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Original aim: For certain “nice” monoids M, study the word
problem in the universal group Ugp(M) of M.

Represent the elements of Ugp(M) by finite sequences of
elements of M, called multifractions.

Example: For a1, . . . , an ∈ M, think of a1/a2/a3/a4 as
a1a
−1
2 a3a

−1
4 , and /a1/a2/a3/a4 as a−11 a2a

−1
3 a4.

Represent those, respectively, by

a1 a2 a3 a4 a1 a2 a3 a4
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First attempt at reduction

Chase all denominators.

For example, in the multifraction

a1 a2 a3 a4

say that there are no a′1, a′2, x such that a1 = a′1x , a2 = a′2x (so

a1a
−1
2 = a′1a

′
2
−1

), and x 6= 1.

Prime multifraction: cannot be reduced further by the above.

Example: M = Ã+
2 , defined by generators a, b, c and relations

aba = bab, bcb = cbc, aca = cac .

The multifraction ba/ab/cb/bc/ac/ca is prime.

However, it represents 1 in the enveloping group Ã2 = Ugp(Ã+
2 ).

Hence a better concept of reduction is needed.
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2 , defined by generators a, b, c and relations

aba = bab, bcb = cbc, aca = cac .

The multifraction ba/ab/cb/bc/ac/ca is prime.

However, it represents 1 in the enveloping group Ã2 = Ugp(Ã+
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Dehornoy’s reduction of multifractions

For the example above,

a1 a2 a3 a4

start as above, by killing all denominators between a1 and a2.
Let a3 = xa′3, a2y = xa′2. Replace a1 by a1y , a2 by a′2, a3 by a′3.

a4

a′2
a′3

a1y

Similar operation possible between a3 and a4, with multiplication
replaced by its opposite.
Then repeat (in whatever order).
If the process stops, we get an irreducible multifraction.
This reduction system may not be convergent: a multifraction
may reduce to two distinct irreducible multifractions (example
in Ã+

2 : 1/c/aba reduces to both ac/ca/ba and bc/cb/ab).
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Divisibility relations

For a monoid M, an element a left divides an element b, in
notation a 6 b, if (∃x)(b = ax). Then we say that b is a right
multiple of a.

Right divisibility, left multiples, and a 6̃ b, defined
dually.

The meet and join of {a, b}, if they exist, with respect to 6, are
denoted by a ∧ b (left gcd) and a ∨ b (right lcm), respectively.
Similarly for a ∧̃ b, a ∨̃ b.

Uniqueness of meets and joins ensured if M is conical (xy = 1
⇒ x = 1) and cancellative.

Convenient framework for reduction of multifractions: the class,
introduced by Dehornoy in, of all gcd-monoids (conical,
cancellative monoids in which ∀a, b ∃a ∧ b, a ∧̃ b).

Example (Brieskorn-Saito, 1972): Artin-Tits monoids,

that is,
monoids defined by sets of relations of the form
aba · · · = bab · · · (same length on both sides, one relation for
each pair {a, b}).
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Dehornoy’s question on Artin-Tits monoids

Say that reduction, in a gcd-monoid M, is semi-convergent if for
every multifraction a of M, a reduces to 1 iff a represents 1
in Ugp(M).

With suitable nœtherianity conditions, this implies decidability of
the word problem in Ugp(M).

Question (Dehornoy)

Is reduction semi-convergent in Artin-Tits monoids?

Experimentally supported.

How well do things work out for general gcd-monoids?
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Interval monoids and groups

The interval monoid Υ(P) (resp., interval group Υ±(P)), of a
poset P, is defined by generators [x , y ], for x ≤ y in P, and
relations [x , x ] = 1, [x , z ] = [x , y ] · [y , z ] for x ≤ y ≤ z .

Proposition

Υ(P) embeds into the free group Fgp(P).

Thus, Υ(P) embeds
into Υ±(P). (Remark: Υ±(P) may not be free!)

Proof (involves highlighting trick).

The elements x−1y ∈ Fgp(P), where x ≤ y in P, satisfy the defining
relations of Υ(P). Thus there exists a unique monoid
homomorphism µ : Υ(P)→ Fgp(P) such that each µ([x , y ]) = x−1y .
Any a ∈ Υ(P) can be written [x1, y1] · · · [xn, yn] with each yi 6= xi+1

(reduced word). Then µ(a) = x−11 y1 · · · x−1n yn. The right hand side
is a word in normal form in Fgp(P). Hence µ(a) determines a.
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Embedding into free monoids

For posets P ⊆ Q, every reduced word [x1, y1] · · · [xn, yn] in Υ(P)
(i.e., each yi 6= xi+1) is also a reduced word in Υ(Q). Hence,

Proposition

Let P and Q be posets, with P ⊆ Q. Then the canonical monoid
homomorphism Υ(P)→ Υ(Q) is one-to-one.

For P = {1, 2, . . . , n} with its standard ordering, observe that
[x , y ] = [x , x + 1] · · · [y − 1, y ] within Υ(P).

Hence, Υ(P) ∼= Fmon(n − 1) (free monoid on n − 1 letters).

By
the proposition above (and picking any linear extension), we get

Proposition

For any finite poset P, with n elements, Υ(P) embeds into the free
monoid Fmon(n − 1).
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When are they gcd-monoids?

For any poset P and any a ∈ P, we set

P6a = {x ∈ P | x ≤ a} ,
P>a = {x ∈ P | x ≥ a} .

Proposition

Let P be a poset. Then Υ(P) is a gcd-monoid iff for every a ∈ P,
P6a is a join-semilattice and P>a is a meet-semilattice.

(Say that P
is a local lattice.)
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Floating homotopy group of a simplicial complex

A set K , of nonempty finite subsets of some set V (the vertices
of K ), is a simplicial complex on V , if {p} ∈ K for all p ∈ V ,
and (∅ 6= X ⊆ Y and Y ∈ K ) implies X ∈ K . The elements
of K are called the simplices of K .

The floating homotopy group Υ±(K ) of K is the group defined
by the generators [x , y ], where {x , y} ∈ K , and the relations

[x , z ] = [x , y ] · [y , z ] , whenever {x , y , z} ∈ K .

Hence Υ±(K ) = Ugp(Π1(K )), the universal group of the
fundamental groupoid Π1(K ) of K .
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Computing Υ±(K ) via a spanning tree

Proposition

Let p be a vertex in a connected simplicial complex K and let E be
the set of all edges of a spanning tree of K .

Then
Υ±(K ) ∼= Fgp(E ) ∗ π1(K , p) (amalgamated free product).

Here, π1(K , p) is the fundamental group of (K , p).

Say that π1(K , p) is a doubly free factor of Υ±(K ).

It is well known that every group G is isomorphic to
some π1(K , p), for a connected simplicial complex K which may
be taken finite iff G is finitely presented. Hence,

Proposition

Every group is a doubly free factor of Υ±(K ), for some connected
simplicial complex K of dimension at most 2.
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Chain complex and barycentric subdivision

Posets � simplicial complexes; Υ±(P) � Υ±(K ):

To every poset P, associate the chain complex Sim(P) of P,
whose vertices are the elements of P and whose simplices are
the finite chains of P.

Checking the definitions, we get Υ±(P) = Υ±(Sim(P)) (e.g.,
[y , x ] = [x , y ]−1). (Observe that “Υ(K )” does not make sense.)

To every simplicial complex K , associate its barycentric
subdivision P, which is the set of all its simplices, partially
ordered by set inclusion.

If K has dimension at most 2, then P is a connected poset of
length at most 2.

Moreover, it is well known that π1(K ) ∼= π1(Sim(P)).
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Representing groups by gcd-monoids

Hence every group is a doubly free factor of Υ±(Sim(P)) for
some connected poset P of length ≤ 2.

Now Υ±(P) = Υ±(Sim(P)). Hence,

Theorem

Every group G is a doubly free factor of Υ±(P), for some connected
poset P of length ≤ 2, which may be taken finite iff G is finitely
presented.

Moreover, P is constructed as the barycentric subdivision of a
simplicial complex.
Now the barycentric subdivision P, of any simplicial complex, is
a local lattice (i.e., each P>a is a meet-semilattice and each P6a

is a join-semilattice).
Hence, in the theorem above, P can be taken a local lattice,
which means that Υ(P) is a gcd-monoid.
In particular, Every group is a doubly free factor of the universal
group of an interval gcd-monoid.
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Getting badly behaviored posets

It follows that badly behaviored groups yield badly behaviored
posets.

For example, there are finitely presented groups with torsion,

thus There are finite posets P, of length 2, such that Υ(P) is a
gcd-monoid and Υ±(P) has torsion.

There are finitely presented groups with undecidable word
problem,

thus There are finite posets P, of length 2, such
that Υ(P) is a gcd-monoid and Υ±(P) has undecidable word
problem.

In particular, There are finite posets P, of length 2, for
which Υ(P) is a gcd-monoid where reduction is not
semi-convergent.
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An example without semi-convergence

The first such poset P, for which Υ(P) is a gcd-monoid where
reduction is not semi-convergent, was found with Dehornoy:

The multifraction, given by the outside boundary, is nontrivial
irreducible, nevertheless it represents 1 in the universal group Υ±(P).
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A sufficient condition for semi-convergence

A positive (resp., negative) zigzag, in a poset P, is a finite
sequence x = (x0, . . . , xn) ∈ Pn+1 such that x0 < x1 > x2 < · · ·
(resp., x0 > x1 < x2 > · · · ).

The zigzag x is closed if x0 = xn, simple if x1, . . . , xn are
pairwise distinct.

Then define a multifraction by F (x) = [x0, x1]/[x2, x1]/ · · ·
(resp., /[x1, x0]/[x1, x2]/ · · · ).

We say that a zigzag x is reducible if F (x) is a reducible
multifraction

(can be read directly on the poset).

Proposition (Dehornoy + W)

Let P be a finite local lattice. If every simple closed zigzag in P is
reducible, then reduction is semi-convergent for Υ(P).

The proof (multifractions ; zigzags) involves the highlighting trick.
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An example with semi-convergence

For the following example, constructed with Dehornoy, reduction is
semi-convergent for Υ(P), but not convergent.

(For failure of
convergence: 3-Ore fails)
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An example which is not an interval monoid

Let M6 be the monoid defined by generators a, b, c , d , e, f and
relations ae = cb, da = bf .

a

a

b

c

de

f

By using the tools introduced by Dehornoy (cube condition,
3-Ore condition), one can prove that M6 is a gcd-monoid, for
which reduction is convergent. Thus M6 embeds into its group.

In fact, M6 embeds into Fmon(4), via a 7→ a, b 7→ b, c 7→ ax ,
d 7→ by , e 7→ xb, f 7→ ya.

However, M6 is not an interval monoid.
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Semicategories, categories

Think of categories as “arrow-only”.

A semicategory is a structure (S , ·), where · is a partial binary
operation on S such that (x · y) · z ↓ iff x · (y · z) ↓, and then
the two values are equal, ∀x , y , z ∈ S .

An identity (� object) of S is an element e ∈ S such that
e2 = e and ∀x ∈ S , xe ↓⇒ xe = x and ex ↓⇒ ex = x .

A category is a semicategory where ∀x , ∃ identities a, b such
that x = ax = xb. Write a = ∂0x (source of x), b = ∂1x (target
of x).

Morphism of categories = functor (e.g., identities 7→ identities).

Every monoid is a category with exactly one identity.

Every poset P gives rise to a category Cat(P), whose elements
are the [x , y ], where x ≤ y in P, and where [x , y ] · [y , z ] = [x , z ].
Note [x , x ] = ∂0[x , y ] and [y , y ] = ∂1[x , y ].
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The universal monoid of a category

For a category S , consider the set SeqS of all finite sequences of
elements of S .

Reduction rule → on Seq S : (e)→ ∅, (x , y)→ z
whenever z = xy , and close under concatenation.

This reduction rule is confluent and nœtherian, and → generates
a monoid congruence ≡ on Seq S .

Umon(S) = (SeqS)/≡ (� set of all reduced sequences of
elements of S) is the universal monoid of S .

It is the initial object in the category of all functors from S to a
monoid.

The canonical functor εS : S → Umon(S) satisfies that
εS(x) = εS(y) iff either x = y or x and y are both identities.

For any poset P, Υ(P) = Umon(Cat(P)) and
Υ±(P) = Ugp(Cat(P)).
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Gcd-monoids and gcd-categories

Gcd-categories can be defined in a similar way as gcd-monoids.
(They are the category analogue of local lattices.)

For example, say
that any a, b ∈ S , with ∂0a = ∂0b, have a left gcd.

Proposition

A category S is a gcd-category iff Umon(S) is a gcd-monoid.

In particular, for any poset P, Cat(P) is a gcd-category
iff Umon(Cat(P)) (equal to Υ(P)) is a gcd-monoid, iff P is a local
lattice.
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Categories from extreme spindles

A spindle, in a poset P, is a closed interval [u, v ], such that the
open interval (u, v) is nonempty and the comparability relation
on (u, v) is transitive

(so any two distinct maximal chains
of [u, v ] meet in {u, v}).

A spindle [u, v ] is extreme if u is minimal and v is maximal.

For an extreme spindle [u, v ], denote by Cu,v the set of all
maximal chains of [u, v ], and set

Cat(P, u, v) =
def

(
Cat(P) \ {[u, v ]}

)
∪ Cu,v ,

with products arising from Cat(P) whenever possible, and new
products given by

[u, z ] · [z , v ] = Z , whenever u < z < v and z ∈ Z ∈ Cu,v .

Then Cat(P, u, v) is a category.
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of [u, v ] meet in {u, v}).

A spindle [u, v ] is extreme if u is minimal and v is maximal.

For an extreme spindle [u, v ], denote by Cu,v the set of all
maximal chains of [u, v ], and set

Cat(P, u, v) =
def

(
Cat(P) \ {[u, v ]}

)
∪ Cu,v ,

with products arising from Cat(P) whenever possible, and new
products given by

[u, z ] · [z , v ] = Z , whenever u < z < v and z ∈ Z ∈ Cu,v .

Then Cat(P, u, v) is a category.
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Gcd-monoids from extreme spindles

Proposition

Let [u, v ] be an extreme spindle in a local lattice P. Then
Cat(P, u, v) is a gcd-category.

Furthermore,
Υ(P, u, v) =

def
Umon(Cat(P, u, v)) can be defined by the

generators [x , y ], with x ≤ y and (x , y) 6= (u, v), and the relations

[x , y ] · [y , z ] = [x , z ] for x < y < z in P and (x , z) 6= (u, v) .
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An example of extreme spindle

The following example, obtained with Dehornoy, yields the first
example of a gcd-monoid that does not embed into its group.

Set Ω = {1, 2, 3, 4}. Then PB =
def

P(Ω) \ {∅,Ω} is a 14-element

local lattice under ⊆.

Setting u = 1 and v = 123, the interval [u, v ] is an extreme
spindle of PB .

The relation [1, 12] · [12, 123] = [1, 13] · [13, 123] fails
in Υ(PB , u, v), but holds in Υ±(PB , u, v). Hence Υ(PB , u, v)
does not embed into any group.
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A picture of PB
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The monoid Υ(PB , u, v) omits the Mal′cev condition
L1R1R2L

∗
1R
∗
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∗
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∗
3L
∗
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∗
3 (24 variables, 11 + 1 identities).
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An embeddability criterion into a group

There are categories whose universal monoid does not embed
into their group (take any non-cancellative monoid!).

However, embeddability can be verified “locally”.

Theorem

Let S be a category. Then Umon(S) embeds into its group iff there
exists a functor, from S to some group, whose restriction to any
hom-set of S is one-to-one.

The proof of the non-trivial direction involves the highlighting
trick.

The result for posets follows trivially (hom-sets are either empty
or singletons).
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An example of embeddable monoid

Denote by C6 the monoid defined by generators a, b, c , a′, b′, c ′

and relations ab′ = ba′, bc ′ = cb′, ac ′ = ca′.

Adjan’s embeddability condition, and Dehornoy’s 3-Ore
condition, both fail for that example.

Then C6 = Umon(C6), where C6 has objects 0, 1, 2, arrows a, b,
c from 0 to 1, and arrows a′, b′, c ′ from 1 to 2, with bc ′ = cb′,
ac ′ = ca′, and ab′ = ba′ (so there are 6 arrows from 0 to 2).

0

a

%%b //
c

99 1

a′

%%b′ //
c′

99 2

Let ψ : C6 → Z3 be the unique functor such that
ψ(a) = ψ(a′) = (1, 0, 0), ψ(b) = ψ(b′) = (0, 1, 0),
ψ(c) = ψ(c ′) = (0, 0, 1).

Then ψ is one-to-one on each hom-set of C6.

By the theorem above, C6 embeds into its group.
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Adjan’s embeddability condition, and Dehornoy’s 3-Ore
condition, both fail for that example.

Then C6 = Umon(C6), where C6 has objects 0, 1, 2, arrows a, b,
c from 0 to 1, and arrows a′, b′, c ′ from 1 to 2, with bc ′ = cb′,
ac ′ = ca′, and ab′ = ba′ (so there are 6 arrows from 0 to 2).

0

a

%%b //
c

99 1

a′

%%b′ //
c′

99 2

Let ψ : C6 → Z3 be the unique functor such that
ψ(a) = ψ(a′) = (1, 0, 0), ψ(b) = ψ(b′) = (0, 1, 0),
ψ(c) = ψ(c ′) = (0, 0, 1).

Then ψ is one-to-one on each hom-set of C6.

By the theorem above, C6 embeds into its group.
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More on the example C6

Eliminating c ′, b′, a′ yields ac−1b = bc−1a.

(Group
embeddability implicit there.)

Hence, Ugp(C6) ∼= Ugp(D4) where D4 is the monoid defined by
generators a, b, c , a′ and the unique relation acb = bca.

By applying Dehornoy’s methods to D4, it can be proved
that D4 is a nœtherian gcd-monoid satisfying both right and left
3-Ore conditions.

This yields another proof that D4 embeds into its group.

By extending the zigzag machinery to categories, we could prove:

Proposition (Dehornoy + W)

Reduction is semi-convergent (but not convergent) for C6.
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Thanks for listening!
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