L has permutable congruences (Ploščica, Tůma, and
FW), even in case S is known to be representable!
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The main negative result

Theorem (FW, 2005)

There exists a distributive (∨, 0, 1)-semilattice S that is not
isomorphic to Conc L, for any lattice L.

The original proof has |S | = ℵω+1. This bound has been
improved to the optimal size, |S | = ℵ2, by Pavel Růžička
(2006).
Now let’s outline the proof of the theorem above.
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The Kuratowski Free Set Theorem

For any set Ω and any natural number n, we put

[Ω]n = {X ⊆ Ω | |X | = n},
[Ω]<ω = {X ⊆ Ω | X is finite}.

We say that H ⊆ Ω is free with respect to a mapping
Φ: [Ω]n → [Ω]<ω, if Φ(X ) ∩ H ⊆ X , for any X ∈ [H]n.

Kuratowski’s Free Set Theorem (1951)

Let n be a natural number and let Ω be a set. Then |Ω| > ℵn

iff any mapping Φ: [Ω]n → [Ω]<ω has a (n + 1)-element free
set.
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Weakly distributive homomorphisms

The following definition is a modification of E. T. Schmidt’s
original 1968 definition of a weakly distributive homomorphism.

Definition

For join-semilattices S and T , a join-homomorphism µ : S → T
is weakly distributive at x ∈ S , if for all y0, y1 ∈ T such that
µ(x) ≤ y0 ∨ y1, there are x0, x1 ∈ S such that x ≤ x0 ∨ x1 and
µ(xi ) ≤ yi , for all i < 2.

Fundamental examples:

For any reduct A of an algebra B (in any signature), the
canonical map Conc A→ Conc B is a weakly distributive
(∨, 0)-homomorphism.

For any convex sublattice K of a lattice L, the canonical
map Conc K → Conc L is a weakly distributive
(∨, 0)-homomorphism.
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The semilattices L(Ω)

We need (∨, 0, 1)-semilattices with lots of elements a, b such
that a ∨ b = 1. The most natural choice is to use the free
objects with collections of such pairs.

For a set Ω, we denote by L(Ω) the (∨, 0, 1)-semilattice

defined by generators aξ0 and aξ1, for ξ ∈ Ω, and relations

aξ0 ∨ aξ1 = 1, for all ξ ∈ Ω.

This extends naturally to a functor L from Set to the category
of all (∨, 0, 1)-semilattices with (∨, 0, 1)-homomorphisms. The
functor L preserves direct limits.
Concrete representation of L(Ω): it consists of all pairs
(X ,Y ) ∈ P(Ω)×P(Ω) such that

either X and Y are finite and disjoint, or X = Y = Ω;

then aξ0 = ({ξ},∅) and aξ1 = (∅, {ξ}).
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L(ℵω+1) could almost have worked, except that. . .

. . .L(Ω) is not distributive as a rule!

We need a nice definition of “free distributive extension” of a
(∨, 0)-semilattice.
The most convenient such construction is due to Ploščica and
Tůma (1997).

Definition

For a (∨, 0)-semilattice S , we put

C(S) = {(a,b, c) ∈ S3 | c ≤ a ∨ b},

and we denote by R(S) the (∨, 0)-semilattice freely generated
by S and elements ./(a,b, c), for (a,b, c) ∈ C(S), subjected to
the relations

./(a,b, c) ≤ a,

c = ./(a,b, c) ∨ ./(b, a, c).
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c = ./(a,b, c) ∨ ./(b, a, c).
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L(ℵω+1) could almost have worked, except that. . .

. . .L(Ω) is not distributive as a rule!
We need a nice definition of “free distributive extension” of a
(∨, 0)-semilattice.
The most convenient such construction is due to Ploščica and
Tůma (1997).
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A concrete realization of R(S)

A finite subset x of C(S) is reduced, if it satisfies the three
conditions below:

x contains exactly one diagonal triple, that is, a triple of
the form (u,u,u). We put u = π(x).

(u, v,w) ∈ x and (v,u,w) ∈ x implies that u = v = w.

(u, v,w) ∈ x non-diagonal implies that u, v,w � π(x).

The ordering on R(S) is defined by

x ≤ y ⇔ ∀(u, v,w) ∈ x \ y, either u ≤ π(y) or w ≤ π(y).
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. . . and now, D(S)

Theorem (Ploščica and Tůma 1997)

The two definition of R(S) presented above are equivalent.

The canonical embedding from S into R(S) is the map
u 7→ (u,u,u).
For x ∈ R(S), the largest element of S below x is π(x).
We identify u ∈ S with (u,u,u) ∈ R(S).

With this
convention, S ⊆ R(S).

Definition (Free distributive extension of S)

We put D(S) =
⋃

n<ωRn(S), for each (∨, 0)-semilattice S .

Each “refinement problem” c ≤ a ∨ b in S has a solution
in R(S). Hence, D(S) is a distributive (∨, 0)-semilattice (in
which S is cofinal). We say that D(S) is the free distributive
extension of S .
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The two definition of R(S) presented above are equivalent.

The canonical embedding from S into R(S) is the map
u 7→ (u,u,u).

For x ∈ R(S), the largest element of S below x is π(x).
We identify u ∈ S with (u,u,u) ∈ R(S).

With this
convention, S ⊆ R(S).

Definition (Free distributive extension of S)

We put D(S) =
⋃

n<ωRn(S), for each (∨, 0)-semilattice S .

Each “refinement problem” c ≤ a ∨ b in S has a solution
in R(S). Hence, D(S) is a distributive (∨, 0)-semilattice (in
which S is cofinal). We say that D(S) is the free distributive
extension of S .



CLP CX

Background

Distr Alg Lat

AlgLat - JSem

DSLATs

Main result

Kuratowski

Weak Distr

L(Ω)

R(S), D(S)

G(Ω)

Evaporation

Erosion

Alt chains

Descent

Lattice case

. . . and now, D(S)
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Preservation results for R and D

Lemma

For every collection (Si | i ∈ I ) of (∨, 0)-subsemilattices of a
(∨, 0)-semilattice S ,

R(
⋂

i∈I Si ) =
⋂

i∈I R(Si );

if I 6= ∅ and (Si | i ∈ I ) is upward directed, then
R(
⋃

i∈I Si ) =
⋃

i∈I R(Si );

. . . and similarly for D.
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The functor G and the support of an element

Definition

Set G = D ◦ L.

So, G(Ω) is the ‘free distributive extension’, as defined above,
of L(Ω).
G is a functor from Set to the category of distributive
(∨, 0, 1)-semilattices. It preserves direct limits.
By using previous lemma, we get

Lemma

For every collection (Xi | i ∈ I ) of subsets of a set Ω,

L(
⋂

i∈I Xi ) =
⋂

i∈I L(Xi );

if I 6= ∅ and (Xi | i ∈ I ) is upward directed, then
L(
⋃

i∈I Xi ) =
⋃

i∈I L(Xi );

. . . and similarly for G.
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The support of an element of G(Ω)

Definition

The support of x ∈ G(Ω) is the least X ⊆ Ω such that
x ∈ G(X ). We denote it by supp(x).

By the Lemma above, supp(x) is indeed defined, and it is a
finite subset of Ω.



CLP CX

Background

Distr Alg Lat

AlgLat - JSem

DSLATs

Main result

Kuratowski

Weak Distr

L(Ω)

R(S), D(S)

G(Ω)

Evaporation

Erosion

Alt chains

Descent

Lattice case

The support of an element of G(Ω)

Definition

The support of x ∈ G(Ω) is the least X ⊆ Ω such that
x ∈ G(X ). We denote it by supp(x).

By the Lemma above, supp(x) is indeed defined, and it is a
finite subset of Ω.



CLP CX

Background

Distr Alg Lat

AlgLat - JSem

DSLATs

Main result

Kuratowski

Weak Distr

L(Ω)

R(S), D(S)

G(Ω)

Evaporation

Erosion

Alt chains

Descent

Lattice case

The Evaporation Lemma

By working with the “concrete realization of R(S)”, we can
prove

The Evaporation Lemma

Let α, β, and δ be distinct elements in a set Ω, let i , j < 2, let
x ∈ G(Ω \ {β}), y ∈ G(Ω \ {α}), and z ∈ G(Ω \ {δ}). Then

z ≤ x ∨ y , x ≤ aδ0, a
α
i , y ≤ aδ1, a

β
j

implies that z = 0.

This means that there is no nonzero element of G(Ω \ {δ})
below the element

(aδ0 ∧G(Ω\{β}) aαi ) ∨ (aδ1 ∧G(Ω\{α}) aβj )

(join evaluated in the ideal lattice of G(Ω).)
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Settings of the Erosion Lemma

We are working in any algebra L with a
congruence-compatible structure of a join-semilattice, say
(L,∨). So every congruence of L is a ∨-congruence.

We put U ∨ V = {u ∨ v | (u, v) ∈ U × V }, for any
U,V ⊆ L.

We also denote by ConU
c L the (∨, 0)-subsemilattice

of Conc L generated by all congruences con(u, v), where
(u, v) ∈ U × U.

Hence, if U is finite, then so is ConU
c L.

Finally, we put ε(n) = n mod 2, for any integer n.

(That
is, 0 if n is even, 1 if n is odd).
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Statement of the Erosion Lemma

The statement below is a slightly less general form of the
original Erosion Lemma.

The Erosion Lemma

Let x0, x1 ∈ L and let Z = {z0, z1, . . . , zn} ⊆ L with z0 ≤ x0, x1

and zn = 1 (largest element of L).

Put

aj =
∨(

con(zi , zi+1) | i ∈ ε−1{j}) (∀j < 2).

Then there are congruences uj ∈ Con
{xj}∨Z
c L, for j < 2, such

that

x0 ∨ x1 ≡ 1 (mod u0 ∨ u1),

uj ⊆ aj ∩ con(xj , 1) (∀j < 2).
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Illustrating the Erosion Lemma

zn−1

z0

zn = 1

z1

z2

zn−2

zi ≡ zi+1 (mod aε(i))

(ε(i) = i mod 2)

x0 x1

xj ≡ 1 (mod xj)

x0 ∨ x1

x0 ∨ x1 ≡ 1 (mod u0 ∨ u1)

uj ⊆ aj ∩ xj

with uj ∈ Con
{xj}∨Z
c L.
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Proof of the Erosion Lemma

Put vi = con(zi ∨ xε(i), zi+1 ∨ xε(i)) (∀i < n).

So

vi ∈ Con
{xε(i)}∨Z
c L and vi ≤ aε(i). Put θi = con(xε(i), 1). As

zi ∨ zn = zi+1 ∨ zn(= 1) and 1 ≡ xε(i) (mod θi ), we obtain that
zi ∨ xε(i) ≡ zi+1 ∨ xε(i) (mod θi ), that is,

vi ⊆ con(xε(i), 1).

Now we put

uj =
∨

(vi | i ∈ ε−1{j}) (∀j < 2).

So uj ∈ Con
{xj}∨Z
c L and uj ⊆ aj ∩ con(xj , 1). Finally, from

zi ∨ xε(i) ≡ zi+1 ∨ xε(i) (mod vi ) it follows that
zi ∨ x0 ∨ x1 ≡ zi+1 ∨ x0 ∨ x1 (mod u0 ∨ u1) (∀i < n).
Therefore, x0 ∨ x1 ≡ 1 (mod u0 ∨ u1).
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Statement of the main technical result

We shall in fact prove the following result.

Theorem

Let Ω be a set of cardinality at least ℵω+1, let L be an algebra
possessing a congruence-compatible structure of a
(∨, 1)-semilattice, and let µ : Conc L→ G(Ω) be a
(∨, 0)-homomorphism. If µ is weakly distributive, then µ = 0.

By Růžička’s work, the bound ℵω+1 can be replaced by ℵ2 in
the theorem above.
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Getting the alternating chains

At the beginning of the proof, we make the only visible use of
the equalities aξ0 ∨ aξ1 = 1 (for ξ ∈ Ω).

Namely, as any compact
congruence of L lies below a finite join of elements of the form
con(t, 1) (for t ∈ L), we must prove that µ con(t, 1) = 0, and

so we use directly the inequality µ con(t, 1) ≤ 1 = aξ0 ∨ aξ1.
As µ is weakly distributive, there are an integer nξ > 2 and

elements zξi ≥ t in L, for 0 6 i 6 nξ, such that

zξ0 = t, zξnξ = 1,

µ con(zξi , z
ξ
i+1) ≤ aξε(i), for all i < nξ.

As ℵω+1 is a regular cardinal, there exists Ω′ ⊆ Ω of
cardinality ℵω+1 such that nξ = constant(=: n), for all ξ ∈ Ω′.
Pick any retraction ρ : Ω� Ω′ and replace µ by G(ρ) ◦ µ.
Further, we may assume that µ−1{0} = {0} (replace L by its
quotient by the congruence “µ con(x , y) = 0”).
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The alternating chains

zα
n−1

zα
0 = zβ

0 = zγ
0 = zδ

0 = · · · = t

zα
n = zβ

n = zγ
n = zδ

n = · · · = 1

zα
1

zα
2

zβ
1

zβ
2

zβ
n−1

zγ
1

zγ
2

zγ
n−1

zδ
1

zδ
2

zδ
n−1

zα
n−2 zβ

n−2 zγ
n−2 zδ

n−2 zξ
i ≡ zξ

i+1 (mod aε(i))

(ε(i) = i mod 2)

ξ
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Using the alternating chains

So we have reduced the problem to the case where µ separates
zero and

zξ0 = t, zξn = 1,

µ con(zξi , z
ξ
i+1) ≤ aξε(i), for all i < n.

We denote by S(X ) the join-subsemilattice of L generated by

{zξi | 0 6 i 6 n, ξ ∈ X},
for any finite X ⊆ Ω. As S(X ) is finite,

Φ(X ) =
⋃

(suppµ con(x , y) | x , y ∈ S(X ))

is a finite subset of Ω.
By Kuratowski’s Free Set Theorem, there exists a
(2n + 1)-element subset H of Ω which is free with respect to Φ
(more precisely, to the restriction of Φ to all 2n-elements
subsets of Ω, no change there as Φ is isotone).
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Beginning of the descent. . .

Now we pick distinct α, β, δ ∈ H and apply the Erosion Lemma
with zαn−1 instead of x0, zβn−1 instead of x1, and zδi instead
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such that
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µ(u1) ≤ aδ1, a
β
k ,

with k = ε(n− 1), such that con(zαn−1 ∨ zβn−1, 1) ≤ u0 ∨ u1. By
the definition of the set mapping Φ, we obtain

µ(u0) ∈ GΦ({α, δ}),
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. . . Proceeding in the descent

Furthermore, by the freeness of H with respect to Φ, we get
that Φ({α, δ}) ⊆ Ω \ {β}, Φ({β, δ}) ⊆ Ω \ {α}, and
Φ({α, β}) ⊆ Ω \ {δ}.

Therefore, by the Evaporation Lemma,

we obtain that µ con(zαn−1 ∨ zβn−1, 1) = 0, so, as µ separates

zero, zαn−1 ∨ zβn−1 = 1.

Proceeding similarly, we obtain that zαn−1 ∨ zβn−2 ∨ zγn−2 = 1, for
all distinct α, β, γ ∈ H.
And then, that zα0

n−2 ∨ zα1
n−2 ∨ zα2

n−2 ∨ zα3
n−2 = 1, for all distinct

α0, α1, α2, α3 ∈ H. And so on. . .
At the end of the descent, we obtain that

∨
α∈Y zα0 = 1, for

any Y ⊆ H of cardinality 2n. As all zα0 = t (for α ∈ Y ), this
means that t = 1, which concludes the proof of the main
technical result.
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Consequence about lattice structure

Corollary

Let L be any algebra possessing a congruence-compatible
lattice structure, let Ω be a set, |Ω| > ℵω+1, and let
µ : Conc L→ G(Ω) be a (∨, 0)-homomorphism.

If µ is weakly
distributive, then µ = 0.

Denote by Llat the given congruence-compatible lattice
structure on (the underlying set of) L. As the canonical map
Conc(Llat)→ Conc L is weakly distributive, it suffices to prove
the corollary in case L is a lattice. And then, as, for all u ≤ v
in L, the canonical map Conc[u, v ]→ Conc L is weakly
distributive, it suffices to consider the case of bounded lattices,
which holds as proved above.
By Růžička’s work, the assumption |Ω| > ℵω+1 can be replaced
by the assumption |Ω| > ℵ2 in the corollary above.
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Getting the solution to CLP

As any isomorphism is weakly distributive, we get the
announced negative solution to CLP:

Corollary

If |Ω| > ℵω+1, then there exists no lattice L such that
Conc L ∼= G(Ω).

Again, by Růžička’s work, the assumption |Ω| > ℵω+1 can be
replaced by the assumption |Ω| > ℵ2.
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Again, by Růžička’s work, the assumption |Ω| > ℵω+1 can be
replaced by the assumption |Ω| > ℵ2.



CLP CX

Background

Distr Alg Lat

AlgLat - JSem

DSLATs

Main result

Kuratowski

Weak Distr

L(Ω)

R(S), D(S)

G(Ω)

Evaporation

Erosion

Alt chains

Descent

Lattice case

Getting the solution to CLP

As any isomorphism is weakly distributive, we get the
announced negative solution to CLP:

Corollary

If |Ω| > ℵω+1, then there exists no lattice L such that
Conc L ∼= G(Ω).
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replaced by the assumption |Ω| > ℵ2.
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