GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into groups

Gcd-monoids arising from categories and posets

Friedrich Wehrung

LMNO, CNRS UMR 6139 (Caen) E-mail: friedrich.wehrung01@unicaen.fr URL: http://www.math.unicaen.fr/~wehrung

March 2017

(日) (周) (日) (日) (日)

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into groups

Original aim: For certain "nice" monoids *M*, study the word problem in the universal group U_{gp}(*M*) of *M*.

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into groups

- Original aim: For certain "nice" monoids *M*, study the word problem in the universal group U_{gp}(*M*) of *M*.
- Represent the elements of U_{gp}(M) by finite sequences of elements of M, called multifractions.

GCD-monoids

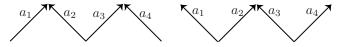
- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
 Categories,
- universal monoid Spindles Embedding into groups

- Original aim: For certain "nice" monoids *M*, study the word problem in the universal group U_{gp}(*M*) of *M*.
- Represent the elements of U_{gp}(M) by finite sequences of elements of M, called multifractions.
- Example: For $a_1, \ldots, a_n \in M$, think of $a_1/a_2/a_3/a_4$ as $a_1a_2^{-1}a_3a_4^{-1}$, and $/a_1/a_2/a_3/a_4$ as $a_1^{-1}a_2a_3^{-1}a_4$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 ののの

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
 Categories, universal mon
- Embedding inte

- Original aim: For certain "nice" monoids M, study the word problem in the universal group Ugp(M) of M.
 - Represent the elements of U_{gp}(M) by finite sequences of elements of M, called multifractions.
 - Example: For $a_1, \ldots, a_n \in M$, think of $a_1/a_2/a_3/a_4$ as $a_1a_2^{-1}a_3a_4^{-1}$, and $/a_1/a_2/a_3/a_4$ as $a_1^{-1}a_2a_3^{-1}a_4$.
 - Represent those, respectively, by



GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into groups

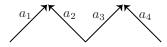
Chase all denominators.

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into groups

Chase all denominators.

For example, in the multifraction

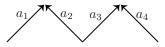


GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- universal monoid Spindles Embedding into

Chase all denominators.

For example, in the multifraction

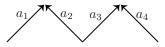


GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
 Categories, universal mono Spindles
- groups

Chase all denominators.

For example, in the multifraction



say that there are no a'_1 , a'_2 , x such that $a_1 = a'_1 x$, $a_2 = a'_2 x$ (so $a_1 a_2^{-1} = a'_1 a'_2^{-1}$), and $x \neq 1$.

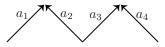
Prime multifraction: cannot be reduced further by the above.

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Evamples
- Universal monoids of categories
 Categories, universal mor
- Embedding into

Chase all denominators.

For example, in the multifraction



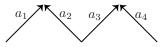
- Prime multifraction: cannot be reduced further by the above.
- Example: $M = \tilde{A}_2^+$, defined by generators *a*, *b*, *c* and relations aba = bab, bcb = cbc, aca = cac.

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into groups

Chase all denominators.

For example, in the multifraction



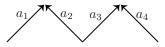
- Prime multifraction: cannot be reduced further by the above.
- Example: $M = \tilde{A}_2^+$, defined by generators *a*, *b*, *c* and relations aba = bab, bcb = cbc, aca = cac.
- The multifraction *ba/ab/cb/bc/ac/ca* is prime.

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Fxamples
- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into groups

Chase all denominators.

For example, in the multifraction



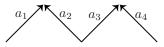
- Prime multifraction: cannot be reduced further by the above.
- Example: $M = \tilde{A}_2^+$, defined by generators *a*, *b*, *c* and relations aba = bab, bcb = cbc, aca = cac.
- The multifraction ba/ab/cb/bc/ac/ca is prime.
- However, it represents 1 in the enveloping group $\tilde{A}_2 = U_{gp}(\tilde{A}_2^+)$.

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Fxamples
- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into groups

Chase all denominators.

For example, in the multifraction

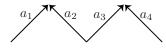


- Prime multifraction: cannot be reduced further by the above.
- Example: $M = \tilde{A}_2^+$, defined by generators *a*, *b*, *c* and relations aba = bab, bcb = cbc, aca = cac.
- The multifraction ba/ab/cb/bc/ac/ca is prime.
- However, it represents 1 in the enveloping group $\tilde{A}_2 = U_{gp}(\tilde{A}_2^+)$.
- Hence a better concept of reduction is needed.

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into groups

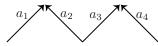
For the example above,



GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- universal monoid Spindles Embedding into groups

For the example above,

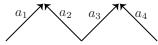


start as above, by killing all denominators between a_1 and a_2 .

GCD-monoids

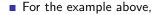
- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal
 monoids of
 categories
 Categories
- universal monoid Spindles Embedding into groups

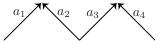
For the example above,

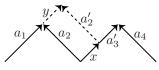


GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into groups



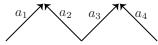


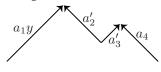


GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into groups

For the example above,

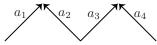




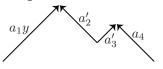
GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Fvamples
- Universal
 monoids of
 categories
 Categories,
 universal mon
- Embedding into

For the example above,



start as above, by killing all denominators between a_1 and a_2 . • Let $a_3 = xa'_3$, $a_2y = xa'_2$. Replace a_1 by a_1y , a_2 by a'_2 , a_3 by a'_3 .

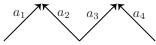


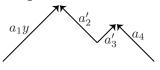
Similar operation possible between a₃ and a₄, with multiplication replaced by its opposite.

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by poset: Examples
- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into groups

For the example above,



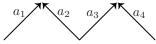


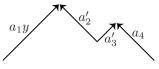
- Similar operation possible between a₃ and a₄, with multiplication replaced by its opposite.
- Then repeat (in whatever order).

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into groups

For the example above,



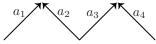


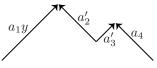
- Similar operation possible between a₃ and a₄, with multiplication replaced by its opposite.
- Then repeat (in whatever order).
- If the process stops, we get an irreducible multifraction.

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Fxamples
- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into groups

For the example above,





- Similar operation possible between a₃ and a₄, with multiplication replaced by its opposite.
- Then repeat (in whatever order).
- If the process stops, we get an irreducible multifraction.
- This reduction system may not be convergent: a multifraction may reduce to two distinct irreducible multifractions (example in A⁺₂: 1/c/aba reduces to both ac/ca/ba and bc/cb/ab).

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into groups

For a monoid M, an element a left divides an element b, in notation $a \leq b$, if $(\exists x)(b = ax)$. Then we say that b is a right multiple of a.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → ���

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- universal monoid Spindles Embedding into groups

For a monoid M, an element a left divides an element b, in notation $a \leq b$, if $(\exists x)(b = ax)$. Then we say that b is a right multiple of a. Right divisibility, left multiples, and $a \leq b$, defined dually.

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Fxamples
- Universal monoids of categories
- universal monoid Spindles Embedding into groups

- For a monoid *M*, an element *a* left divides an element *b*, in notation *a* ≤ *b*, if (∃*x*)(*b* = *ax*). Then we say that *b* is a right multiple of *a*. Right divisibility, left multiples, and *a* ≤ *b*, defined dually.
- The meet and join of {a, b}, if they exist, with respect to ≤, are denoted by a ∧ b (left gcd) and a ∨ b (right lcm), respectively. Similarly for a ∧ b, a ∨ b.

イロト 不得 とくほと くほとう ほ

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
 Categories,
- universal monoid Spindles Embedding into

- For a monoid *M*, an element *a* left divides an element *b*, in notation *a* ≤ *b*, if (∃*x*)(*b* = *ax*). Then we say that *b* is a right multiple of *a*. Right divisibility, left multiples, and *a* ≤ *b*, defined dually.
- The meet and join of {a, b}, if they exist, with respect to ≤, are denoted by a ∧ b (left gcd) and a ∨ b (right lcm), respectively. Similarly for a ∧ b, a ∨ b.
- Uniqueness of meets and joins ensured if *M* is conical $(xy = 1 \Rightarrow x = 1)$ and cancellative.

イロト 不得 とくほと くほとう ほ

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
 Categories,
- Spindles Embedding into

- For a monoid *M*, an element *a* left divides an element *b*, in notation *a* ≤ *b*, if (∃*x*)(*b* = *ax*). Then we say that *b* is a right multiple of *a*. Right divisibility, left multiples, and *a* ≤ *b*, defined dually.
- The meet and join of {a, b}, if they exist, with respect to ≤, are denoted by a ∧ b (left gcd) and a ∨ b (right lcm), respectively. Similarly for a ∧ b, a ∨ b.
- Uniqueness of meets and joins ensured if *M* is conical (*xy* = 1 ⇒ *x* = 1) and cancellative.
- Convenient framework for reduction of multifractions: the class, introduced by Dehornoy in, of all gcd-monoids (conical, cancellative monoids in which ∀a, b ∃a ∧ b, a ∧ b).

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into groups

- For a monoid *M*, an element *a* left divides an element *b*, in notation *a* ≤ *b*, if (∃*x*)(*b* = *ax*). Then we say that *b* is a right multiple of *a*. Right divisibility, left multiples, and *a* ≤ *b*, defined dually.
- The meet and join of {a, b}, if they exist, with respect to ≤, are denoted by a ∧ b (left gcd) and a ∨ b (right lcm), respectively. Similarly for a ∧ b, a ∨ b.
- Uniqueness of meets and joins ensured if *M* is conical (*xy* = 1 ⇒ *x* = 1) and cancellative.
- Convenient framework for reduction of multifractions: the class, introduced by Dehornoy in, of all gcd-monoids (conical, cancellative monoids in which ∀a, b ∃a ∧ b, a ∧ b).
- Example (Brieskorn-Saito, 1972): Artin-Tits monoids,

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories Categories, universal mor Satingles
- Embedding into

- For a monoid *M*, an element *a* left divides an element *b*, in notation *a* ≤ *b*, if (∃*x*)(*b* = *ax*). Then we say that *b* is a right multiple of *a*. Right divisibility, left multiples, and *a* ≤ *b*, defined dually.
- The meet and join of {a, b}, if they exist, with respect to ≤, are denoted by a ∧ b (left gcd) and a ∨ b (right lcm), respectively. Similarly for a ∧ b, a ∨ b.
- Uniqueness of meets and joins ensured if *M* is conical (*xy* = 1 ⇒ *x* = 1) and cancellative.
- Convenient framework for reduction of multifractions: the class, introduced by Dehornoy in, of all gcd-monoids (conical, cancellative monoids in which ∀a, b ∃a ∧ b, a ∧ b).
- Example (Brieskorn-Saito, 1972): Artin-Tits monoids, that is, monoids defined by sets of relations of the form aba ··· = bab ··· (same length on both sides, one relation for each pair {a, b}).

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- universal monoid Spindles Embedding into groups

Say that reduction, in a gcd-monoid *M*, is semi-convergent if for every multifraction <u>a</u> of *M*, <u>a</u> reduces to 1 iff <u>a</u> represents 1 in U_{gp}(*M*).

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- universal monoid Spindles Embedding into groups

- Say that reduction, in a gcd-monoid *M*, is semi-convergent if for every multifraction <u>a</u> of *M*, <u>a</u> reduces to 1 iff <u>a</u> represents 1 in U_{gp}(*M*).
- With suitable notherianity conditions, this implies decidability of the word problem in Ugp(M).

イロト 不得 とくほと くほとう ほ

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into groups

- Say that reduction, in a gcd-monoid *M*, is semi-convergent if for every multifraction <u>a</u> of *M*, <u>a</u> reduces to 1 iff <u>a</u> represents 1 in U_{gp}(*M*).
- With suitable notherianity conditions, this implies decidability of the word problem in Ugp(M).

Question (Dehornoy)

Is reduction semi-convergent in Artin-Tits monoids?

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Fvamples
- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into groups

- Say that reduction, in a gcd-monoid *M*, is semi-convergent if for every multifraction <u>a</u> of *M*, <u>a</u> reduces to 1 iff <u>a</u> represents 1 in U_{gp}(*M*).
- With suitable notherianity conditions, this implies decidability of the word problem in Ugp(M).

Question (Dehornoy)

Is reduction semi-convergent in Artin-Tits monoids?

Experimentally supported.

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into groups

- Say that reduction, in a gcd-monoid *M*, is semi-convergent if for every multifraction <u>a</u> of *M*, <u>a</u> reduces to 1 iff <u>a</u> represents 1 in U_{gp}(*M*).
- With suitable notherianity conditions, this implies decidability of the word problem in Ugp(M).

Question (Dehornoy)

Is reduction semi-convergent in Artin-Tits monoids?

- Experimentally supported.
- How well do things work out for general gcd-monoids?

Interval monoids and groups

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids

Embedding into free groups and monoids

- Interval gcd-monoids Floating homotopy group Representing groups by poset: Examples
- Universal monoids of categories
 Categories,
- universal monoid Spindles Embedding into groups

7/29

3

イロト イポト イヨト イヨト

Interval monoids and groups

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids

Embedding into free groups and monoids

- Interval gcd-monoids Floating homotopy group Representing groups by poset Examples
- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into groups

The interval monoid $\Upsilon(P)$ (resp., interval group $\Upsilon^{\pm}(P)$), of a poset *P*, is defined by generators [x, y], for $x \le y$ in *P*, and relations [x, x] = 1, $[x, z] = [x, y] \cdot [y, z]$ for $x \le y \le z$.

Proposition

 $\Upsilon(P)$ embeds into the free group $F_{gp}(P)$.

3

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids

Embedding into free groups and monoids

- Interval gcd-monoids Floating homotopy group Representing groups by poset: Examples
- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into groups

The interval monoid $\Upsilon(P)$ (resp., interval group $\Upsilon^{\pm}(P)$), of a poset *P*, is defined by generators [x, y], for $x \le y$ in *P*, and relations [x, x] = 1, $[x, z] = [x, y] \cdot [y, z]$ for $x \le y \le z$.

Proposition

 $\Upsilon(P)$ embeds into the free group $F_{gp}(P)$. Thus, $\Upsilon(P)$ embeds into $\Upsilon^{\pm}(P)$.

イロト 不得下 イヨト イヨト 二日

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids

Embedding into free groups and monoids

- Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into groups

The interval monoid $\Upsilon(P)$ (resp., interval group $\Upsilon^{\pm}(P)$), of a poset *P*, is defined by generators [x, y], for $x \le y$ in *P*, and relations [x, x] = 1, $[x, z] = [x, y] \cdot [y, z]$ for $x \le y \le z$.

Proposition

 $\Upsilon(P)$ embeds into the free group $F_{gp}(P)$. Thus, $\Upsilon(P)$ embeds into $\Upsilon^{\pm}(P)$. (Remark: $\Upsilon^{\pm}(P)$ may not be free!)

イロト 不得下 イヨト イヨト 二日

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids

Embedding into free groups and monoids

- Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
 Categories,
- universal monoid Spindles Embedding into

Proposition

 $\Upsilon(P)$ embeds into the free group $F_{gp}(P)$. Thus, $\Upsilon(P)$ embeds into $\Upsilon^{\pm}(P)$. (Remark: $\Upsilon^{\pm}(P)$ may not be free!)

Proof (involves highlighting trick).

The elements $x^{-1}y \in F_{gp}(P)$, where $x \leq y$ in P, satisfy the defining relations of $\Upsilon(P)$.

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids

Embedding into free groups and monoids

- Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into groups

The interval monoid $\Upsilon(P)$ (resp., interval group $\Upsilon^{\pm}(P)$), of a poset *P*, is defined by generators [x, y], for $x \le y$ in *P*, and relations [x, x] = 1, $[x, z] = [x, y] \cdot [y, z]$ for $x \le y \le z$.

Proposition

 $\Upsilon(P)$ embeds into the free group $F_{gp}(P)$. Thus, $\Upsilon(P)$ embeds into $\Upsilon^{\pm}(P)$. (Remark: $\Upsilon^{\pm}(P)$ may not be free!)

Proof (involves highlighting trick).

The elements $x^{-1}y \in F_{gp}(P)$, where $x \leq y$ in P, satisfy the defining relations of $\Upsilon(P)$. Thus there exists a unique monoid homomorphism $\mu \colon \Upsilon(P) \to F_{gp}(P)$ such that each $\mu([x, y]) = x^{-1}y$.

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids

Embedding into free groups and monoids

- Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
 Categories,
- universal monoid Spindles Embedding into

Proposition

 $\Upsilon(P)$ embeds into the free group $F_{gp}(P)$. Thus, $\Upsilon(P)$ embeds into $\Upsilon^{\pm}(P)$. (Remark: $\Upsilon^{\pm}(P)$ may not be free!)

Proof (involves highlighting trick).

The elements $x^{-1}y \in F_{gp}(P)$, where $x \leq y$ in P, satisfy the defining relations of $\Upsilon(P)$. Thus there exists a unique monoid homomorphism $\mu \colon \Upsilon(P) \to F_{gp}(P)$ such that each $\mu([x, y]) = x^{-1}y$. Any $\boldsymbol{a} \in \Upsilon(P)$ can be written $[x_1, y_1] \cdots [x_n, y_n]$ with each $y_i \neq x_{i+1}$ (reduced word).

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids

Embedding into free groups and monoids

- Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
 Categories, universal mono Spindles
- Embedding inte

Proposition

 $\Upsilon(P)$ embeds into the free group $F_{gp}(P)$. Thus, $\Upsilon(P)$ embeds into $\Upsilon^{\pm}(P)$. (Remark: $\Upsilon^{\pm}(P)$ may not be free!)

Proof (involves highlighting trick).

The elements $x^{-1}y \in F_{gp}(P)$, where $x \leq y$ in P, satisfy the defining relations of $\Upsilon(P)$. Thus there exists a unique monoid homomorphism $\mu \colon \Upsilon(P) \to F_{gp}(P)$ such that each $\mu([x, y]) = x^{-1}y$. Any $\mathbf{a} \in \Upsilon(P)$ can be written $[x_1, y_1] \cdots [x_n, y_n]$ with each $y_i \neq x_{i+1}$ (reduced word). Then $\mu(\mathbf{a}) = x_1^{-1}y_1 \cdots x_n^{-1}y_n$. The right hand side is a word in normal form in $F_{gp}(P)$.

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids

Embedding into free groups and monoids

- Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
 Categories, universal mono Spindles
- Embedding into

The interval monoid $\Upsilon(P)$ (resp., interval group $\Upsilon^{\pm}(P)$), of a poset *P*, is defined by generators [x, y], for $x \le y$ in *P*, and relations [x, x] = 1, $[x, z] = [x, y] \cdot [y, z]$ for $x \le y \le z$.

Proposition

 $\Upsilon(P)$ embeds into the free group $F_{gp}(P)$. Thus, $\Upsilon(P)$ embeds into $\Upsilon^{\pm}(P)$. (Remark: $\Upsilon^{\pm}(P)$ may not be free!)

Proof (involves highlighting trick).

The elements $x^{-1}y \in F_{gp}(P)$, where $x \leq y$ in P, satisfy the defining relations of $\Upsilon(P)$. Thus there exists a unique monoid homomorphism $\mu \colon \Upsilon(P) \to F_{gp}(P)$ such that each $\mu([x, y]) = x^{-1}y$. Any $\mathbf{a} \in \Upsilon(P)$ can be written $[x_1, y_1] \cdots [x_n, y_n]$ with each $y_i \neq x_{i+1}$ (reduced word). Then $\mu(\mathbf{a}) = x_1^{-1}y_1 \cdots x_n^{-1}y_n$. The right hand side is a word in normal form in $F_{gp}(P)$. Hence $\mu(\mathbf{a})$ determines \mathbf{a} .

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids

Embedding into free groups and monoids

- Interval gcd-monoids Floating homotopy group Representing groups by poset: Examples
- Universal monoids of categories
 Categories.
- universal monoid Spindles Embedding into groups

For posets $P \subseteq Q$, every reduced word $[x_1, y_1] \cdots [x_n, y_n]$ in $\Upsilon(P)$ (i.e., each $y_i \neq x_{i+1}$) is also a reduced word in $\Upsilon(Q)$. Hence,

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids

Embedding into free groups and monoids

Interval gcd-monoids Floating homotopy group Representing groups by poset Examples

- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into groups

For posets $P \subseteq Q$, every reduced word $[x_1, y_1] \cdots [x_n, y_n]$ in $\Upsilon(P)$ (i.e., each $y_i \neq x_{i+1}$) is also a reduced word in $\Upsilon(Q)$. Hence,

Proposition

Let P and Q be posets, with $P \subseteq Q$. Then the canonical monoid homomorphism $\Upsilon(P) \to \Upsilon(Q)$ is one-to-one.

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids

Embedding into free groups and monoids

- Interval gcd-monoids Floating homotopy group Representing groups by poset: Examples
- Universal monoids of categories
 Categories,
- Spindles Embedding into

For posets $P \subseteq Q$, every reduced word $[x_1, y_1] \cdots [x_n, y_n]$ in $\Upsilon(P)$ (i.e., each $y_i \neq x_{i+1}$) is also a reduced word in $\Upsilon(Q)$. Hence,

Proposition

Let P and Q be posets, with $P \subseteq Q$. Then the canonical monoid homomorphism $\Upsilon(P) \to \Upsilon(Q)$ is one-to-one.

• For $P = \{1, 2, ..., n\}$ with its standard ordering, observe that $[x, y] = [x, x + 1] \cdots [y - 1, y]$ within $\Upsilon(P)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids

Embedding into free groups and monoids

Interval gcd-monoids Floating homotopy group Representing groups by poset: Examples

 Universal monoids of categories
 Categories, universal monoi Spindles
 Embedding into For posets $P \subseteq Q$, every reduced word $[x_1, y_1] \cdots [x_n, y_n]$ in $\Upsilon(P)$ (i.e., each $y_i \neq x_{i+1}$) is also a reduced word in $\Upsilon(Q)$. Hence,

Proposition

Let P and Q be posets, with $P \subseteq Q$. Then the canonical monoid homomorphism $\Upsilon(P) \to \Upsilon(Q)$ is one-to-one.

- For $P = \{1, 2, ..., n\}$ with its standard ordering, observe that $[x, y] = [x, x + 1] \cdots [y 1, y]$ within $\Upsilon(P)$.
- Hence, $\Upsilon(P) \cong F_{\text{mon}}(n-1)$ (free monoid on n-1 letters).

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids

Embedding into free groups and monoids

- Interval gcd-monoids Floating homotopy group Representing groups by poset: Examples
- Universal monoids of categories
 Categories, universal mono Spindles
- Embedding into groups

For posets $P \subseteq Q$, every reduced word $[x_1, y_1] \cdots [x_n, y_n]$ in $\Upsilon(P)$ (i.e., each $y_i \neq x_{i+1}$) is also a reduced word in $\Upsilon(Q)$. Hence,

Proposition

Let P and Q be posets, with $P \subseteq Q$. Then the canonical monoid homomorphism $\Upsilon(P) \to \Upsilon(Q)$ is one-to-one.

- For $P = \{1, 2, ..., n\}$ with its standard ordering, observe that $[x, y] = [x, x + 1] \cdots [y 1, y]$ within $\Upsilon(P)$.
- Hence, $\Upsilon(P) \cong F_{mon}(n-1)$ (free monoid on n-1 letters). By the proposition above (and picking any linear extension), we get

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids

Embedding into free groups and monoids

Interval gcd-monoids Floating homotopy group Representing groups by posets Examples

 Universal monoids of categories

Categories, universal monoid Spindles Embedding into groups For posets $P \subseteq Q$, every reduced word $[x_1, y_1] \cdots [x_n, y_n]$ in $\Upsilon(P)$ (i.e., each $y_i \neq x_{i+1}$) is also a reduced word in $\Upsilon(Q)$. Hence,

Proposition

Let P and Q be posets, with $P \subseteq Q$. Then the canonical monoid homomorphism $\Upsilon(P) \to \Upsilon(Q)$ is one-to-one.

- For $P = \{1, 2, ..., n\}$ with its standard ordering, observe that $[x, y] = [x, x + 1] \cdots [y 1, y]$ within $\Upsilon(P)$.
- Hence, \u03c0(P) \u2222 F_{mon}(n-1) (free monoid on n-1 letters). By the proposition above (and picking any linear extension), we get

Proposition

For any finite poset P, with n elements, $\Upsilon(P)$ embeds into the free monoid $F_{mon}(n-1)$.

When are they gcd-monoids?

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids

Interval gcd-monoids

- Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into groups

For any poset P and any $a \in P$, we set

$$P^{\leqslant a} = \{ x \in P \mid x \le a \} ,$$
$$P^{\geqslant a} = \{ x \in P \mid x \ge a \} .$$

When are they gcd-monoids?

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids

Interval gcd-monoids

Floating homotopy group Representing groups by posets Examples

- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into groups

For any poset P and any $a \in P$, we set

$$P^{\leqslant a} = \{ x \in P \mid x \le a \} ,$$
$$P^{\geqslant a} = \{ x \in P \mid x \ge a \} .$$

Proposition

Let P be a poset. Then $\Upsilon(P)$ is a gcd-monoid iff for every $a \in P$, $P^{\leq a}$ is a join-semilattice and $P^{\geq a}$ is a meet-semilattice.

When are they gcd-monoids?

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids

Interval gcd-monoids

Floating homotopy group Representing groups by posets Examples

- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into groups

For any poset *P* and any $a \in P$, we set

$$P^{\leqslant a} = \{ x \in P \mid x \le a \} ,$$
$$P^{\geqslant a} = \{ x \in P \mid x \ge a \} .$$

Proposition

Let P be a poset. Then $\Upsilon(P)$ is a gcd-monoid iff for every $a \in P$, $P^{\leq a}$ is a join-semilattice and $P^{\geq a}$ is a meet-semilattice. (Say that P is a local lattice.)

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids
- Interval gcd-monoid

Floating homotopy group

Representing groups by posets Examples

- Universal
 monoids of
 categories
 Categories,
 universal mono
 Spindles
- Embedding into groups

• A set K, of nonempty finite subsets of some set V (the vertices of K), is a simplicial complex on V, if $\{p\} \in K$ for all $p \in V$, and $(\emptyset \neq X \subseteq Y \text{ and } Y \in K)$ implies $X \in K$. The elements of K are called the simplices of K.

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids
- Interval gcd-monoi

Floating homotopy group

Representing groups by posets Examples

- Universal monoids of categories
 Categories, universal mono Spindles
 Embedding int
- groups

- A set K, of nonempty finite subsets of some set V (the vertices of K), is a simplicial complex on V, if {p} ∈ K for all p ∈ V, and (Ø ≠ X ⊆ Y and Y ∈ K) implies X ∈ K. The elements of K are called the simplices of K.
- The floating homotopy group \(\U03c0[±](K)\) of K is the group defined by the generators [x, y], where {x, y} ∈ K, and the relations

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids

Interval gcd-monoi

Floating homotopy group

Representing groups by posets Examples

 Universal monoids of categories
 Categories, universal mono Spindles
 Embedding interest

- A set K, of nonempty finite subsets of some set V (the vertices of K), is a simplicial complex on V, if {p} ∈ K for all p ∈ V, and (Ø ≠ X ⊆ Y and Y ∈ K) implies X ∈ K. The elements of K are called the simplices of K.
- The floating homotopy group
 ^{↑±}(K) of K is the group defined by the generators [x, y], where {x, y} ∈ K, and the relations

$$[x,z] = [x,y] \cdot [y,z]$$
, whenever $\{x,y,z\} \in K$.

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids

Interval gcd-monoi

Floating homotopy group

Representing groups by posets Examples

 Universal monoids of categories
 Categories, universal mon Spindles

Embedding int groups

- A set K, of nonempty finite subsets of some set V (the vertices of K), is a simplicial complex on V, if {p} ∈ K for all p ∈ V, and (Ø ≠ X ⊆ Y and Y ∈ K) implies X ∈ K. The elements of K are called the simplices of K.
- The floating homotopy group
 ^{↑±}(K) of K is the group defined by the generators [x, y], where {x, y} ∈ K, and the relations

$$[x,z] = [x,y] \cdot [y,z]$$
, whenever $\{x,y,z\} \in K$.

 Hence Υ[±](K) = U_{gp}(Π₁(K)), the universal group of the fundamental groupoid Π₁(K) of K.

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids
- Interval gcd-monoid

Floating homotopy group

Representing groups by posets Examples

- Universal monoids of categories
 Categories, universal monospace
- Spindles Embedding into groups

Proposition

Let p be a vertex in a connected simplicial complex K and let E be the set of all edges of a spanning tree of K.

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids
- Interval gcd-monoid

Floating homotopy group

Representing groups by posets Examples

- Universal monoids of categories
 Categories, universal mor
- Embedding int

Proposition

Let p be a vertex in a connected simplicial complex K and let E be the set of all edges of a spanning tree of K. Then $\Upsilon^{\pm}(K) \cong F_{gp}(E) * \pi_1(K, p)$ (amalgamated free product).

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids
- Interval gcd-monoi

Floating homotopy group

Representing groups by posets Examples

- Universal monoids of categories
 Categories, universal mon
- Embedding into groups

Proposition

Let p be a vertex in a connected simplicial complex K and let E be the set of all edges of a spanning tree of K. Then $\Upsilon^{\pm}(K) \cong F_{gp}(E) * \pi_1(K, p)$ (amalgamated free product).

• Here, $\pi_1(K, p)$ is the fundamental group of (K, p).

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids
- Interval gcd-mono

Floating homotopy group

- Representing groups by posets Examples
- Universal monoids of categories
 Categories, universal mon Spindles
- Embedding into groups

Proposition

Let p be a vertex in a connected simplicial complex K and let E be the set of all edges of a spanning tree of K. Then $\Upsilon^{\pm}(K) \cong F_{gp}(E) * \pi_1(K, p)$ (amalgamated free product).

- Here, $\pi_1(K, p)$ is the fundamental group of (K, p).
- Say that $\pi_1(K, p)$ is a doubly free factor of $\Upsilon^{\pm}(K)$.

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids
- Interval gcd-monoi

Floating homotopy group

- Representing groups by posets Examples
- Universal monoids of categories
 Categories, universal mono Spindles
- groups

Proposition

Let p be a vertex in a connected simplicial complex K and let E be the set of all edges of a spanning tree of K. Then $\Upsilon^{\pm}(K) \cong F_{gp}(E) * \pi_1(K, p)$ (amalgamated free product).

- Here, $\pi_1(K, p)$ is the fundamental group of (K, p).
- Say that $\pi_1(K, p)$ is a doubly free factor of $\Upsilon^{\pm}(K)$.
- It is well known that every group G is isomorphic to some π₁(K, p), for a connected simplicial complex K which may be taken finite iff G is finitely presented. Hence,

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids
- Interval gcd-monoi
- Floating homotopy group
- Representing groups by posets Examples
- Universal monoids of categories
 Categories.
- universal monoid Spindles Embedding into groups

Proposition

Let p be a vertex in a connected simplicial complex K and let E be the set of all edges of a spanning tree of K. Then $\Upsilon^{\pm}(K) \cong F_{gp}(E) * \pi_1(K, p)$ (amalgamated free product).

- Here, $\pi_1(K, p)$ is the fundamental group of (K, p).
- Say that $\pi_1(K, p)$ is a doubly free factor of $\Upsilon^{\pm}(K)$.
- It is well known that every group G is isomorphic to some π₁(K, p), for a connected simplicial complex K which may be taken finite iff G is finitely presented. Hence,

Proposition

Every group is a doubly free factor of $\Upsilon^{\pm}(K)$, for some connected simplicial complex K of dimension at most 2.

GCD-monoids

Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids

 Interval monoids

Embedding into free groups and monoids

Interval gcd-monoi

Floating homotopy grou

Representing groups by posets Examples

 Universal monoids of categories
 Categories,

universal monoid Spindles Embedding into groups Posets \Leftrightarrow simplicial complexes; $\Upsilon^{\pm}(P) \rightleftharpoons \Upsilon^{\pm}(K)$:

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids
- Interval gcd-monoid
- Floating homotopy grou

Representing groups by posets Examples

- Universal monoids of categories
 Categories, universal mono Spindles
 Embedding int
- groups

- Posets \Leftrightarrow simplicial complexes; $\Upsilon^{\pm}(P) \rightleftharpoons \Upsilon^{\pm}(K)$:
- To every poset P, associate the chain complex Sim(P) of P, whose vertices are the elements of P and whose simplices are the finite chains of P.

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids
- Interval gcd-monoi
- Floating

Representing groups by posets Examples

 Universal monoids of categories Categories, universal mono Spindles Embedding into

- Posets \Leftrightarrow simplicial complexes; $\Upsilon^{\pm}(P) \rightleftharpoons \Upsilon^{\pm}(K)$:
- To every poset P, associate the chain complex Sim(P) of P, whose vertices are the elements of P and whose simplices are the finite chains of P.
- Checking the definitions, we get $\Upsilon^{\pm}(P) = \Upsilon^{\pm}(Sim(P))$ (e.g., $[y, x] = [x, y]^{-1}$).

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids
- Interval gcd-monoi
- Floating

Representing groups by posets Examples

 Universal monoids of categories
 Categories, universal mono Spindles
 Embedding interest

- Posets \Leftrightarrow simplicial complexes; $\Upsilon^{\pm}(P) \rightleftharpoons \Upsilon^{\pm}(K)$:
- To every poset P, associate the chain complex Sim(P) of P, whose vertices are the elements of P and whose simplices are the finite chains of P.
- Checking the definitions, we get Y[±](P) = Y[±](Sim(P)) (e.g., [y, x] = [x, y]⁻¹). (Observe that "Y(K)" does not make sense.)

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids
- Interval gcd-monoi
- Floating

Representing groups by posets

 Universal monoids of categories
 Categories, universal monoi Spindles
 Embedding into groups

- Posets \Leftrightarrow simplicial complexes; $\Upsilon^{\pm}(P) \rightleftharpoons \Upsilon^{\pm}(K)$:
- To every poset *P*, associate the chain complex Sim(*P*) of *P*, whose vertices are the elements of *P* and whose simplices are the finite chains of *P*.
- Checking the definitions, we get $\Upsilon^{\pm}(P) = \Upsilon^{\pm}(Sim(P))$ (e.g., $[y, x] = [x, y]^{-1}$). (Observe that " $\Upsilon(K)$ " does not make sense.)
- To every simplicial complex K, associate its barycentric subdivision P, which is the set of all its simplices, partially ordered by set inclusion.

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids
- Interval gcd-monoi
- Floating

Representing groups by posets

Examples

- Universal monoids of categories
 Categories, universal mo
- Spindles Embedding inte
- groups

- Posets \Leftrightarrow simplicial complexes; $\Upsilon^{\pm}(P) \Leftrightarrow \Upsilon^{\pm}(K)$:
- To every poset P, associate the chain complex Sim(P) of P, whose vertices are the elements of P and whose simplices are the finite chains of P.
- Checking the definitions, we get $\Upsilon^{\pm}(P) = \Upsilon^{\pm}(Sim(P))$ (e.g., $[y, x] = [x, y]^{-1}$). (Observe that " $\Upsilon(K)$ " does not make sense.)
- To every simplicial complex K, associate its barycentric subdivision P, which is the set of all its simplices, partially ordered by set inclusion.
- If K has dimension at most 2, then P is a connected poset of length at most 2.

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids
- Interval gcd-monoi
- Floating

Representing groups by posets

- Examples
- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into groups

- Posets \Leftrightarrow simplicial complexes; $\Upsilon^{\pm}(P) \Leftrightarrow \Upsilon^{\pm}(K)$:
- To every poset *P*, associate the chain complex Sim(*P*) of *P*, whose vertices are the elements of *P* and whose simplices are the finite chains of *P*.
- Checking the definitions, we get $\Upsilon^{\pm}(P) = \Upsilon^{\pm}(Sim(P))$ (e.g., $[y, x] = [x, y]^{-1}$). (Observe that " $\Upsilon(K)$ " does not make sense.)
- To every simplicial complex K, associate its barycentric subdivision P, which is the set of all its simplices, partially ordered by set inclusion.
- If K has dimension at most 2, then P is a connected poset of length at most 2.
- Moreover, it is well known that $\pi_1(K) \cong \pi_1(Sim(P))$.

Representing groups by gcd-monoids

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids
- Interval gcd-monoid
- Floating homotopy grou

Representing groups by posets Examples

- Universal monoids of categories
 Categories, universal mon
- Embedding int
- groups

Representing groups by gcd-monoids

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids
- Interval gcd-monoid
- Floating homotopy group

Representing groups by posets Examples

- Universal monoids of categories
 Categories, universal mor
- Spindles Embedding ir
- groups

■ Hence every group is a doubly free factor of
^{↑±}(Sim(P)) for some connected poset P of length ≤ 2.

Now
$$\Upsilon^{\pm}(P) = \Upsilon^{\pm}(\mathsf{Sim}(P))$$
. Hence,

Representing groups by gcd-monoids

GCD-monoids

Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids

 Interval monoids

Embedding into free groups and monoids Interval

Floating homotopy grou

Representing groups by posets Examples

 Universal monoids of categories
 Categories, universal mon Spindles

Embedding into

■ Hence every group is a doubly free factor of
^{↑±}(Sim(P)) for some connected poset P of length ≤ 2.

Now
$$\Upsilon^{\pm}(P) = \Upsilon^{\pm}(\mathsf{Sim}(P))$$
. Hence,

Theorem

Every group G is a doubly free factor of $\Upsilon^{\pm}(P)$, for some connected poset P of length ≤ 2 , which may be taken finite iff G is finitely presented.

GCD-monoids

Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids

 Interval monoids

Embedding into free groups and monoids Interval

gcd-monoid Floating

homotopy group

Representing groups by posets Examples

 Universal monoids of categories
 Categories, universal mono Spindles
 Embedding int

groups

■ Hence every group is a doubly free factor of
^{↑±}(Sim(P)) for some connected poset P of length ≤ 2.

Now
$$\Upsilon^{\pm}(P) = \Upsilon^{\pm}(\mathsf{Sim}(P))$$
. Hence,

Theorem

Every group G is a doubly free factor of $\Upsilon^{\pm}(P)$, for some connected poset P of length ≤ 2 , which may be taken finite iff G is finitely presented.

 Moreover, P is constructed as the barycentric subdivision of a simplicial complex.

GCD-monoids

Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids

 Interval monoids

Embedding into free groups and monoids Interval gcd-monoids

Floating

Representing groups by posets Examples

 Universal monoids of categories
 Categories,

Spindles Embedding into

- Hence every group is a doubly free factor of Υ[±](Sim(P)) for some connected poset P of length ≤ 2.
- Now $\Upsilon^{\pm}(P) = \Upsilon^{\pm}(Sim(P))$. Hence,

Theorem

Every group G is a doubly free factor of $\Upsilon^{\pm}(P)$, for some connected poset P of length ≤ 2 , which may be taken finite iff G is finitely presented.

- Moreover, P is constructed as the barycentric subdivision of a simplicial complex.
- Now the barycentric subdivision P, of any simplicial complex, is a local lattice (i.e., each P^{≥a} is a meet-semilattice and each P^{≤a} is a join-semilattice).

GCD-monoids

Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids

 Interval monoids

Embedding into free groups and monoids Interval gcd-monoids

Floating homotopy grou

Representing groups by posets Examples

 Universal monoids of categories
 Categories, universal model

Spindles Embedding into

- Hence every group is a doubly free factor of
 ^{↑±}(Sim(P)) for some connected poset P of length ≤ 2.
 - Now $\Upsilon^{\pm}(P) = \Upsilon^{\pm}(Sim(P))$. Hence,

Theorem

Every group G is a doubly free factor of $\Upsilon^{\pm}(P)$, for some connected poset P of length ≤ 2 , which may be taken finite iff G is finitely presented.

- Moreover, P is constructed as the barycentric subdivision of a simplicial complex.
- Now the barycentric subdivision P, of any simplicial complex, is a local lattice (i.e., each P^{≥a} is a meet-semilattice and each P^{≤a} is a join-semilattice).
- Hence, in the theorem above, P can be taken a local lattice, which means that $\Upsilon(P)$ is a gcd-monoid.

GCD-monoids

Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids

 Interval monoids

Embedding into free groups and monoids Interval gcd-monoids

Floating homotopy group

Representing groups by posets Examples

 Universal monoids of categories
 Categories, universal monopole

Embedding int

■ Hence every group is a doubly free factor of
^{↑±}(Sim(P)) for some connected poset P of length ≤ 2.

Now
$$\Upsilon^{\pm}(P) = \Upsilon^{\pm}(\mathsf{Sim}(P))$$
. Hence,

Theorem

Every group G is a doubly free factor of $\Upsilon^{\pm}(P)$, for some connected poset P of length ≤ 2 , which may be taken finite iff G is finitely presented.

- Moreover, P is constructed as the barycentric subdivision of a simplicial complex.
- Now the barycentric subdivision P, of any simplicial complex, is a local lattice (i.e., each P^{≥a} is a meet-semilattice and each P^{≤a} is a join-semilattice).
- Hence, in the theorem above, P can be taken a local lattice, which means that $\Upsilon(P)$ is a gcd-monoid.
- In particular, Every group is a doubly free factor of the universal group of an interval gcd-monoid.

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids
- Interval gcd-monoic
- Floating homotopy grou

Representing groups by posets Examples

- Universal monoids of categories
 Categories, universal mon
- Spindles Embedding into groups

 It follows that badly behaviored groups yield badly behaviored posets.

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids
- Interval gcd-monoid
- Floating homotopy group

Representing groups by posets Examples

- Universal monoids of categories
 Categories, universal mono Spindles
- Embedding into groups

- It follows that badly behaviored groups yield badly behaviored posets.
- For example, there are finitely presented groups with torsion,

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids
- Interval gcd-monoi
- Floating homotopy grou

Representing groups by posets Examples

- Universal monoids of categories
 Categories, universal mono Spindles
 Embedding interfactoria
- groups

- It follows that badly behaviored groups yield badly behaviored posets.
- For example, there are finitely presented groups with torsion, thus There are finite posets P, of length 2, such that Υ(P) is a gcd-monoid and Υ[±](P) has torsion.

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids
- Interval
- Floating

Representing groups by posets Examples

 Universal monoids of categories
 Categories, universal mono Spindles
 Embedding interest

- It follows that badly behaviored groups yield badly behaviored posets.
- For example, there are finitely presented groups with torsion, thus There are finite posets P, of length 2, such that Υ(P) is a gcd-monoid and Υ[±](P) has torsion.
- There are finitely presented groups with undecidable word problem,

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids
- Interval
- Floating

Representing groups by posets Examples

 Universal monoids of categories
 Categories, universal monoi
 Spindles
 Embedding into groups

- It follows that badly behaviored groups yield badly behaviored posets.
- For example, there are finitely presented groups with torsion, thus There are finite posets P, of length 2, such that Υ(P) is a gcd-monoid and Υ[±](P) has torsion.
- There are finitely presented groups with undecidable word problem, thus There are finite posets P, of length 2, such that Υ(P) is a gcd-monoid and Υ[±](P) has undecidable word problem.

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids
- Interval
- Floating

Representing groups by posets Examples

- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into groups

- It follows that badly behaviored groups yield badly behaviored posets.
- For example, there are finitely presented groups with torsion, thus There are finite posets P, of length 2, such that Υ(P) is a gcd-monoid and Υ[±](P) has torsion.
- There are finitely presented groups with undecidable word problem, thus There are finite posets P, of length 2, such that Υ(P) is a gcd-monoid and Υ[±](P) has undecidable word problem.
- In particular, There are finite posets P, of length 2, for which ↑(P) is a gcd-monoid where reduction is not semi-convergent.

An example without semi-convergence

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by poset

Examples

 Universal monoids of categories Categories, universal monoi Spindles Embedding inter groups The first such poset P, for which $\Upsilon(P)$ is a gcd-monoid where reduction is not semi-convergent, was found with Dehornoy:

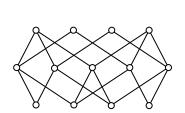
An example without semi-convergence

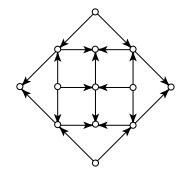
GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy grou Representing groups by pose

Examples

 Universal monoids of categories Categories, universal monoi Spindles Embedding into groups The first such poset P, for which $\Upsilon(P)$ is a gcd-monoid where reduction is not semi-convergent, was found with Dehornoy:





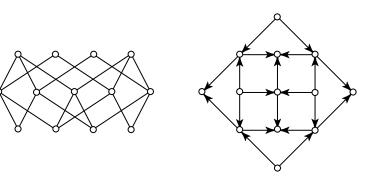
An example without semi-convergence

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by poset

Examples

 Universal monoids of categories
 Categories, universal monoid
 Spindles
 Embedding into groups The first such poset P, for which $\Upsilon(P)$ is a gcd-monoid where reduction is not semi-convergent, was found with Dehornoy:



The multifraction, given by the outside boundary, is nontrivial irreducible, nevertheless it represents 1 in the universal group $\Upsilon^{\pm}(P)$.

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by poset

Examples

 Universal monoids of categories
 Categories, universal mono Spindles
 Embedding international A positive (resp., negative) zigzag, in a poset P, is a finite sequence <u>x</u> = (x₀,...,x_n) ∈ Pⁿ⁺¹ such that x₀ < x₁ > x₂ < ··· (resp., x₀ > x₁ < x₂ > ···).

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by poset

Examples

 Universal monoids of categories Categories, universal monoi Spindles Embedding inter groups

- A positive (resp., negative) zigzag, in a poset P, is a finite sequence <u>x</u> = (x₀,...,x_n) ∈ Pⁿ⁺¹ such that x₀ < x₁ > x₂ < ··· (resp., x₀ > x₁ < x₂ > ···).
- The zigzag <u>x</u> is closed if x₀ = x_n, simple if x₁, ..., x_n are pairwise distinct.

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets

Examples

 Universal monoids of categories Categories, universal monoi Spindles Embedding into groups

- A positive (resp., negative) zigzag, in a poset P, is a finite sequence <u>x</u> = (x₀,...,x_n) ∈ Pⁿ⁺¹ such that x₀ < x₁ > x₂ < ··· (resp., x₀ > x₁ < x₂ > ···).
- The zigzag <u>x</u> is closed if x₀ = x_n, simple if x₁, ..., x_n are pairwise distinct.
- Then define a multifraction by $F(\underline{x}) = [x_0, x_1]/[x_2, x_1]/\cdots$ (resp., $/[x_1, x_0]/[x_1, x_2]/\cdots$).

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by poset

Examples

 Universal monoids of categories
 Categories, universal monoi
 Spindles
 Embedding into proups

- A positive (resp., negative) zigzag, in a poset P, is a finite sequence x = (x₀,..., x_n) ∈ Pⁿ⁺¹ such that x₀ < x₁ > x₂ < ··· (resp., x₀ > x₁ < x₂ > ···).
- The zigzag <u>x</u> is closed if x₀ = x_n, simple if x₁, ..., x_n are pairwise distinct.
- Then define a multifraction by $F(\underline{x}) = [x_0, x_1]/[x_2, x_1]/\cdots$ (resp., $/[x_1, x_0]/[x_1, x_2]/\cdots$).
- We say that a zigzag <u>x</u> is reducible if F(<u>x</u>) is a reducible multifraction

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets

Examples

 Universal monoids of categories Categories, universal monoi Spindles Embedding into groups

- A positive (resp., negative) zigzag, in a poset P, is a finite sequence <u>x</u> = (x₀,..., x_n) ∈ Pⁿ⁺¹ such that x₀ < x₁ > x₂ < ··· (resp., x₀ > x₁ < x₂ > ···).
- The zigzag <u>x</u> is closed if x₀ = x_n, simple if x₁, ..., x_n are pairwise distinct.
- Then define a multifraction by $F(\underline{x}) = [x_0, x_1]/[x_2, x_1]/\cdots$ (resp., $/[x_1, x_0]/[x_1, x_2]/\cdots$).
- We say that a zigzag <u>x</u> is reducible if *F*(<u>x</u>) is a reducible multifraction (can be read directly on the poset).

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by poset

Examples

 Universal monoids of categories
 Categories, universal monoid
 Spindles
 Embedding into groups

- A positive (resp., negative) zigzag, in a poset P, is a finite sequence <u>x</u> = (x₀,..., x_n) ∈ Pⁿ⁺¹ such that x₀ < x₁ > x₂ < ··· (resp., x₀ > x₁ < x₂ > ···).
- The zigzag <u>x</u> is closed if x₀ = x_n, simple if x₁, ..., x_n are pairwise distinct.
- Then define a multifraction by $F(\underline{x}) = [x_0, x_1]/[x_2, x_1]/\cdots$ (resp., $/[x_1, x_0]/[x_1, x_2]/\cdots$).
- We say that a zigzag <u>x</u> is reducible if F(<u>x</u>) is a reducible multifraction (can be read directly on the poset).

Proposition (Dehornoy + W)

Let P be a finite local lattice. If every simple closed zigzag in P is reducible, then reduction is semi-convergent for $\Upsilon(P)$.

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by poset

Examples

 Universal monoids of categories
 Categories, universal monoid
 Spindles
 Embedding into groups

- A positive (resp., negative) zigzag, in a poset P, is a finite sequence <u>x</u> = (x₀,...,x_n) ∈ Pⁿ⁺¹ such that x₀ < x₁ > x₂ < ··· (resp., x₀ > x₁ < x₂ > ···).
- The zigzag <u>x</u> is closed if x₀ = x_n, simple if x₁, ..., x_n are pairwise distinct.
- Then define a multifraction by $F(\underline{x}) = [x_0, x_1]/[x_2, x_1]/\cdots$ (resp., $/[x_1, x_0]/[x_1, x_2]/\cdots$).
- We say that a zigzag <u>x</u> is reducible if F(<u>x</u>) is a reducible multifraction (can be read directly on the poset).

Proposition (Dehornoy + W)

Let P be a finite local lattice. If every simple closed zigzag in P is reducible, then reduction is semi-convergent for $\Upsilon(P)$.

The proof (multifractions \rightsquigarrow zigzags) involves the highlighting trick.

An example with semi-convergence

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by poset

Examples

 Universal monoids of categories Categories, universal monoi Spindles Embedding inter groups For the following example, constructed with Dehornoy, reduction is semi-convergent for $\Upsilon(P)$, but not convergent.

An example with semi-convergence

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets

Examples

 Universal monoids of categories
 Categories, universal monoi
 Spindles
 Embedding integroups For the following example, constructed with Dehornoy, reduction is semi-convergent for $\Upsilon(P)$, but not convergent. (For failure of convergence: 3-Ore fails)

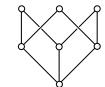
An example with semi-convergence

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing

Examples

 Universal monoids of categories
 Categories, universal monoi
 Spindles
 Embedding integroups For the following example, constructed with Dehornoy, reduction is semi-convergent for $\Upsilon(P)$, but not convergent. (For failure of convergence: 3-Ore fails)



GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posed

Examples

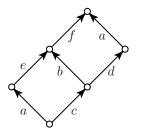
 Universal monoids of categories Categories, universal monoi Spindles Embedding inter groups Let M_6 be the monoid defined by generators *a*, *b*, *c*, *d*, *e*, *f* and relations ae = cb, da = bf.

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by poset

Examples

 Universal monoids of categories Categories, universal monoi Spindles Embedding into arroups Let M_6 be the monoid defined by generators *a*, *b*, *c*, *d*, *e*, *f* and relations ae = cb, da = bf.

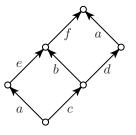


GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by poset

Examples

 Universal monoids of categories Categories, universal monoi Spindles Embedding into groups Let M_6 be the monoid defined by generators *a*, *b*, *c*, *d*, *e*, *f* and relations ae = cb, da = bf.



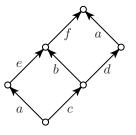
 By using the tools introduced by Dehornoy (cube condition, 3-Ore condition), one can prove that M₆ is a gcd-monoid, for which reduction is convergent. Thus M₆ embeds into its group.

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by poset

Examples

 Universal monoids of categories
 Categories, universal monoi
 Spindles
 Embedding into groups Let M_6 be the monoid defined by generators *a*, *b*, *c*, *d*, *e*, *f* and relations ae = cb, da = bf.



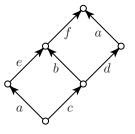
- By using the tools introduced by Dehornoy (cube condition, 3-Ore condition), one can prove that M₆ is a gcd-monoid, for which reduction is convergent. Thus M₆ embeds into its group.
- In fact, M₆ embeds into F_{mon}(4), via a → a, b → b, c → ax, d → by, e → xb, f → ya.

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by poset

Examples

 Universal monoids of categories
 Categories, universal monoid
 Spindles
 Embedding into groups Let M_6 be the monoid defined by generators *a*, *b*, *c*, *d*, *e*, *f* and relations ae = cb, da = bf.



- By using the tools introduced by Dehornoy (cube condition, 3-Ore condition), one can prove that M₆ is a gcd-monoid, for which reduction is convergent. Thus M₆ embeds into its group.
- In fact, M₆ embeds into F_{mon}(4), via a → a, b → b, c → ax, d → by, e → xb, f → ya.
- However, M_6 is not an interval monoid.

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into groups

Think of categories as "arrow-only".

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into groups

- Think of categories as "arrow-only".
- A semicategory is a structure (S, \cdot) , where \cdot is a partial binary operation on S such that $(x \cdot y) \cdot z \downarrow$ iff $x \cdot (y \cdot z) \downarrow$, and then the two values are equal, $\forall x, y, z \in S$.

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Fxamples
- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into groups

- Think of categories as "arrow-only".
- A semicategory is a structure (S, \cdot) , where \cdot is a partial binary operation on S such that $(x \cdot y) \cdot z \downarrow$ iff $x \cdot (y \cdot z) \downarrow$, and then the two values are equal, $\forall x, y, z \in S$.
- An identity (\Rightarrow object) of S is an element $e \in S$ such that $e^2 = e$ and $\forall x \in S$, $xe \downarrow \Rightarrow xe = x$ and $ex \downarrow \Rightarrow ex = x$.

イロト 不得下 イヨト イヨト 二日

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into groups

- Think of categories as "arrow-only".
- A semicategory is a structure (S, \cdot) , where \cdot is a partial binary operation on S such that $(x \cdot y) \cdot z \downarrow$ iff $x \cdot (y \cdot z) \downarrow$, and then the two values are equal, $\forall x, y, z \in S$.
- An identity (\Rightarrow object) of S is an element $e \in S$ such that $e^2 = e$ and $\forall x \in S$, $xe \downarrow \Rightarrow xe = x$ and $ex \downarrow \Rightarrow ex = x$.
- A category is a semicategory where $\forall x, \exists$ identities a, b such that x = ax = xb. Write $a = \partial_0 x$ (source of x), $b = \partial_1 x$ (target of x).

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into groups

- Think of categories as "arrow-only".
- A semicategory is a structure (S, ·), where · is a partial binary operation on S such that (x · y) · z ↓ iff x · (y · z) ↓, and then the two values are equal, ∀x, y, z ∈ S.
- An identity (\Rightarrow object) of S is an element $e \in S$ such that $e^2 = e$ and $\forall x \in S$, $xe \downarrow \Rightarrow xe = x$ and $ex \downarrow \Rightarrow ex = x$.
- A category is a semicategory where $\forall x, \exists$ identities a, b such that x = ax = xb. Write $a = \partial_0 x$ (source of x), $b = \partial_1 x$ (target of x).
- Morphism of categories = functor (e.g., identities \mapsto identities).

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into groups

- Think of categories as "arrow-only".
- A semicategory is a structure (S, ·), where · is a partial binary operation on S such that (x · y) · z ↓ iff x · (y · z) ↓, and then the two values are equal, ∀x, y, z ∈ S.
- An identity (\rightleftharpoons object) of S is an element $e \in S$ such that $e^2 = e$ and $\forall x \in S$, $xe \downarrow \Rightarrow xe = x$ and $ex \downarrow \Rightarrow ex = x$.
- A category is a semicategory where $\forall x, \exists$ identities a, b such that x = ax = xb. Write $a = \partial_0 x$ (source of x), $b = \partial_1 x$ (target of x).
- Morphism of categories = functor (e.g., identities \mapsto identities).
- Every monoid is a category with exactly one identity.

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into groups

- Think of categories as "arrow-only".
- A semicategory is a structure (S, ·), where · is a partial binary operation on S such that (x · y) · z ↓ iff x · (y · z) ↓, and then the two values are equal, ∀x, y, z ∈ S.
- An identity (\leftrightarrows object) of S is an element $e \in S$ such that $e^2 = e$ and $\forall x \in S$, $xe \downarrow \Rightarrow xe = x$ and $ex \downarrow \Rightarrow ex = x$.
- A category is a semicategory where $\forall x, \exists$ identities a, b such that x = ax = xb. Write $a = \partial_0 x$ (source of x), $b = \partial_1 x$ (target of x).
- Morphism of categories = functor (e.g., identities \mapsto identities).
- Every monoid is a category with exactly one identity.
- Every poset P gives rise to a category Cat(P), whose elements are the [x, y], where x ≤ y in P, and where [x, y] · [y, z] = [x, z]. Note [x, x] = ∂₀[x, y] and [y, y] = ∂₁[x, y].

The universal monoid of a category

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into groups

• For a category *S*, consider the set Seq *S* of all finite sequences of elements of *S*.

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into groups

- For a category *S*, consider the set Seq *S* of all finite sequences of elements of *S*.
- Reduction rule \rightarrow on Seq S: (e) $\rightarrow \emptyset$, (x, y) $\rightarrow z$ whenever z = xy, and close under concatenation.

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into groups

- For a category *S*, consider the set Seq *S* of all finite sequences of elements of *S*.
- Reduction rule \rightarrow on Seq S: (e) $\rightarrow \emptyset$, (x, y) $\rightarrow z$ whenever z = xy, and close under concatenation.
- This reduction rule is confluent and notherian, and \rightarrow generates a monoid congruence \equiv on Seq S.

(ロ) (四) (三) (三) (三)

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into groups

- For a category *S*, consider the set Seq *S* of all finite sequences of elements of *S*.
- Reduction rule \rightarrow on Seq S: (e) $\rightarrow \emptyset$, (x, y) $\rightarrow z$ whenever z = xy, and close under concatenation.
- This reduction rule is confluent and noetherian, and \rightarrow generates a monoid congruence \equiv on Seq S.
- U_{mon}(S) = (Seq S)/≡ (⇒ set of all reduced sequences of elements of S) is the universal monoid of S.

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into groups

- For a category *S*, consider the set Seq *S* of all finite sequences of elements of *S*.
- Reduction rule \rightarrow on Seq S: (e) $\rightarrow \emptyset$, (x, y) $\rightarrow z$ whenever z = xy, and close under concatenation.
- This reduction rule is confluent and notherian, and \rightarrow generates a monoid congruence \equiv on Seq S.
- U_{mon}(S) = (Seq S)/≡ (≒ set of all reduced sequences of elements of S) is the universal monoid of S.
- It is the initial object in the category of all functors from S to a monoid.

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into groups

- For a category *S*, consider the set Seq *S* of all finite sequences of elements of *S*.
- Reduction rule \rightarrow on Seq S: (e) $\rightarrow \emptyset$, (x, y) $\rightarrow z$ whenever z = xy, and close under concatenation.
- This reduction rule is confluent and noetherian, and \rightarrow generates a monoid congruence \equiv on Seq S.
- U_{mon}(S) = (Seq S)/≡ (≒ set of all reduced sequences of elements of S) is the universal monoid of S.
- It is the initial object in the category of all functors from S to a monoid.
- The canonical functor $\varepsilon_S \colon S \to U_{mon}(S)$ satisfies that $\varepsilon_S(x) = \varepsilon_S(y)$ iff either x = y or x and y are both identities.

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into groups

- For a category *S*, consider the set Seq *S* of all finite sequences of elements of *S*.
- Reduction rule \rightarrow on Seq S: (e) $\rightarrow \emptyset$, (x, y) $\rightarrow z$ whenever z = xy, and close under concatenation.
- This reduction rule is confluent and noetherian, and \rightarrow generates a monoid congruence \equiv on Seq S.
- U_{mon}(S) = (Seq S)/≡ (≒ set of all reduced sequences of elements of S) is the universal monoid of S.
- It is the initial object in the category of all functors from S to a monoid.
- The canonical functor $\varepsilon_S \colon S \to U_{mon}(S)$ satisfies that $\varepsilon_S(x) = \varepsilon_S(y)$ iff either x = y or x and y are both identities.
- For any poset P, $\Upsilon(P) = U_{mon}(Cat(P))$ and $\Upsilon^{\pm}(P) = U_{gp}(Cat(P))$.

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into groups

Gcd-categories can be defined in a similar way as gcd-monoids. (They are the category analogue of local lattices.)

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into groups

Gcd-categories can be defined in a similar way as gcd-monoids. (They are the category analogue of local lattices.) For example, say that any $a, b \in S$, with $\partial_0 a = \partial_0 b$, have a left gcd.

・ロト・西・・田・・田・ のぐの

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into groups

Gcd-categories can be defined in a similar way as gcd-monoids. (They are the category analogue of local lattices.) For example, say that any $a, b \in S$, with $\partial_0 a = \partial_0 b$, have a left gcd.

Proposition

A category S is a gcd-category iff $U_{mon}(S)$ is a gcd-monoid.

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into groups

Gcd-categories can be defined in a similar way as gcd-monoids. (They are the category analogue of local lattices.) For example, say that any $a, b \in S$, with $\partial_0 a = \partial_0 b$, have a left gcd.

Proposition

A category S is a gcd-category iff $U_{mon}(S)$ is a gcd-monoid.

In particular, for any poset P, Cat(P) is a gcd-category iff $U_{mon}(Cat(P))$ (equal to $\Upsilon(P)$) is a gcd-monoid, iff P is a local lattice.

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles
- Embedding into

■ A spindle, in a poset *P*, is a closed interval [*u*, *v*], such that the open interval (*u*, *v*) is nonempty and the comparability relation on (*u*, *v*) is transitive

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles
- Embedding into groups

■ A spindle, in a poset *P*, is a closed interval [*u*, *v*], such that the open interval (*u*, *v*) is nonempty and the comparability relation on (*u*, *v*) is transitive (so any two distinct maximal chains of [*u*, *v*] meet in {*u*, *v*}).

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles
- Embedding into groups

- A spindle, in a poset *P*, is a closed interval [*u*, *v*], such that the open interval (*u*, *v*) is nonempty and the comparability relation on (*u*, *v*) is transitive (so any two distinct maximal chains of [*u*, *v*] meet in {*u*, *v*}).
- A spindle [u, v] is extreme if u is minimal and v is maximal.

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by poset: Examples
- Universal monoids of categories
- Categories, universal monoid Spindles
- Embedding into groups

- A spindle, in a poset *P*, is a closed interval [*u*, *v*], such that the open interval (*u*, *v*) is nonempty and the comparability relation on (*u*, *v*) is transitive (so any two distinct maximal chains of [*u*, *v*] meet in {*u*, *v*}).
- A spindle [u, v] is extreme if u is minimal and v is maximal.
- For an extreme spindle [u, v], denote by C_{u,v} the set of all maximal chains of [u, v], and set

$$\operatorname{Cat}(P, u, v) \stackrel{=}{=} (\operatorname{Cat}(P) \setminus \{[u, v]\}) \cup \mathcal{C}_{u, v},$$

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by poset Examples
- Universal monoids of categories
- Categories, universal monoid Spindles
- Embedding into groups

- A spindle, in a poset P, is a closed interval [u, v], such that the open interval (u, v) is nonempty and the comparability relation on (u, v) is transitive (so any two distinct maximal chains of [u, v] meet in {u, v}).
- A spindle [u, v] is extreme if u is minimal and v is maximal.
- For an extreme spindle [u, v], denote by C_{u,v} the set of all maximal chains of [u, v], and set

$$\mathsf{Cat}(P, u, v) \stackrel{}{=}_{\mathrm{def}} (\mathsf{Cat}(P) \setminus \{[u, v]\}) \cup \mathcal{C}_{u, v},$$

with products arising from Cat(P) whenever possible, and new products given by

$$[u, z] \cdot [z, v] = Z$$
, whenever $u < z < v$ and $z \in Z \in \mathcal{C}_{u, v}$.

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by poset Examples
- Universal monoids of categories
- Categories, universal monoid Spindles
- Embedding into groups

- A spindle, in a poset *P*, is a closed interval [*u*, *v*], such that the open interval (*u*, *v*) is nonempty and the comparability relation on (*u*, *v*) is transitive (so any two distinct maximal chains of [*u*, *v*] meet in {*u*, *v*}).
- A spindle [u, v] is extreme if u is minimal and v is maximal.
- For an extreme spindle [u, v], denote by C_{u,v} the set of all maximal chains of [u, v], and set

$$\mathsf{Cat}(P, u, v) \stackrel{}{=}_{\mathrm{def}} (\mathsf{Cat}(P) \setminus \{[u, v]\}) \cup \mathcal{C}_{u, v},$$

with products arising from Cat(P) whenever possible, and new products given by

$$[u, z] \cdot [z, v] = Z$$
, whenever $u < z < v$ and $z \in Z \in \mathcal{C}_{u, v}$.

• Then Cat(P, u, v) is a category.

イロト 不得 トイヨト イヨト ヨー う

Gcd-monoids from extreme spindles

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets
- Universal monoids of categories
- Categories, universal monoid Spindles
- Embedding into groups

Proposition

Let [u, v] be an extreme spindle in a local lattice *P*. Then Cat(P, u, v) is a gcd-category.

Gcd-monoids from extreme spindles

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Evamples
- Universal monoids of categories
- Categories, universal monoid Spindles
- Embedding into groups

Proposition

Let [u, v] be an extreme spindle in a local lattice P. Then Cat(P, u, v) is a gcd-category. Furthermore, $\Upsilon(P, u, v) \stackrel{=}{=} U_{mon}(Cat(P, u, v))$ can be defined by the generators [x, y], with $x \leq y$ and $(x, y) \neq (u, v)$, and the relations

$$[x, y] \cdot [y, z] = [x, z]$$
 for $x < y < z$ in P and $(x, z) \neq (u, v)$.

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles
- Embedding into groups

The following example, obtained with Dehornoy, yields the first example of a gcd-monoid that does not embed into its group.

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles
- Embedding into groups

- The following example, obtained with Dehornoy, yields the first example of a gcd-monoid that does not embed into its group.
- Set Ω = {1,2,3,4}. Then P_B = 𝔅(Ω) \ {Ø,Ω} is a 14-element local lattice under ⊆.

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles
- Embedding into groups

- The following example, obtained with Dehornoy, yields the first example of a gcd-monoid that does not embed into its group.
- Set Ω = {1,2,3,4}. Then P_B = 𝔅(Ω) \ {Ø,Ω} is a 14-element local lattice under ⊆.
- Setting u = 1 and v = 123, the interval [u, v] is an extreme spindle of P_B .

GCD-monoids

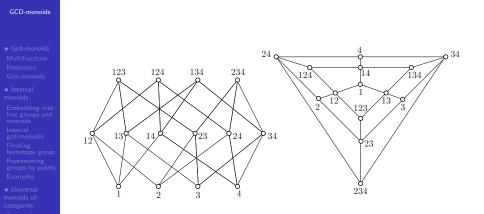
- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles
- Embedding into groups

- The following example, obtained with Dehornoy, yields the first example of a gcd-monoid that does not embed into its group.
- Set Ω = {1,2,3,4}. Then P_B = 𝔅(Ω) \ {Ø,Ω} is a 14-element local lattice under ⊆.
- Setting u = 1 and v = 123, the interval [u, v] is an extreme spindle of P_B .
- The relation $[1, 12] \cdot [12, 123] = [1, 13] \cdot [13, 123]$ fails in $\Upsilon(P_B, u, v)$, but holds in $\Upsilon^{\pm}(P_B, u, v)$. Hence $\Upsilon(P_B, u, v)$ does not embed into any group.

イロト 不得 とくほと くほとう ほ

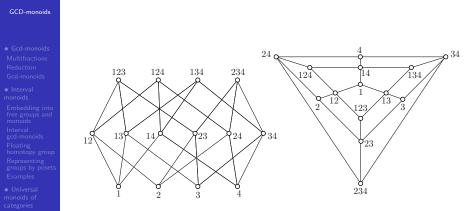
A picture of P_B

Spindles



▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - 釣ぬぐ

A picture of P_B



Categories, universal monoie Spindles

Embedding into groups The monoid $\Upsilon(P_B, u, v)$ omits the Mal'cev condition $L_1R_1R_2L_1^*R_2^*L_3R_1^*R_3L_3^*L_2^*R_3^*$ (24 variables, 11 + 1 identities).

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into
- groups

There are categories whose universal monoid does not embed into their group (take any non-cancellative monoid!).

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into
- groups

- There are categories whose universal monoid does not embed into their group (take any non-cancellative monoid!).
- However, embeddability can be verified "locally".

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles
- Embedding into groups

- There are categories whose universal monoid does not embed into their group (take any non-cancellative monoid!).
- However, embeddability can be verified "locally".

Theorem

Let S be a category. Then $U_{mon}(S)$ embeds into its group iff there exists a functor, from S to some group, whose restriction to any hom-set of S is one-to-one.

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into
- groups

- There are categories whose universal monoid does not embed into their group (take any non-cancellative monoid!).
- However, embeddability can be verified "locally".

Theorem

Let S be a category. Then $U_{mon}(S)$ embeds into its group iff there exists a functor, from S to some group, whose restriction to any hom-set of S is one-to-one.

The proof of the non-trivial direction involves the highlighting trick.

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles
- Embedding into groups

- There are categories whose universal monoid does not embed into their group (take any non-cancellative monoid!).
- However, embeddability can be verified "locally".

Theorem

Let S be a category. Then $U_{mon}(S)$ embeds into its group iff there exists a functor, from S to some group, whose restriction to any hom-set of S is one-to-one.

- The proof of the non-trivial direction involves the highlighting trick.
- The result for posets follows trivially (hom-sets are either empty or singletons).

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles
- Embedding into groups

Denote by C_6 the monoid defined by generators a, b, c, a', b', c' and relations ab' = ba', bc' = cb', ac' = ca'.

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into
- groups

- Denote by C_6 the monoid defined by generators a, b, c, a', b', c' and relations ab' = ba', bc' = cb', ac' = ca'.
- Adjan's embeddability condition, and Dehornoy's 3-Ore condition, both fail for that example.

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into
- groups

Denote by C_6 the monoid defined by generators a, b, c, a', b', c' and relations ab' = ba', bc' = cb', ac' = ca'.

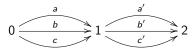
- Adjan's embeddability condition, and Dehornoy's 3-Ore condition, both fail for that example.
- Then C₆ = U_{mon}(C₆), where C₆ has objects 0, 1, 2, arrows a, b, c from 0 to 1, and arrows a', b', c' from 1 to 2, with bc' = cb', ac' = ca', and ab' = ba' (so there are 6 arrows from 0 to 2).

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into
- groups

Denote by C_6 the monoid defined by generators a, b, c, a', b', c'and relations ab' = ba', bc' = cb', ac' = ca'.

- Adjan's embeddability condition, and Dehornoy's 3-Ore condition, both fail for that example.
- Then C₆ = U_{mon}(C₆), where C₆ has objects 0, 1, 2, arrows a, b, c from 0 to 1, and arrows a', b', c' from 1 to 2, with bc' = cb', ac' = ca', and ab' = ba' (so there are 6 arrows from 0 to 2).



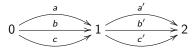
イロト 不得下 イヨト イヨト 二日

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal
 monoids of
 categories
 Categories
- universal monoid Spindles Embedding into
- groups

Denote by C_6 the monoid defined by generators a, b, c, a', b', c' and relations ab' = ba', bc' = cb', ac' = ca'.

- Adjan's embeddability condition, and Dehornoy's 3-Ore condition, both fail for that example.
- Then C₆ = U_{mon}(C₆), where C₆ has objects 0, 1, 2, arrows a, b, c from 0 to 1, and arrows a', b', c' from 1 to 2, with bc' = cb', ac' = ca', and ab' = ba' (so there are 6 arrows from 0 to 2).



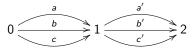
• Let $\psi: \mathcal{C}_6 \to \mathbb{Z}^3$ be the unique functor such that $\psi(a) = \psi(a') = (1, 0, 0), \ \psi(b) = \psi(b') = (0, 1, 0), \ \psi(c) = \psi(c') = (0, 0, 1).$

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles
- Embedding into groups

Denote by C_6 the monoid defined by generators a, b, c, a', b', c' and relations ab' = ba', bc' = cb', ac' = ca'.

- Adjan's embeddability condition, and Dehornoy's 3-Ore condition, both fail for that example.
- Then C₆ = U_{mon}(C₆), where C₆ has objects 0, 1, 2, arrows a, b, c from 0 to 1, and arrows a', b', c' from 1 to 2, with bc' = cb', ac' = ca', and ab' = ba' (so there are 6 arrows from 0 to 2).



• Let $\psi: \mathcal{C}_6 \to \mathbb{Z}^3$ be the unique functor such that $\psi(a) = \psi(a') = (1, 0, 0), \ \psi(b) = \psi(b') = (0, 1, 0), \ \psi(c) = \psi(c') = (0, 0, 1).$

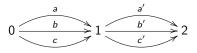
Then ψ is one-to-one on each hom-set of \mathcal{C}_6 .

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles
- Embedding into groups

Denote by C_6 the monoid defined by generators a, b, c, a', b', c' and relations ab' = ba', bc' = cb', ac' = ca'.

- Adjan's embeddability condition, and Dehornoy's 3-Ore condition, both fail for that example.
- Then C₆ = U_{mon}(C₆), where C₆ has objects 0, 1, 2, arrows a, b, c from 0 to 1, and arrows a', b', c' from 1 to 2, with bc' = cb', ac' = ca', and ab' = ba' (so there are 6 arrows from 0 to 2).



- Let $\psi: \mathcal{C}_6 \to \mathbb{Z}^3$ be the unique functor such that $\psi(a) = \psi(a') = (1, 0, 0), \ \psi(b) = \psi(b') = (0, 1, 0), \ \psi(c) = \psi(c') = (0, 0, 1).$
- Then ψ is one-to-one on each hom-set of \mathcal{C}_6 .
- By the theorem above, C_6 embeds into its group.

GCD-monoids

Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids

 Interval monoids

Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples

 Universal monoids of categories

universal monoid Spindles

Embedding into groups

• Eliminating
$$c'$$
, b' , a' yields $ac^{-1}b = bc^{-1}a$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - 釣A♡

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles
- Embedding into groups

• Eliminating c', b', a' yields $ac^{-1}b = bc^{-1}a$. (Group embeddability implicit there.)

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into
- groups

- Eliminating c', b', a' yields ac⁻¹b = bc⁻¹a. (Group embeddability implicit there.)
- Hence, $U_{gp}(C_6) \cong U_{gp}(D_4)$ where D_4 is the monoid defined by generators *a*, *b*, *c*, *a'* and the unique relation acb = bca.

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into
- groups

- Eliminating c', b', a' yields ac⁻¹b = bc⁻¹a. (Group embeddability implicit there.)
- Hence, $U_{gp}(C_6) \cong U_{gp}(D_4)$ where D_4 is the monoid defined by generators *a*, *b*, *c*, *a'* and the unique relation acb = bca.
- By applying Dehornoy's methods to D₄, it can be proved that D₄ is a noetherian gcd-monoid satisfying both right and left 3-Ore conditions.

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by posets Examples
- Universal monoids of categories
 Categories,
- universal monoid Spindles Embedding into
- groups

- Eliminating c', b', a' yields ac⁻¹b = bc⁻¹a. (Group embeddability implicit there.)
- Hence, $U_{gp}(C_6) \cong U_{gp}(D_4)$ where D_4 is the monoid defined by generators *a*, *b*, *c*, *a'* and the unique relation acb = bca.
- By applying Dehornoy's methods to D₄, it can be proved that D₄ is a noetherian gcd-monoid satisfying both right and left 3-Ore conditions.
- This yields another proof that D₄ embeds into its group.

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by poset Examples
- Universal monoids of categories
 Categories, universal mon
- Spindles Embedding into groups

- Eliminating c', b', a' yields ac⁻¹b = bc⁻¹a. (Group embeddability implicit there.)
- Hence, $U_{gp}(C_6) \cong U_{gp}(D_4)$ where D_4 is the monoid defined by generators *a*, *b*, *c*, *a'* and the unique relation acb = bca.
- By applying Dehornoy's methods to D₄, it can be proved that D₄ is a noetherian gcd-monoid satisfying both right and left 3-Ore conditions.
- This yields another proof that D_4 embeds into its group.
- By extending the zigzag machinery to categories, we could prove:

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by poset Fyamples
- Universal monoids of categories
 Categories, universal more
- Spindles Embedding into groups

- Eliminating c', b', a' yields ac⁻¹b = bc⁻¹a. (Group embeddability implicit there.)
- Hence, $U_{gp}(C_6) \cong U_{gp}(D_4)$ where D_4 is the monoid defined by generators *a*, *b*, *c*, *a'* and the unique relation acb = bca.
- By applying Dehornoy's methods to D₄, it can be proved that D₄ is a noetherian gcd-monoid satisfying both right and left 3-Ore conditions.
- This yields another proof that D_4 embeds into its group.

By extending the zigzag machinery to categories, we could prove:

Proposition (Dehornoy + W)

Reduction is semi-convergent (but not convergent) for C_6 .

GCD-monoids

- Gcd-monoids
 Multifractions
 Reduction
 Gcd-monoids
- Interval monoids
- Embedding into free groups and monoids Interval gcd-monoids Floating homotopy group Representing groups by poset: Examples
- Universal monoids of categories
- Categories, universal monoid Spindles Embedding into
- groups

Thanks for listening!