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m Example: M = /Z\+, defined by generators a, b, ¢ and relations
aba = bab, bcb = cbc, aca = cac.

m The multifraction ba/ab/cb/bc/ac/ca is prime.
m However, it represents 1 in the enveloping group Ay = ng(/&j).
m Hence a better concept of reduction is needed.
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start as above, by killing all denominators between a; and a,.
m Let a3 = xa}, apy = xa,. Replace a; by ary, a; by a), a; by a5.

ary

m Similar operation possible between a3 and a4, with multiplication
replaced by its opposite.

m Then repeat (in whatever order).

m If the process stops, we get an irreducible multifraction.

m This reduction system may not be convergent: a multifraction
may reduce to two distinct irreducible multifractions (example
in Al 1/c/aba reduces to both ac/ca/ba and bc/cb/ab).
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dually.
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m The meet and join of {a, b}, if they exist, with respect to <, are
denoted by a A b (Ieft ged) and a Vv b (right lcm), respectively.
Similarly for aA b, aV b.

m Uniqueness of meets and joins ensured if M is conical (xy =1
= x = 1) and cancellative.

m Convenient framework for reduction of multifractions: the class,
introduced by Dehornoy in, of all gcd-monoids (conical,
cancellative monoids in which Va, b 3a A b, a A b).

m Example (Brieskorn-Saito, 1972): Artin-Tits monoids, that is,
monoids defined by sets of relations of the form
aba--- = bab--- (same length on both sides, one relation for
each pair {a, b}).
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m Say that reduction, in a gcd-monoid M, is semi-convergent if for
every multifraction a of M, a reduces to 1 iff a represents 1
in Ugp(M).

m With suitable ncetherianity conditions, this implies decidability of
the word problem in Ugy(M).

Gced-monoids

Question (Dehornoy)

Is reduction semi-convergent in Artin-Tits monoids?

m Experimentally supported.

m How well do things work out for general gcd-monoids?
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m Hence, T(P) = Fyon(n — 1) (free monoid on n — 1 letters). By
the proposition above (and picking any linear extension), we get

Proposition

For any finite poset P, with n elements, T(P) embeds into the free
monoid Fyon(n — 1).
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When are they gcd-monoids?

GCD-monoids

For any poset P and any a € P, we set

PSP ={xeP|x<a},
P??={x€ P|x>a}.

Interval
gcd-monoids

Let P be a poset. Then T(P) is a gcd-monoid iff for every a € P,
P<? is a join-semilattice and P>? is a meet-semilattice. (Say that P
is a local lattice.)
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Floating homotopy group of a simplicial complex

GCD-monoids

m A set K, of nonempty finite subsets of some set V (the vertices
of K), is a simplicial complex on V, if {p} € K for all p € V,
and (@ # X C Y and Y € K) implies X € K. The elements
of K are called the simplices of K.
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m Now the barycentric subdivision P, of any simplicial complex, is
a local lattice (i.e., each P>? is a meet-semilattice and each P<?
is a join-semilattice).

m Hence, in the theorem above, P can be taken a local lattice,
which means that T(P) is a gcd-monoid.

m In particular, Every group is a doubly free factor of the universal

group of an interval gcd-monoid.
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thus There are finite posets P, of length 2, such that T(P) is a
gcd-monoid and T*(P) has torsion.

m There are finitely presented groups with undecidable word

L problem, thus There are finite posets P, of length 2, such

roups by posets that T(P) is a gcd-monoid and T*(P) has undecidable word
problem.

m In particular, There are finite posets P, of length 2, for
which T(P) is a gcd-monoid where reduction is not
semi-convergent.

14/29



An example without semi-convergence

GCD-monoids
The first such poset P, for which T(P) is a gcd-monoid where
reduction is not semi-convergent, was found with Dehornoy:

Examples

15/29



An example without semi-convergence

GCD-monoids
The first such poset P, for which T(P) is a gcd-monoid where
reduction is not semi-convergent, was found with Dehornoy:

Examples

15/29



An example without semi-convergence

GCD-monoids
The first such poset P, for which T(P) is a gcd-monoid where
reduction is not semi-convergent, was found with Dehornoy:

Examples

The multifraction, given by the outside boundary, is nontrivial
irreducible, nevertheless it represents 1 in the universal group T*(P).
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m A positive (resp., negative) zigzag, in a poset P, is a finite
sequence x = (xp, ..., X,) € P" such that xp < x3 > xp < - -
(resp., xo > x1 < x2 > ---).
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pairwise distinct.

m Then define a multifraction by F(x) = [xo, x1]/[x2, x1]/ - -
(resp., /Pxa, xo]/[x1, 2]/ - -+ ).

m We say that a zigzag x is reducible if F(x) is a reducible

multifraction (can be read directly on the poset).

Examples

Proposition (Dehornoy + W)

Let P be a finite local lattice. If every simple closed zigzag in P is
reducible, then reduction is semi-convergent for T(P).

The proof (multifractions ~» zigzags) involves the highlighting trick.
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m By using the tools introduced by Dehornoy (cube condition,
3-Ore condition), one can prove that Mg is a gcd-monoid, for
which reduction is convergent. Thus Mg embeds into its group.

m In fact, Mg embeds into Fr,on(4), via a— a, b— b, ¢ — ax,
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m However, Mg is not an interval monoid.

18/29



Semicategories, categories

GCD-monoids

m Think of categories as “arrow-only".

Categories,
universal monoid

19/29



Semicategories, categories

GCD-monoids

m Think of categories as “arrow-only"”.

m A semicategory is a structure (S, ), where - is a partial binary
operation on S such that (x-y)-z ] iff x- (y-z) ], and then
the two values are equal, Vx,y,z € S.

Categories,
universal monoid

19/29



Semicategories, categories

GCD-monoids

m Think of categories as “arrow-only"”.

m A semicategory is a structure (S, ), where - is a partial binary
operation on S such that (x-y)-z ] iff x- (y-z) ], and then
the two values are equal, Vx,y,z € S.

m An identity (= object) of S is an element e € S such that

e2=eand Vx € S, xe |= xe = x and ex |= ex = x.

Categories,
universal monoid

19/29



Semicategories, categories

GCD-monoids

Think of categories as “arrow-only"”.

m A semicategory is a structure (S, ), where - is a partial binary
operation on S such that (x-y)-z ] iff x- (y-z) ], and then
the two values are equal, Vx,y,z € S.

m An identity (= object) of S is an element e € S such that

e2=eand Vx € S, xe |= xe = x and ex |= ex = x.

m A category is a semicategory where Vx, 3 identities a, b such
that x = ax = xb. Write a = Jox (source of x), b = J;x (target
of x).

Categories,
universal monoid

19/29



Semicategories, categories

GCD-monoids

Think of categories as “arrow-only"”.

m A semicategory is a structure (S, ), where - is a partial binary
operation on S such that (x-y)-z ] iff x- (y-z) ], and then
the two values are equal, Vx,y,z € S.

m An identity (= object) of S is an element e € S such that

e2=eand Vx € S, xe |= xe = x and ex |= ex = x.

m A category is a semicategory where Vx, 3 identities a, b such
that x = ax = xb. Write a = Jox (source of x), b = J;x (target
of x).

m Morphism of categories = functor (e.g., identities — identities).

Categories,
universal monoid

19/29



Semicategories, categories

GCD-monoids

Think of categories as “arrow-only"”.

m A semicategory is a structure (S, ), where - is a partial binary
operation on S such that (x-y)-z ] iff x- (y-z) ], and then
the two values are equal, Vx,y,z € S.

m An identity (= object) of S is an element e € S such that

e2=eand Vx € S, xe |= xe = x and ex |= ex = x.

m A category is a semicategory where Vx, 3 identities a, b such
that x = ax = xb. Write a = Jox (source of x), b = J;x (target
of x).

m Morphism of categories = functor (e.g., identities — identities).

m Every monoid is a category with exactly one identity.

Categories,
universal monoid

19/29



Semicategories, categories

GCD-monoids

Think of categories as “arrow-only"”.

m A semicategory is a structure (S, ), where - is a partial binary
operation on S such that (x-y)-z ] iff x- (y-z) ], and then
the two values are equal, Vx,y,z € S.

m An identity (= object) of S is an element e € S such that

e2=eand Vx € S, xe |= xe = x and ex |= ex = x.

m A category is a semicategory where Vx, 3 identities a, b such
that x = ax = xb. Write a = Jox (source of x), b = J;x (target
of x).

m Morphism of categories = functor (e.g., identities — identities).

m Every monoid is a category with exactly one identity.

Categories,
universal monoid

m Every poset P gives rise to a category Cat(P), whose elements
are the [x, y], where x <y in P, and where [x,y] - [y, z] = [x, z].
Note [x,x] = Oo[x,y] and [y, y] = O1[x, y].
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m Reduction rule — on SeqS: (e) = @, (x,y) = z
whenever z = xy, and close under concatenation.

m This reduction rule is confluent and ncetherian, and — generates
a monoid congruence = on Seq S.

B Unon(S) = (Seq S)/= (= set of all reduced sequences of
elements of S) is the universal monoid of S.

m It is the initial object in the category of all functors from S to a
monoid.

m The canonical functor es: S — Upon(S) satisfies that
es(x) = es(y) iff either x = y or x and y are both identities.

m For any poset P, T(P) = Umon(Cat(P)) and
TE(P) = Ugy(Cat(P)).
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Gcd-monoids and gcd-categories

GCD-monoids

Gcd-categories can be defined in a similar way as gcd-monoids.
(They are the category analogue of local lattices.) For example, say
that any a, b € S, with dpa = Jyb, have a left ged.

Proposition

A category S is a ged-category iff Unon(S) is a ged-monoid.

In particular, for any poset P, Cat(P) is a gcd-category
iff Umon(Cat(P)) (equal to T(P)) is a gcd-monoid, iff P is a local
lattice.

Categories,
universal monoid
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Categories from extreme spindles

GCD-monoids
m A spindle, in a poset P, is a closed interval [u, v], such that the

open interval (u, v) is nonempty and the comparability relation
on (u, v) is transitive
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m A spindle, in a poset P, is a closed interval [u, v], such that the

open interval (u, v) is nonempty and the comparability relation
on (u,v) is transitive (so any two distinct maximal chains
of [u, v] meet in {u,v}).

m A spindle [u, v] is extreme if u is minimal and v is maximal.

m For an extreme spindle [u, v], denote by €, , the set of all
maximal chains of [u, v], and set

Cat(P, u,v) = (Cat(P) \ A{[u, v]}) UCuy,

with products arising from Cat(P) whenever possible, and new
products given by

Sl [u,z] - [z,v] =Z, whenever u< z<vand z€ Z€QC,,.

m Then Cat(P,u,v) is a category.
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Gcd-monoids from extreme spindles

GCD-monoids

Let [u, v] be an extreme spindle in a local lattice P. Then
Cat(P, u,v) is a gcd-category.
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Gcd-monoids from extreme spindles

GCD-monoids

Proposition

Let [u, v] be an extreme spindle in a local lattice P. Then
Cat(P, u,v) is a gcd-category. Furthermore,
T(P,u,v) = Umon(Cat(P, u, v)) can be defined by the

€

generators [x, y], with x <y and (x,y) # (u, v), and the relations

X, ¥] - ly,z] =[x, 2] for x <y < zin P and (x,z) # (u, V).
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An example of extreme spindle

GCD-monoids

m The following example, obtained with Dehornoy, yields the first
example of a gcd-monoid that does not embed into its group.
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m The following example, obtained with Dehornoy, yields the first
example of a gcd-monoid that does not embed into its group.

m Set Q = {1,2,3,4}. Then Pg = PB(Q)\ {@,Q} is a 14-element
local lattice under C.

m Setting v = 1 and v = 123, the interval [u, v] is an extreme
spindle of Pg.
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An example of extreme spindle

GCD-monoids

m The following example, obtained with Dehornoy, yields the first
example of a gcd-monoid that does not embed into its group.

m Set Q = {1,2,3,4}. Then Pg = PB(Q)\ {@,Q} is a 14-element
local lattice under C.

m Setting v = 1 and v = 123, the interval [u, v] is an extreme
spindle of Pg.

m The relation [1,12] - [12,123] = [1,13] - [13, 123] fails

in T(Pg, u, v), but holds in T*(Pg, u,v). Hence T(Pg, u,v)

does not embed into any group.

Spindles
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A picture of Pg

O
234

The monoid T(Pg, u, v) omits the Mal’cev condition
LiR Rl Ry L3R} R3 L5 L5 RS (24 variables, 11 + 1 identities).
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An embeddability criterion into a group

GCD-monoids

m There are categories whose universal monoid does not embed
into their group (take any non-cancellative monoid!).
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An embeddability criterion into a group

GCD-monoids

m There are categories whose universal monoid does not embed
into their group (take any non-cancellative monoid!).

m However, embeddability can be verified “locally”.

Theorem

Let S be a category. Then Unon(S) embeds into its group iff there
exists a functor, from S to some group, whose restriction to any
hom-set of S is one-to-one.

m The proof of the non-trivial direction involves the highlighting
trick.

m The result for posets follows trivially (hom-sets are either empty

E or singletons).
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An example of embeddable monoid

GCD-monoids /

m Denote by G4 the monoid defined by generators a, b, ¢, ', b/, ¢
and relations ab’ = ba’, bc’ = cb’, ac’ = ca'.
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ccPmenaics Denote by Cs the monoid defined by generators a, b, ¢, &, b/, ¢

and relations ab’ = ba’, bc’ = cb’, ac’ = ca'.

m Adjan's embeddability condition, and Dehornoy’s 3-Ore
condition, both fail for that example.

m Then Cs = Unon(Cs), where Cg has objects 0, 1, 2, arrows a, b,
c from 0 to 1, and arrows &', b’, ¢’ from 1 to 2, with bc’ = cb/,
ac’ = ca’, and ab’ = ba’ (so there are 6 arrows from 0 to 2).

m Let 1: G — Z3 be the unique functor such that
P(a) = (a') = (1,0,0), ¥(b) = ¥(b') = (0,1,0),
o ¥(c) = ¥() = (0,0,2)
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An example of embeddable monoid

GCD-monoids /

Denote by Cg the monoid defined by generators a, b, ¢, ', b/, ¢
and relations ab’ = ba’, bc’ = cb’, ac’ = ca'.

m Adjan's embeddability condition, and Dehornoy’s 3-Ore
condition, both fail for that example.

m Then Cs = Unon(Cs), where Cg has objects 0, 1, 2, arrows a, b,
c from 0 to 1, and arrows &', b’, ¢’ from 1 to 2, with bc’ = cb/,
ac’ = ca’, and ab’ = ba’ (so there are 6 arrows from 0 to 2).

m Let 1: G — Z3 be the unique functor such that
11)(3) = ¢(3’) = (17 0, O)' ¢(b) = ¢(b') = (O’ L, O)v

o ¥(c) = (') =(0,0,1).

m Then v is one-to-one on each hom-set of Cs.

m By the theorem above, (s embeds into its group.
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More on the example Cg

GCD-monoids

m Eliminating ¢/, b, a' yields ac™'b = bcla.
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More on the example Cg

GCD-monoids

Eliminating ¢/, b/, @ yields ac™'b = bc~ta. (Group
embeddability implicit there.)

m Hence, Ugp(GCs) =2 Ugp(Das) where D, is the monoid defined by
generators a, b, ¢, @ and the unique relation acb = bca.

m By applying Dehornoy’s methods to Dy, it can be proved
that D, is a ncetherian gcd-monoid satisfying both right and left
3-Ore conditions.

m This yields another proof that D, embeds into its group.

By extending the zigzag machinery to categories, we could prove:

Proposition (Dehornoy + W)

Embedding into Reduction is semi-convergent (but not convergent) for Cs.
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GCD-monoids

Thanks for listening!
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