

Linear representations of Artin groups and automorphisms

Luis Paris

Université de Bourgogne Dijon, France

Journées d'algèbre 2017, En l'honneur de Patrick Dehornoy

Definition. The *braid group* on *n* strands, denoted by \mathcal{B}_n , is defined by the following presentation.

$$\mathcal{B}_{n} = \left\langle \sigma_{1}, \dots, \sigma_{n-1} \middle| \begin{array}{c} \sigma_{i}\sigma_{j} = \sigma_{j}\sigma_{i} & \text{for } |i-j| \geq 2\\ \sigma_{i}\sigma_{j}\sigma_{i} = \sigma_{j}\sigma_{i}\sigma_{j} & \text{for } |i-j| = 1 \end{array} \right\rangle$$

One of the historical questions on the subject was whether a braid group is linear, that is, whether it admits a faithful linear representation (on \mathbb{C}). This question was solved by Bigelow and Krammer in the early 2000s with the following representation.

Braid group

Let $\mathbb{K} = \mathbb{Q}(z, q)$, and let E be a \mathbb{K} -vector space of dimension $\frac{n(n-1)}{2}$ with a basis $\{e_{i,j}\}_{1 \le i < j \le n}$. For $k \in \{1, \ldots, n-1\}$ we define the linear map $\psi_k : E \to E$ by

$$\psi_{k}(e_{i,j}) = \begin{cases} zq^{2} e_{k,k+1} & \text{if } i = k, \ j = k+1 \\ (1-q)e_{i,k} + q e_{i,k+1} & \text{if } i < k, \ j = k \\ e_{i,k} + zq^{k-i+1}(q-1)e_{k,k+1} & \text{if } i < k, \ j = k+1 \\ zq(q-1)e_{k,k+1} + q e_{k+1,j} & \text{if } i = k, \ j > k+1 \\ e_{k,j} + (1-q)e_{k+1,j} & \text{if } i = k+1, \ j > k+1 \\ e_{i,j} & \text{if } i < j < k \text{ or } k+1 < i < j \\ e_{i,j} + zq^{k-1}(q-1)e_{k,k+1} & \text{if } i < k < k+1 < j \end{cases}$$

Theorem (Lawrence [1990], Bigelow [2001], Krammer [2002]) The mapping $\sigma_k \mapsto \psi_k$, $1 \le k \le n-1$, induces a linear representation $\psi : \mathcal{B}_n \to \operatorname{GL}(E)$, and this representation is faithful.

The question that motivated our work is the following.

Question

How can one extend ψ to the other Artin groups?

Definition. Let *S* be a finite set. A *Coxeter matrix* over *S* is a square symmetric matrix $M = (m_{s,t})_{s,t \in S}$ indexed by *S*, with coefficients in $\mathbb{N}^* \cup \{\infty\}$, such that $m_{s,t} = 1$ if and only if s = t. The *Coxeter graph* of *M* is a labelled graph Γ defined as follows.

- (a) S is the set of vertices of Γ .
- (b) Two vertices $s, t \in S$ are linked by an edge if and only if $m_{s,t} \ge 3$, and this edge is labelled by $m_{s,t}$ if $m_{s,t} \ge 4$.

Definition. For two letters *a*, *b* and an integer $m \ge 2$ we denote by $\langle ab \rangle^m$ the word $aba \cdots$ of length *m*.

(a) The *Artin group* associated with Γ is

(b) The Artin monoid associated with Γ is

$$\mathcal{A}^+ = \mathcal{A}^+_{\Gamma} = \langle S \mid \langle st \rangle^{m_{s,t}} = \langle ts \rangle^{m_{s,t}}$$
 for
 $s, t \in S, \ s \neq t, \text{ and } m_{s,t} \neq \infty \rangle^+$.

(c) The *Coxeter group* associated with Γ , denoted by $W = W_{\Gamma}$, is the quotient of *A* by the relations $s^2 = 1$, $s \in S$.

Artin group

Example. Let $\Gamma = A_{n-1}$ be the following Coxeter graph.

Then

$$A_{\Gamma} = \left\langle s_1, \dots, s_{n-1} \middle| \begin{array}{cc} s_i s_j = s_j s_i & \text{for } |i-j| \ge 2 \\ s_i s_j s_i = s_j s_i s_j & \text{for } |i-j| = 1 \end{array} \right\rangle \,.$$

This is the braid group \mathcal{B}_n . W_{Γ} is the quotient of \mathcal{B}_n by the relations $s_i^2 = 1, 1 \le i \le n-1$. It is isomorphic to the symmetric group \mathfrak{S}_n .

Definition. We say that Γ is

- (a) of *spherical type* if W_{Γ} is finite,
- (b) *simply laced* if $m_{s,t} \in \{2,3\}$ for all $s, t \in S, s \neq t$,
- (c) *triangle free* if there are no $s, t, r \in S$, pairwise distinct, such that $m_{s,t}, m_{s,r}, m_{t,r} \ge 3$.

"Theorem" (Cohen–Wales [2002], Digne [2003], Paris [2002])

The construction of the Krammer representation extends to simply laced and triangle free Artin groups.

- (1) If Γ is simply laced and triangle free, then this representation $\psi : A_{\Gamma}^+ \to \operatorname{GL}(E)$ is faithful on the Artin monoid.
- (2) If Γ is simply laced and of spherical type, then the whole representation ψ : A_Γ → GL(E) is faithful, and E is of finite dimension.

Open question

Up to a few exceptions, it is not known whether an Artin group A_{Γ} is always linear.

Definition. Let $\Pi = \{\epsilon_s \mid s \in S\}$ be a set in one-to-one correspondence with *S*, and let $V = \bigoplus_{s \in S} \mathbb{R} \epsilon_s$ be the real vector space with basis Π . Let $\langle ., . \rangle : V \times V \to \mathbb{R}$ be the symmetric bilinear form define by

$$\langle \epsilon_{s}, \epsilon_{t} \rangle = \begin{cases} -\cos(\pi/m_{s,t}) & \text{if } m_{s,t} \neq \infty, \\ -1 & \text{if } m_{s,t} = \infty. \end{cases}$$

For all $s \in S$ we define the linear transformation $f_s : V \to V$ by

$$f_{s}(x) = x - 2\langle x, \epsilon_{s} \rangle \epsilon_{s}.$$

Then the mapping $S \to GL(V)$, $s \mapsto f_s$, induces a faithful linear representation $f : W_{\Gamma} \to GL(V)$, called the *canonical representation* of W_{Γ} .

Notation. From now on, for $w \in W_{\Gamma}$ and $x \in V$, the vector f(w)(x) will be denoted by w x.

Linear representation

Definition. The set $\Phi = \{ w \in s \mid w \in W_{\Gamma}, s \in S \}$ is called the *root* system of Γ . Let $\rho = \sum_{s \in S} \lambda_s \in \phi$ be a root. We say that ρ is a *positive root* if $\lambda_s \ge 0$ for all $s \in S$. We denote by Φ^+ the set of positive roots, and we set $\Phi^- = -\Phi^+$.

Definition. Let $\mathbb{K} = \mathbb{Q}(q, z)$, and let $\mathcal{B} = \{e_{\rho} \mid \rho \in \Phi^+\}$ be a set in one-to-one correspondence with Φ^+ . Let $E = \bigoplus_{\rho \in \Phi^+} \mathbb{K} e_{\rho}$ be a \mathbb{K} -vector space with basis \mathcal{B} . For $s \in S$ we define the linear map $\varphi_s : E \to E$ by

$$\varphi_{\mathcal{S}}(\boldsymbol{e}_{\rho}) = \begin{cases} 0 & \text{if } \rho = \epsilon_{\mathcal{S}} \\ \boldsymbol{e}_{\rho} & \text{if } \langle \rho, \epsilon_{\mathcal{S}} \rangle = 0 \\ q \, \boldsymbol{e}_{\mathcal{S}\rho} & \text{if } \langle \rho, \epsilon_{\mathcal{S}} \rangle > 0 \text{ and } \rho \neq \epsilon_{\mathcal{S}} \\ (1 - q)\boldsymbol{e}_{\rho} + \boldsymbol{e}_{\mathcal{S}\rho} & \text{if } \langle \rho, \epsilon_{\mathcal{S}} \rangle < 0 \end{cases}$$

Fact

(1) We have

$$\begin{aligned} \varphi_{s}\varphi_{t} &= \varphi_{t}\varphi_{s} & \text{if } m_{s,t} = 2 \\ \varphi_{s}\varphi_{t}\varphi_{s} &= \varphi_{t}\varphi_{s}\varphi_{t} & \text{if } m_{s,t} = 3 \end{aligned}$$

(2) φ_s is not invertible.

Proposition (Cohen-Wales [2002], Digne [2003], Paris [2002])

We assume that Γ is simply laced and triangle free. Then there exists a collection of polynomials $T(s, \rho) \in \mathbb{Z}[q]$, $s \in S$ and $\rho \in \Phi^+$, such that the linear map $\psi_s : E \to E$ defined by

$$\psi_{m{s}}(m{e}_{
ho}) = arphi_{m{s}}(m{e}_{
ho}) + m{z} \ T(m{s},
ho) \, m{e}_{\epsilon_{m{s}}}$$

satisfies the following properties.

(1)
$$\psi_s \in GL(E)$$
, for all $s \in S$.
(2) We have

$$\psi_{s}\psi_{t} = \psi_{t}\psi_{s} \quad \text{if } m_{s,t} = 2$$

$$\psi_{s}\psi_{t}\psi_{s} = \psi_{t}\psi_{s}\psi_{t} \quad \text{if } m_{s,t} = 3$$

We denote by $\psi : A_{\Gamma} \to GL(E)$ the linear representation which sends *s* to ψ_s for all $s \in S$.

Theorem (Cohen–Wales [2002], Digne [2003], Paris [2002])

- (1) Let Γ be a simply laced Coxeter graph of spherical type. Then $\psi : A_{\Gamma} \to \operatorname{GL}(E)$ is faithful.
- (2) Let Γ be a simply laced and triangle free Coxeter graph. Then the restriction of ψ to A_{Γ}^+ , $\psi^+ : A_{\Gamma}^+ \to GL(E)$, is faithful.

Questions

- (1) Let Γ be a simply laced and triangle free Coxeter graph. Suppose that Γ is not of spherical type. Is $\psi : A_{\Gamma} \to GL(E)$ faithful?
- (2) Assume that Γ is not simply laced. Let *E* = ⊕_{ρ∈Φ+} K *e*_ρ be a K-vector space with basis *B* = {*e*_ρ | ρ ∈ Φ⁺}. Does there exist a linear representation ψ : *A*_Γ → GL(*E*) which is faithful (at least on *A*⁺_Γ)?

Let Γ be any Coxeter graph. Recall that, for $s \in S$, the linear map $\varphi_s : E \to E$ is defined by

$$\varphi_{s}(\boldsymbol{e}_{\rho}) = \begin{cases} 0 & \text{if } \rho = \epsilon_{s} \\ \boldsymbol{e}_{\rho} & \text{if } \langle \rho, \epsilon_{s} \rangle = 0 \\ \boldsymbol{q} \, \boldsymbol{e}_{s\rho} & \text{if } \langle \rho, \epsilon_{s} \rangle > 0 \text{ and } \rho \neq \epsilon_{s} \\ (1 - \boldsymbol{q}) \boldsymbol{e}_{\rho} + \boldsymbol{e}_{s\rho} & \text{if } \langle \rho, \epsilon_{s} \rangle < 0 \end{cases}$$

Proposition [Unpublished]

Let $s, t \in S$ such that $m_{s,t} \neq \infty$. Then

$$\langle \varphi_{s} \varphi_{t} \rangle^{m_{s,t}} = \langle \varphi_{t} \varphi_{s} \rangle^{m_{s,t}}$$

Bad news

Explicit calculations indicate that there are no polynomials $T(s, \rho) \in \mathbb{Z}[q], s \in S$ and $\rho \in \Phi^+$, such that the linear maps $\psi_s : E \to E$ defined by

$$\psi_{m{s}}(m{e}_
ho) = arphi_{m{s}}(m{e}_
ho) + m{z} \ m{T}(m{s},
ho) \, m{e}_{\epsilon_{m{s}}}$$

satisfy the following properties.

(1)
$$\psi_s \in GL(E)$$
, for all $s \in S$.

(2) We have

$$\langle \psi_{\mathbf{s}} \psi_{t} \rangle^{m_{\mathbf{s},t}} = \langle \psi_{t} \psi_{\mathbf{s}} \rangle^{m_{\mathbf{s},t}}$$

for all $s, t \in S$ such that $m_{s,t} \neq \infty$.

Other bad news

Even if the polynomials $T(s, \rho)$ existed, the proof of the faithfulness of ψ (which depends only on φ) would not extend to non simply laced Artin groups.

Automorphism

Good news. Let $\Gamma = A_{2n-1}$, and let *g* be the automorphism of Γ defined by $g(s_i) = s_{2n-i}$.

Then *g* acts on $V = \bigoplus_{s \in S} \mathbb{R} \epsilon_s$ and $g(\Phi^+) = \Phi^+$. So, we have an action of *g* on $E = \bigoplus_{\rho \in \Phi^+} \mathbb{K} e_\rho$. On the other hand, *g* acts on *A*. We set $A^g = \{ \alpha \in A \mid g(\alpha) = \alpha \}$ and $E^g = \{ x \in E \mid g(x) = x \}$. The representation $\psi : A \to GL(E)$ is equivariant in the sense that

$$\psi(\boldsymbol{g}\,\alpha) = \boldsymbol{g}\,\psi(\alpha)\,\boldsymbol{g}^{-1}$$

for all $\alpha \in A$, hence ψ induces a linear representation $\psi^{g} : A^{g} \to GL(E^{g})$.

Theorem (Michel [1999], Dehornoy–Paris [1999], Crisp [2000], Digne [2003])

(1) Let $\tilde{\Gamma} = B_n$ be the the following Coxeter graph.

Then A^g is the Artin group associated with $\tilde{\Gamma}$.

(2) Let $\tilde{\Phi}^+$ be the positive root system associated with $\tilde{\Gamma}$. Then E^g has a natural basis $\tilde{\mathcal{B}}$ in one-to-one correspondence with $\tilde{\Phi}^+$, and the linear representation $\psi^g : A^g \to \operatorname{GL}(E^g)$ is faithful.

Let Γ be a simply laced and triangle free Coxeter graph, and let G be a group of automorphisms of Γ . Then G acts on $V = \bigoplus_{s \in S} \mathbb{R} \epsilon_s$, and $g(\Phi^+) = \Phi^+$ for all $g \in G$. Hence, we have an action of G on $E = \bigoplus_{\rho \in \Phi^+} \mathbb{K} e_{\rho}$. On the other hand, G acts on A. We set $A^G = \{\alpha \in A \mid g(\alpha) = \alpha \text{ for all } g \in G\}$ and $E^G = \{x \in E \mid g(x) = x \text{ for all } g \in G\}$. The linear representation $\psi : A \to \operatorname{GL}(E)$ is equivariant, hence it induces a linear representation $\psi^G : A^G \to \operatorname{GL}(E^G)$.

Theorem (Crisp [2000], Castella [2006])

- (1) Let $A^{+G} = \{ \alpha \in A^+ \mid g(\alpha) = \alpha \text{ for all } g \in G \}$. Then A^{+G} is an Artin monoid.
- (2) The restriction of ψ^{G} to A^{+G} , $\psi^{+G} : A^{+G} \to GL(E^{G})$, is faithful.

Question

We know that A^G is an Artin group in many cases (when A is of spherical type, of FC type, son on ...), but not always.

Theorem (Geneste–Paris [\geq 2017])

Let $\tilde{\Phi}^+$ be the positive root system of A^{+G} . There exists a "natural" linearly independent subset $\tilde{\mathcal{B}}$ of E^G in one-to-one correspondence with $\tilde{\Phi}^+$. The set $\tilde{\mathcal{B}}$ is a basis of E^G if and only if (Γ, G) is one of the following eight pairs, up to isomorphism.

Thank you for your attention!